JP2006231420A - Automatic lathe and rear face machining method by the same - Google Patents

Automatic lathe and rear face machining method by the same Download PDF

Info

Publication number
JP2006231420A
JP2006231420A JP2005045078A JP2005045078A JP2006231420A JP 2006231420 A JP2006231420 A JP 2006231420A JP 2005045078 A JP2005045078 A JP 2005045078A JP 2005045078 A JP2005045078 A JP 2005045078A JP 2006231420 A JP2006231420 A JP 2006231420A
Authority
JP
Japan
Prior art keywords
workpiece
cutting
amount
automatic lathe
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045078A
Other languages
Japanese (ja)
Other versions
JP4568139B2 (en
Inventor
Hitoshi Amano
仁 天野
Tadayasu Shida
忠靖 志田
Yoji Sakata
陽治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOMURA AUTOMATIC LATHE
NOMURA SEIKI KK
Original Assignee
NOMURA AUTOMATIC LATHE
NOMURA SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOMURA AUTOMATIC LATHE, NOMURA SEIKI KK filed Critical NOMURA AUTOMATIC LATHE
Priority to JP2005045078A priority Critical patent/JP4568139B2/en
Publication of JP2006231420A publication Critical patent/JP2006231420A/en
Application granted granted Critical
Publication of JP4568139B2 publication Critical patent/JP4568139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform cutting of a maximum length within allowable deflection volume without lowering productivity in an automatic lathe. <P>SOLUTION: This lathe has a control means 1 for controlling radial amount d of depth of cut. The control means 1 has a storage means 1A for setting the allowable maximum deflection amount b during the cutting at a free end to be the other end of a workpiece of the Young's modulus E, specific cutting force K, feeding amount f of the workpiece fixed in a spindle axis direction and the Young's modulus E and storing the data, a first arithmetic means 1C for determining a coefficient α as α=(3πEb)/(64Kf) based on the data from the storage means 1A, a fetch means 1B for successively fetching a length L from a cantilever base point of the workpiece up to a cutting point changing during the cutting and a minimum outer diameter D, and a second arithmetic means 1D for calculating the radial amount d of depth of cut of a cutter as d=(αD<SP>4</SP>)/L<SP>3</SP>by using successively updated L and D. A tool rest for controlling the depth of cut of the cutting based on the value of the amount d of depth of cut is controlled by an X-axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動旋盤及びこれによる裏面加工方法に関する。   The present invention relates to an automatic lathe and a back surface processing method using the automatic lathe.

自動旋盤にあっては、図3(A)に示されるごとく、被加工物たる棒部材11を主軸のブッシュ12で回転自在に支持し、該棒部材をその長手方向軸線まわりに回転させると共に該軸線方向へ送り出し、上記軸線方向に対しブッシュに近い定位置にある刃物台に支持されている刃物13を半径方向に移動させ、ブッシュ12から軸線方向に突出せる被加工物を先端たる一端から加工する。この主軸に支持されている状態での加工を正面加工と称し、所定の加工終了後に刃物13により被加工物を切取り位置14で切り取って製品を得る。   In the automatic lathe, as shown in FIG. 3 (A), a bar member 11 as a workpiece is rotatably supported by a bush 12 of a main shaft, and the bar member is rotated around its longitudinal axis. Sending in the axial direction, moving the tool 13 supported by the tool post located at a fixed position near the bush with respect to the axial direction in the radial direction, and machining the workpiece that protrudes in the axial direction from the bush 12 from one end of the tip To do. Processing in a state of being supported by the main shaft is referred to as front processing, and after completion of predetermined processing, the workpiece is cut out by the cutting tool 13 at the cutting position 14 to obtain a product.

製品によっては、上記正面加工後に、図3(B)に見られる、上記主軸に対して軸線方向先方に位置するチャック15へ被加工物11を受け渡すように上記一端にてチャック15で把持してから該被加工物11を切り取り、このチャック15を上記主軸側へ移動させながら、他端、すなわち切り落とし端たる自由端から刃物13により追加加工を行うことがある(図3(B)参照)。この正面加工後のチャックでの保持後に、被加工物を追加加工することを裏面加工と称している。   Depending on the product, after the front machining, the workpiece 15 is gripped by the chuck 15 at one end so as to deliver the workpiece 11 to the chuck 15 positioned axially ahead of the main shaft, as shown in FIG. Then, the workpiece 11 is cut out, and additional processing may be performed by the cutter 13 from the other end, that is, the free end which is a cut-off end, while moving the chuck 15 toward the spindle (see FIG. 3B). . The additional processing of the workpiece after holding by the chuck after the front processing is referred to as back processing.

このように、自動旋盤で棒部材の裏面加工が行われる場合、被加工物は主軸からチャックに持ち変えられているので、裏面加工側にはブッシュが存在せず、片持ち状態での切削加工となる。正面加工時でも被加工物はブッシュにより片持ちで支持されているが、この場合、図3(A)でも判るように、刃物13による加工は軸方向にてブッシュ12に近い位置で行われる。すなわち、被加工物は片持ち基点の近傍で加工を受ける。これに対し、裏面加工時は、図3(B)でも判るように、被加工物11は片持ちの自由端から刃物13により切削加工が開始される。片持ち基点より大きく離れた位置での切削加工が切削時の切削抵抗により被加工物に撓みbを生じさせる(図3(B)参照)。したがって、この撓みは、刃物が被加工物に対して自由端に近い位置にあるとき程大きく、すなわち刃物に対しての被加工物の半径方向での逃げが大きくなる。この逃げは切り込みのための刃物の半径方向での移動量よりも少なく、しかも切削されないということを意味する。その結果、加工終了時には、軸方向に一定の直径をもつ部分を加工しようとしても、図3(C)のごとく、自由端に向けて大径に拡がる半径誤差cをもったものとなり、自由端ではこの誤差が許容値を超えることがある。   In this way, when the back surface processing of the bar member is performed with an automatic lathe, the work piece is changed from the main shaft to the chuck, so there is no bush on the back surface processing side, and cutting is performed in a cantilever state. It becomes. Although the workpiece is cantilevered by the bush even during front face machining, in this case, as shown in FIG. 3A, machining by the blade 13 is performed at a position close to the bush 12 in the axial direction. That is, the workpiece is processed in the vicinity of the cantilever base point. On the other hand, at the time of back surface processing, as can be seen from FIG. 3B, the workpiece 11 starts to be cut by the blade 13 from the cantilevered free end. Cutting at a position far from the cantilever base point causes the workpiece to bend due to cutting resistance during cutting (see FIG. 3B). Therefore, this deflection becomes larger when the cutter is located at a position near the free end with respect to the workpiece, that is, the clearance in the radial direction of the workpiece with respect to the cutter is increased. This relief means that the amount of movement of the blade for cutting is less than the amount of movement in the radial direction and is not cut. As a result, even if an attempt is made to machine a portion having a constant diameter in the axial direction at the end of machining, as shown in FIG. 3 (C), a radius error c that expands toward the free end has a radius error c. Then, this error may exceed the allowable value.

このような誤差を許容限度に収めるためには、一般に、片持ちでの切削可能な加工長、すなわち、被加工物の片持ち基点から加工位置、すなわち切削点までの距離、換言すれば裏面加工時の被加工物の長さは被加工物の材質により異なり、軟材、例えば銅合金のときは、被加工物の切削直径の2.5倍、硬材、例えば鋼材のときは6倍に近い値をとる。すなわち、このように撓みに起因する加工誤差許容限度に収めるには、被加工物の可能最大長が短くなってしまう。   In order to keep such an error within an allowable limit, generally, the machining length that can be cut with a cantilever, that is, the distance from the cantilever base point of the workpiece to the machining position, that is, the cutting point, in other words, the back surface machining The length of the workpiece is different depending on the material of the workpiece. For soft materials such as copper alloys, the cutting diameter of the workpiece is 2.5 times, and for hard materials such as steel, it is 6 times. Take a close value. That is, the maximum possible length of the workpiece is shortened in order to fall within the allowable processing error limit due to the bending.

撓み量を許容量以下とするには、撓み量を常時検出し、その撓み量を規制すべく切込み量を補正制御することが考えられる。   In order to make the amount of bending less than or equal to the allowable amount, it is conceivable to always detect the amount of bending and to correct and control the cutting amount so as to regulate the amount of bending.

従来、許容値内の撓みに係わる加工に関しては、自動旋盤についてではないが、内面研削盤について、片持ち状態における撓み補正制御として、砥石軸の中間部位に撓み非接触センサを配置し、それによって軸の撓み変位量を計測し、その値を用いて必要とする砥石
位置での最大撓み量を計算で算出し、その結果の値で撓みを補正する制御方法及び装置が特許文献1に開示されている。
特開2003−300132
Conventionally, regarding machining related to the deflection within the allowable value, although not for an automatic lathe, a deflection non-contact sensor is arranged at an intermediate portion of the grinding wheel shaft as a deflection correction control in a cantilever state for an internal grinding machine, thereby Patent Document 1 discloses a control method and apparatus for measuring a deflection displacement of a shaft, calculating a maximum deflection amount at a required grindstone position using the value, and correcting the deflection based on the calculated value. ing.
JP 2003-300132 A

上述の特許文献1による方法は、撓み以外の形状変形が存在しない被加工物または被測定物の場合においてリアルタイムで計測が可能であるため限定領域での適用は有利である。すなわち、砥石を支持する軸は、その直径は変わることがないので、センサをこれに近接配置して軸の撓みを検出し、その検出値から研削部位における撓み量を推定できる。   Since the method according to Patent Document 1 described above can be measured in real time in the case of a workpiece or an object to be measured in which there is no shape deformation other than bending, application in a limited region is advantageous. That is, since the diameter of the shaft that supports the grindstone does not change, it is possible to estimate the amount of bending at the grinding site from the detected value by detecting the bending of the shaft by placing a sensor close to the shaft.

しかし、自動旋盤での裏面加工により小物ねじ切り加工のような場合、刃物の位置が軸線方向で固定位置にあるので、被加工物は被加工物の長手方向、すなわち、軸線方向に移動させることになり、更に切削により被加工物の直径がリアルタイムで変化するため、撓みセンサを被加工物に近接させることによるリアルタイムでの撓み計測は容易でなくなる。さりとて、刃物にセンサを近接配置しても被加工物の撓みは計測できない。したがって、特許文献1の計測方法は自動旋盤の裏面加工に適用することはできない。   However, in the case of small thread cutting by backside processing with an automatic lathe, the position of the cutter is in a fixed position in the axial direction. Furthermore, since the diameter of the workpiece changes in real time by cutting, it is not easy to measure the deflection in real time by bringing the deflection sensor close to the workpiece. As a matter of fact, even if the sensor is arranged close to the cutter, the bending of the workpiece cannot be measured. Therefore, the measurement method of Patent Document 1 cannot be applied to the back surface processing of an automatic lathe.

上記自動旋盤による裏面加工の場合には、被加工物が片持ち状態であり、撓みは先端荷重に対し、被加工物の切削長さの3乗に比例し、更に被加工物の切削直径の4乗に反比例する物理的な条件が存在するために、該被加工物の切削による形状の寸法の変化が計測を特に困難にしているのである。   In the case of the back surface processing by the automatic lathe, the workpiece is in a cantilever state, the deflection is proportional to the cube of the cutting length of the workpiece with respect to the tip load, and the cutting diameter of the workpiece is further increased. Since there is a physical condition that is inversely proportional to the fourth power, a change in the size of the workpiece due to the cutting of the workpiece makes measurement particularly difficult.

本発明は、このような事情に鑑み、きわめて簡単な手段で、裏面加工時の撓みを許容値以内に収めることができる自動旋盤及びこれによる裏面加工方法を提供することを目的とするものである。   In view of such circumstances, an object of the present invention is to provide an automatic lathe capable of keeping the bending at the time of back surface processing within an allowable value by an extremely simple means, and a back surface processing method using the automatic lathe. .

<裏面加工方法>
本発明は、自動旋盤による裏面加工時に、被加工物の一端をチャックで片持ち状態で把持しつつ該被加工物を旋削加工する裏面加工方法に関する。
<Backside processing method>
The present invention relates to a back surface machining method for turning a workpiece while holding one end of the workpiece in a cantilevered state with a chuck during back surface machining by an automatic lathe.

かかる方法において、本発明は、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量bを設定する第一工程と、比切削抵抗K、主軸軸線方向での定められた被加工物の送り量f、上記ヤング率E及び上記許容最大撓み量bから係数αをα=(3πEb)/(64Kf)として求める第二工程と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む第三工程と、逐次更新されたL,Dを用いて半径方向での刃物の切込み量dをd=(αD)/Lとして求める第四工程とを有し、この切込み量dのもとで旋削することを特徴としている。 In such a method, the present invention includes a first step of setting an allowable maximum deflection amount b during machining at the free end as the other end of the workpiece having a Young's modulus E, and a specific cutting resistance K and a determination in the main shaft axis direction. A second step of obtaining a coefficient α as α = (3πEb) / (64 Kf) from the feed amount f of the workpiece to be processed, the Young's modulus E, and the allowable maximum deflection amount b, and a workpiece that changes during machining The third step of sequentially taking in the length L and the minimum outer diameter D from the cantilever base point to the cutting point, and the cutting amount d of the blade in the radial direction using the successively updated L and D is d = (αD 4 ). / L 3 and a fourth step, and the turning is performed with this cutting depth d.

また、上記方法において、第二工程で被加工物の送り量fに代えて、切込み量dを用いて、係数αに代え係数βをβ=(3πEb)/(64Kd)として求めることにより、第四工程でf=(βD)/Lとして送り量を定め、この送り量fのもとで切削を行うことができる。すなわち、dとfのいずれか一方を予め定め、撓みが許容最大撓み量b内に収まるように他方を制御することができる。 In the above method, in the second step, the cutting amount d is used instead of the workpiece feed amount f, and the coefficient β is obtained as β = (3πEb) / (64 Kd) instead of the coefficient α. The feed amount is determined as f = (βD 4 ) / L 3 in four steps, and cutting can be performed under this feed amount f. That is, one of d and f can be determined in advance, and the other can be controlled so that the deflection is within the allowable maximum deflection amount b.

<自動旋盤>
上述した本発明の方法を実施するための本発明の自動旋盤は、半径方向での切込み量dを制御する制御手段を有し、該制御手段は、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量b、比切削抵抗K、主軸軸線方向での定められた被加工物
の送り量f、上記ヤング率Eを設定しこれらのデータを記憶する記憶手段と、該記憶手段からのデータにもとづき係数αをα=(3πEb)/(64Kf)として求める第一演算手段と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む取込み手段と、逐次更新されたL,Dを用いて半径方向での刃物の切込み量dをd=(αD)/Lとして算出する第二演算手段とを有し、この切込み量dの値にもとづき切削の切込みを司る刃物台をX軸で制御することを特徴としている。
<Automatic lathe>
The automatic lathe of the present invention for carrying out the above-described method of the present invention has a control means for controlling the cutting depth d in the radial direction, and the control means is the other end of the workpiece having a Young's modulus E. Storage means for setting the allowable maximum deflection amount b during machining at the free end, the specific cutting resistance K, the feed amount f of the work piece determined in the spindle axis direction, and the Young's modulus E and storing these data A first calculation means for obtaining a coefficient α as α = (3πEb) / (64 Kf) based on the data from the storage means, a length L from the cantilever base point of the workpiece to the cutting point, which changes during processing, and A take-in means for sequentially taking in the minimum outer diameter D, and a second calculation means for calculating the cutting amount d of the blade in the radial direction as d = (αD 4 ) / L 3 using L and D that have been successively updated. The cutting depth is controlled based on the value of the depth d. It is characterized by controlling the tool rest in the X-axis.

本発明においても、既述した方法の発明の場合と同様に、刃物の送り量fと切込み量dとの関係を入れ替えることができる。すなわち、記憶手段で予め設定される被加工物の送り量fに代えて切込み量dを予め設定し、第一演算手段で係数αに代えて係数βを求め、第二演算手段で切込み量dに代えて送り量fを求め、この送り量fの値にもとづき切削の送りを司る主軸をZ軸で制御することで同様の加工を行うことができる。   Also in the present invention, as in the case of the method invention described above, the relationship between the cutting tool feed amount f and the cutting amount d can be interchanged. That is, a cutting amount d is set in advance in place of the workpiece feed amount f preset by the storage means, a coefficient β is obtained instead of the coefficient α by the first calculating means, and a cutting amount d is calculated by the second calculating means. Instead, the same amount of machining can be performed by obtaining the feed amount f and controlling the spindle that controls cutting feed by the Z-axis based on the value of the feed amount f.

<発明の原理>
本発明の方法そして装置は次のような原理に基づく。
<Principle of the invention>
The method and apparatus of the present invention is based on the following principle.

撓みは、本来、切削力P、被加工物の片持ち基点から切削点までの距離L、被加工物の直径Dに関係があり、その中で切削力Pはその反力となる切削抵抗Rを伴う。   The deflection is inherently related to the cutting force P, the distance L from the cantilever base point of the workpiece to the cutting point, and the diameter D of the workpiece, in which the cutting force P is the cutting force R that is the reaction force. Accompanied by.

切削抵抗Rは、周知のように、切削の送り量fと切削の切込み量dに関係することから、上記撓みを所定の許容値以下に保つ条件のもとでは上記Lの変化に応じて上記dまたは上記fを制御することにより任意長尺物の加工が可能となる。なお上記切削の送り量fは主軸軸線方向即ちZ軸での被加工物の移動量を言い、切込み量dは半径方向即ちX軸での刃物の移動量を言う。   As is well known, the cutting resistance R is related to the cutting feed amount f and the cutting infeed amount d. Therefore, the cutting resistance R depends on the change in L under the condition that the bending is kept below a predetermined allowable value. By controlling d or f, an arbitrarily long object can be processed. The cutting feed amount f refers to the amount of movement of the workpiece in the main axis direction, that is, the Z axis, and the cutting amount d refers to the amount of movement of the blade in the radial direction, that is, the X axis.

被加工物、例えば棒部材の撓みbは、材料力学等の一般教材で知られているごとく、切削力P、片持ち基点からの切削点までの距離L、被加工物のヤング率E、被加工物の直径Dに関係し、これらを数式で示すと、
b=(64PL)/(3πED) ……………………………(1)
となる。なおπは円周率である。
As known in general teaching materials such as material mechanics, the workpiece b, for example, the deflection b of the bar member, is determined by the cutting force P, the distance L from the cantilever base point to the cutting point, the Young's modulus E of the workpiece, In relation to the diameter D of the workpiece,
b = (64PL 3 ) / (3πED 4 ) (1)
It becomes. Note that π is a circumference ratio.

また、(1)式での切削力Pは、切削点において反力としての切削抵抗Rと釣り合っており、その値は等しい。それ故、(1)式の切削力Pは切削抵抗Rに置き換えることができる。   Further, the cutting force P in the equation (1) is balanced with the cutting resistance R as a reaction force at the cutting point, and the value thereof is equal. Therefore, the cutting force P in the formula (1) can be replaced with the cutting force R.

一方、切削抵抗Rは、切削の送り量f、切削の切込み量dに関係するが、加工条件が複雑に絡み合い、一般に実験による近似式が公知されている。   On the other hand, the cutting resistance R is related to the cutting feed amount f and the cutting depth d. However, the machining conditions are intertwined in a complicated manner, and an approximate expression by experiment is generally known.

しかし近似式は説明を複雑にするため、ここでは一般に用いられている切削抵抗Rの次の理論式(2)式(旋盤作業法:理工学社刊)を用いることにする。   However, in order to complicate the explanation of the approximate expression, the following theoretical expression (2) of the cutting resistance R that is generally used (lathe working method: published by Rigaku Corporation) is used here.

R=Kfd …………………………………………………………(2)
なお、Kは比切削抵抗で切りくず断面積1mm当りの荷重であり、被加工物の材料により異なる定数である。
R = Kfd ………………………………………………………… (2)
In addition, K is a load per 1 mm 2 of the chip cross-sectional area due to the specific cutting resistance, and is a constant that varies depending on the material of the workpiece.

ここで(2)式を(1)式に代入し、上記切削の切込み量dを求めると、
d=(3πEbD)/(64KfL) ……………………(3)
が得られる。
Here, substituting the equation (2) into the equation (1) and obtaining the above cutting depth d,
d = (3πEbD 4 ) / (64 KfL 3 ) (3)
Is obtained.

(3)式を、変数となる被加工物の直径D及び片持ち基点から切削点までの距離Lと、
それ以外の定数に分け、この定数をαとすると、(3)式は次の(4)式に置き換えられる。
Equation (3) is converted into the variable diameter D of the workpiece and the distance L from the cantilever base point to the cutting point,
Dividing into other constants and letting this constant be α, equation (3) is replaced by the following equation (4).

d=(αD/L) ……………………………………………(4)
但し、α=(3πEb)/(64Kf)
(4)式において係数αの各要素それぞれの値が決まると、切削の切込み量dは、上記Lまたは上記Dの値に応じて算出される。
d = (αD 4 / L 3 ) …………………………………………… (4)
However, α = (3πEb) / (64 Kf)
When the value of each element of the coefficient α is determined in equation (4), the cutting depth d is calculated according to the value of L or D.

このように上記切込み量dの値が決まると切削点での撓み量bの許容値範囲内の上記Lまたは上記Dの被加工物の切削が可能となる。   Thus, when the value of the cutting depth d is determined, the workpiece of L or D within the allowable value range of the bending amount b at the cutting point can be cut.

なお算出された上記切込み量dの値は、切削点での撓み量bが許容値以下である定常状態における切削抵抗Rのもとでの切削の切込み量の値となる。   Note that the calculated value of the cutting depth d is a value of the cutting depth under cutting resistance R in a steady state where the bending amount b at the cutting point is equal to or less than an allowable value.

上記(4)式は、切削の切込み量dで展開しているが、切込み量dを設定値とすると、同様の要領で切削の送り量fでも展開ができる。   The expression (4) is developed with the cutting depth d. However, if the cutting depth d is a set value, it can be developed with the cutting feed amount f in the same manner.

かくして、本発明によれば、先ず、最大許容撓み量bを被加工物の製品としての加工精度から定め、また、切削時の被加工物の送り量fを設定する。さらに、被加工物の材料から比切削抵抗Kそしてヤング率Eは既知なので、これらの値から係数α(=(3πEb)/(64Kf))を求め、加工中の被加工物の片持ち基点から切削点までの距離Lと最小径Dとを逐次更新して取り入れて、切込み量dを求め、この切込み量dで加工を行うことにより、切削点での撓み量bは許容値以下となることとなり、加工能率を落とさずに製品の精度が確保できることとなる。また、上述したごとく、送り量fと切込み量dとの関係を入れ替えて展開すると、一定の切込み量dを予め設定して、送り量fを制御することもできる。   Thus, according to the present invention, first, the maximum allowable deflection amount b is determined from the processing accuracy of the workpiece as a product, and the workpiece feed amount f at the time of cutting is set. Further, since the specific cutting resistance K and Young's modulus E are known from the material of the workpiece, the coefficient α (= (3πEb) / (64Kf)) is obtained from these values, and from the cantilever base point of the workpiece being processed. By sequentially updating and taking in the distance L to the cutting point and the minimum diameter D, the cutting amount d is obtained, and by performing processing with this cutting amount d, the bending amount b at the cutting point is less than the allowable value. Thus, the accuracy of the product can be secured without reducing the processing efficiency. Further, as described above, when the relationship between the feed amount f and the cut amount d is changed and developed, the feed amount f can be controlled by presetting a constant cut amount d.

本発明は、以上のように、裏面加工において、切削時に被加工物の送り量と刃物の切込み量とのいずれか一方、被加工物の材料により定まる定数、そして加工中の寸法から、撓み式にもとづいて、上記送り量と切込み量の他方が決定され、その値にもとづいて切削加工することにより、加工能率を低下させずに切削点での被加工物の撓みを許容値以下に抑えることができ、結果として高能率で高精度の製品を得る。換言すれば、本発明によれば、加工条件が従来と同じならば、従来よりも長い被加工物の加工が可能となり、従来複数工程で切削加工を行ってきたものを一工程で加工でき、加工時間の短縮が図られる。この点でも生産性が高まる。   As described above, according to the present invention, in the back surface processing, either one of the feed amount of the workpiece and the cutting depth of the blade at the time of cutting, the constant determined by the material of the workpiece, and the dimension during the processing, the bending type Based on the above, the other of the feed amount and the cut amount is determined, and by cutting based on the value, the bending of the workpiece at the cutting point is suppressed to an allowable value or less without reducing the machining efficiency. As a result, a highly efficient and highly accurate product is obtained. In other words, according to the present invention, if the processing conditions are the same as the conventional one, it is possible to process a workpiece longer than the conventional one, and it is possible to process a conventional one that has been cut in multiple steps in one step, Processing time can be shortened. Productivity also increases in this respect.

以下、添付図面にもとづき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、符号1は自動旋盤の制御部を示しているが、この制御部1には、裏面加工に関する手段のみを示し、他の制御手段は捨象されている。上記制御部1は、自動旋盤の裏面加工のためのチャック支持盤2、そして刃物台3に接続されている。チャック支持盤2は、図示しない主軸台の軸線方向先方に位置していて、上記刃物台の刃物によって正面加工を受けた被加工物を該被加工物を先端側で把持した状態で、主軸の方へ移動可能となっている。刃物台3は、上記主軸台の近傍位置で軸線方向では不動となっており、該刃物台3により支持されている刃物のみが半径方向に移動可能となっている。   In FIG. 1, reference numeral 1 denotes a control unit of an automatic lathe, but this control unit 1 shows only means relating to back surface machining, and other control means are omitted. The control unit 1 is connected to a chuck support plate 2 and a tool post 3 for machining the back surface of an automatic lathe. The chuck support plate 2 is located in the axial direction of the headstock (not shown), and the work piece which has been subjected to the front face machining by the tool of the tool post is gripped on the tip side while the work piece is gripped on the tip side. It is possible to move towards. The tool post 3 is immovable in the axial direction in the vicinity of the headstock, and only the tool supported by the tool post 3 can move in the radial direction.

被加工物は加工プログラムにしたがい加工される故、該被加工物を把持するチャックを有するチャック支持盤2もプログラムにしたがい軸線方向に移動し、また刃物台3は刃物
が半径方向にプログラムにしたがい移動する。したがって、上記チャック支持盤2の軸線方向移動量から、被加工物の片持ち基点(チャックで保持されている位置)から刃物までの距離L、そして刃物台3に対する刃物の半径方向移動量から被加工物の直径Dがそれぞれ算出できる。
Since the workpiece is machined according to the machining program, the chuck support plate 2 having a chuck for gripping the workpiece is also moved in the axial direction according to the program, and the tool rest 3 is programmed according to the radial direction of the tool. Moving. Therefore, from the amount of movement of the chuck support plate 2 in the axial direction, the distance L from the cantilever base point (position held by the chuck) of the workpiece to the blade, and the amount of movement of the blade in the radial direction relative to the tool post 3 are measured. The diameter D of the workpiece can be calculated respectively.

制御部1は記憶部1A、取込み部1B、第一演算部1Cそして第二演算部1Dを有している。   The control unit 1 includes a storage unit 1A, a capture unit 1B, a first calculation unit 1C, and a second calculation unit 1D.

記憶部1Aでは、外部からの設定入力により、最終加工精度から決まる被加工物についての切削加工中の切削点(刃物の刃先が切り込む位置)での最大許容撓み量b、生産性から決まる刃物に対する被加工物の軸線方向での送り量f、被加工物の材質から定まる比切削抵抗Kそしてヤング率Eがそれぞれ定数として入力でき、記憶されるようになっている。   In the storage unit 1A, the maximum allowable deflection amount b at the cutting point (the position at which the cutting edge of the blade cuts) of the workpiece determined by the final processing accuracy by the setting input from the outside, and the blade determined from the productivity. The feed amount f in the axial direction of the workpiece, the specific cutting resistance K determined from the material of the workpiece, and the Young's modulus E can be inputted and stored as constants.

一方、取込み部1Bは、切削加工の進行により刻々と変化する値として、上記チャック支持盤2の面から上記距離L、刃物台3から被加工物の直径Dが逐次取り込まれ、更新して行くようになっている。   On the other hand, the take-in part 1B sequentially takes in and updates the distance L from the surface of the chuck support board 2 and the diameter D of the work piece from the tool post 3 as values that change every moment as the cutting progresses. It is like that.

上記記憶部1Aは、上記定数b,f,K,Eを伝達すべく第一演算部1Cに接続されている。この第一演算部1Cでは、これらの定数のもとで、係数αを次式にもとづき算出する。   The storage unit 1A is connected to the first calculation unit 1C to transmit the constants b, f, K, and E. In the first calculation unit 1C, the coefficient α is calculated based on the following equation based on these constants.

α=(3πEb)/(64Kf)
上記第一演算部1Cと取込み部1Bとは、第二演算部1Dに接続されている。この第二演算部1Dでは、取込み部1Bからの更新された新しいL,Dの値と、第一演算部1Cからの係数αとを受けて、刃物の切込み量dを次式のもとづき算出する。
α = (3πEb) / (64Kf)
The first calculation unit 1C and the capture unit 1B are connected to the second calculation unit 1D. The second calculation unit 1D receives the updated new L and D values from the take-in unit 1B and the coefficient α from the first calculation unit 1C, and calculates the cutting amount d of the blade based on the following equation. .

d=(αD)/L
上記第二演算部1Dは刃物台3に接続されており、第二演算部1Dで算出された切込み量dで刃物を切込み移動させる。
d = (αD 4 ) / L 3
The second calculation unit 1D is connected to the tool post 3 and cuts and moves the tool by the cutting amount d calculated by the second calculation unit 1D.

かかる本実施形態装置における切削加工工程について、図2のフローチャートをも用いて、さらに詳述する。   The cutting process in the apparatus of this embodiment will be further described in detail with reference to the flowchart of FIG.

(1)先ず、被加工物の材料(材質)が決まると、そのヤング率E、加工精度の許容値で決まる最大許容撓み量b、被加工物の比切削抵抗K、切削の送り量fの各定数が求まる。   (1) First, when the material (material) of the workpiece is determined, the Young's modulus E, the maximum allowable deflection b determined by the allowable value of the machining accuracy, the specific cutting resistance K of the workpiece, the cutting feed amount f Each constant is obtained.

(2)図2のごとくこれらの定数は制御装置の入力ステップ(ステップS31)で記憶部1Aに入力され、次にプログラムにしたがい第一演算部1Cで係数αの計算(ステップS32)が実行される。   (2) As shown in FIG. 2, these constants are input to the storage unit 1A in the input step (step S31) of the control device, and then the coefficient α is calculated (step S32) in the first calculation unit 1C according to the program. The

(3)次に、加工中に変化する被加工物の直径Dと片持ち基点から切削点までの距離Lの値が逐次更新して取込み部1Bへ取り入れられる(ステップS33)と、その値はパラメータとして上記第一演算部1Cからの係数αと共に第二演算部1Dに取り込まれ、それにより切削の切込み量dの計算(ステップS34)が行われる。この計算(ステップS34)は、上記Lまたは上記Dの値に応じ逐次に補正値として算出する。   (3) Next, when the workpiece diameter D and the value of the distance L from the cantilever base point to the cutting point are sequentially updated and taken into the take-in portion 1B (step S33), the values are as follows. The parameter is taken into the second computing unit 1D together with the coefficient α from the first computing unit 1C, thereby calculating the cutting depth d (step S34). This calculation (step S34) is sequentially calculated as a correction value according to the value of L or D.

(4)dについての計算結果は刃物の切込み量dを決め、これにしたがい刃物が半径方向に移動して切込みを行う。   (4) The calculation result for d determines the cutting amount d of the blade, and according to this, the blade moves in the radial direction and performs cutting.

本発明における各種計算及び制御過程はプログラム化され、記録媒体に記録され、更に該記録媒体を制御装置に付加し、該制御装置の切込み方向での制御を司る基本の加工制御プログラム、すなわち、刃物が片持ち基点近傍で設定されている加工制御プログラムの流れに上記記録媒体から読み出されたプログラムをサブプログラムとして上記基本の加工制御プログラムに組み込まれる(ステップ35)。サブプログラムを組み込まれた上記基本の加工制御プログラムは、切削加工開始点において切込み量の制御情報(ステップ36)を切込み駆動制御手段に出力する。   Various calculation and control processes in the present invention are programmed, recorded on a recording medium, further added to the control device, and a basic machining control program for controlling the control device in the cutting direction, that is, a blade Is incorporated in the basic machining control program as a subprogram in the flow of the machining control program set near the cantilever base point (step 35). The basic machining control program in which the subprogram is incorporated outputs cutting amount control information (step 36) to the cutting drive control means at the cutting start point.

本発明において、裏面加工における被加工物の形が複雑で直径が軸線方向にて変化しているときには、取込み部へ取り込む直径Dは最小直径部の外径値を入力すればよい。そうすることにより、実際よりも大きめの撓み量として予想計算されるので、切込み量が抑制されて実際に生ずる撓みが許容撓み量を超えることはない。   In the present invention, when the shape of the workpiece in the back surface processing is complicated and the diameter changes in the axial direction, the diameter D to be taken into the take-in portion may be input as the outer diameter value of the minimum diameter portion. By doing so, the amount of bending is predicted as a larger amount than the actual amount, so the amount of cutting is suppressed and the actual amount of bending does not exceed the allowable amount of bending.

本発明において、切込み量dを一定値として予め設定し、送り量fを制御することも可能である。その場合、図1において、記憶部1Aへは送り量fに代えて切込み量dを入力し、第一演算部1Cでは係数αに代えて係数βをβ=(3πEb)/(64Kd)として算出し、第二演算部1Dでは切込み量dに代えて送り量fがf=(βD)/Lとして算出される。そしてこの送り量fにもとづき、チャック支持盤2の移動が制御されることとなる。 In the present invention, it is also possible to control the feed amount f by presetting the cutting amount d as a constant value. In this case, in FIG. 1, the cutting amount d is input to the storage unit 1A instead of the feed amount f, and the first calculation unit 1C calculates the coefficient β instead of the coefficient α as β = (3πEb) / (64Kd). In the second calculation unit 1D, the feed amount f is calculated as f = (βD 4 ) / L 3 instead of the cutting amount d. Based on this feed amount f, the movement of the chuck support plate 2 is controlled.

本発明の一実施形態装置の概要構成図である。It is a schematic block diagram of the apparatus of one Embodiment of this invention. 図1装置における加工を示すフローチャートである。It is a flowchart which shows the process in the apparatus of FIG. 従来の方法での加工の様子を示し、(A)は正面が加工時、(B)は裏面加工時、(C)は裏面加工終了時をそれぞれ示す。The state of the process by the conventional method is shown, (A) shows the time when the front surface is processed, (B) shows the time when the back surface is processed, and (C) shows the time when the back surface processing ends.

符号の説明Explanation of symbols

1 制御手段(制御部)
1A 記憶手段(記憶部)
1B 取込み手段(取込部)
1C 第一演算手段(第一演算部)
1D 第二演算手段(第二演算部)
b 撓み量
d 切込み量
f 送り量
D 直径
E ヤング率
K 比切削抵抗
L 片持ち基点から切削点までの距離
α 係数
β 係数
1 Control means (control unit)
1A storage means (storage unit)
1B Intake means (intake section)
1C 1st calculating means (1st calculating part)
1D second computing means (second computing unit)
b Deflection amount d Cutting amount f Feed amount D Diameter E Young's modulus K Specific cutting resistance L Distance from cantilever base point to cutting point α coefficient β coefficient

Claims (4)

自動旋盤による裏面加工時に、被加工物の一端をチャックで片持ち状態で把持しつつ該被加工物を旋削加工する方法において、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量bを設定する第一工程と、比切削抵抗K、主軸軸線方向での定められた被加工物の送り量f、上記ヤング率E及び上記許容最大撓み量bから係数αをα=(3πEb)/(64Kf)として求める第二工程と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む第三工程と、逐次更新されたL,Dを用いて半径方向での刃物の切込み量dをd=(αD)/Lとして求める第四工程とを有し、この切込み量dのもとで旋削することを特徴とする自動旋盤における裏面加工方法。 In a method of turning a workpiece while holding one end of the workpiece in a cantilevered state with a chuck during back surface machining by an automatic lathe, during machining at the free end that is the other end of the workpiece having a Young's modulus E The coefficient α is determined from the first step of setting the allowable maximum deflection amount b in the above, the specific cutting resistance K, the feed amount f of the workpiece defined in the spindle axis direction, the Young's modulus E, and the allowable maximum deflection amount b. a second step for obtaining α = (3πEb) / (64 Kf), a third step for sequentially taking in the length L and the minimum outer diameter D from the cantilever base point to the cutting point of the workpiece, which changes during machining, A fourth step of using the updated L and D to obtain the cutting depth d of the blade in the radial direction as d = (αD 4 ) / L 3 , and turning with the cutting depth d A back surface processing method in an automatic lathe that is characterized. 自動旋盤による裏面加工時に、被加工物の一端をチャックで片持ち状態で把持しつつ該被加工物を旋削加工する方法において、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量bを設定する第一工程と、比切削抵抗K、半径方向での定められた刃物の切込み量d、上記ヤング率E及び上記許容最大撓み量bから係数βをβ=(3πEb)/(64Kd)として求める第二工程と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む第三工程と、逐次更新されたL,Dを用いて軸方向での被加工物の送り量fをf=(βD)/Lとして求める第四工程とを有し、この送り量fのもとで旋削することを特徴とする自動旋盤における裏面加工方法。 In a method of turning a workpiece while holding one end of the workpiece in a cantilevered state with a chuck during back surface machining by an automatic lathe, during machining at the free end that is the other end of the workpiece having a Young's modulus E In the first step of setting the allowable maximum bending amount b in the above, the coefficient β is calculated from the specific cutting resistance K, the cutting amount d of the blade defined in the radial direction, the Young's modulus E, and the allowable maximum bending amount b = ( The second step obtained as 3πEb) / (64Kd), the third step for sequentially taking in the length L and the minimum outer diameter D from the cantilever base point to the cutting point of the workpiece, which changes during the machining, and was updated sequentially. And a fourth step of obtaining the workpiece feed amount f in the axial direction as f = (βD 4 ) / L 3 using L and D, and turning with this feed amount f. The back surface processing method in the automatic lathe. 被加工物の裏面加工時に被加工物の一端をチャックで片持ち状態で把持して該被加工物を旋削する自動旋盤において、半径方向での切込み量dを制御する制御手段を有し、該制御手段は、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量b、比切削抵抗K、主軸軸線方向での定められた被加工物の送り量f、上記ヤング率Eを設定しこれらのデータを記憶する記憶手段と、該記憶手段からのデータにもとづき係数αをα=(3πEb)/(64Kf)として求める第一演算手段と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む取込み手段と、逐次更新されたL,Dを用いて半径方向での刃物の切込み量dをd=(αD)/Lとして算出する第二演算手段とを有し、この切込み量dの値にもとづき切削の切込みを司る刃物台をX軸で制御することを特徴とする自動旋盤。 In an automatic lathe for turning a workpiece by gripping one end of the workpiece in a cantilevered state with a chuck when processing the back surface of the workpiece, the automatic lathe has a control means for controlling a cutting amount d in the radial direction, The control means includes an allowable maximum deflection amount b during processing at the free end as the other end of the workpiece having a Young's modulus E, a specific cutting resistance K, a predetermined workpiece feed amount f in the main axis direction, A storage means for setting the Young's modulus E and storing these data; a first calculation means for determining the coefficient α as α = (3πEb) / (64 Kf) based on the data from the storage means; Using the taking-in means for successively taking in the length L and the minimum outer diameter D from the cantilever base point to the cutting point of the work piece, and the successively updated L and D, the cutting amount d of the blade in the radial direction is set as d = (αD 4) a second calculating means for calculating as a / L 3 Automatic lathe with, and controlling the tool rest which controls the incision of the cutting based on the value of the depth of cut d in the X-axis. 被加工物の裏面加工時に被加工物の一端をチャックで片持ち状態で把持して該被加工物を旋削する自動旋盤において、軸方向での送り量fを制御する制御手段を有し、該制御手段は、ヤング率Eの被加工物の他端たる自由端での加工中における許容最大撓み量b、比切削抵抗K、半径方向での定められた刃物の切込み量d、上記ヤング率Eを設定しこれらのデータを記憶する記憶手段と、該記憶手段からのデータにもとづき係数βをβ=(3πEb)/(64Kd)として求める第一演算手段と、加工中に変化する被加工物の片持ち基点から切削点までの長さLそして最小外径Dを逐次取り込む取込み手段と、逐次更新されたL,Dを用いて軸方向での被加工物の送り量fをf=(βD)/Lとして算出する第二演算手段とを有し、この送り量fの値にもとづき切削の送りを司る主軸をZ軸で制御することを特徴とする自動旋盤。
In an automatic lathe for turning a workpiece by holding one end of the workpiece in a cantilevered state with a chuck during backside processing of the workpiece, the automatic lathe has a control means for controlling the feed amount f in the axial direction, The control means includes an allowable maximum deflection amount b during processing at the free end as the other end of the workpiece having a Young's modulus E, a specific cutting resistance K, a predetermined cutting depth d in the radial direction, and the Young's modulus E. Storage means for storing these data, first calculation means for obtaining the coefficient β as β = (3πEb) / (64 Kd) based on the data from the storage means, and a workpiece that changes during machining Using the take-in means for sequentially taking in the length L and the minimum outer diameter D from the cantilever base point to the cutting point, and the L and D that are successively updated, the feed amount f of the workpiece in the axial direction is set to f = (βD 4 ) / L 3 and a second calculating means for calculating as this Automatic lathe, characterized in that to control the spindle in Z-axis which controls based feed cutting the value of Ri amount f.
JP2005045078A 2005-02-22 2005-02-22 Automatic lathe and back surface processing method using the same Active JP4568139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045078A JP4568139B2 (en) 2005-02-22 2005-02-22 Automatic lathe and back surface processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045078A JP4568139B2 (en) 2005-02-22 2005-02-22 Automatic lathe and back surface processing method using the same

Publications (2)

Publication Number Publication Date
JP2006231420A true JP2006231420A (en) 2006-09-07
JP4568139B2 JP4568139B2 (en) 2010-10-27

Family

ID=37039632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045078A Active JP4568139B2 (en) 2005-02-22 2005-02-22 Automatic lathe and back surface processing method using the same

Country Status (1)

Country Link
JP (1) JP4568139B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008590A (en) * 2012-07-02 2014-01-20 Mitsutoyo Corp Wire polishing apparatus and wire polishing method
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150348A (en) * 1995-11-28 1997-06-10 Fanuc Ltd Cutting error correcting method in nc machine tool
JP2002283230A (en) * 2001-03-23 2002-10-03 Seiko Instruments Inc Cylindricality control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150348A (en) * 1995-11-28 1997-06-10 Fanuc Ltd Cutting error correcting method in nc machine tool
JP2002283230A (en) * 2001-03-23 2002-10-03 Seiko Instruments Inc Cylindricality control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008590A (en) * 2012-07-02 2014-01-20 Mitsutoyo Corp Wire polishing apparatus and wire polishing method
WO2021014749A1 (en) * 2019-07-24 2021-01-28 株式会社日立製作所 Nc program generation system and nc program generation method
JP2021022014A (en) * 2019-07-24 2021-02-18 株式会社日立製作所 NC program generation system and NC program generation method
CN113874799A (en) * 2019-07-24 2021-12-31 株式会社日立制作所 NC program creation system and NC program creation method
CN113874799B (en) * 2019-07-24 2024-04-02 株式会社日立制作所 NC program generation system and NC program generation method

Also Published As

Publication number Publication date
JP4568139B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
US9760079B2 (en) Cutting tool machining method and a wire electric discharge machine
US10788807B2 (en) Method for compensating milling cutter deflection
JPH07186006A (en) Tool edge position correction method and device in nc machine tool
JP5936178B2 (en) Machining control method for machine tools
US8042436B2 (en) Method for preparing NC machining program and apparatus for preparing NC machining program
JP4896152B2 (en) Lathe and machining method with lathe
JP5373675B2 (en) Machine Tools
JP6990134B2 (en) Cutting equipment and its control method
JP3246961B2 (en) Control device for crankshaft mirror
JP4720774B2 (en) Processing equipment
JP2007257606A (en) Method for correcting tool alignment error
JP4568139B2 (en) Automatic lathe and back surface processing method using the same
JP6576758B2 (en) Cutting apparatus and control method thereof
JP6168396B2 (en) Machine Tools
JPH1020911A (en) Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
JP4885113B2 (en) Cutting method and cutting device
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP3901290B2 (en) Compensation method for bore size and NC lathe capable of performing this compensation method
WO2011024838A1 (en) Method for thermal displacement correction in machine tool and thermal displacement correction device
JP2017144527A (en) Correction method of thermal displacement of machine tool
JP2007054930A (en) Positioning method and device for tool
JP4583593B2 (en) LATHE DEVICE FOR PROCESSING FLUID BEARING SLEEVE AND PROCESSING METHOD THEREOF
JP2004148443A (en) Method for correcting thermal displacement of tool
JP5266020B2 (en) Machine tool and error correction method in machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4568139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250