JP2008261415A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
JP2008261415A
JP2008261415A JP2007104133A JP2007104133A JP2008261415A JP 2008261415 A JP2008261415 A JP 2008261415A JP 2007104133 A JP2007104133 A JP 2007104133A JP 2007104133 A JP2007104133 A JP 2007104133A JP 2008261415 A JP2008261415 A JP 2008261415A
Authority
JP
Japan
Prior art keywords
plunger
peripheral surface
axial direction
solenoid valve
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007104133A
Other languages
Japanese (ja)
Other versions
JP4807306B2 (en
Inventor
Hiroyuki Nakane
浩幸 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007104133A priority Critical patent/JP4807306B2/en
Publication of JP2008261415A publication Critical patent/JP2008261415A/en
Application granted granted Critical
Publication of JP4807306B2 publication Critical patent/JP4807306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of production efficiency due to the formation of a film 21, in a solenoid valve 1 with the nonmagnetic film 21 formed on the peripheral surface of a plunger 5. <P>SOLUTION: The peripheral surface of the plunger 5 is formed into an uneven shape with projecting portions 19 and recessed portions 20 axially alternated, and the nonmagnetic film 21 is formed on the peripheral surface. Thereby, the plunger 5 is slidably supported on a support portion by opposing the top 23 of each projecting portion 19 to the inner peripheral surface of the support portion through the film 21, and a clearance between the peripheral surface of the plunger 5 and the inner peripheral surface of the support portion becomes larger than the conventional case in a portion other than the top 23. Since the effective value of the clearance is reduced without deteriorating the concentricity of the plunger 5 and support portion, the thickness of the film 21 is reduced. From the foregoing, the deterioration of the productive efficiency accompanied by the formation of the film 21 is prevented by forming the peripheral surface of the plunger 5 into the uneven shape and reducing the thickness of the film 21. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ソレノイドコイルへの通電により発生する磁気吸引力を駆動力として、スプールを変位させ流体流路の切替等を行う電磁弁に関する。   The present invention relates to an electromagnetic valve that switches a fluid flow path by displacing a spool using a magnetic attraction force generated by energization of a solenoid coil as a driving force.

従来から、自動変速機における油圧回路の切り替えや、バルブ可変タイミング装置における油圧の調節等に、上記のような電磁弁が用いられている。
そして、従来の電磁弁には、弁体として機能するスプールと、通電を受けて磁気吸引力を発生するソレノイドコイルと、磁気吸引力により軸方向に変位してスプールを変位させるプランジャと、プランジャを外周側から軸方向に摺動自在に支持する支持部材とを備えるものがある。
Conventionally, electromagnetic valves as described above have been used for switching hydraulic circuits in automatic transmissions, adjusting hydraulic pressure in variable valve timing devices, and the like.
The conventional solenoid valve includes a spool that functions as a valve body, a solenoid coil that generates a magnetic attractive force when energized, a plunger that displaces the spool in the axial direction by the magnetic attractive force, and a plunger. Some include a support member that is slidably supported in the axial direction from the outer peripheral side.

この電磁弁によれば、プランジャの外周面と支持部材の内周面との間のクリアランスを極小化できるので、支持部材に対するプランジャの偏心を抑制できるとともに、スプールを変位させるための軸方向の磁気吸引力を強化することができる。しかし、軸方向の磁気吸引力とともに、プランジャと支持部材との間で径方向に作用する磁気吸引力(サイドフォース)も強化されてしまう。そこで、サイドフォースによる摺動抵抗の増加を抑制するべく、図3に示すように、プランジャ100の外周面101に非磁性の被膜102を所定の厚みに形成した電磁弁が開示されている(例えば、特許文献1参照)。   According to this solenoid valve, since the clearance between the outer peripheral surface of the plunger and the inner peripheral surface of the support member can be minimized, the eccentricity of the plunger with respect to the support member can be suppressed, and the magnetic force in the axial direction for displacing the spool can be suppressed. The suction power can be strengthened. However, the magnetic attractive force (side force) acting in the radial direction between the plunger and the support member is strengthened together with the magnetic attractive force in the axial direction. Therefore, in order to suppress an increase in sliding resistance due to side force, as shown in FIG. 3, an electromagnetic valve is disclosed in which a nonmagnetic coating 102 is formed on the outer peripheral surface 101 of the plunger 100 to a predetermined thickness (for example, , See Patent Document 1).

ところで、被膜102は、プランジャ100の偏心を抑制するため均一に形成する必要がある。このため、電磁弁の生産において、さらなるクリアランス管理および面粗度管理の強化、ならびに寸法公差の縮小が要求されるので、被膜102の厚みが大きいほど電磁弁の生産効率が低下してしまう。そこで、被膜102の形成に伴う生産効率の低下を阻止するため、被膜102の厚みを低減することも考えられるが、プランジャ100の偏心が起こりやすくなり、摺動抵抗が増加する虞が大きい。
特開2002−222710号公報
By the way, the coating 102 needs to be formed uniformly in order to suppress the eccentricity of the plunger 100. For this reason, in the production of the solenoid valve, further strengthening of clearance management and surface roughness management and reduction in dimensional tolerance are required, so that the production efficiency of the solenoid valve decreases as the thickness of the coating 102 increases. Therefore, it is conceivable to reduce the thickness of the coating film 102 in order to prevent a decrease in production efficiency due to the formation of the coating film 102, but the plunger 100 is likely to be decentered and the sliding resistance is likely to increase.
JP 2002-222710 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、プランジャの外周面に非磁性の被膜が形成された電磁弁において、被膜の形成に伴う生産効率の低下を阻止することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the production efficiency associated with the formation of a coating film in a solenoid valve having a nonmagnetic coating film formed on the outer peripheral surface of the plunger. It is to stop.

〔請求項1の手段〕
請求項1に記載の電磁弁は、弁体として機能するスプールと、通電を受けて磁気吸引力を発生するソレノイドコイルと、磁気吸引力により軸方向に変位してスプールを変位させるプランジャと、プランジャを外周側から軸方向に摺動自在に支持する支持部材とを備える。そして、プランジャの外周面は、径方向外側に突出する凸部と径方向内側に窪む凹部とが軸方向に交互に設けられて凹凸状をなし、凹凸状の外周面に非磁性の被膜が形成されている。
[Means of Claim 1]
The electromagnetic valve according to claim 1 includes a spool that functions as a valve body, a solenoid coil that generates a magnetic attractive force when energized, a plunger that displaces the spool in the axial direction by the magnetic attractive force, and a plunger And a supporting member that slidably supports in the axial direction from the outer peripheral side. The outer peripheral surface of the plunger has convex and concave portions protruding radially outward and concave portions recessed radially inward in the axial direction to form an uneven shape, and the non-magnetic coating is formed on the uneven outer peripheral surface. Is formed.

これにより、プランジャは、凸部の頂が被膜を介して支持部材の内周面に対向することで支持部材に摺動自在に支持され、プランジャの外周面と支持部材の内周面との間のクリアランスは、凸部の頂以外の部分で従来よりも大きくなる。このため、プランジャと支持部材との同軸度を下げることなくクリアランスの実効値を低減することができるので、被膜の厚さを低減してもプランジャの偏心が起こりにくくなる。
以上により、プランジャの外周面に非磁性の被膜が形成された電磁弁において、プランジャの外周面を凹凸状に設けて被膜の厚さを低減することで、被膜の形成に伴う生産効率の低下を阻止することができる。
Accordingly, the plunger is slidably supported by the support member with the top of the convex portion facing the inner peripheral surface of the support member through the coating, and between the outer peripheral surface of the plunger and the inner peripheral surface of the support member. The clearance becomes larger than that in the past in the portion other than the top of the convex portion. For this reason, since the effective value of the clearance can be reduced without lowering the coaxiality between the plunger and the support member, the eccentricity of the plunger hardly occurs even if the thickness of the coating is reduced.
As described above, in a solenoid valve having a nonmagnetic coating formed on the outer peripheral surface of the plunger, the outer peripheral surface of the plunger is provided in an uneven shape to reduce the thickness of the coating, thereby reducing the production efficiency associated with the formation of the coating. Can be blocked.

〔請求項2の手段〕
請求項2に記載の電磁弁によれば、プランジャの軸心と凸部の頂との距離を母材山部半径r1、プランジャの軸心と凹部の底との距離を母材谷部半径r2、非磁性の被膜の厚さを非磁性層厚みAと定義すると、(r1−r2)/2+Aの値が、40μm以上かつ80μm以下である。
ここで、(r1−r2)/2+Aの値は被膜の厚さの実効値であり、この実効値を40μm以上かつ80μm以下とすれば、軸方向の磁気吸引力を強化しつつサイドフォースの強化を抑えることができる。そこで、この実効値が40μm以上かつ80μm以下となるように、母材山部半径r1、母材谷部半径r2および非磁性層厚みAを設定すれば、軸方向の磁気吸引力を強化しつつサイドフォースの強化を抑えることができる。
[Means of claim 2]
According to the electromagnetic valve of claim 2, the distance between the axis of the plunger and the top of the convex portion is the base material ridge radius r1, and the distance between the plunger axis and the bottom of the concave portion is the base material trough radius r2. When the thickness of the nonmagnetic coating is defined as nonmagnetic layer thickness A, the value of (r1−r2) / 2 + A is 40 μm or more and 80 μm or less.
Here, the value of (r1−r2) / 2 + A is an effective value of the thickness of the coating. If this effective value is 40 μm or more and 80 μm or less, the side force is strengthened while strengthening the magnetic attractive force in the axial direction. Can be suppressed. Therefore, if the base metal peak radius r1, base valley radius r2 and nonmagnetic layer thickness A are set so that the effective value is not less than 40 μm and not more than 80 μm, the magnetic attractive force in the axial direction is enhanced. Strengthening of side force can be suppressed.

最良の形態1の電磁弁は、弁体として機能するスプールと、通電を受けて磁気吸引力を発生するソレノイドコイルと、磁気吸引力により軸方向に変位してスプールを変位させるプランジャと、プランジャを外周側から軸方向に摺動自在に支持する支持部材とを備える。そして、プランジャの外周面は、径方向外側に突出する凸部と径方向内側に窪む凹部とが軸方向に交互に設けられて凹凸状をなし、凹凸状の外周面に非磁性の被膜が形成されている。   The electromagnetic valve of the best mode 1 includes a spool that functions as a valve body, a solenoid coil that generates a magnetic attractive force when energized, a plunger that displaces the spool in the axial direction by the magnetic attractive force, and a plunger And a support member that is slidably supported in the axial direction from the outer peripheral side. The outer peripheral surface of the plunger has convex and concave portions protruding radially outward and concave portions recessed radially inward in the axial direction to form an uneven shape, and the non-magnetic coating is formed on the uneven outer peripheral surface. Is formed.

また、この電磁弁によれば、プランジャの軸心と凸部の頂との距離を母材山部半径r1、プランジャの軸心と凹部の底との距離を母材谷部半径r2、非磁性の被膜の厚さを非磁性層厚みAと定義すると、(r1−r2)/2+Aの値が、40μm以上かつ80μm以下である。   Further, according to this solenoid valve, the distance between the plunger shaft center and the top of the convex portion is the base metal peak radius r1, the distance between the plunger shaft center and the bottom of the concave portion is the base material trough radius r2, and nonmagnetic When the thickness of the coating is defined as the nonmagnetic layer thickness A, the value of (r1−r2) / 2 + A is 40 μm or more and 80 μm or less.

〔実施例1の構成〕
実施例1の電磁弁1の構成を、図1を用いて説明する。
電磁弁1は、図1に示すように、軸方向に変位することで弁体として機能するスプール2と、スプール2を軸方向に摺動自在に収容するスリーブ3と、通電を受けて磁気吸引力を発生するソレノイドコイル4と、磁気吸引力により軸方向に変位してスプール2を軸方向一方側に変位させるプランジャ5と、プランジャ5を軸方向に摺動自在に支持するコアステータ6とを備え、例えば、自動変速機(図示せず)における油圧回路の切り替えを行うものである。
[Configuration of Example 1]
The structure of the solenoid valve 1 of Example 1 is demonstrated using FIG.
As shown in FIG. 1, the electromagnetic valve 1 includes a spool 2 that functions as a valve body by being displaced in the axial direction, a sleeve 3 that accommodates the spool 2 so as to be slidable in the axial direction, and magnetically attracted by energization. A solenoid coil 4 that generates a force; a plunger 5 that is displaced in the axial direction by a magnetic attraction force to displace the spool 2 in one axial direction; and a core stator 6 that slidably supports the plunger 5 in the axial direction. For example, a hydraulic circuit in an automatic transmission (not shown) is switched.

スプール2は、スリーブ3と摺接する複数の大径部9を有し、スリーブ3とともに作動油が流動する内部流動部10を形成する。また、スプール2の軸方向一端には、スプール2を軸方向他方側に付勢する復元バネ11が装着され、スプール2の軸方向他端には、プランジャ5の一端が当接している。これにより、スプール2は、プランジャ5に軸方向に作用する磁気吸引力によって軸方向一方側に変位するとともに、磁気吸引力の消滅に伴い復元バネ11に付勢されて軸方向他方側に変位する。   The spool 2 has a plurality of large-diameter portions 9 that are in sliding contact with the sleeve 3, and together with the sleeve 3 forms an internal flow portion 10 through which hydraulic fluid flows. A restoring spring 11 that urges the spool 2 toward the other axial direction is attached to one axial end of the spool 2, and one end of the plunger 5 is in contact with the other axial end of the spool 2. As a result, the spool 2 is displaced to one side in the axial direction by a magnetic attraction force acting on the plunger 5 in the axial direction, and is biased by the restoring spring 11 along with the disappearance of the magnetic attraction force and displaced to the other side in the axial direction. .

ソレノイドコイル4は、略円筒状に樹脂モールドされ、内周側に配されるコアステータ6、および外周側に配されるヨーク13と絶縁されている。なお、電磁弁1の外郭は、ヨーク13とスリーブ3とにより構成され、ヨーク13の一端がスリーブ3の他端にかしめ固定されることで、電磁弁1として一体化されている。   The solenoid coil 4 is resin-molded in a substantially cylindrical shape, and is insulated from the core stator 6 disposed on the inner peripheral side and the yoke 13 disposed on the outer peripheral side. The outer shell of the solenoid valve 1 is composed of a yoke 13 and a sleeve 3, and one end of the yoke 13 is caulked and fixed to the other end of the sleeve 3, so that the solenoid valve 1 is integrated.

プランジャ5は、円柱状に設けられ、コアステータ6の内周側に摺動自在に収容されている。また、プランジャ5の一端にはスプール2の他端が当接している。そして、ソレノイドコイル4に通電が行われると、プランジャ5は、軸方向の磁気吸引力により軸方向一方側に変位するとともに、スプール2を軸方向一方側に変位させる。また、ソレノイドコイル4への通電が停止されると、プランジャ5は、磁気吸引力の消滅によりスプール2から復元バネ11の付勢力を受けて軸方向他方側に変位する。   The plunger 5 is provided in a columnar shape and is slidably accommodated on the inner peripheral side of the core stator 6. The other end of the spool 2 is in contact with one end of the plunger 5. When the solenoid coil 4 is energized, the plunger 5 is displaced to the one side in the axial direction by the magnetic attracting force in the axial direction, and the spool 2 is displaced to the one side in the axial direction. When the energization of the solenoid coil 4 is stopped, the plunger 5 receives the urging force of the restoring spring 11 from the spool 2 due to the disappearance of the magnetic attractive force and is displaced to the other side in the axial direction.

コアステータ6は、プランジャ5を外周側から軸方向に摺動自在に支持する支持部材としての支持部15と、支持部15の一方側に設けられ、軸方向の磁気吸引力によりプランジャ5を軸方向一方側に吸引する吸引部16と、支持部15の他方側に設けられ、ヨーク13との間で磁気を受け渡す磁気受渡部17とを有する。なお、吸引部16では、プランジャ5の一端と対向する対向面が樹脂により被覆され、吸引部16とプランジャ5との直接接触が防止されている。   The core stator 6 is provided on one side of the support portion 15 as a support member that supports the plunger 5 so as to be slidable in the axial direction from the outer peripheral side, and the plunger 5 is axially moved by an axial magnetic attraction force. There is a suction part 16 that attracts to one side, and a magnetic delivery part 17 that is provided on the other side of the support part 15 and delivers magnetism to and from the yoke 13. In the suction part 16, the facing surface facing one end of the plunger 5 is covered with resin, so that direct contact between the suction part 16 and the plunger 5 is prevented.

〔実施例1の特徴〕
実施例1の電磁弁1の特徴を、図2を用いて説明する。
実施例1の電磁弁1によれば、プランジャ5の外周面は、図2に示すように、径方向外側に突出する凸部19と径方向内側に窪む凹部20とが軸方向に交互に設けられて凹凸状をなし、凹凸状の外周面に非磁性の被膜21が形成されている。
[Features of Example 1]
Features of the solenoid valve 1 of the first embodiment will be described with reference to FIG.
According to the solenoid valve 1 of the first embodiment, the outer peripheral surface of the plunger 5 has, as shown in FIG. 2, convex portions 19 protruding radially outward and concave portions 20 recessed radially inward alternately in the axial direction. It is provided with a concavo-convex shape, and a nonmagnetic coating 21 is formed on the concavo-convex outer peripheral surface.

そして、プランジャ5の軸心と凸部19の頂23との距離を母材山部半径r1、プランジャ5の軸心と凹部20の底24との距離を母材谷部半径r2、被膜21の厚さを非磁性層厚みAと定義すると、(r1−r2)/2+Aの値が、40μm以上かつ80μm以下となるように、母材山部半径r1、母材谷部半径r2、および非磁性層厚みAが設定される。   The distance between the axis of the plunger 5 and the apex 23 of the convex portion 19 is the base metal peak radius r1, the distance between the axis of the plunger 5 and the bottom 24 of the concave portion 20 is the base trough radius r2, and the coating 21 When the thickness is defined as the nonmagnetic layer thickness A, the base material peak radius r1, base material trough radius r2, and nonmagnetic property are set so that the value of (r1−r2) / 2 + A is 40 μm or more and 80 μm or less. The layer thickness A is set.

例えば、非磁性層厚みAを10μmに設定すれば、r1−r2の値は60μm〜140μmとなるように、母材山部半径r1、母材谷部半径r2が設定される。
なお、(r1−r2)/2+Aの値は、プランジャ5と支持部15との間で径方向に作用する磁気吸引力(サイドフォース)を実質的に決定する被膜21の厚さの実効値である。そして、この実効値を40μm以上かつ80μm以下とすれば、軸方向の磁気吸引力を強化しつつサイドフォースの強化を抑えることができる。
For example, when the nonmagnetic layer thickness A is set to 10 μm, the base metal peak radius r1 and base trough radius r2 are set so that the value of r1-r2 is 60 μm to 140 μm.
The value of (r1−r2) / 2 + A is an effective value of the thickness of the coating 21 that substantially determines the magnetic attractive force (side force) acting in the radial direction between the plunger 5 and the support portion 15. is there. If this effective value is 40 μm or more and 80 μm or less, the side force can be prevented from being strengthened while strengthening the magnetic attractive force in the axial direction.

〔実施例1の効果〕
実施例1の電磁弁1によれば、プランジャ5の外周面は凸部19と凹部20とが軸方向に交互に設けられて凹凸状をなし、凹凸状の外周面に非磁性の被膜21が形成されている。
これにより、プランジャ5は、凸部19の頂23が被膜21を介して支持部15の内周面に対向することで支持部15に摺動自在に支持され、プランジャ5の外周面と支持部15の内周面との間のクリアランスは、凸部19の頂23以外の部分で従来よりも大きくなる。このため、プランジャ5と支持部15との同軸度を下げることなくクリアランスの実効値を低減することができるので、被膜21の厚さを低減してもプランジャ5の偏心が起こりにくくなる。
以上により、プランジャ5の外周面を凹凸状に設けて被膜21の厚さを低減することで、被膜21の形成に伴う生産効率の低下を阻止することができる。
[Effect of Example 1]
According to the electromagnetic valve 1 of the first embodiment, the outer peripheral surface of the plunger 5 is provided with the convex portions 19 and the concave portions 20 alternately in the axial direction to form an uneven shape, and the non-magnetic film 21 is formed on the uneven outer peripheral surface. Is formed.
Thereby, the plunger 5 is supported by the support part 15 slidably by the top 23 of the convex part 19 facing the inner peripheral surface of the support part 15 through the coating 21, and the outer peripheral surface of the plunger 5 and the support part are supported. The clearance between the inner peripheral surface 15 and the inner peripheral surface 15 is larger than that in the conventional case at a portion other than the top 23 of the convex portion 19. For this reason, since the effective value of the clearance can be reduced without lowering the coaxiality between the plunger 5 and the support portion 15, the eccentricity of the plunger 5 hardly occurs even if the thickness of the coating 21 is reduced.
As described above, by providing the outer peripheral surface of the plunger 5 in an uneven shape to reduce the thickness of the coating 21, it is possible to prevent a decrease in production efficiency accompanying the formation of the coating 21.

母材山部半径r1、母材谷部半径r2および非磁性層厚みAをパラメータとする(r1−r2)/2+Aの値が、40μm以上かつ80μm以下である。
ここで、(r1−r2)/2+Aの値は、上記のように被膜21の厚さの実効値であるから、この実効値が40μm以上かつ80μm以下となるように、母材山部半径r1、母材谷部半径r2および非磁性層厚みAを設定すれば、軸方向の磁気吸引力を強化しつつサイドフォースの強化を抑えることができる。
The value of (r1−r2) / 2 + A using the base metal peak radius r1, the base trough radius r2 and the nonmagnetic layer thickness A as parameters is 40 μm or more and 80 μm or less.
Here, since the value of (r1−r2) / 2 + A is the effective value of the thickness of the coating 21 as described above, the base material peak radius r1 is set so that the effective value is 40 μm or more and 80 μm or less. If the base material trough radius r2 and the nonmagnetic layer thickness A are set, the strengthening of the side force can be suppressed while strengthening the magnetic attractive force in the axial direction.

電磁弁の全体構成を示す断面図である(実施例1)。It is sectional drawing which shows the whole structure of a solenoid valve (Example 1). (a)は電磁弁の要部を示すプランジャの断面図であり、(b)は電磁弁の要部を拡大して示す要部拡大図である(実施例1)。(A) is sectional drawing of the plunger which shows the principal part of a solenoid valve, (b) is a principal part enlarged view which expands and shows the principal part of a solenoid valve (Example 1). 電磁弁の要部を示すプランジャの断面図である(従来例)。It is sectional drawing of the plunger which shows the principal part of a solenoid valve (conventional example).

符号の説明Explanation of symbols

1 電磁弁
2 スプール
4 ソレノイドコイル
5 プランジャ
15 支持部(支持部材)
19 凸部
20 凹部
21 被膜
23 頂
24 底
DESCRIPTION OF SYMBOLS 1 Solenoid valve 2 Spool 4 Solenoid coil 5 Plunger 15 Support part (support member)
19 Convex part 20 Concave part 21 Coating 23 Top 24 Bottom

Claims (2)

弁体として機能するスプールと、
通電を受けて磁気吸引力を発生するソレノイドコイルと、
磁気吸引力により軸方向に変位して前記スプールを変位させるプランジャと、
このプランジャを外周側から軸方向に摺動自在に支持する支持部材とを備える電磁弁において、
前記プランジャの外周面は、径方向外側に突出する凸部と径方向内側に窪む凹部とが軸方向に交互に設けられて凹凸状をなし、
凹凸状の前記外周面に非磁性の被膜が形成されていることを特徴とする電磁弁。
A spool that functions as a disc,
A solenoid coil that generates a magnetic attraction when energized,
A plunger that is displaced in the axial direction by a magnetic attraction force to displace the spool;
In a solenoid valve comprising a support member that slidably supports the plunger in the axial direction from the outer peripheral side,
The outer peripheral surface of the plunger has an uneven shape in which convex portions protruding radially outward and concave portions recessed inward in the radial direction are alternately provided in the axial direction,
A solenoid valve characterized in that a nonmagnetic coating is formed on the outer peripheral surface of the irregular shape.
請求項1に記載の電磁弁において、
前記プランジャの軸心と前記凸部の頂との距離を母材山部半径r1、前記プランジャの軸心と前記凹部の底との距離を母材谷部半径r2、前記非磁性の被膜の厚さを非磁性層厚みAと定義すると、(r1−r2)/2+Aの値が、40μm以上かつ80μm以下であることを特徴とする電磁弁。
The solenoid valve according to claim 1,
The distance between the shaft center of the plunger and the top of the convex portion is the base metal peak radius r1, the distance between the shaft center of the plunger and the bottom of the concave portion is the base material trough radius r2, and the thickness of the nonmagnetic coating When the thickness is defined as the nonmagnetic layer thickness A, the value of (r1−r2) / 2 + A is 40 μm or more and 80 μm or less.
JP2007104133A 2007-04-11 2007-04-11 solenoid valve Expired - Fee Related JP4807306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104133A JP4807306B2 (en) 2007-04-11 2007-04-11 solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104133A JP4807306B2 (en) 2007-04-11 2007-04-11 solenoid valve

Publications (2)

Publication Number Publication Date
JP2008261415A true JP2008261415A (en) 2008-10-30
JP4807306B2 JP4807306B2 (en) 2011-11-02

Family

ID=39984043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104133A Expired - Fee Related JP4807306B2 (en) 2007-04-11 2007-04-11 solenoid valve

Country Status (1)

Country Link
JP (1) JP4807306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148252A (en) * 2020-03-23 2021-09-27 株式会社デンソー Solenoid valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843141Y1 (en) * 1968-12-28 1973-12-13
JPS53109131U (en) * 1977-02-08 1978-09-01
JPS54152347U (en) * 1978-04-17 1979-10-23
JP2001263524A (en) * 2000-01-12 2001-09-26 Denso Corp Solenoid valve
JP2002222710A (en) * 2001-01-26 2002-08-09 Denso Corp Electromagnetic drive device and flow rate control device using the same
JP2004003599A (en) * 2002-03-29 2004-01-08 Denso Corp Electromagnetic drive device
JP2004353730A (en) * 2003-05-28 2004-12-16 Aisin Seiki Co Ltd Bearing unit
JP2006186069A (en) * 2004-12-27 2006-07-13 Taiho Kogyo Co Ltd Solenoid device
JP2007040521A (en) * 2005-07-06 2007-02-15 Denso Corp Electromagnetic driving gear

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843141Y1 (en) * 1968-12-28 1973-12-13
JPS53109131U (en) * 1977-02-08 1978-09-01
JPS54152347U (en) * 1978-04-17 1979-10-23
JP2001263524A (en) * 2000-01-12 2001-09-26 Denso Corp Solenoid valve
JP2002222710A (en) * 2001-01-26 2002-08-09 Denso Corp Electromagnetic drive device and flow rate control device using the same
JP2004003599A (en) * 2002-03-29 2004-01-08 Denso Corp Electromagnetic drive device
JP2004353730A (en) * 2003-05-28 2004-12-16 Aisin Seiki Co Ltd Bearing unit
JP2006186069A (en) * 2004-12-27 2006-07-13 Taiho Kogyo Co Ltd Solenoid device
JP2007040521A (en) * 2005-07-06 2007-02-15 Denso Corp Electromagnetic driving gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148252A (en) * 2020-03-23 2021-09-27 株式会社デンソー Solenoid valve
WO2021193356A1 (en) * 2020-03-23 2021-09-30 株式会社デンソー Solenoid valve
JP7302514B2 (en) 2020-03-23 2023-07-04 株式会社デンソー solenoid valve

Also Published As

Publication number Publication date
JP4807306B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5077331B2 (en) Linear solenoid
JP2010278403A (en) Linear actuator
JP2007182938A (en) Electromagnetic valve
JP2009036328A (en) Linear solenoid
JP6518400B2 (en) solenoid
WO2006051859A1 (en) Actuator
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
JP6469325B1 (en) Electromagnetic actuator and hydraulic adjustment mechanism
JP4807306B2 (en) solenoid valve
JP2005207412A (en) Fuel injection valve
JP2009085321A (en) Solenoid valve
TW202033902A (en) Linear actuators for pressure-regulating valves
JP2009174623A (en) Solenoid valve
JP4596890B2 (en) Actuator
JP6447402B2 (en) Linear solenoid
JP5768737B2 (en) Linear solenoid
JP6171918B2 (en) Electromagnetic drive device and solenoid valve
JP2003207067A (en) Solenoid valve device
JP6362813B2 (en) Electromagnetic actuator
JP5720638B2 (en) Linear solenoid
JP2009014070A (en) Solenoid valve
JP2007255501A (en) Solenoid and solenoid valve
JP2006279001A (en) Electromagnet
JP4858284B2 (en) Electromagnetic actuator
JP2007321822A (en) Electromagnetic drive mechanism and fluid control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees