JP2008258178A - Fluorescent discharge tube - Google Patents

Fluorescent discharge tube Download PDF

Info

Publication number
JP2008258178A
JP2008258178A JP2008190513A JP2008190513A JP2008258178A JP 2008258178 A JP2008258178 A JP 2008258178A JP 2008190513 A JP2008190513 A JP 2008190513A JP 2008190513 A JP2008190513 A JP 2008190513A JP 2008258178 A JP2008258178 A JP 2008258178A
Authority
JP
Japan
Prior art keywords
fluorescent
phosphor
fibers
discharge tube
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190513A
Other languages
Japanese (ja)
Inventor
Akihiro Kato
陽弘 加藤
Akio Mukai
昭雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2008190513A priority Critical patent/JP2008258178A/en
Publication of JP2008258178A publication Critical patent/JP2008258178A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent discharge tube which can increase the amount of a fluorescent substance disposed on a surface of an air-tight container. <P>SOLUTION: The fluorescent discharge tube 10 is configured such that a pair of discharge electrodes 20, 20 and a discharge gas are enclosed inside the air-tight container 18 composed of a translucent material through which light such as ultraviolet light and visible light to excite the phosphor 30 is transmitted, and that a fluorescent sheet 32 obtained by making the phosphor 30 deposited and carried on the surface of fibers 28, the surface of which 28 per unit volume is very large, constituting a nonwoven fabric 26 is coated on the outer surfaces of straight tubes 12, 12 of the air-tight container 18. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、放電管を構成する気密容器の表面に、蛍光体、蛍光ガラス等の蛍光物質を配置して成る蛍光放電管に係り、特に、気密容器表面に配置する蛍光物質の量を増大させることができる蛍光放電管に関する。   The present invention relates to a fluorescent discharge tube in which a fluorescent material such as a phosphor or fluorescent glass is arranged on the surface of an airtight container constituting the discharge tube, and in particular, increases the amount of the fluorescent material arranged on the surface of the airtight container. The present invention relates to a fluorescent discharge tube.

蛍光体や蛍光ガラス等の蛍光物質は、紫外線等の光の照射を受けると、この光を所定波長の可視光等の光に波長変換して放射する性質を備えていることから、この蛍光物質を放電管の気密容器の表面に配置し、光源等の用途に使用することが行われている。
図11は、斯かる従来の蛍光放電管の一例を示すものであり、該蛍光放電管70は、紫外線透過ガラス管の両端を封止して形成した気密容器72内に、一対の放電電極74を対向配置すると共に紫外線放射ガスを封入し、さらに、気密容器72の外表面に蛍光体76を層状に被覆して構成されている。
この蛍光放電管70にあっては、一対の放電電極74,74間で放電が生成されると、電子が紫外線放射ガスに衝突して様々な波長の紫外線が生成され、この紫外線が気密容器72を透過して蛍光体76に照射されることにより、所定波長の可視光等の光に波長変換されて放射される仕組みとなっている。
Fluorescent materials such as phosphors and fluorescent glass have the property of emitting light by converting the wavelength of the light into visible light such as a predetermined wavelength when irradiated with light such as ultraviolet rays. Is disposed on the surface of an airtight container of a discharge tube and used for a light source or the like.
FIG. 11 shows an example of such a conventional fluorescent discharge tube. The fluorescent discharge tube 70 has a pair of discharge electrodes 74 in an airtight container 72 formed by sealing both ends of an ultraviolet transmitting glass tube. And an ultraviolet radiation gas are sealed, and the outer surface of the hermetic vessel 72 is coated with a phosphor 76 in layers.
In this fluorescent discharge tube 70, when a discharge is generated between the pair of discharge electrodes 74, 74, electrons collide with the ultraviolet radiation gas to generate ultraviolet rays of various wavelengths. The light is transmitted to the phosphor 76 and irradiated to the phosphor 76, so that the wavelength is converted into light such as visible light having a predetermined wavelength and emitted.

ところで、上記蛍光体76から放射される光の輝度は、蛍光体76の量に略比例することから、蛍光放電管70の輝度を向上させるためには、気密容器72の表面に配置させる蛍光体76の量をできるだけ多くするのが望ましい。
しかしながら、上記従来の蛍光放電管70にあっては、蛍光体76が気密容器72の表面に層状に配置されていることから、気密容器72の表面に配置できる蛍光体76の量には限界があった。
By the way, since the luminance of the light emitted from the phosphor 76 is substantially proportional to the amount of the phosphor 76, in order to improve the luminance of the fluorescent discharge tube 70, the phosphor disposed on the surface of the hermetic container 72. It is desirable to increase the amount of 76 as much as possible.
However, in the conventional fluorescent discharge tube 70, since the phosphors 76 are arranged in layers on the surface of the hermetic container 72, the amount of the phosphors 76 that can be arranged on the surface of the hermetic container 72 is limited. there were.

本発明は、上記従来の問題点に鑑みてなされたものであり、その目的とするところは、気密容器の表面に配置する蛍光物質の量を増大させることができる蛍光放電管の実現にある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a fluorescent discharge tube capable of increasing the amount of a fluorescent substance disposed on the surface of an airtight container.

上記の目的を達成するため、本発明に係る蛍光放電管にあっては、透光性材料より成る気密容器の内部に、複数の放電電極及び放電ガスを封入すると共に、上記気密容器の表面に、不織布を構成する繊維に蛍光体、蛍光ガラス等の蛍光物質を担持させた蛍光シートを被覆したことを特徴とする。   In order to achieve the above object, in the fluorescent discharge tube according to the present invention, a plurality of discharge electrodes and a discharge gas are enclosed in an airtight container made of a translucent material, and the surface of the airtight container is sealed. The fiber constituting the nonwoven fabric is covered with a fluorescent sheet carrying a fluorescent material such as a fluorescent material or fluorescent glass.

多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐に蛍光物質を担持させて形成した織布を、上記蛍光シートの外面に接合しても良い。   A woven fabric formed by weaving a string made of an aggregate of a large number of fibers in a substantially lattice shape and carrying a fluorescent substance on the string may be joined to the outer surface of the fluorescent sheet.

本発明の蛍光放電管にあっては、気密容器の表面に、単位体積当たりの繊維の表面積が極めて大きい不織布を構成する繊維に蛍光物質を担持せしめて成る蛍光シートを被覆したことから、気密容器の表面に配置する蛍光物質の量を飛躍的に増大させることができる。   In the fluorescent discharge tube of the present invention, since the surface of the hermetic container is coated with a fluorescent sheet in which a fiber constituting a nonwoven fabric having a very large surface area of fibers per unit volume is loaded with a fluorescent substance, the hermetic container The amount of fluorescent material disposed on the surface of the substrate can be dramatically increased.

多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐に蛍光物質を担持させて形成した織布を、上記蛍光シートの外面に接合した場合には、不織布を構成する繊維に蛍光物質を担持せしめて成る上記蛍光シートの強度を向上させることができる。   When a woven fabric formed by weaving a string composed of a large number of fibers in a substantially lattice shape and carrying a fluorescent substance on the string is bonded to the outer surface of the fluorescent sheet, the fibers constituting the nonwoven fabric The intensity | strength of the said fluorescent sheet which carry | supports a fluorescent substance can be improved.

以下、図面に基づき、本発明に係る蛍光放電管の実施形態を説明する。
図1及び図2は、本発明に係る第1の蛍光放電管10を示すものであり、該第1の蛍光放電管10は、後述する蛍光体を励起させる紫外線や可視光等の光を透過させる透光性材料より成る略円筒状の一対の直管部12,12と、両直管部12,12を連通接続する曲管部14と、上記直管部12,12の開口を溶融封止して成る封止部16とから構成される気密容器18と、該気密容器18内の両端封止部16近傍にそれぞれ配置された一対の放電電極20,20と、各放電電極20に接続されたリード線22とを備えて成る。
上記気密容器18内には、蛍光体を励起させる紫外線や可視光等の光を放射する所定の放電ガスが充填されている。尚、紫外線を放射する放電ガスとしては、アルゴンと水銀とを混合してなる紫外線放射ガス、或いは、キセノンを主体とした紫外線放射ガス等が該当する。
上記放電電極20は、モリブデン、タングステン等より成り、先端部は直管部12内に露出すると共に、基端部は気密容器18の封止部16内に埋設されている。封止部16内に埋設された放電電極20の基端部には、リード線22の一端が接続され、該リード線22の他端は、気密容器18の外部に導出されている。
Hereinafter, embodiments of a fluorescent discharge tube according to the present invention will be described with reference to the drawings.
1 and 2 show a first fluorescent discharge tube 10 according to the present invention, and the first fluorescent discharge tube 10 transmits light such as ultraviolet rays and visible light that excites a phosphor to be described later. A pair of substantially cylindrical straight pipe portions 12 and 12 made of a translucent material to be made, a curved pipe portion 14 that connects the straight pipe portions 12 and 12 in communication, and an opening of the straight pipe portions 12 and 12 are melt-sealed. An airtight container 18 composed of a sealed sealing part 16, a pair of discharge electrodes 20, 20 disposed in the vicinity of both end sealing parts 16 in the airtight container 18, and a connection to each discharge electrode 20 The lead wire 22 is provided.
The hermetic container 18 is filled with a predetermined discharge gas that emits light such as ultraviolet light and visible light that excites the phosphor. The discharge gas that emits ultraviolet rays corresponds to ultraviolet radiation gas obtained by mixing argon and mercury, or ultraviolet radiation gas mainly composed of xenon.
The discharge electrode 20 is made of molybdenum, tungsten, or the like. The distal end portion is exposed in the straight tube portion 12, and the proximal end portion is embedded in the sealing portion 16 of the airtight container 18. One end of a lead wire 22 is connected to the proximal end portion of the discharge electrode 20 embedded in the sealing portion 16, and the other end of the lead wire 22 is led out of the hermetic vessel 18.

上記気密容器18を構成する直管部12,12の外表面には、図3乃至図6に示すように、不織布26を構成する繊維28の表面に、蛍光物質としての蛍光体30を被着・担持させた蛍光シート32が被覆されている。
尚、蛍光体30は、図6に示したように、繊維28の表面に緻密な層状態で被着・担持される場合の他、繊維28表面の蛍光体30の粒子間に微小な隙間が存在する状態で粗く被着・担持される場合もある(図示省略)。
As shown in FIGS. 3 to 6, on the outer surface of the straight pipe portions 12 and 12 constituting the airtight container 18, a phosphor 30 as a fluorescent material is attached to the surface of the fibers 28 constituting the nonwoven fabric 26. The supported fluorescent sheet 32 is covered.
As shown in FIG. 6, in addition to the case where the phosphor 30 is deposited and supported in a dense layer state on the surface of the fiber 28, there is a minute gap between the particles of the phosphor 30 on the surface of the fiber 28. In some cases, it may be roughly deposited and supported in the existing state (not shown).

不織布26は、多数の繊維28が立体的に絡み合って形成されるものであり、繊維28間に多数の空隙34(図5参照)が形成されており、また、多数の繊維28が立体的に絡み合っているため、単位体積当たりの繊維28の表面積が極めて大きいものである。
尚、不織布26を構成する繊維28の繊維密度や、不織布の厚さ、目付等を適宜調整することにより、不織布26を構成する繊維28の総表面積を任意に増減可能である。
The non-woven fabric 26 is formed by three-dimensionally intertwining a large number of fibers 28, a large number of voids 34 (see FIG. 5) are formed between the fibers 28, and a large number of fibers 28 are three-dimensionally formed. Since they are intertwined, the surface area of the fibers 28 per unit volume is extremely large.
Note that the total surface area of the fibers 28 constituting the nonwoven fabric 26 can be arbitrarily increased or decreased by appropriately adjusting the fiber density of the fibers 28 constituting the nonwoven fabric 26, the thickness of the nonwoven fabric, the basis weight, and the like.

上記繊維28は、ナイロン、ポリエステル、アクリル、ポリプロピレン等の樹脂繊維、
レーヨン等のセルロース系の化学繊維、ガラス繊維、金属繊維等の短繊維から成り、その直径は5〜20μm、長さは0.5〜20mm程度である。
尚、長さが50〜100mm程度の長繊維から成る繊維28を用いることも勿論可能である。
The fiber 28 is a resin fiber such as nylon, polyester, acrylic, polypropylene,
It consists of cellulose-based chemical fibers such as rayon, short fibers such as glass fibers, metal fibers, etc. The diameter is 5 to 20 μm and the length is about 0.5 to 20 mm.
Of course, it is also possible to use fibers 28 made of long fibers having a length of about 50 to 100 mm.

上記蛍光体30は、紫外線等の光の照射を受けると、この光を所定波長の可視光等の光に波長変換するものであり、例えば以下の組成のものを用いることができる。
紫外線等の光を赤色可視光に変換する赤色発光用の蛍光体30として、MS:Eu(Mは、La、Gd、Yの何れか1種)、0.5MgF・3.5MgO・GeO:Mn、2MgO・2LiO・Sb:Mn、Y(P,V)O4:Eu、YVO4:Eu、(SrMg)3(PO4):Sn、Y:Eu、CaSiO:Pb,Mn等がある。
また、紫外線等の光を緑色可視光に変換する緑色発光用の蛍光体30として、BaMgAl1627:Eu,Mn、ZnSiO4:Mn、(Ce,Tb,Mn)MgAl1119、LaPO4:Ce,Tb、(Ce,Tb)MgAl1119、YSiO:Ce,Tb、ZnS:Cu,Al、ZnS:Cu,Au,Al、(Zn,Cd)S:Cu,Al、SrAl:Eu、SrAl:Eu,Dy、SrAl1425:Eu,Dy、YAl12:Tb、Y(Al,Ga)12:Tb、YAl12:Ce、Y(Al,Ga)12:Ce等がある。
更に、紫外線等の光を青色可視光に変換する青色発光用の蛍光体30として、(SrCaBa)(PO)Cl:Eu、BaMgAl1627:Eu、(SrMg)7:Eu、Sr7:Eu、Sr:Sn、Sr(PO4Cl:Eu、BaMgAl1627:Eu、CaWO4、CaWO4:Pb青色蛍光体、ZnS:Ag,Cl、ZnS:Ag,Al、(Sr,Ca,Mg)10(PO)Cl:Eu等がある。
上記赤色発光用の蛍光体30、緑色発光用の蛍光体30、青色発光用の蛍光体30を適宜選択・混合して用いることで、種々の色の発色が可能である。
尚、蛍光体30は、有機、無機の蛍光染料や、有機、無機の蛍光顔料を含むものである。
When the phosphor 30 is irradiated with light such as ultraviolet rays, the phosphor 30 converts the wavelength of the light into light such as visible light having a predetermined wavelength. For example, the phosphor 30 having the following composition can be used.
As a phosphor 30 for red light emission that converts light such as ultraviolet rays into red visible light, M 2 O 2 S: Eu (M is any one of La, Gd, and Y), 0.5 MgF 2 .3.5MgO. GeO 2: Mn, 2MgO · 2LiO 2 · Sb 2 O 3: Mn, Y (P, V) O 4: Eu, YVO 4: Eu, (SrMg) 3 (PO 4): Sn, Y 2 O 3: Eu , CaSiO 3 : Pb, Mn and the like.
Further, as a phosphor 30 for green light emission for converting light such as ultraviolet rays to green visible light, BaMg 2 Al 16 O 27: Eu, Mn, Zn 2 SiO 4: Mn, (Ce, Tb, Mn) MgAl 11 O 19 , LaPO 4 : Ce, Tb, (Ce, Tb) MgAl 11 O 19 , Y 2 SiO 5 : Ce, Tb, ZnS: Cu, Al, ZnS: Cu, Au, Al, (Zn, Cd) S: Cu , Al, SrAl 2 O 4 : Eu, SrAl 2 O 4 : Eu, Dy, Sr 4 Al 14 O 25 : Eu, Dy, Y 3 Al 5 O 12 : Tb, Y 3 (Al, Ga) 5 O 12 : There are Tb, Y 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, and the like.
Furthermore, as a phosphor 30 for blue light emission that converts light such as ultraviolet light into blue visible light, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, (SrMg) 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Sn, Sr 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, CaWO 4 , CaWO 4 : Pb There are blue phosphors, ZnS: Ag, Cl, ZnS: Ag, Al, (Sr, Ca, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, and the like.
Various colors can be developed by appropriately selecting and mixing the phosphor 30 for red light emission, the phosphor 30 for green light emission, and the phosphor 30 for blue light emission.
The phosphor 30 includes organic and inorganic fluorescent dyes and organic and inorganic fluorescent pigments.

以下において、気密容器18の直管部12,12外表面に上記蛍光シート32を被覆して、上記第1の蛍光放電管10を製造する方法について説明する。
先ず、ポリプロピレン等の高融点材料より成る繊維28を、ポリエチレン等の低融点材料より成る繊維36で被覆した所定長さの複合繊維38(図7参照)を多数準備し、カード法やエアレイ法等を用いて、これら多数の複合繊維38より成るシート状の集積体(ウェブ)を形成する。
Hereinafter, a method of manufacturing the first fluorescent discharge tube 10 by covering the outer surfaces of the straight tube portions 12 and 12 of the airtight container 18 with the fluorescent sheet 32 will be described.
First, a large number of composite fibers 38 (see FIG. 7) having a predetermined length obtained by coating fibers 28 made of a high melting point material such as polypropylene with fibers 36 made of a low melting point material such as polyethylene are prepared. Is used to form a sheet-like aggregate (web) composed of a large number of these composite fibers 38.

次に、上記シート状の集積体を、気密容器18の直管部12,12外表面に被覆し、この状態で、上記複合繊維38を構成する低融点材料より成る繊維36の融点より高く、且つ、高融点材料より成る繊維28の融点より低い温度で、複合繊維38より成る上記シート状の集積体を加熱して低融点材料より成る繊維36のみを溶融させると共に、粒子状の蛍光体30を上記集積体に吹き付ける。   Next, the sheet-like assembly is coated on the outer surfaces of the straight pipe portions 12 and 12 of the airtight container 18, and in this state, the melting point of the fiber 36 made of a low-melting-point material constituting the composite fiber 38 is higher, In addition, the sheet-like assembly made of the composite fiber 38 is heated at a temperature lower than the melting point of the fiber 28 made of the high-melting material, so that only the fiber 36 made of the low-melting material is melted. Is sprayed onto the aggregate.

この結果、高融点材料より成る繊維28の交差部分が、溶融した低融点材料より成る繊維36を介して接着することにより、不織布26が形成されると共に、粒子状の蛍光体30が、溶融した低融点材料より成る繊維36を介して、不織布26を構成する繊維28の表面に接着・担持されて上記蛍光シート32が形成され、更に、蛍光シート32が、溶融した低融点材料より成る繊維36を介して、気密容器18の直管部12,12外表面に接着して上記第1の蛍光放電管10が完成する。   As a result, the intersecting portion of the fibers 28 made of the high melting point material is bonded via the melted fibers 36 made of the low melting point material, so that the nonwoven fabric 26 is formed and the particulate phosphor 30 is melted. The fluorescent sheet 32 is formed by being bonded and supported on the surface of the fiber 28 constituting the nonwoven fabric 26 via the fiber 36 made of the low melting point material, and the fluorescent sheet 32 is further made of the fiber 36 made of the melted low melting point material. The first fluorescent discharge tube 10 is completed by adhering to the outer surfaces of the straight tube portions 12 and 12 of the hermetic container 18 through.

上記製造方法にあっては、高融点材料より成る繊維28を低融点材料より成る繊維36で被覆した複合繊維38を用い、低融点材料より成る繊維36のみを溶融させて接着剤として機能させることにより、不織布26の形成、不織布26を構成する繊維28の表面へ蛍光体30を担持させた蛍光シート32の形成、蛍光シート32と気密容器18の直管部12,12外表面との接着を略同時に行うことができるので、極めて製造容易である。   In the above manufacturing method, the composite fiber 38 in which the fiber 28 made of the high melting point material is coated with the fiber 36 made of the low melting point material is used, and only the fiber 36 made of the low melting point material is melted to function as an adhesive. The formation of the nonwoven fabric 26, the formation of the fluorescent sheet 32 carrying the phosphor 30 on the surface of the fibers 28 constituting the nonwoven fabric 26, and the adhesion between the fluorescent sheet 32 and the outer surfaces of the straight tube sections 12 and 12 of the airtight container 18 Since it can carry out substantially simultaneously, it is very easy to manufacture.

尚、上記製造方法以外にも、例えば、蛍光体の分散液中に不織布26を浸漬した後乾燥させることにより、不織布26を構成する繊維28の表面に蛍光体30を被着・担持させて蛍光シート32を形成した後、該蛍光シート32を、接着剤を介して、気密容器18の直管部12,12外表面に被覆しても良い。   In addition to the above manufacturing method, for example, the non-woven fabric 26 is dipped in a phosphor dispersion and then dried, so that the phosphor 30 is attached to and supported on the surface of the fibers 28 constituting the non-woven fabric 26 to obtain a fluorescent light. After the sheet 32 is formed, the fluorescent sheet 32 may be coated on the outer surfaces of the straight pipe portions 12 and 12 of the airtight container 18 with an adhesive.

上記第1の蛍光放電管10にあっては、一対の放電電極20,20間で放電が生成されると、電子が放電ガスに衝突して、上記蛍光体30を励起させる紫外線や可視光等の光が生成される。生成された光は、気密容器18を透過して、蛍光シート32の不織布26を構成する繊維28表面の蛍光体30に照射され、所定波長の可視光等の光に波長変換されて放射されるのである。   In the first fluorescent discharge tube 10, when a discharge is generated between the pair of discharge electrodes 20, 20, electrons collide with the discharge gas, and ultraviolet light, visible light, or the like that excites the phosphor 30. Of light is generated. The generated light passes through the airtight container 18 and is irradiated to the phosphor 30 on the surface of the fiber 28 constituting the nonwoven fabric 26 of the fluorescent sheet 32, and is converted into light such as visible light having a predetermined wavelength and emitted. It is.

而して、上記第1の蛍光放電管10にあっては、気密容器18を構成する直管部12,12の外表面に、単位体積当たりの繊維28の表面積が極めて大きい不織布26を構成する繊維28の表面に蛍光体30を担持せしめて成る蛍光シート32を被覆したことから、従来の
蛍光放電管70の如く蛍光体76を気密容器72の表面に層状に配置した場合に比べ、気密容器18の表面に配置する蛍光体30の量を飛躍的に増大させることができる。
Thus, in the first fluorescent discharge tube 10, the nonwoven fabric 26 in which the surface area of the fibers 28 per unit volume is extremely large is formed on the outer surface of the straight tube portions 12, 12 constituting the airtight container 18. Since the surface of the fiber 28 is coated with a fluorescent sheet 32 having the phosphor 30 supported thereon, the phosphor 76 is layered on the surface of the hermetic container 72 as in the conventional fluorescent discharge tube 70. The amount of the phosphor 30 arranged on the surface of 18 can be dramatically increased.

尚、不織布26を構成する繊維28の表面に蛍光体30を担持せしめて成る上記蛍光シート32の強度を向上させるため、図8に示すように、表面に蛍光体30を担持させたシート状の織布40を、蛍光シート32の外面に接合した上で、斯かる織布40の接合された蛍光シート32を、気密容器18の直管部12,12外表面に被覆するようにしても良い。
この織布40は、樹脂繊維、ガラス繊維、金属繊維等の多数の繊維(図示せず)を縒る等して形成した繊維の集合体より成る紐42を、略格子状に織り込むと共に、該織布40を構成する紐42の表面に蛍光体30を担持させることにより形成されている(図9)。この織布40は、紐42間に多数の空隙44が形成されている。
図8においては、蛍光シート32の底面に上記織布40を接合した場合が示されているが、蛍光シート32の上面に上記織布40を接合したり、或いは、蛍光シート32の外面を上記織布40で被覆した状態で接合しても良い。
In order to improve the strength of the fluorescent sheet 32 formed by supporting the phosphor 30 on the surface of the fiber 28 constituting the nonwoven fabric 26, as shown in FIG. 8, a sheet-like structure having the phosphor 30 supported on the surface is used. After the woven fabric 40 is joined to the outer surface of the fluorescent sheet 32, the fluorescent sheet 32 joined to the woven fabric 40 may be coated on the outer surfaces of the straight tube portions 12 and 12 of the airtight container 18. .
The woven fabric 40 weaves a string 42 made of a collection of fibers formed by winding a large number of fibers (not shown) such as resin fibers, glass fibers, and metal fibers, in a substantially lattice shape, It is formed by carrying the phosphor 30 on the surface of the string 42 constituting the woven fabric 40 (FIG. 9). In the woven fabric 40, a large number of voids 44 are formed between the strings 42.
In FIG. 8, the case where the woven fabric 40 is joined to the bottom surface of the fluorescent sheet 32 is shown. However, the woven fabric 40 is joined to the top surface of the fluorescent sheet 32, or the outer surface of the fluorescent sheet 32 is attached to the top surface. You may join in the state coat | covered with the woven fabric 40. FIG.

上記織布40と蛍光シート32の外面との接合は、例えば、接着剤(図示せず)を介して行うことができる。
また、上記した複合繊維38を用いて第1の蛍光放電管10を製造する場合においては、溶融した低融点材料より成る繊維36を介して、高融点材料より成る繊維28の交差部分を接着することにより不織布26を形成すると共に、粒子状の蛍光体30を溶融した低融点材料より成る繊維36を介して、不織布26を構成する繊維28の表面に接着・担持させ、更に、蛍光シート32の底面を、溶融した低融点材料より成る繊維36を介して、気密容器18の直管部12,12外表面に接着すると共に、上記織布40を、溶融した低融点材料より成る繊維36を介して、蛍光シート32の上面に接合すれば良い。
The woven fabric 40 and the outer surface of the fluorescent sheet 32 can be joined through, for example, an adhesive (not shown).
In the case of manufacturing the first fluorescent discharge tube 10 using the above-described composite fiber 38, the intersecting portion of the fibers 28 made of the high melting point material is bonded through the fibers 36 made of the molten low melting point material. In this way, the nonwoven fabric 26 is formed, and bonded and supported on the surface of the fibers 28 constituting the nonwoven fabric 26 via the fibers 36 made of a low melting point material in which the particulate phosphor 30 is melted. The bottom surface is bonded to the outer surface of the straight pipe portions 12 and 12 of the hermetic container 18 through the fibers 36 made of a molten low melting point material, and the woven fabric 40 is bonded to the outer surfaces of the straight pipe portions 12 and 12 through the fibers 36 made of a molten low melting point material. Then, it may be bonded to the upper surface of the fluorescent sheet 32.

図10は、本発明に係る第2の蛍光放電管を示すものである。この第2の蛍光放電管46は、一面に複数本の第1の帯状放電電極48を並設した透光性材料より成る背面基板50と、一面に複数本の第2の帯状放電電極52を並設した透光性材料より成る前面基板54とを、第1の帯状放電電極48と第2の帯状放電電極52とが所定の間隙を隔てて交差するように配置し、両基板周縁を低融点ガラス等の封着材56を介して気密に封止して気密容器57を形成し、該気密容器57内に、蛍光体30を励起させる紫外線や可視光等の光を放射する所定の放電ガスを充填して成る。
また、隣接する第1の帯状放電電極48同士の間には、低融点ガラス等より成るバリアリブ58が配設されている。
FIG. 10 shows a second fluorescent discharge tube according to the present invention. The second fluorescent discharge tube 46 includes a rear substrate 50 made of a light-transmitting material having a plurality of first strip discharge electrodes 48 arranged on one side, and a plurality of second strip discharge electrodes 52 on one side. A front substrate 54 made of a light-transmitting material arranged in parallel is arranged so that the first strip-shaped discharge electrode 48 and the second strip-shaped discharge electrode 52 intersect each other with a predetermined gap therebetween, and the peripheral edges of both substrates are lowered. A hermetic seal is formed through a sealing material 56 such as a melting point glass to form an airtight container 57, and a predetermined discharge that emits light such as ultraviolet rays and visible light that excites the phosphor 30 in the airtight container 57. Filled with gas.
Barrier ribs 58 made of low melting point glass or the like are disposed between the adjacent first strip-shaped discharge electrodes 48.

また、上記気密容器57を構成する前面基板54及び背面基板50の外表面には、不織布26を構成する繊維28の表面に蛍光体30を被着・担持させた上記蛍光シート32が被覆されている。   Further, the outer surfaces of the front substrate 54 and the rear substrate 50 constituting the hermetic container 57 are coated with the phosphor sheet 32 in which the phosphor 30 is attached and supported on the surface of the fibers 28 constituting the nonwoven fabric 26. Yes.

上記第2の蛍光放電管46にあっては、第1の帯状放電電極48と第2の帯状放電電極52間で放電が生成されると、電子が放電ガスに衝突して、上記蛍光体30を励起させる紫外線や可視光等の光が生成される。生成された光は、気密容器57を透過して、蛍光シート32の不織布26を構成する繊維28表面の蛍光体30に照射され、所定波長の可視光等の光に波長変換されて放射されるのである。   In the second fluorescent discharge tube 46, when a discharge is generated between the first strip-shaped discharge electrode 48 and the second strip-shaped discharge electrode 52, electrons collide with the discharge gas, and the phosphor 30 Light such as ultraviolet light and visible light that excites the light is generated. The generated light is transmitted through the airtight container 57, irradiated to the phosphor 30 on the surface of the fiber 28 constituting the nonwoven fabric 26 of the fluorescent sheet 32, and is converted into light such as visible light having a predetermined wavelength and emitted. It is.

而して、この第2の蛍光放電管46にあっても、上記第1の蛍光放電管10と同じく、気密容器57を構成する前面基板54及び背面基板50の外表面に、単位体積当たりの繊維28の表面積が極めて大きい不織布26を構成する繊維28の表面に蛍光体30を担持せしめて成る蛍光シート32を被覆したことから、気密容器57の表面に配置する蛍光体30の量を飛躍的に増大させることができる。   Thus, even in the second fluorescent discharge tube 46, as with the first fluorescent discharge tube 10, the outer surface of the front substrate 54 and the rear substrate 50 constituting the hermetic container 57 is placed on the outer surface per unit volume. Since the surface of the fiber 28 constituting the nonwoven fabric 26 having an extremely large surface area of the fiber 28 is coated with the phosphor sheet 32 formed by supporting the phosphor 30, the amount of the phosphor 30 arranged on the surface of the airtight container 57 is dramatically increased. Can be increased.

尚、この第2の蛍光放電管46にあっても、第1の蛍光放電管10の場合と同様に、表面に蛍光体30を担持させたシート状の織布40を蛍光シート32の外面に接合した上で、斯かる織布40の接合された蛍光シート32を、気密容器57を構成する前面基板54及び背面基板50の外表面に被覆するようにしても良い。   In the second fluorescent discharge tube 46 as well, as in the first fluorescent discharge tube 10, a sheet-like woven fabric 40 carrying the phosphor 30 on the surface is provided on the outer surface of the fluorescent sheet 32. After being joined, the phosphor sheet 32 joined with the woven fabric 40 may be coated on the outer surfaces of the front substrate 54 and the back substrate 50 constituting the airtight container 57.

上記においては、第1の蛍光放電管10の気密容器28を構成する直管部12,12の外表面に、蛍光シート32を被覆した場合を例に挙げて説明したが、直管部12,12の内表面に蛍光シート32を被覆しても良い。
同様に、第2の蛍光放電管46にあっても、気密容器57を構成する前面基板54及び背面基板50の内表面に、上記蛍光シート32を被覆しても良い。
In the above description, the case where the fluorescent sheet 32 is coated on the outer surface of the straight tube portions 12 and 12 constituting the hermetic container 28 of the first fluorescent discharge tube 10 has been described as an example. The inner surface of 12 may be covered with a fluorescent sheet 32.
Similarly, in the second fluorescent discharge tube 46, the fluorescent sheet 32 may be coated on the inner surfaces of the front substrate 54 and the rear substrate 50 constituting the airtight container 57.

また、上記においては、不織布26を構成する繊維28の「表面」に蛍光体30を担持せしめた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、透明樹脂等より成る透光性の繊維28に粒子状の蛍光体30を練り混むことにより、不織布26を構成する繊維28に蛍光体30を担持させても良い。
この場合、例えば、未硬化状態の透明樹脂中に、粒子状の蛍光体を所定量混合した後、透明樹脂を延伸、硬化させ、その後、所定の長さに切断することにより、蛍光体30が練り混まれた多数の繊維を形成し、斯かる蛍光体30が練り混まれた多数の繊維を用いて不織布26を形成すれば良い。
Further, in the above description, the case where the phosphor 30 is supported on the “surface” of the fibers 28 constituting the nonwoven fabric 26 has been described as an example, but the present invention is not limited to this, for example, transparent The phosphor 30 may be supported on the fibers 28 constituting the nonwoven fabric 26 by kneading and mixing the particulate phosphor 30 with the translucent fibers 28 made of resin or the like.
In this case, for example, after mixing a predetermined amount of a particulate phosphor in an uncured transparent resin, the transparent resin is stretched and cured, and then cut into a predetermined length to obtain the phosphor 30. A large number of fibers kneaded and mixed may be formed, and the nonwoven fabric 26 may be formed using a large number of fibers mixed and mixed with the phosphor 30.

蛍光物質としては、上記した蛍光体30だけでなく、蛍光ガラスや蛍光樹脂等、紫外線等の光の照射を受けた場合に、この光を所定波長の可視光等の光に波長変換する全ての物質を含むものである。
蛍光ガラスは、ガラス材料に蛍光材料を添加して形成される透明体であり、また、蛍光樹脂は、エポキシ樹脂等の樹脂材料に蛍光材料を添加して形成される透明体である。これら蛍光ガラスや蛍光樹脂を粒子状と成し、不織布26を構成する繊維28の表面に被着・担持させることにより、上記蛍光シート32を形成することができる。
As the fluorescent material, not only the above-described phosphor 30, but also all light that converts the wavelength of this light into light such as visible light having a predetermined wavelength when irradiated with light such as ultraviolet light such as fluorescent glass or fluorescent resin. Contains substances.
The fluorescent glass is a transparent body formed by adding a fluorescent material to a glass material, and the fluorescent resin is a transparent body formed by adding a fluorescent material to a resin material such as an epoxy resin. The fluorescent sheet 32 can be formed by forming the fluorescent glass or the fluorescent resin in the form of particles and adhering and supporting the fluorescent glass or fluorescent resin on the surface of the fibers 28 constituting the nonwoven fabric 26.

また、蛍光ガラスや蛍光樹脂等より成る蛍光繊維(図示せず)を用いて不織布26を形成することにより、蛍光シート32と成すこともできる。
以下において、ゾルゲル法によって、蛍光ガラスより成る蛍光繊維の形成方法を説明する。蛍光ガラスは、上記の通り、ガラス材料に蛍光材料を添加して形成される透明体である。ガラス材料としては、例えば、酸化物ガラス、珪酸系ガラス、フツ燐酸塩系ガラス等を用いることができる。また蛍光材料としては、例えば、希土類元素の2価及び3価のEu、Tb、Sm等、或いは、Mn、Zn等を単体或いは複数組み合わせて用いることができる。蛍光材料を構成するこれら元素の原子は、通常陽イオン状態となっており、紫外光等の光の照射を受けて励起され、イオン固有の色の可視光を発光するものである。
Further, the fluorescent sheet 32 can be formed by forming the nonwoven fabric 26 using fluorescent fibers (not shown) made of fluorescent glass or fluorescent resin.
Below, the formation method of the fluorescent fiber which consists of fluorescent glass by the sol-gel method is demonstrated. As described above, the fluorescent glass is a transparent body formed by adding a fluorescent material to a glass material. As the glass material, for example, oxide glass, silicate glass, or fluorophosphate glass can be used. As the fluorescent material, for example, rare earth divalent and trivalent Eu, Tb, Sm, etc., or Mn, Zn, etc. can be used alone or in combination. The atoms of these elements constituting the fluorescent material are normally in a cation state and are excited by irradiation with light such as ultraviolet light to emit visible light of a color unique to the ion.

ゾルゲル法は、SiO、ZnO、Y等の金属アルコキシドを出発物質として、その加水分解、重合反応を利用してガラスを合成するものであり、溶液状態から出発するため、希土類イオン等の蛍光材料を均一に添加することができるものである。
先ず、SiO、ZnO、Y等の金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート等の金属有機化合物と、該金属有機化合物の加水分解のための水と、メタノール、DMF(ヂメチルフォルムアミド)等の溶媒と、アンモニア等、上記金属有機化合物の加水分解・重合反応の調整剤と、希土類元素の2価及び3価のEu、Tb、Sm等の蛍光材料(発光中心)とを調合し、均質で透明な溶液状態の蛍光ガラス材料を作製する。
The sol-gel method uses a metal alkoxide such as SiO 2 , ZnO, and Y 2 O 3 as a starting material to synthesize glass using its hydrolysis and polymerization reaction. The fluorescent material can be uniformly added.
First, metal alkoxides such as SiO 2 , ZnO and Y 2 O 3 , metal organic compounds such as metal acetylacetonate and metal carboxylate, water for hydrolysis of the metal organic compounds, methanol, DMF (dimethyl) A solvent such as formamide), a regulator of hydrolysis and polymerization reaction of the above metal organic compound such as ammonia, and a fluorescent material (emission center) of rare earth elements such as divalent and trivalent Eu, Tb and Sm. Prepare and produce a fluorescent glass material in a homogeneous and transparent solution state.

次に、上記溶液状態の蛍光ガラス材料を、例えば200℃程度の比較的低温で加熱等することにより、溶媒を蒸発させると共に、上記金属有機化合物の加水分解・重合反応を一部進行させて、溶液状態の蛍光ガラス材料を粘性ゾル状と成す。
次に、粘性ゾル状の蛍光ガラス材料を延伸した後、800℃〜1000℃の温度で加熱・焼成して、蛍光ガラス材料の重合を完全に進行させることにより、ゲル状の細長い蛍光繊維を形成し、この蛍光繊維を、所定の長さに切断すれば、蛍光ガラスより成る多数の蛍光繊維を形成することができる。
斯かる蛍光ガラスより成る多数の蛍光繊維を用いて不織布26を形成すれば、蛍光シート32が完成する。
Next, by heating the fluorescent glass material in a solution state at a relatively low temperature of, for example, about 200 ° C., the solvent is evaporated and the hydrolysis / polymerization reaction of the metal organic compound is partially advanced, A fluorescent glass material in a solution state is made into a viscous sol.
Next, after stretching the viscous sol-like fluorescent glass material, it is heated and baked at a temperature of 800 ° C. to 1000 ° C. to completely progress the polymerization of the fluorescent glass material, thereby forming a gel-like elongated fluorescent fiber. If this fluorescent fiber is cut into a predetermined length, a large number of fluorescent fibers made of fluorescent glass can be formed.
When the nonwoven fabric 26 is formed using a large number of fluorescent fibers made of such fluorescent glass, the fluorescent sheet 32 is completed.

本発明に係る第1の蛍光放電管を模式的に示す正面図である。It is a front view which shows typically the 1st fluorescence discharge tube which concerns on this invention. 第1の蛍光放電管における気密容器の直管部を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the straight pipe | tube part of the airtight container in a 1st fluorescence discharge tube. 蛍光シートを模式的に示すに斜視図である。It is a perspective view which shows a fluorescent sheet typically. 蛍光シートを模式的に示す部分拡大図である。It is the elements on larger scale which show a fluorescent sheet typically. 蛍光シートを構成する繊維を模式的に示す拡大図である。It is an enlarged view which shows typically the fiber which comprises a fluorescent sheet. 蛍光シートを構成する繊維を模式的に示す断面図である。It is sectional drawing which shows typically the fiber which comprises a fluorescent sheet. 複合繊維を示す概略断面図である。It is a schematic sectional drawing which shows a composite fiber. 表面に蛍光体を担持させた織布を、蛍光シートの外面に接合した状態を模式的に示す正面図である。It is a front view which shows typically the state which joined the woven fabric which carry | supported the fluorescent substance on the surface to the outer surface of a fluorescent sheet. 表面に蛍光体を担持させた織布を模式的に示す平面図である。It is a top view which shows typically the woven fabric which carry | supported the fluorescent substance on the surface. 本発明に係る第2の蛍光放電管を模式的に示す断面図である。It is sectional drawing which shows typically the 2nd fluorescence discharge tube which concerns on this invention. 従来の蛍光放電管を示す概略断面図である。It is a schematic sectional drawing which shows the conventional fluorescent discharge tube.

符号の説明Explanation of symbols

10 第1の蛍光放電管
12 直管部
18 気密容器
20 放電電極
26 不織布
28 繊維
30 蛍光体
32 蛍光シート
38 複合繊維
40 織布
46 第2の蛍光放電管
48 第1の帯状放電電極
50 背面基板
52 第2の帯状放電電極
54 前面基板
57 気密容器
10 First fluorescent discharge tube
12 Straight pipe section
18 Airtight container
20 Discharge electrode
26 Nonwoven fabric
28 fibers
30 phosphor
32 Fluorescent sheet
38 Composite fiber
40 Woven fabric
46 Second fluorescent discharge tube
48 First strip discharge electrode
50 Back board
52 Second strip discharge electrode
54 Front board
57 Airtight container

Claims (2)

透光性材料より成る気密容器の内部に、複数の放電電極及び放電ガスを封入すると共に、上記気密容器の表面に、不織布を構成する繊維に蛍光体、蛍光ガラス等の蛍光物質を担持させた蛍光シートを被覆したことを特徴とする蛍光放電管。   A plurality of discharge electrodes and discharge gas are enclosed in an airtight container made of a translucent material, and a fluorescent material such as a fluorescent substance or fluorescent glass is supported on the fiber constituting the nonwoven fabric on the surface of the airtight container. A fluorescent discharge tube coated with a fluorescent sheet. 多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐に蛍光物質を担持させて形成した織布を、上記蛍光シートの外面に接合したことを特徴とする請求項1に記載の蛍光放電管。   The woven fabric formed by weaving a string made of an aggregate of a large number of fibers in a substantially lattice shape and carrying a fluorescent substance on the string is bonded to the outer surface of the fluorescent sheet. Fluorescent discharge tube.
JP2008190513A 2008-07-24 2008-07-24 Fluorescent discharge tube Pending JP2008258178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190513A JP2008258178A (en) 2008-07-24 2008-07-24 Fluorescent discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190513A JP2008258178A (en) 2008-07-24 2008-07-24 Fluorescent discharge tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003336828A Division JP4180480B2 (en) 2003-09-29 2003-09-29 Manufacturing method of fluorescent discharge tube

Publications (1)

Publication Number Publication Date
JP2008258178A true JP2008258178A (en) 2008-10-23

Family

ID=39981496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190513A Pending JP2008258178A (en) 2008-07-24 2008-07-24 Fluorescent discharge tube

Country Status (1)

Country Link
JP (1) JP2008258178A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104381A (en) * 1976-02-25 1977-09-01 Westinghouse Electric Corp Improvement on fluorescent lamp
JPS55117860A (en) * 1979-02-28 1980-09-10 Matsushita Electric Works Ltd Fluorescent lamp
JP2000285859A (en) * 1999-03-30 2000-10-13 Nippon Paper Industries Co Ltd Fluorescent lamp and hazardous matter removing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104381A (en) * 1976-02-25 1977-09-01 Westinghouse Electric Corp Improvement on fluorescent lamp
JPS55117860A (en) * 1979-02-28 1980-09-10 Matsushita Electric Works Ltd Fluorescent lamp
JP2000285859A (en) * 1999-03-30 2000-10-13 Nippon Paper Industries Co Ltd Fluorescent lamp and hazardous matter removing system

Similar Documents

Publication Publication Date Title
JP2006286999A (en) Light emitting diode and its fabrication process
JP4491213B2 (en) Light emitting diode and manufacturing method thereof
JP4744913B2 (en) Light emitting diode
JP5581635B2 (en) Fluorescent lamp
JP3117789U (en) Surface light source device
JP4180480B2 (en) Manufacturing method of fluorescent discharge tube
JP4698986B2 (en) Light emitting diode and manufacturing method thereof
JP2010003788A (en) Light-emitting diode and manufacturing method thereof
JP2008258178A (en) Fluorescent discharge tube
JP2010003790A (en) Light-emitting diode and manufacturing method thereof
JP4355550B2 (en) Fluorescent substance carrier and method for producing the same
JP5227093B2 (en) Light emitting diode
JP4241095B2 (en) Light emitting diode
JP3117790U (en) Surface light source device
JP3117306U (en) Light emitting diode
JP4744853B2 (en) Light emitting diode
JP4594023B2 (en) Manufacturing method of light emitting diode
JP2010212739A (en) Light emitting diode
JP2009084402A (en) Fluorescent substance supporter, process for producing the same and light emitting diode using the fluorescent substance supporter
JP2008303527A (en) Phosphor support
JP4594027B2 (en) Manufacturing method of light emitting diode
JP2006286998A (en) Light emitting diode and its fabrication process
JP2006186182A (en) Light emitting diode and its manufacturing method
JP2016108496A (en) Alkaline earth metal phosphor, wavelength conversion member and light-emitting device
JP2006060100A (en) Light emitting diode and its fabrication process

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823