JP2008256513A - Measuring device - Google Patents
Measuring device Download PDFInfo
- Publication number
- JP2008256513A JP2008256513A JP2007098584A JP2007098584A JP2008256513A JP 2008256513 A JP2008256513 A JP 2008256513A JP 2007098584 A JP2007098584 A JP 2007098584A JP 2007098584 A JP2007098584 A JP 2007098584A JP 2008256513 A JP2008256513 A JP 2008256513A
- Authority
- JP
- Japan
- Prior art keywords
- time
- temperature
- sensor element
- ultrasonic
- gas detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は測定対象の状態に応じた出力信号を出力するセンサ素子を設置し、前記センサ素子の出力信号に基づいて前記測定対象の状態を検知するように構成された計測装置に関する。 The present invention relates to a measurement apparatus configured to install a sensor element that outputs an output signal corresponding to a state of a measurement target and detect the state of the measurement target based on the output signal of the sensor element.
この種の計測装置としては、流体が流れる測定流路の上流側と下流側とに、相互に超音波を送受信可能な一対の超音波送受信器を上記センサ素子として設置し、その一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、その伝播時間計測手段の計測結果に基づいて上記流速値を導出する流速値演算手段とを備えた超音波式メータ装置が知られている。(例えば、特許文献1を参照。)。 As this type of measuring apparatus, a pair of ultrasonic transmitters / receivers capable of transmitting / receiving ultrasonic waves to / from each other are installed as the sensor elements on the upstream side and the downstream side of the measurement flow path through which the fluid flows. Propagation time measuring means for receiving the ultrasonic wave transmitted from one side of the transceiver on the other side and measuring the propagation time of the ultrasonic wave between the pair of ultrasonic transceivers, and the measurement result of the propagation time measuring means 2. Description of the Related Art An ultrasonic meter device having a flow velocity value calculation means for deriving the flow velocity value based on the above is known. (For example, see Patent Document 1).
具体的に、上記超音波式メータ装置は、上記伝播時間計測手段により、一対の超音波送受信器間において、流体の流れ方向に沿った順方向で超音波が伝播する順方向伝播時間t1と、その順方向とは逆の逆方向で超音波が伝播する逆方向伝播時間t2とを計測する。そして、一対の超音波送受信器間の対向方向において流体の瞬時流速をv’とし音速をCとし、一対の超音波送受信器間の距離をLとしたときに、上記計測した順方向伝播時間t1と逆方向伝播時間t2の夫々は下記の式(1)、(2)に示すように表すことができ、よって、上記流速v’は、音速Cに関係なく、下記の式(3)で求めることができる。 Specifically, the ultrasonic meter device includes a forward propagation time t1 in which ultrasonic waves propagate in the forward direction along the fluid flow direction between the pair of ultrasonic transceivers by the propagation time measuring unit, The backward propagation time t2 in which the ultrasonic wave propagates in the opposite direction to the forward direction is measured. Then, when the instantaneous flow velocity of the fluid is v ′, the sound velocity is C, and the distance between the pair of ultrasonic transmitters / receivers is L in the facing direction between the pair of ultrasonic transmitters / receivers, the above measured forward propagation time t1. And the reverse propagation time t2 can be expressed as shown in the following formulas (1) and (2). Therefore, the flow velocity v ′ is obtained by the following formula (3) regardless of the sound speed C. be able to.
t1=L/(C+v’)
t2=L/(C−v’)
v’=L・(1/t1−1/t2)/2
t1 = L / (C + v ′)
t2 = L / (Cv ′)
v ′ = L · (1 / t1-1 / t2) / 2
このことを利用して、上記流速値演算手段は、上記の式(3)により求められる流速v’を用いて、測定流路における流体の流速、又は、その流速に測定流路の流路断面積を乗じて求められる流量を、流速値として導出することができる。 By utilizing this, the flow velocity value calculation means uses the flow velocity v ′ obtained by the above equation (3), and the flow velocity of the fluid in the measurement channel, or the flow rate break of the measurement channel in the flow velocity. A flow rate obtained by multiplying the area can be derived as a flow velocity value.
また、従来の超音波式メータ装置では、超音波を受信した超音波送受信器の受信信号は、設定電圧を最大とするものに増幅しても、振幅が次第に増大した後に減衰するような波形を有するので、その受信信号が受信された直後の時点は振幅が非常に小さく、その受信時点を正確に認識することは困難である。尚、本願において、受信信号の波形とは、受信信号全体の最大電圧に対する各波の最大電圧の比率を示す。
そこで、上記伝搬時間計測手段は、超音波送受信器の超音波の受信時点を、受信信号の振幅が正確に認識可能な程度に大きくなった時点を基準として判定する形態で、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成されている。
例えば、上記伝搬時間計測手段は、受信信号が基準電圧に到達した時点の直後に受信信号がゼロレベルとなった時点(以下、「ゼロクロス点」と呼ぶ。)を求める。このように求めたゼロクロス点は、受信信号の波形が一定であると仮定すると、受信時点から特定番目の波(以下、「ターゲット波」と呼ぶ。)のゼロクロス点と一致することから、受信時点からゼロクロス点までの遅れ時間が、受信信号の周期の一定倍の値として予め認識可能となる。
よって、上記伝搬時間計測手段は、上記のように求めたゼロクロス点から上記遅れ時間分前の時点を、上記受信時点として正確に判定することができる。
Further, in the conventional ultrasonic meter device, the received signal of the ultrasonic transmitter / receiver that has received the ultrasonic wave has a waveform that attenuates after the amplitude gradually increases, even if it is amplified to the maximum set voltage. Therefore, the time immediately after the reception signal is received has a very small amplitude, and it is difficult to accurately recognize the reception time. In the present application, the waveform of the received signal indicates the ratio of the maximum voltage of each wave to the maximum voltage of the entire received signal.
Therefore, the propagation time measuring means determines the ultrasonic wave reception time of the ultrasonic wave transmitter / receiver with reference to the time point when the amplitude of the received signal becomes large enough to be accurately recognized. The received signal and the reference voltage are compared for determination.
For example, the propagation time measuring means obtains a time point (hereinafter referred to as “zero cross point”) when the received signal becomes zero level immediately after the received signal reaches the reference voltage. Assuming that the waveform of the received signal is constant, the zero cross point obtained in this way coincides with the zero cross point of the specific wave from the reception time point (hereinafter referred to as “target wave”). The delay time from to the zero cross point can be recognized in advance as a value that is a fixed multiple of the period of the received signal.
Therefore, the propagation time measuring means can accurately determine the time point before the delay time from the zero cross point obtained as described above as the reception time point.
しかし、受信信号の波形が変化すると、例えば、基準電圧を越える受信信号の波が上記ターゲット波ではなく、その前後の波となってしまい、上記受信時点を正確に判定できなくなる場合がある。
そこで、従来の超音波式メータ装置では、基準電圧を変化させながら、逐次、一対の超音波送受信器間の超音波の伝搬時間や、受信信号が基準電圧に到達した時点からゼロクロス点までの時間差を求めることで、その伝搬時間や時間差の変化状態から、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出するという最適基準電圧検出処理を実行する。
そして、基準電圧を上記最適基準電圧検出処理で検出した最適なものに設定して計測した超音波の伝搬時間から、流速値を導出するように構成されている。
そして、この種の超音波式メータ装置では、上記受信信号が変化した場合でも、上記最適基準電圧検出処理を実行することにより、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出して、正確な流速値を導出することができる。
However, when the waveform of the received signal changes, for example, the wave of the received signal that exceeds the reference voltage is not the target wave but the waves before and after the target wave, and the reception time may not be accurately determined.
Therefore, in the conventional ultrasonic meter device, while changing the reference voltage, the propagation time of the ultrasonic wave between the pair of ultrasonic transmitters / receivers and the time difference from the time when the received signal reaches the reference voltage to the zero cross point are sequentially changed. Thus, the optimum reference voltage detection process for detecting the optimum reference voltage for detecting the zero-cross point of the target wave is executed from the propagation time and the change state of the time difference.
The flow velocity value is derived from the propagation time of the ultrasonic wave measured by setting the reference voltage to the optimum one detected by the optimum reference voltage detection process.
In this type of ultrasonic meter device, even when the received signal changes, the optimum reference voltage for detecting the zero-cross point of the target wave is detected by executing the optimum reference voltage detection process. Thus, an accurate flow velocity value can be derived.
また、別の計測装置としては、測定流路に、特定成分に感応して電気抵抗が変化するガス検知素子を上記センサ素子として配置し、そのガス検知素子を加熱するヒータと、そのガス検知素子の電気抵抗の変化に応じて変化する出力電圧に基づいて特定成分の有無又は濃度を判定するガス検知手段とを備えたガス検知装置が知られている。また、かかるガス検知装置は、上記特定成分としてのメタンや一酸化炭素の濃度が危険レベルに達した場合に警報動作を行うように構成したガス警報装置等に採用されている(例えば、特許文献2を参照。)。 As another measuring device, a gas detection element whose electric resistance changes in response to a specific component is arranged as the sensor element in the measurement channel, a heater for heating the gas detection element, and the gas detection element There has been known a gas detection device including a gas detection means for determining the presence or concentration of a specific component based on an output voltage that changes in accordance with a change in electrical resistance. Further, such a gas detection device is employed in a gas alarm device configured to perform an alarm operation when the concentration of methane or carbon monoxide as the specific component reaches a dangerous level (for example, patent document) 2).
上記のような超音波メータ装置やガス検知装置等の測定装置では、測定流路を流れる流体や測定流路に存在する特定成分等の測定対象の状態に応じた出力信号を出力するセンサ素子の感度は、累積使用時間が長くなるほど劣化等が進行して徐々に低下する。
また、累積使用時間に基づいてセンサ素子の感度を補正した場合でも、設置環境の違いにより、センサ素子の感度を正常な状態に補正できず、結果、流体の流速値や当該特定成分の有無又は濃度等の測定対象の状態を正確に検知することは困難であった。
In the measurement apparatus such as the ultrasonic meter apparatus and the gas detection apparatus as described above, a sensor element that outputs an output signal corresponding to a state of a measurement target such as a fluid flowing in the measurement flow path or a specific component existing in the measurement flow path. The sensitivity gradually decreases as the accumulated use time becomes longer and the deterioration progresses.
In addition, even when the sensitivity of the sensor element is corrected based on the accumulated usage time, the sensitivity of the sensor element cannot be corrected to a normal state due to a difference in the installation environment. It has been difficult to accurately detect the state of a measurement object such as concentration.
また、上記特許文献1に記載の超音波式メータ装置では、上述したように最適基準電圧検出処理を実行して、正確に流速値を導出しようとするものであるが、装置構成の煩雑化及び高コスト化を招き、更には、流速値を導出するまでの時間が長くなるという問題があった。また、流速値を導出するまでの時間が長くなると、当該時間が経過する間に流体の流速が大幅に変化する場合があり、上記最適基準電圧検出処理で検出した基準電圧が、次に流速値を導出するために最適なものではなくなって、正確な流速値を導出できなくなるという問題がある。
Further, in the ultrasonic meter device described in
本発明は、上記の課題に鑑みてなされたものであり、その目的は、測定対象の状態に応じた出力信号を出力するセンサ素子を設置し、そのセンサ素子の出力信号に基づいて測定対象の流速や濃度等の状態を検知するように構成された計測装置において、簡素化且つ低廉化が可能で、迅速且つ正確に測定対象の状態を検知することができる技術を提供する点にある。 The present invention has been made in view of the above problems, and its purpose is to install a sensor element that outputs an output signal corresponding to the state of the measurement target, and to measure the measurement target based on the output signal of the sensor element. In a measuring apparatus configured to detect a state such as a flow rate and a concentration, it is possible to simplify and reduce the cost, and to provide a technique capable of detecting a state of a measurement target quickly and accurately.
上記目的を達成するための本発明に係る計測装置は、測定対象の状態に応じた出力信号を出力するセンサ素子を設置し、前記センサ素子の出力信号に基づいて前記測定対象の状態を検知するように構成された計測装置であって、その第1特徴構成は、前記センサ素子の使用時間を累積して累積使用時間を導出する累積使用時間導出手段と、
前記累積使用時間導出手段で導出した前記センサ素子の累積使用時間に基づいて前記センサ素子の感度を補正する感度補正手段とを備えると共に、
前記センサ素子の温度を導出する温度導出手段を備えて、
前記累積使用時間導出手段が、前記センサ素子の使用時間を前記温度導出手段で導出した前記センサ素子の温度に応じて補正した温度補正使用時間を累積して前記累積使用時間を導出するように構成されている点にある。
In order to achieve the above object, a measuring apparatus according to the present invention is provided with a sensor element that outputs an output signal corresponding to a state of a measurement target, and detects the state of the measurement target based on the output signal of the sensor element. The first characteristic configuration is a cumulative usage time deriving unit that accumulates the usage time of the sensor element to derive the cumulative usage time,
Sensitivity correction means for correcting the sensitivity of the sensor element based on the cumulative use time of the sensor element derived by the cumulative use time deriving means;
Temperature deriving means for deriving the temperature of the sensor element;
The cumulative usage time deriving unit is configured to derive the cumulative usage time by accumulating a temperature corrected usage time obtained by correcting the usage time of the sensor element according to the temperature of the sensor element derived by the temperature deriving unit. It is in the point.
本願発明者らは、鋭意研究した結果、測定対象が存在する測定流路に設置したセンサ素子の出力信号に基づいて当該測定対象の流速、流量、濃度等の状態を検知するにあたり、センサ素子の累積使用時間の増加に加え、それまでのセンサ素子の温度履歴が、センサ素子の感度が低下する主な要因であることを見出した。そして、このセンサの温度履歴を考慮してセンサ素子の累積使用時間を導出すれば、その累積使用時間の増加とセンサ素子の感度の低下との間の相関関係を予め実験などにより求めて、その相関関係を用いて温度履歴を考慮した累積使用時間によりセンサ感度を補正すれば、上記測定対象の状態を正確に検知できることを見出して、本発明を完成するに至った。 As a result of earnest research, the inventors of the present application have found that the sensor element has a flow rate, a flow rate, a concentration, and the like based on the output signal of the sensor element installed in the measurement flow path where the measurement object exists. It has been found that in addition to the increase in the cumulative usage time, the temperature history of the sensor element so far is the main factor that decreases the sensitivity of the sensor element. Then, if the accumulated usage time of the sensor element is derived in consideration of the temperature history of this sensor, a correlation between the increase in the accumulated usage time and the decrease in the sensitivity of the sensor element is obtained in advance by experiments, etc. It has been found that if the sensor sensitivity is corrected by the accumulated use time considering the temperature history using the correlation, the state of the measurement object can be accurately detected, and the present invention has been completed.
即ち、上記第1特徴構成によれば、上記累積使用時間を導出するにあたり、上記累積時間導出手段によりセンサ素子の温度で逐次補正される温度補正使用時間を累積することで温度履歴を考慮した累積使用時間を導出し、その温度履歴を考慮した温度累積使用を用いて上記感度補正手段によりセンサ素子の感度を補正することができ、結果、逐次感度補正されたセンサ素子の出力信号から、迅速且つ正確に、測定対象の状態を検知することができる。 That is, according to the first feature configuration, in deriving the accumulated use time, the accumulated time taking into account the temperature history by accumulating the temperature correction use time sequentially corrected by the temperature of the sensor element by the accumulated time deriving means. The sensitivity of the sensor element can be corrected by the sensitivity correction means using the temperature accumulated use in consideration of the temperature history, and as a result, the output signal of the sensor element that has been sequentially corrected for sensitivity can be quickly and The state of the measurement object can be detected accurately.
本発明に係る計測装置の第2特徴構成は、上記第1特徴構成に加えて、前記累積使用時間導出手段が、前記センサ素子の温度を用いてアレニウス則又は10℃2倍則により算出される温度影響係数を前記センサ素子の使用時間に積算して、前記温度補正使用時間を求める点にある。 In the second characteristic configuration of the measuring apparatus according to the present invention, in addition to the first characteristic configuration, the cumulative use time deriving means is calculated by the Arrhenius rule or the 10 ° C. double rule using the temperature of the sensor element. The temperature correction coefficient is integrated with the usage time of the sensor element to obtain the temperature correction usage time.
上記第2特徴構成によれば、半導体等の温度ストレスによる寿命を予測するための法則として公知であるアレニウス則や10℃2倍則により算出される温度影響係数を、センサ素子の温度を用いて算出し、その温度影響係数をセンサ素子の使用時間に積算したものを上記温度補正使用時間として求めることができる。そして、このようにアレニウス則や10℃2倍則を用いて求めた温度補正使用時間を累積した累積使用時間に基づいてセンサ素子の感度を補正することで、より正確に測定対象の状態を検知することができる。 According to the second characteristic configuration, the temperature influence coefficient calculated by the Arrhenius law or the 10 ° C. double law known as the law for predicting the lifetime due to the temperature stress of the semiconductor or the like is calculated using the temperature of the sensor element. It is possible to obtain the temperature correction usage time by calculating and integrating the temperature influence coefficient with the usage time of the sensor element. Then, the sensitivity of the sensor element is corrected based on the accumulated use time obtained by accumulating the temperature correction use time obtained by using the Arrhenius law or the 10 ° C. double rule in this way, thereby detecting the state of the measurement object more accurately. can do.
本発明に係る計測装置の第3特徴構成は、上記第1乃至上記第2の何れかの特徴構成に加えて、測定流路を流れる流体を前記測定対象とし、
前記測定流路の上流側と下流側とに、相互に超音波を送受信可能な一対の超音波送受信器を前記センサ素子として設置し、
前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して、前記超音波送受信器の超音波の受信時点を当該超音波送受信器の受信信号と基準電圧との比較により判定し、当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、
前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備えた超音波式メータ装置として構成されている点にある。
The third characteristic configuration of the measuring device according to the present invention is, in addition to any of the first to second characteristic configurations described above, a fluid flowing in a measurement channel as the measurement target,
On the upstream side and the downstream side of the measurement channel, a pair of ultrasonic transmitters / receivers capable of transmitting / receiving ultrasonic waves to each other are installed as the sensor elements,
The ultrasonic wave transmitted from one side of the pair of ultrasonic transceivers is received on the other side, and the reception time of the ultrasonic wave of the ultrasonic transceiver is determined by the received signal and the reference voltage of the ultrasonic transceiver. Propagation time measuring means for determining by comparison and measuring the propagation time of ultrasonic waves between the pair of ultrasonic transceivers;
The ultrasonic meter device includes a flow velocity value calculating unit that derives a flow velocity value related to the flow velocity of the fluid flowing through the measurement flow path based on the measurement result of the propagation time measuring unit.
上記第3特徴構成によれば、これまで説明した本発明に係る測定装置を、センサ素子として一対の超音波送受信器を測定流路に配置し、その一対の超音波送受信器の出力信号を用いて上記測定対象の状態として流体の流速や流量等の流速に関する流速値を導出する超音波メータ装置として構成することができる。
即ち、上記感度補正手段により、超音波送受信器の温度履歴を考慮した累積使用時間により、超音波送受信器の出力信号やその出力信号の比較対象となる上記基準電圧を補正する形態で、超音波送受信器の感度を正確且つ迅速に補正することで、上記伝搬時間計測手段により、超音波送受信器の出力信号と基準電圧とを比較して受信時点を正確に判定し、正確な伝搬時間を計測することができる。
従って、測定流路を流れる流体の流速に関する流速値を高精度に導出する超音波式メータ装置を実現することができる。
According to the third characteristic configuration described above, the measurement apparatus according to the present invention described so far has a pair of ultrasonic transmitters / receivers arranged as sensor elements in the measurement flow path, and the output signals of the pair of ultrasonic transmitters / receivers are used. Thus, it can be configured as an ultrasonic meter device for deriving a flow velocity value relating to a flow velocity such as a fluid flow velocity or a flow rate as the state of the measurement target.
That is, the sensitivity correction means corrects the output signal of the ultrasonic transmitter / receiver and the reference voltage to be compared with the output signal based on the accumulated usage time considering the temperature history of the ultrasonic transmitter / receiver. By accurately and quickly correcting the sensitivity of the transmitter / receiver, the propagation time measurement means compares the output signal of the ultrasonic transmitter / receiver with the reference voltage to accurately determine the reception time point and measures the correct propagation time. can do.
Therefore, it is possible to realize an ultrasonic meter device that derives a flow velocity value relating to the flow velocity of the fluid flowing through the measurement channel with high accuracy.
本発明に係る計測装置の第4特徴構成は、上記第1乃至上記第2の何れかの特徴構成に加えて、測定流路に存在する特定成分を測定対象とし、
前記測定流路に、前記特定成分に感応して電気抵抗が変化するガス検知素子を前記センサ素子として配置し、
前記ガス検知素子を加熱するヒータと、
前記ガス検知素子の電気抵抗の変化に応じて変化する出力電圧に基づいて前記特定成分の有無又は濃度を判定するガス検知手段とを備えたガス検知装置として構成されている点にある。
In addition to any of the first to second characteristic configurations described above, the fourth characteristic configuration of the measuring device according to the present invention is a specific component present in the measurement flow path as a measurement target,
In the measurement channel, a gas detection element whose electrical resistance changes in response to the specific component is disposed as the sensor element,
A heater for heating the gas detection element;
The gas detection device includes gas detection means for determining the presence or concentration of the specific component based on an output voltage that changes in accordance with a change in electrical resistance of the gas detection element.
上記第4特徴構成によれば、これまで説明した本発明に係る測定装置を、センサ素子としてガス検知素子を測定流路に配置し、そのガス検知素子の出力電圧を用いて上記測定対象の状態として測定流路における特定成分の有無又は濃度を判定するガス検知装置として構成することができる。
即ち、上記感度補正手段により、ガス検知素子の温度履歴を考慮した累積使用時間により、ガス検知素子の出力電圧を正確且つ迅速に補正することで、上記ガス検知手段により、上記ガス検知素子の出力電圧に基づいて特定成分の有無又は濃度を高精度に判定することができる。
According to the fourth characteristic configuration, the measurement apparatus according to the present invention described so far has the gas detection element disposed in the measurement flow path as a sensor element, and the state of the measurement target is measured using the output voltage of the gas detection element. As a gas detection device for determining the presence or concentration of a specific component in the measurement channel.
That is, the output of the gas detection element is output by the gas detection means by correcting the output voltage of the gas detection element accurately and quickly by the accumulated use time in consideration of the temperature history of the gas detection element. Based on the voltage, the presence or concentration of the specific component can be determined with high accuracy.
〔超音波メータ装置〕
本発明に係る測定装置の実施の形態としての超音波メータ装置について、図面に基づいて説明する。
[Ultrasonic meter device]
An ultrasonic meter device as an embodiment of a measuring device according to the present invention will be described with reference to the drawings.
図1は、本実施形態の超音波式メータ装置(以下、「メータ装置」と略称する。)により測定流路2を流れるガスg(測定対象の一例)の流速や流量等の当該流速に関する流速値の導出を実施している状態におけるメータ装置の側断面図であり、図2は、超音波送受信器6の受信信号の状態を示す図であり、図3は、超音波送受信器6の累積使用時間に対する設定基準電圧の関係を示すグラフ図であり、図4は、別実施形態のメータ装置の側断面図である。
FIG. 1 shows a flow velocity relating to the flow velocity such as a flow velocity and a flow velocity of a gas g (an example of a measurement target) flowing through the
先ず、メータ装置の基本構成について説明する。
メータ装置は、図1に示すように、上記測定流路2を上流側と下流側との間で斜めに横断する方向の両端部に配置されて相互に当該横断方向に沿って超音波を送受信可能な一対の超音波送受信器(以下、「送受信器」と略称する。)6(センサ素子の一例)と、その一対の送受信器6により計測した測定流路2における超音波の伝搬状態により測定流路2を流通するガスgの流速値をガスgの状態として導出するように構成された制御装置50を備える。
First, the basic configuration of the meter device will be described.
As shown in FIG. 1, the meter device is arranged at both ends of the
測定流路2の上流側に設置された送受信器6aと、測定流路2の下流側に設置された送受信器6bとは、距離Lを隔てた位置に互いに対向して設置され、それら一対の送受信器6の対向方向と測定流路2を流通するガスgの流れ方向(測定流路2の中心軸に沿った方向)とが角度θをなす。
The transmitter /
また、この送受信器6は、制御装置50側から電気信号である駆動パルスが入力されると、超音波を他方の送受信器6側に向けて送信し、一方、他方の送受信器6側から送信された超音波を受信すると、電気信号である受信信号を制御装置50側に出力するように構成されている。
In addition, when a drive pulse that is an electrical signal is input from the
制御装置50は、メモリ等からなる記憶媒体、CPU、入出力部等を備えたマイクロコンピュータで構成され、そのコンピュータが所定のプログラムを実行することにより、後述の伝搬時間計測手段10、流速値演算手段20、基準電圧設定手段25、温度導出手段27、累積使用時間導出手段29等の様々な手段として機能する。以下、各手段の詳細構成について説明を加える。
The
制御装置50が機能する伝播時間計測手段10は、一対の送受信器6の夫々に対する駆動パルスの送信及び受信信号の受信の状態を切り換える切換部11、上記切換部11を通じて上記送受信器6に超音波を発生させるための駆動パルスを出力する駆動部12、上記切換部11を通じて入力された送受信器6の受信信号を増幅させる増幅部13、上記増幅部13で増幅された受信信号を後述する基準電圧と比較して送受信器6の超音波の受信時点を判定する受信時点判定部14、上記受信時点判定部14の判定結果に基づいて一対の送受信器6間の超音波の伝播時間として計測する計時部15とからなる。
The propagation time measuring means 10 in which the
上記切換部11は、一対の送受信器6のうち上流側の送受信器6aに駆動部12から入力された駆動パルスを送信すると共に、下流側の送受信器6bから受信した受信信号を増幅部13に出力する順方向伝播状態と、逆に、一対の送受信器6のうち下流側の送受信器6bに駆動部12から入力された駆動パルスを送信すると共に上流側の送受信器6aから受信した受信信号を増幅部13に出力する逆方向伝播状態とを切り換えるように構成されている。
The switching
上記受信時点判定部14は、図1に示すように、増幅部13で増幅された受信信号が、所定の基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点を求め、そのゼロクロス点から予め設定されている所定の遅れ時間分前の時点を、上記受信時点として判定するように構成されている。
As shown in FIG. 1, the reception time
そして、上記計時部15は、タイマ28で計測される時間を参照しながら駆動部12で駆動パルスを出力した送信時点から受信時点判定部14で判定した受信時点までの時間を、一対の送受信器6間の超音波の伝播時間として計測するように構成されている。
Then, the
そして、制御装置50は、上記切換部11を上記順方向伝搬状態と上記逆方向伝搬状態とを切り換えることで、上記計時部15において、測定流路2を流れるガスgの流れ方向に沿った順方向で超音波が一対の送受信器6間を伝播する順方向伝播時間t1と、測定流路2を流れるガスgの流れ方向に沿った上記順方向とは逆の逆方向で超音波が一対の送受信器6間を伝播する逆方向伝播時間t2とを計測するように構成されている。
Then, the
制御装置50が機能する流速値演算手段20は、上記伝搬時間計測手段10の計測結果に基づいて、測定流路2を流れるガスgの流速に関する流速値を導出するように構成されており、その流速値の導出方法について、以下に説明を加える。
The flow velocity value calculation means 20 in which the
一対の送受信器6間の対向方向に沿ったガスgの瞬時流速をv’とし、測定流路2の流れ方向に沿った瞬時流速をvとし、これら対向方向と流れ方向とがなす角度をθとし、一対の送受信器6間の距離をLとし、ガスg内の音速をCとすると、上記伝搬時間計測手段10で計測される順方向伝播時間t1と逆方向伝播時間t2とは、次式に示すように表すことができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
The instantaneous flow velocity of the gas g along the facing direction between the pair of
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)
そして、これらの式から、瞬時流速vは、次式に示すように、順方向伝播時間t1、逆方向伝播時間t2、距離Lのみで求められる関数となる。
v=L・(1/t1−1/t2)/(2・cosθ)
From these equations, the instantaneous flow velocity v is a function obtained only from the forward propagation time t1, the backward propagation time t2, and the distance L as shown in the following equation.
v = L · (1 / t1-1 / t2) / (2 · cos θ)
よって、流速値演算手段20は、伝播時間計測手段10により計測された順方向伝播時間t1と逆方向伝播時間t2とから、上記の関数を用いて、測定流路2を流れるガスgの瞬時流速vを導出し、その瞬時流速v自身、又は、その瞬時流速vに測定流路2の断面積を乗じて求めた瞬時流量、又は、単位時間における瞬時流量を時間積分して求めた単位時間あたりの流量等を、上記流速値として導出する。
また、制御装置50は、このように導出した流速値を表示又は記憶したり、外部に出力することができる。
Therefore, the flow velocity value calculating means 20 uses the above function to calculate the instantaneous flow velocity of the gas g flowing through the
Further, the
次に、メータ装置の特徴構成について説明する。
上記増幅部13は、送受信器の増幅後の受信信号の強さを安定させるために、切換部11を通じて入力された送受信器6の受信信号を、予め設定された設定電圧を最大とするものに増幅させる増幅手段として構成されている。
そして、超音波を受信した送受信器6の受信信号(増幅部13の出力)は、図2に示すように、振幅が次第に増大した後に減衰するような波形を有し、送受信器6の温度や累積使用時間の変化により、その受信信号の波形が変化するので、上記受信時点判定部14により、送受信器6の超音波の受信時点を、送受信器6の受信信号と基準電圧との比較により判定するにあたり、基準電圧を一定とすると、上記温度や上記累積使用時間の変化により、受信信号の波形が変化して、その一定の基準電圧を越える受信信号の波が、所定のターゲット波ではなくなってしまい、結果、上記受信時点を正確に判定できなくなる場合がある。
Next, the characteristic configuration of the meter device will be described.
In order to stabilize the strength of the received signal after amplification of the transceiver, the amplifying
Then, the received signal of the transmitter /
そこで、メータ装置は、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出するために、図1に示すように、送受信器6の使用時間を累積して累積使用時間を導出する累積使用時間導出手段29と、前記累積使用時間導出手段29で導出した送受信器6の累積使用時間に基づいて送受信器6の感度を補正する感度補正手段として、当該送受信器6の累積使用時間に基づいて基準電圧を設定する基準電圧設定手段25と、送受信器6の温度を導出する温度導出手段27とを、制御装置50が機能する形態で備えており、更には、上記累積使用時間導出手段29が、送受信器6の使用時間を温度導出手段27で導出した送受信器6の温度に応じて補正した温度補正使用時間を累積して上記累積使用時間を導出するように構成されている。
以下、こられの詳細構成について説明する。
Therefore, the meter device can be simplified and reduced in cost, and in order to quickly and accurately derive the flow velocity value, as shown in FIG. 1, the usage time of the
Hereinafter, these detailed configurations will be described.
増幅手段としての増幅部13に入力された、送受信器6における増幅前の受信信号のピーク電圧を計測するピーク電圧計測手段26を備え、上記温度導出手段27は、そのピーク電圧に基づいて、送受信器6の温度を導出するように構成されている。
A peak
即ち、送受信器6の温度が低いほど上記ピーク電圧が小さくなることを利用し、その送受信器6の温度と、送受信器6の受信信号のピーク電圧との相関関係を予め実験等により求めておくことができる。
また、上記ピーク電圧計測手段26は、上記伝播時間計測手段10による伝搬時間の計測に先立って、一方側の送受信器6に駆動部12から入力された駆動パルスを送信して他方側の送受信器6から受信した増幅前の受信信号の最大電圧を上記ピーク電圧として計測する。
That is, using the fact that the peak voltage decreases as the temperature of the transmitter /
Prior to the measurement of the propagation time by the propagation time measurement means 10, the peak voltage measurement means 26 transmits the drive pulse input from the
そして、上記温度導出手段27は、上記予め求めておいた送受信器6の温度と当該ピーク電圧との相関関係を参照して、上記ピーク電圧計測手段26により導出した受信信号のピーク電圧から、上記送受信器6の温度を導出することができる。
Then, the
一方、上記累積使用時間導出手段29は、タイマ28で計測される時間を参照しながら、メータ装置の使用を開始してから、又は、送受信器6を新品に交換してから、現時点までの使用時間の累積値を、上記送受信器6の累積使用時間として導出するように構成されている。
On the other hand, the accumulated usage time deriving means 29 refers to the time measured by the
更に、上記累積使用時間導出手段29は、上記累積使用時間がより正確に送受信器6の経年劣化状態を示すものとなるように、例えば温度が高くなるほど使用時間を長めに補正し、逆に温度が低くなるほど使用時間を短めに補正する形態で、送受信器6の使用時間を温度導出手段27で導出した送受信器6の温度により補正して、その補正後の温度補正使用時間を累積して、上記累積使用時間を導出するように構成されている。
Further, the accumulated usage time deriving means 29 corrects the usage time longer as the temperature rises, for example, so that the accumulated usage time more accurately indicates the aging deterioration state of the transmitter /
また、上記温度補正使用時間の導出方法としては、半導体等の温度ストレスによる寿命を予測するための法則として公知であるアレニウス則や10℃2倍則により算出される温度影響係数K(T)を、送受信器6の温度Kを用いて算出し、その温度影響係数K(T)を送受信器6の使用時間tに積算した〔K(T)×t〕を上記温度補正使用時間として求めることができる。
即ち、アレニウス則で求めた温度影響係数Ka(T)及び10℃2倍則で求めた温度影響係数K10(T)は、下記の式により求めることができる。
Ka(T)=AeΔE/kT
K10(T)=B×2ΔT/10
A,B:定数
k:ボツマン定数(8.6159×10-5[eV/K])
ΔE:活性化エネルギ[eV]
T:送受信器6の温度[K]
t:送受信器6の使用時間[h]
As a method for deriving the temperature correction use time, the temperature influence coefficient K (T) calculated by the Arrhenius law or the 10 ° C. double law known as a law for predicting the lifetime due to temperature stress of a semiconductor or the like is used. The temperature K of the transmitter /
That is, the temperature influence coefficient Ka (T) obtained by the Arrhenius rule and the temperature influence coefficient K 10 (T) obtained by the 10 ° C. double rule can be obtained by the following equations.
Ka (T) = AeΔ E / kT
K 10 (T) = B × 2ΔT / 10
A, B: constant k: Botman constant (8.6159 × 10 −5 [eV / K])
ΔE: activation energy [eV]
T: Temperature of the transceiver 6 [K]
t: Usage time of transmitter / receiver 6 [h]
また、温度影響係数K(T)としては、上記の温度影響係数Ka(T),K10(T)の代わりに、下記に示す式により求めた温度影響補正係数K’(T)を用いても構わない。 Further, as the temperature influence coefficient K (T), a temperature influence correction coefficient K ′ (T) obtained by the following formula is used instead of the above temperature influence coefficients Ka (T) and K 10 (T). It doesn't matter.
K’(T)=CTmeΔE'/kT
ΔE’=ΔE−mkT
C,m:定数
K ′ (T) = CT m eΔE ′ / kT
ΔE ′ = ΔE−mkT
C, m: constant
そして、基準電圧設定手段25は、上記累積使用時間導出手段29の導出結果、即ち上記温度補正使用時間〔K(T)×t〕を時間積分して求めた送受信器6の累積使用時間に基づいて、上記伝搬時間計測手段10の受信時点判定部14で受信信号における受信時点を判定するのに使用される基準電圧を、受信信号の波形に合った最適な設定基準電圧に迅速に設定する。
Then, the reference voltage setting means 25 is based on the derivation result of the accumulated use time deriving means 29, that is, the accumulated use time of the
具体的に、上記基準電圧設定手段25は、例えば図3に示すように、累積使用時間導出手段29で導出される送受信器6の累積使用時間Tiが長いほど、増幅後の受信信号におけるターゲット波直前の波の最大電圧が上昇するので、その上昇に合わせて上記設定基準電圧を高い側に移行させる。
Specifically, as shown in FIG. 3, for example, the reference
よって、上記伝搬時間計測手段10の受信時点判定部14で受信信号における受信時点を判定するために使用される基準電圧が、上記基準電圧設定手段25により上記最適な設定基準電圧に設定されるので、受信信号において最初に上記設定基準電圧を超える波が略確実に受信時点から特定番目のターゲット波となり、そのターゲット波における受信信号が基準電圧に到達した時点を基準に、ゼロクロス点及び受信時点が正確に判定され、正確な伝搬時間が計測されることになる。
Therefore, the reference voltage used for determining the reception time point in the reception signal by the reception time
更に、上記累積使用時間導出手段29により導出される累積使用時間は、送受信器6の温度履歴を考慮したものとなり、送受信器6の劣化状態を正確に判断しえるものとなる。
従って、この累積使用時間導出手段29により導出された累積使用時間が予め設定しておいた許容値を超えた場合には、使用者に送受信器6の交換やメンテナンスを促すためにLEDを点灯させたりアラームを出力するなどの報知処理を実行するように構成することができる。
Further, the accumulated use time derived by the accumulated use time deriving means 29 takes into account the temperature history of the transmitter /
Therefore, when the accumulated use time derived by the accumulated use time deriving means 29 exceeds a preset allowable value, the LED is turned on to prompt the user to replace or maintain the
尚、上記実施の形態では、上記温度導出手段27を、送受信器6の受信信号のピーク電圧に基づいて送受信器6の温度を導出するように構成したが、別に、以下のように構成することもできる。
In the above embodiment, the temperature deriving means 27 is configured to derive the temperature of the
即ち、図4に示すメータ装置は、伝播時間計測手段10の計測結果に基づいて測定流路2における音速を導出する音速演算手段30を備え、制御装置51が機能する温度導出手段31は、その音速に基づいて送受信器6の温度を導出するように構成されている。尚、送受信器6は、測定流路2内に設置されているので、送受信器6の温度は、測定流路2における温度になるとする。
尚、図4に示すメータ装置の説明において、図1に示すメータ装置と同様の構成については、同じ符号を付すことで、説明を割愛する。
That is, the meter device shown in FIG. 4 includes a sound speed calculation means 30 for deriving the sound speed in the
In the description of the meter device shown in FIG. 4, the same components as those of the meter device shown in FIG.
測定流路における音速Cは、次式に示すように、送受信器6の温度Thの関数となるので、その音速Cを求めれば、送受信器6の温度Thを求めることができる。
C=C1+C2・Th
C1,C2:定数
Since the sound velocity C in the measurement channel is a function of the temperature Th of the transmitter /
C = C1 + C2 · Th
C1, C2: Constant
そして、上記音速演算手段30は、次式に示すように、例えば直前に上記伝搬時間計測手段10により計測した順方向伝播時間t1と逆方向伝播時間t2とから音速Cを導出することができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
C=L・(1/t1+1/t2)/(2・cosθ)
The sound speed calculation means 30 can derive the sound speed C from, for example, the forward propagation time t1 and the reverse propagation time t2 measured immediately before by the propagation time measurement means 10 as shown in the following equation.
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)
C = L · (1 / t1 + 1 / t2) / (2 · cos θ)
そして、上記温度導出手段31は、上記音速演算手段30により導出した音速Cを、その音速Cと上記送受信器6の温度Thとの関数に代入して、送受信器6の温度Thを求めることができる。
The temperature deriving means 31 substitutes the sound speed C derived by the sound speed calculating means 30 into a function of the sound speed C and the temperature Th of the transmitter /
尚、当然、温度導出手段31は、送受信器6近傍に設置した温度センサの出力により直接送受信器6の温度を導出するように構成しても構わない。
Of course, the temperature deriving means 31 may be configured to directly derive the temperature of the transmitter /
また、上記実施の形態では、受信時点判定部14が、上記増幅部13で増幅された後の受信信号が基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点から遅れ時間分前の時点を、上記受信時点として判定するように構成したが、例えば、上記受信信号が基準電圧に到達した時点や上記ゼロクロス点自身を上記受信時点として判定するなどのように、別の形態で、受信信号を基準電圧と比較して送受信器6の超音波の受信時点を判定するように構成することもできる。
Moreover, in the said embodiment, the reception
また、上記実施形態では、送受信器6の受信信号を、設定電圧を最大とするものに増幅させる増幅部13を設けたが、特に問題がなければ、この増幅部を、受信信号を所定の増幅率で増幅させるものに改変したり、増幅部を省略しても、構わない。
また、このように増幅部を改変又は省略する場合には、受信信号のピーク電圧に対する比率を基準として基準電圧を設定及び調整することができる。
In the above embodiment, the amplifying
When the amplification unit is modified or omitted in this way, the reference voltage can be set and adjusted based on the ratio of the received signal to the peak voltage.
また、上記増幅部において受信信号を所定の増幅率で増幅させるように構成する場合には、基準電圧設定手段25で設定する基準電圧を固定値とすると共に、送受信器6の感度を補正する感度補正手段として、その増幅部の増幅率を、例えば累積使用時間導出手段29で導出される送受信器6の累積使用時間Tiが長いほど増幅率を増加側に移行させる形態で、補正するように構成しても構わない。
When the amplification unit is configured to amplify the received signal at a predetermined amplification factor, the reference voltage set by the reference
〔ガス検知装置〕
次に、本発明に係る測定装置の実施の形態としてのガス検知装置について、図面に基づいて説明する。
図5は、本実施形態のガス検知装置により測定流路52を流れる空気aにおけるメタンや一酸化炭素(測定対象としての特定成分の一例)の有無又は濃度の判定を実施している状態におけるガス検知の側断面図である。
[Gas detector]
Next, a gas detection apparatus as an embodiment of a measurement apparatus according to the present invention will be described based on the drawings.
FIG. 5 shows a gas in a state where the presence or concentration of methane or carbon monoxide (an example of a specific component as a measurement target) is determined in the air a flowing through the
ガス検知装置は、空気aにおけるメタンや一酸化炭素の有無や濃度を判定し、メタンや一酸化炭素の濃度が危険レベルに達した場合に警報動作を行うように構成したガス警報装置として構成されている。
即ち、図5に示すように、空気aが流れる測定流路52にメタンや一酸化炭素に感応して電気抵抗が変化するガス検知素子56をセンサ素子として配置し、更に、そのガス検知素子56を加熱するヒータ58と、そのガス検知素子56の電気抵抗の変化に応じて変化する出力電圧に基づいて空気aにおけるメタンや一酸化炭素の有無又は濃度を判定するガス検知手段63として機能する制御装置60とを備える。
The gas detection device is configured as a gas alarm device configured to determine the presence or concentration of methane or carbon monoxide in the air a and perform an alarm operation when the concentration of methane or carbon monoxide reaches a dangerous level. ing.
That is, as shown in FIG. 5, a
上記ガス検知素子56は、当該ガス検知素子56の電気抵抗の変化を電圧値に変換したもの(以下、単に「出力電圧」と呼ぶ場合がある。)を、上記制御装置60が機能する出力検出手段61側に出力するガス検知素子出力回路57に接続されている。
一方、上記ヒータ58は、当該ヒータ58を駆動するヒータ駆動回路59に接続されており、このヒータ駆動回路59は、制御装置60が機能する加熱制御手段68からの制御指令に応じてヒータ58の出力を制御する。
The
On the other hand, the
上記制御装置60は、メモリ等からなる記憶媒体、CPU、入出力部等を備えたマイクロコンピュータで構成され、そのコンピュータが所定のプログラムを実行することにより、後述の出力検出手段61、出力補正手段62、ガス検知手段63、報知手段64、温度導出手段65、累積使用時間導出手段66、加熱制御手段68等の各種手段として機能する。以下、各種手段の詳細構成について説明を加える。
The
上記出力検出手段61は、上記ガス検知素子56の出力電圧を所定周期でサンプリングし、後述する出力補正手段62を介して、ガス検知手段63に送る。
一方、上記加熱制御手段68は、ガス検知素子56の動作温度を、上記出力検出手段61による出力電圧のサンプリング周期で、高温域と低温域とに交互に切り換える形態で、ヒータ駆動回路59の加熱制御を行う。尚、上記高温域は、ガス検知素子56がメタンに対して感応性を発揮する温度(例えば420℃)に設定され、上記低温域は、ガス検知素子56が一酸化炭素に対して感応性を発揮する温度(例えば80℃)として設定されている。
The output detection means 61 samples the output voltage of the
On the other hand, the heating control means 68 heats the
そして、上記ガス検知手段63は、上記高温域での出力電圧から、ガス検知素子56のメタン感応性に基づいて、空気aにおけるメタンの有無又は濃度を判定し、一方、上記低温域での出力電圧から、ガス検知素子56の一酸化炭素感応性に基づいて、空気aにおける一酸化炭素の有無又は濃度を判定する。
更に、上記報知手段64は、上記ガス検知手段63によりメタンや一酸化炭素を検知した場合に、LEDを点灯させたりアラームを出力するなどして外部に報知する。
Then, the gas detection means 63 determines the presence or concentration of methane in the air a based on the methane sensitivity of the
Further, when the gas detection means 63 detects methane or carbon monoxide, the notification means 64 notifies the outside by turning on an LED or outputting an alarm.
次に、ガス検知装置の特徴構成について説明する。
上記ガス検知素子56の出力電圧は、ガス検知素子56の温度や累積使用時間の変化により、その大きさが変化するので、上記ガス検知手段63により、メタンや一酸化炭素の有無又は濃度を、その出力電圧の大きさに基づいて正確に判定できなくなる場合がある。
Next, the characteristic configuration of the gas detection device will be described.
Since the magnitude of the output voltage of the
そこで、ガス検知装置は、簡素化且つ低廉化が可能で、迅速且つ正確にメタンや一酸化炭素の有無又は濃度を判定するために、図5示すように、ガス検知素子56の使用時間を累積して累積使用時間を導出する累積使用時間導出手段66と、前記累積使用時間導出手段66で導出したガス検知素子56の累積使用時間に基づいてガス検知素子56の感度を補正する感度補正手段として、当該ガス検知素子56の累積使用時間に基づいて出力電圧を補正する出力補正手段62と、ガス検知素子56の温度を導出する温度導出手段65とを、制御装置60が機能する形態で備えており、更には、上記累積使用時間導出手段66が、ガス検知素子56の使用時間を温度導出手段65で導出したガス検知素子56の温度に応じて補正した温度補正使用時間を累積して上記累積使用時間を導出するように構成されている。
以下、こられの詳細構成について説明する。
Therefore, the gas detection device can be simplified and reduced in cost, and in order to quickly and accurately determine the presence or concentration of methane or carbon monoxide, as shown in FIG. As a cumulative use
Hereinafter, these detailed configurations will be described.
上記温度導出手段65、測定流路52に設けられた温度センサ(図示せず)の出力信号によりガス検知素子56の温度を導出する。尚、上記温度導出手段27は、加熱制御手段68の加熱制御信号からガス検知素子56の温度を導出するように構成することもできる。
The temperature of the
一方、上記累積使用時間導出手段66は、タイマ28で計測される時間を参照しながら、ガス検知装置の使用を開始してから、又は、ガス検知素子56を新品に交換してから、現時点までの使用時間の累積値を、上記ガス検知素子56の累積使用時間として導出するように構成されている。
On the other hand, the cumulative use time deriving means 66 refers to the time measured by the
更に、上記累積使用時間導出手段66は、上記累積使用時間がより正確にガス検知素子56の経年劣化状態を示すものとなるように、例えば温度が高くなるほど使用時間を長めに補正し、逆に温度が低くなるほど使用時間を短めに補正する形態で、ガス検知素子56の使用時間を温度導出手段65で導出したガス検知素子56の温度により補正して、その補正後の温度補正使用時間を累積して、上記累積使用時間を導出するように構成されている。
Further, the accumulated use time deriving means 66 corrects the use time longer as the temperature increases, for example, so that the accumulated use time more accurately indicates the aging deterioration state of the
また、上記温度補正使用時間の導出方法としては、上述した超音波式メータ装置の実施形態と同様に、アレニウス則や10℃2倍則により算出される温度影響係を、ガス検知素子56の温度を用いて算出し、その温度影響係数をガス検知素子56の使用時間に積算したものを温度補正使用時間として求める。
In addition, as a method for deriving the temperature correction use time, as in the embodiment of the ultrasonic meter device described above, the temperature influence calculated by the Arrhenius rule or the 10 ° C. double rule is used as the temperature of the
そして、出力補正手段62は、上記累積使用時間導出手段66の導出結果、即ち上記温度補正使用時間を時間積分して求めたガス検知素子56の累積使用時間に基づいて、上記ガス検知素子56の出力電圧を、補正する。
Then, the output correction means 62 is based on the derivation result of the cumulative use time deriving means 66, that is, the cumulative use time of the
具体的に、上記出力補正手段62は、ガス検知素子56の累積使用時間が長いほどガス検知素子56の劣化により出力電圧が低下することから、当該累積使用時間が長いほど上記出力電圧を増加側に補正する。
よって、上記ガス検知手段63には、上記累積使用時間に起因する変動が抑制された出力電圧が送られてくるため、その出力電圧から正確にメタンや一酸化炭素の有無又は濃度が判定されることになる。
Specifically, the output correction means 62 increases the output voltage as the cumulative use time increases because the output voltage decreases due to deterioration of the
Therefore, since an output voltage in which fluctuations due to the accumulated use time are suppressed is sent to the gas detection means 63, the presence or concentration or the concentration of methane or carbon monoxide is accurately determined from the output voltage. It will be.
更に、上記累積使用時間導出手段66により導出される累積使用時間は、ガス検知素子56の温度履歴を考慮したものとなり、ガス検知素子56の劣化状態を正確に判断しえるものとなる。
従って、この累積使用時間導出手段66により導出された累積使用時間が予め設定しておいた許容値を超えた場合には、使用者に送受信器6の交換やメンテナンスを促すためにLEDを点灯させたりアラームを出力するなどの報知処理を実行するように構成することができる。
Further, the accumulated use time derived by the accumulated use time deriving means 66 takes into account the temperature history of the
Therefore, when the accumulated use time derived by the accumulated use time deriving means 66 exceeds a preset allowable value, the LED is turned on to prompt the user to replace or maintain the
尚、上述した夫々の実施の形態では、測定対象を、測定流路2、52に存在するガスg及び空気a中のメタンや一酸化炭素としたが、当然、別の測定対象に対しても本願発明を適用することができる。
In each of the above-described embodiments, the measurement target is methane or carbon monoxide in the gas g and the air a existing in the
本発明に係る計測装置は、超音波メータ装置やガス検知装置等のように、測定対象の状態に応じた出力信号を出力するセンサ素子を設置し、そのセンサ素子の出力信号に基づいて測定対象の流速や濃度等の状態を検知するように構成された計測装置において、簡素化且つ低廉化が可能で、迅速且つ正確に測定対象の状態を検知することができるものとして有効に利用可能である。 The measurement device according to the present invention is provided with a sensor element that outputs an output signal corresponding to the state of the measurement target, such as an ultrasonic meter device or a gas detection device, and the measurement target based on the output signal of the sensor element. In a measuring apparatus configured to detect the flow rate, concentration, and other conditions of the apparatus, it can be simplified and inexpensive, and can be effectively used as a device capable of detecting the state of the measurement object quickly and accurately. .
2,52:測定流路
6:超音波送受信器(センサ素子)
25:基準電圧設定手段(感度補正手段)
27,31,65:温度導出手段
29,66:累積使用時間導出手段
50,51,60:制御装置
56:ガス検知素子(センサ素子)
62:出力補正手段(感度補正手段)
a:空気
g:ガス(測定対象)
2, 52: Measurement channel 6: Ultrasonic transceiver (sensor element)
25: Reference voltage setting means (sensitivity correction means)
27, 31, 65: Temperature deriving means 29, 66: Cumulative usage time deriving means 50, 51, 60: Control device 56: Gas detection element (sensor element)
62: Output correction means (sensitivity correction means)
a: Air g: Gas (measuring object)
Claims (4)
前記センサ素子の使用時間を累積して累積使用時間を導出する累積使用時間導出手段と、
前記累積使用時間導出手段で導出した前記センサ素子の累積使用時間に基づいて前記センサ素子の感度を補正する感度補正手段とを備えると共に、
前記センサ素子の温度を導出する温度導出手段を備えて、
前記累積使用時間導出手段が、前記センサ素子の使用時間を前記温度導出手段で導出した前記センサ素子の温度に応じて補正した温度補正使用時間を累積して前記累積使用時間を導出するように構成されている計測装置。 A measuring device configured to install a sensor element that outputs an output signal according to a state of a measurement target, and to detect the state of the measurement target based on the output signal of the sensor element,
Cumulative usage time deriving means for accumulating the usage time of the sensor element to derive the cumulative usage time;
Sensitivity correction means for correcting the sensitivity of the sensor element based on the cumulative use time of the sensor element derived by the cumulative use time deriving means;
Temperature deriving means for deriving the temperature of the sensor element;
The cumulative usage time deriving unit is configured to derive the cumulative usage time by accumulating a temperature corrected usage time obtained by correcting the usage time of the sensor element according to the temperature of the sensor element derived by the temperature deriving unit. Measuring device.
前記測定流路の上流側と下流側とに、相互に超音波を送受信可能な一対の超音波送受信器を前記センサ素子として設置し、
前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して、前記超音波送受信器の超音波の受信時点を当該超音波送受信器の受信信号と基準電圧との比較により判定し、当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、
前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備えた超音波式メータ装置として構成されている請求項1又は2に記載の計測装置。 The fluid flowing through the measurement channel is the measurement target,
On the upstream side and the downstream side of the measurement channel, a pair of ultrasonic transmitters / receivers capable of transmitting / receiving ultrasonic waves to each other are installed as the sensor elements,
The ultrasonic wave transmitted from one side of the pair of ultrasonic transceivers is received on the other side, and the reception time of the ultrasonic wave of the ultrasonic transceiver is determined by the received signal and the reference voltage of the ultrasonic transceiver. Propagation time measuring means for determining by comparison and measuring the propagation time of ultrasonic waves between the pair of ultrasonic transceivers;
The ultrasonic meter device according to claim 1 or 2, further comprising: a flow velocity value calculating means for deriving a flow velocity value relating to a flow velocity of the fluid flowing through the measurement flow path based on a measurement result of the propagation time measuring means. The measuring device described.
前記測定流路に、前記特定成分に感応して電気抵抗が変化するガス検知素子を前記センサ素子として配置し、
前記ガス検知素子を加熱するヒータと、
前記ガス検知素子の電気抵抗の変化に応じて変化する出力電圧に基づいて前記特定成分の有無又は濃度を判定するガス検知手段とを備えたガス検知装置として構成されている請求項1又は2に記載の計測装置。 A specific component present in the measurement channel
In the measurement channel, a gas detection element whose electrical resistance changes in response to the specific component is disposed as the sensor element,
A heater for heating the gas detection element;
3. The gas detection device according to claim 1, further comprising: a gas detection unit that determines the presence or concentration of the specific component based on an output voltage that changes in accordance with a change in electric resistance of the gas detection element. The measuring device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007098584A JP5173233B2 (en) | 2007-04-04 | 2007-04-04 | Measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007098584A JP5173233B2 (en) | 2007-04-04 | 2007-04-04 | Measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008256513A true JP2008256513A (en) | 2008-10-23 |
JP5173233B2 JP5173233B2 (en) | 2013-04-03 |
Family
ID=39980221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007098584A Expired - Fee Related JP5173233B2 (en) | 2007-04-04 | 2007-04-04 | Measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5173233B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021887A (en) * | 2009-07-13 | 2011-02-03 | Hitachi-Ge Nuclear Energy Ltd | Electrode-type leakage detector |
JP2013164401A (en) * | 2012-02-13 | 2013-08-22 | New Cosmos Electric Corp | Gas detector |
JP2014109557A (en) * | 2012-12-04 | 2014-06-12 | Mitsubishi Heavy Ind Ltd | Voltage monitoring device and voltage monitoring method |
JP2016085225A (en) * | 2015-12-04 | 2016-05-19 | 三菱重工業株式会社 | Voltage monitoring device and voltage monitoring method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11283147A (en) * | 1998-03-31 | 1999-10-15 | Fuji Electric Co Ltd | Gas alarm |
JP2002054966A (en) * | 2000-08-09 | 2002-02-20 | Hitachi Ltd | Operational device built-in sensor |
JP2005257445A (en) * | 2004-03-11 | 2005-09-22 | Yazaki Corp | Gain history apparatus |
JP2005345269A (en) * | 2004-06-03 | 2005-12-15 | Oval Corp | Measuring device having component exchange time informing function |
-
2007
- 2007-04-04 JP JP2007098584A patent/JP5173233B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11283147A (en) * | 1998-03-31 | 1999-10-15 | Fuji Electric Co Ltd | Gas alarm |
JP2002054966A (en) * | 2000-08-09 | 2002-02-20 | Hitachi Ltd | Operational device built-in sensor |
JP2005257445A (en) * | 2004-03-11 | 2005-09-22 | Yazaki Corp | Gain history apparatus |
JP2005345269A (en) * | 2004-06-03 | 2005-12-15 | Oval Corp | Measuring device having component exchange time informing function |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021887A (en) * | 2009-07-13 | 2011-02-03 | Hitachi-Ge Nuclear Energy Ltd | Electrode-type leakage detector |
JP2013164401A (en) * | 2012-02-13 | 2013-08-22 | New Cosmos Electric Corp | Gas detector |
JP2014109557A (en) * | 2012-12-04 | 2014-06-12 | Mitsubishi Heavy Ind Ltd | Voltage monitoring device and voltage monitoring method |
JP2016085225A (en) * | 2015-12-04 | 2016-05-19 | 三菱重工業株式会社 | Voltage monitoring device and voltage monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JP5173233B2 (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9638557B2 (en) | Ultrasonic flowmeter having an arithmetic operation unit for calculating propagation time correction value | |
US20130167656A1 (en) | Flow-rate measurement device | |
US8671775B2 (en) | Flow rate measuring device | |
US8744785B2 (en) | Determination of a reception time of an ultrasonic signal by means of pulse shape detection | |
JP5173233B2 (en) | Measuring device | |
JP6111422B2 (en) | Flow measuring device | |
JP2007187506A (en) | Ultrasonic flowmeter | |
US9304022B2 (en) | Flow rate measuring device | |
JP5123469B2 (en) | Ultrasonic flow meter | |
JP5141613B2 (en) | Ultrasonic flow meter | |
US8347732B2 (en) | Adjustable ultrasonic gas flow measurement device | |
JP2006343292A (en) | Ultrasonic flowmeter | |
EP3438621B1 (en) | Flow rate measurement device and method using the device | |
JP4572546B2 (en) | Fluid flow measuring device | |
JP2018136276A (en) | Ultrasonic flowmeter | |
US9212937B1 (en) | Flow meter device | |
JP4926660B2 (en) | Ultrasonic meter device | |
JP2008122102A (en) | Ultrasonic type meter device | |
JP6101020B2 (en) | Ultrasonic flow meter | |
JP6064160B2 (en) | Flow measuring device | |
JP5097293B2 (en) | Ultrasonic meter device | |
JP4888464B2 (en) | Flow measuring device | |
JP7203352B2 (en) | ultrasonic flow meter | |
JP4236479B2 (en) | Ultrasonic transceiver | |
WO2019049658A1 (en) | Flow rate measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5173233 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |