JP2008254912A - Travelling vehicle - Google Patents

Travelling vehicle Download PDF

Info

Publication number
JP2008254912A
JP2008254912A JP2007101582A JP2007101582A JP2008254912A JP 2008254912 A JP2008254912 A JP 2008254912A JP 2007101582 A JP2007101582 A JP 2007101582A JP 2007101582 A JP2007101582 A JP 2007101582A JP 2008254912 A JP2008254912 A JP 2008254912A
Authority
JP
Japan
Prior art keywords
wheel side
speed
motor
difference
speed command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007101582A
Other languages
Japanese (ja)
Other versions
JP4817125B2 (en
Inventor
Yoshimasa Kobayashi
由昌 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2007101582A priority Critical patent/JP4817125B2/en
Publication of JP2008254912A publication Critical patent/JP2008254912A/en
Application granted granted Critical
Publication of JP4817125B2 publication Critical patent/JP4817125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Warehouses Or Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize a speed difference of wheels on the front wheel side and the rear wheel side and to provide a control system to minimize the speed difference. <P>SOLUTION: Different speed commands are input to a motor M1 and a motor M2 by finding each of correction factors on the front wheel side and the rear wheel side by a correction table 32 and multiplying target speed by them. The correction factors are changed in correspondence with existence of adjustable speed and a load, and the speed command on the rear wheel side is made larger than the front wheel side in adjusting speed. Consequently, it is possible to make speed of the front and rear wheels against the ground side by absorbing a difference of sliding due to a difference of loads to the front and rear motors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、スタッカークレーンや無人搬送車等の走行車に関する。   The present invention relates to a traveling vehicle such as a stacker crane or an automatic guided vehicle.

走行車の前後の車輪を各々モータで駆動することが知られている。この場合、加速時には後輪側のモータへのトルク指令を前輪側のモータへのトルク指令よりも大きくし、また減速時には前輪側のモータへのトルク指令を後輪側のモータへのトルク指令よりも大きくすることが知られている(特許文献1:特開2005−41383)。これは加速時には後輪側のモータへの輪重が前輪側の輪重よりも大きくなり、減速時には前輪側のモータへの輪重が後輪側よりも大きくなるためである。しかしながら発明者は、前輪側と後輪側へのトルク配分を加減速度により変更すると、前後の車輪の対地速度に差が生じ、走行車が振動したり車輪の摩耗が早くなったりすることを見出した。なおこの明細書で、対地速度は車輪の見掛けの回転数から車輪の空転分を引いた、地上側に対する車輪の真の速度を意味する。また以下で速度差という場合、対地速度の差を意味する。
特開2005−41383
It is known that the front and rear wheels of a traveling vehicle are each driven by a motor. In this case, during acceleration, the torque command to the rear wheel side motor is made larger than the torque command to the front wheel side motor, and during deceleration, the torque command to the front wheel side motor is made from the torque command to the rear wheel side motor. Is also known to increase (Patent Document 1: Japanese Patent Laid-Open No. 2005-41383). This is because the wheel load on the motor on the rear wheel side is greater than the wheel load on the front wheel side during acceleration, and the wheel load on the motor on the front wheel side is greater than that on the rear wheel side during deceleration. However, the inventor has found that if the torque distribution to the front wheel side and the rear wheel side is changed by acceleration / deceleration, a difference occurs in the ground speed between the front and rear wheels, and the traveling vehicle vibrates or wears out of the wheel. It was. In this specification, the ground speed means the true speed of the wheel relative to the ground side obtained by subtracting the idling speed of the wheel from the apparent rotational speed of the wheel. In the following, the speed difference means a difference in ground speed.
JP-A-2005-41383

この発明の課題は、前輪側と後輪側とでの車輪の速度差を小さくすることにある。
請求項2の発明での追加の課題は、前後の車輪間での速度差をさらに小さくすることにある。
請求項3の発明での追加の課題は、前後の車輪間での速度差を小さくするための制御系を提供することにある。
An object of the present invention is to reduce the speed difference between wheels on the front wheel side and the rear wheel side.
An additional problem in the invention of claim 2 is to further reduce the speed difference between the front and rear wheels.
An additional problem in the invention of claim 3 is to provide a control system for reducing the speed difference between the front and rear wheels.

この発明は、前輪と後輪とを各々モータで駆動し、制御部により前記各モータを制御する走行車において、加速時にも減速時にも後輪側モータへの速度指令を前輪側モータへの速度指令よりも大きくするように前記制御部を構成したことを特徴とする。ここに速度指令は正負の符号付きの量で、モータ側へ与えられる目標速度である。減速時に後輪側への速度指令が前輪側よりも大きいことは、前輪側を後輪側よりも速やかに減速させるように制御することを意味する。   The present invention relates to a traveling vehicle in which front wheels and rear wheels are driven by motors, and each motor is controlled by a control unit, and a speed command to a rear wheel motor is transmitted to a front wheel motor during acceleration and deceleration. The control unit is configured to be larger than the command. Here, the speed command is an amount with a positive / negative sign, which is a target speed given to the motor side. The fact that the speed command to the rear wheel side is larger than the front wheel side during deceleration means that the front wheel side is controlled to decelerate more quickly than the rear wheel side.

好ましくは、前輪側モータと後輪側モータとの速度指令の差を、加減速度の絶対値が大きいほど大きく、かつ走行車への荷重が大きい場合に大きくするようにする。
特に好ましくは、前記制御部に、目標速度の発生手段と、加減速度と荷重の大小とに対して、前輪側モータと後輪側モータとの速度指令の差を定めるためのデータを記憶したテーブルと、該テーブルのデータにより目標速度を補正して前輪側モータへの速度指令と後輪側モータへの速度指令とを発生するための手段と、前記速度指令により各モータを制御するための手段、とを設ける。
Preferably, the difference in speed command between the front wheel side motor and the rear wheel side motor is increased as the absolute value of the acceleration / deceleration increases, and is increased when the load on the traveling vehicle is large.
Particularly preferably, the control unit stores data for determining the target speed generation means and the speed command difference between the front wheel side motor and the rear wheel side motor for the acceleration / deceleration and the magnitude of the load. And means for correcting the target speed based on the data of the table to generate a speed command to the front wheel side motor and a speed command to the rear wheel side motor, and means for controlling each motor by the speed command , And are provided.

加速時には、輪重は後輪側に偏りモータへの負荷も後輪側に偏る。モータは負荷が増すと滑りが増すが、この発明では後輪側モータへの速度指令を前輪側よりも大きくしているので、滑りによる速度差を、速度指令の差で打ち消し、前輪と後輪を同じ速度で回転させることができる。   During acceleration, the wheel load is biased toward the rear wheel, and the load on the motor is also biased toward the rear wheel. Although the motor slip increases when the load increases, in this invention, the speed command to the rear wheel side motor is larger than the front wheel side, so the speed difference due to the slip is canceled out by the speed command difference, and the front wheel and rear wheel Can be rotated at the same speed.

減速時には、輪重は前輪側に偏りモータへの負荷も前輪側に偏り、前輪側のモータで滑りが大きくなる。減速時に前輪側モータへの速度指令を後輪側よりも低くすると、前輪側のモータで生じた滑りを、後輪側との速度指令の差で打ち消すことができる。   At the time of deceleration, the wheel load is biased toward the front wheel, and the load on the motor is also biased toward the front wheel, and slippage is increased by the motor on the front wheel. If the speed command to the front wheel side motor is made lower than the rear wheel side during deceleration, the slip generated by the front wheel side motor can be canceled out by the difference in speed command from the rear wheel side.

これらのため、この発明では加減速時に前輪と後輪との間で生じる速度差を小さくできる。前後の車輪間の速度差は、モータの干渉や、走行車の振動、車輪の摩耗等の原因となるので、この発明ではモータ間の干渉を小さくし、走行車の振動を抑制し、さらに車輪の摩耗等も小さくできる。   For these reasons, in the present invention, the speed difference generated between the front wheels and the rear wheels during acceleration / deceleration can be reduced. Since the speed difference between the front and rear wheels causes motor interference, traveling vehicle vibration, wheel wear, etc., the present invention reduces interference between the motors, suppresses vibration of the traveling vehicle, Wear and the like can be reduced.

モータの滑りは負荷が大きいほど著しく、前後のモータの負荷の差を定める第1のファクターは加減速度である。前後のモータの負荷の差を定める第2のファクターは、走行車への荷重で、このファクターは加減速度よりも負荷の差への影響が小さい。そこで前輪側モータと後輪側モータとの速度指令の差を、加減速度の絶対値が大きいほど大きく、かつ走行車への荷重が大きい場合に大きくすると、より確実に前後の車輪間の速度差を解消できる。   The slip of the motor becomes more significant as the load is larger, and the first factor that determines the difference between the loads of the front and rear motors is the acceleration / deceleration. The second factor that determines the load difference between the front and rear motors is the load on the traveling vehicle, and this factor has a smaller influence on the load difference than the acceleration / deceleration. Therefore, if the difference in the speed command between the front wheel side motor and the rear wheel side motor is increased when the absolute value of the acceleration / deceleration is large and the load on the traveling vehicle is large, the speed difference between the front and rear wheels is more reliably determined. Can be eliminated.

ここで制御部に、目標速度の発生手段と、加減速度と荷重の大小とに対して、前輪側モータと後輪側モータとの速度指令の差を定めるためのデータを記憶したテーブルと、該テーブルのデータにより目標速度を補正して前輪側モータへの速度指令と後輪側モータへの速度指令とを発生するための手段と、速度指令により各モータを制御するための手段とを設けると、テーブルにより簡単に速度指令の差を発生させることができる。   Here, in the control unit, a table storing data for determining the difference between the speed commands of the front wheel side motor and the rear wheel side motor with respect to the target speed generating means, the acceleration / deceleration and the magnitude of the load, Providing means for correcting the target speed based on the table data and generating a speed command for the front wheel side motor and a speed command for the rear wheel side motor, and means for controlling each motor by the speed command The difference in speed command can be easily generated by the table.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図6に、スタッカークレーンを例に実施例を示す。各図において2はスタッカークレーンで、4はその台車で、前後の走行車輪6,7を備え、それぞれモータ8,9で駆動される。台車4にはマスト10を設けて昇降台12を昇降させ、14はスライドフォークなどの移載装置で昇降台12に搭載され、図示しないラックやステーションなどとの間で物品16を移載する。   1 to 6 show an embodiment using a stacker crane as an example. In each figure, 2 is a stacker crane, 4 is a truck, and includes front and rear traveling wheels 6 and 7 which are driven by motors 8 and 9, respectively. The carriage 4 is provided with a mast 10 to raise and lower the elevator 12, and 14 is mounted on the elevator 12 by a transfer device such as a slide fork, and the article 16 is transferred to and from a rack or station (not shown).

18はドラムで、昇降モータ20により駆動され、吊持材21を巻き取り/繰り出して、昇降台12を昇降させる。また22は制御盤で、モータ8,9,20などの電源や制御部、通信部などを備えている。スタッカークレーン2の走行先や走行速度パターン、在荷/空荷の状態は、制御盤22内の図示しない制御部により管理されている。24は地上側の走行レールで、走行レール24に沿って磁性体や磁石などから成る被検出プレート25を設け、リニアセンサ26で読み込む。なお走行レール24の全長に渡る被検出プレートを設けることは困難なので、被検出プレート25を走行レール24の左右に例えば2列に設け、台車4にはリニアセンサ26を左右一対設けて、2列の被検出プレート25を例えば交互に検出する。   Reference numeral 18 denotes a drum which is driven by an elevating motor 20 and winds / feeds the suspension material 21 to elevate the elevating platform 12. A control panel 22 includes a power source such as the motors 8, 9, and 20, a control unit, a communication unit, and the like. The travel destination of the stacker crane 2, the travel speed pattern, and the state of in / out load are managed by a control unit (not shown) in the control panel 22. Reference numeral 24 denotes a traveling rail on the ground side. A detected plate 25 made of a magnetic material or a magnet is provided along the traveling rail 24 and is read by the linear sensor 26. Since it is difficult to provide a plate to be detected over the entire length of the travel rail 24, the plate 25 to be detected is provided in, for example, two rows on the left and right sides of the travel rail 24, and a pair of left and right linear sensors 26 are provided on the carriage 4. The detected plates 25 are detected alternately, for example.

被検出プレート25に代えて櫛歯マークなどを設けても良く、この場合、リニアセンサ26に代えて光学センサを設ける。さらにリニアセンサ26に代えてレーザ距離計を設けても良い。リニアセンサ26や前記の光学センサ、レーザ距離計などは、台車4の絶対位置を求めるための外界センサである。台車4にはこれ以外に、モータ8,9の駆動軸の回転数、あるいは車輪6,7の回転数を検出するためのエンコーダを設けて、各モータあるいは各車輪の速度を検出する。エンコーダ等のセンサを内界センサという。   A comb-tooth mark or the like may be provided instead of the detection plate 25. In this case, an optical sensor is provided instead of the linear sensor 26. Further, a laser distance meter may be provided in place of the linear sensor 26. The linear sensor 26, the optical sensor, the laser distance meter, and the like are external sensors for obtaining the absolute position of the carriage 4. In addition to this, the carriage 4 is provided with an encoder for detecting the rotational speed of the drive shafts of the motors 8 and 9 or the rotational speed of the wheels 6 and 7, and detects the speed of each motor or each wheel. A sensor such as an encoder is called an internal sensor.

この明細書において、前輪や前輪側モータは走行方向前方の走行車輪やその駆動モータを指し、後輪や後輪側モータは走行方向後方の走行車輪やそのモータを指す。従って前輪と後輪の意味は、走行方向が反転すると逆になる。また実施例では、スタッカークレーンが停止している場合や定速走行している場合、前後の走行車輪6,7への輪重は均等であるものとする。   In this specification, front wheels and front wheel side motors refer to traveling wheels in front of the traveling direction and their driving motors, and rear wheels and rear wheel side motors refer to traveling wheels and their motors in the rearward direction of traveling. Therefore, the meanings of the front wheels and the rear wheels are reversed when the traveling direction is reversed. In the embodiment, when the stacker crane is stopped or traveling at a constant speed, the wheel weights on the front and rear traveling wheels 6 and 7 are assumed to be equal.

図2に前後の走行モータへの制御系を示し、30は目標速度発生器で、図示しない速度パターン発生部から目標位置を入力され、リニアセンサなどの外界センサから現在位置を入力され、これらの誤差に基づいて目標速度を発生し、補正部31へ入力する。補正部31は、図3に示す補正テーブル32を備え、補正テーブル32は加減速度aと負荷(走行車への荷重)の大小とに対して、前輪側モータと後輪側モータとに対する目標速度への補正係数を記憶している。なお加減速度は加速時に+、減速時に−であるものとし、負荷の大小は3段階以上に区別しても良いが、物品16の有無により在荷と空荷の2種類に区別しても良い。さらにここでは前輪側への補正係数と後輪側への補正係数の和は2であるものとする。   FIG. 2 shows a control system for the front and rear traveling motors. Reference numeral 30 denotes a target speed generator, which receives a target position from a speed pattern generator (not shown) and a current position from an external sensor such as a linear sensor. A target speed is generated based on the error and input to the correction unit 31. The correction unit 31 includes a correction table 32 shown in FIG. 3, and the correction table 32 is a target speed for the front wheel side motor and the rear wheel side motor with respect to the acceleration / deceleration speed a and the load (load to the traveling vehicle). The correction coefficient is stored. The acceleration / deceleration is assumed to be + when accelerating, and-when decelerating. The magnitude of the load may be classified into three or more stages. Further, here, it is assumed that the sum of the correction coefficient for the front wheel side and the correction coefficient for the rear wheel side is 2.

補正部31では、微分器33で目標速度を微分して得た加減速度と、スタッカークレーンの制御部から得た在荷/空荷の区別とにより、補正テーブル32を読み出し、前輪側と後輪側への補正係数を求める。求めた補正係数を目標速度に例えば乗算し、前輪側への速度指令と後輪側への速度指令とを算出する。これらの速度指令は定速走行時には共通で、加減速時には前輪側モータと後輪側モータとで異なっている。速度指令は速度制御部34,35へ入力され、モータ8,9の駆動軸やあるいは走行車輪6,7に接続したエンコーダで求めた速度と比較し、トルク指令を発生する。発生したトルク指令でインバータ36,37を介し、モータ8,9を制御する。なお図中のiはモータ8,9からの電流の検出値で、トルク指令で定まる値の電流でモータ8,9が駆動されるようにする。   The correction unit 31 reads the correction table 32 based on the acceleration / deceleration obtained by differentiating the target speed with the differentiator 33 and the on / off status obtained from the control unit of the stacker crane. The correction coefficient to the side is obtained. For example, the target speed is multiplied by the obtained correction coefficient to calculate a speed command for the front wheels and a speed command for the rear wheels. These speed commands are common during constant speed traveling, and are different between the front wheel side motor and the rear wheel side motor during acceleration / deceleration. The speed command is input to the speed control units 34 and 35, and compared with the speed obtained by the drive shaft of the motors 8 and 9 or the encoder connected to the traveling wheels 6 and 7, a torque command is generated. The motors 8 and 9 are controlled via the inverters 36 and 37 by the generated torque command. In the figure, i is a detected value of the current from the motors 8 and 9, and the motors 8 and 9 are driven with a current determined by a torque command.

実施例では補正テーブル32を加減速度と負荷の大小で定まるテーブルとしたが、加減速度と負荷の大小並びに目標速度の3つの項目を見出しとする3次元のテーブルとしても良い。あるいはまたテーブルに代えて、加減速度や負荷の大小並びに目標速度の3つの変数で定まる多項式などの関数により、補正係数を求めても良い。実施例では目標速度に補正係数を乗算することにより速度指令の差を発生させるが、目標速度に補正係数分の速度差を加算及び減算して、速度指令の差としてもよい。   In the embodiment, the correction table 32 is a table that is determined by the acceleration / deceleration and the magnitude of the load, but may be a three-dimensional table having three items as headings, the acceleration / deceleration, the magnitude of the load, and the target speed. Alternatively, the correction coefficient may be obtained by a function such as a polynomial determined by three variables of acceleration / deceleration, load magnitude, and target speed instead of the table. In the embodiment, the speed command difference is generated by multiplying the target speed by the correction coefficient. However, the speed command difference may be obtained by adding and subtracting the speed difference corresponding to the correction coefficient to the target speed.

図4は補正テーブル32のデータを示し、ここでは前輪側モータへの補正係数を示す。後輪側モータへの補正係数と前輪側モータへの補正係数の和は2である。定速走行時に前後の走行車輪への輪重が均等で、モータ8,9への負荷が均衡していることから、加減速度が0で補正係数を1.0(補正無し)とする。低速走行時に輪重がバランスしていない場合、加減速度0での補正係数を1からシフトさせると良い。加減速度の絶対値が大きいほど前輪側の補正係数を小さくし、負荷が大きいほど補正係数の1からのシフトを大きくする。   FIG. 4 shows data of the correction table 32, and here, correction coefficients for the front wheel side motor are shown. The sum of the correction coefficient for the rear wheel side motor and the correction coefficient for the front wheel side motor is 2. Since the wheel load on the front and rear traveling wheels is equal during constant speed traveling and the load on the motors 8 and 9 is balanced, the acceleration / deceleration is 0 and the correction coefficient is 1.0 (no correction). If the wheel load is not balanced during low-speed traveling, the correction coefficient at 0 acceleration / deceleration should be shifted from 1. The larger the absolute value of the acceleration / deceleration is, the smaller the correction coefficient on the front wheel side is.

速度指令の差について説明する。モータには必ず滑りが存在する。これらの滑りは加減速度の絶対値が大きいほど著しく、また空転が生じていない場合、加減速度が同じであれば輪重が大きいほど著しい。そこで前後の車輪の輪重に比例してトルクを分配すると、輪重が大きくトルクが大きい側のモータで大きな滑りが生じ、このため輪重の小さな側のモータとの間で車輪の速度差が生じる。そして発明者は、前後の走行モータに輪重に比例してトルクを配分すると前後の車輪間に速度差が生じて、走行車が振動しやすくなり、さらに走行車の振動に伴って車輪の摩耗も早くなることを確認した。   The difference in speed command will be described. There is always slip in the motor. These slips are more remarkable as the absolute value of the acceleration / deceleration is larger, and when there is no idling, the slip is more significant as the wheel load is larger if the acceleration / deceleration is the same. Therefore, when torque is distributed in proportion to the wheel weights of the front and rear wheels, a large slip occurs in the motor having the larger wheel weight and the larger torque, so that the wheel speed difference between the motor having the smaller wheel weight and the wheel load becomes smaller. Arise. When the inventor distributes the torque to the front and rear driving motors in proportion to the wheel load, a speed difference is generated between the front and rear wheels, and the traveling vehicle is likely to vibrate. I confirmed that it would be faster.

これに対して実施例では、前後の走行モータや車輪での滑りの差を解消するように、走行モータへの速度指令に差を設ける。即ち速度指令の差の意味は、前後の走行モータや走行車輪での滑りの差を打ち消すことである。このように速度指令に差を設けると、前後の走行車輪の対地速度は共通となり、走行モータ間の干渉が解消し、走行車の振動や車輪の摩耗などを避けることができる。ここで前後の走行車輪の対地速度が等しいことは、各車輪の輪重にほぼ比例したトルクが走行モータから出力されていることを意味する。次に加減速度の絶対値が同じでも、荷重が大きいほど滑りが大きくなるので、荷重が大きい場合に、補正係数の1からのシフトを大きくする。   In contrast, in the embodiment, a difference is provided in the speed command to the travel motor so as to eliminate the difference in slip between the front and rear travel motors and wheels. That is, the meaning of the difference in speed command is to cancel out the difference in slip between the front and rear traveling motors and traveling wheels. When a difference is provided in the speed command in this way, the ground speed of the front and rear traveling wheels becomes common, the interference between the traveling motors is eliminated, and vibrations of the traveling vehicle and wheel wear can be avoided. Here, the ground speeds of the front and rear traveling wheels being equal means that a torque substantially proportional to the wheel weight of each wheel is output from the traveling motor. Next, even if the absolute value of the acceleration / deceleration is the same, the larger the load, the larger the slip. Therefore, when the load is large, the shift of the correction coefficient from 1 is increased.

補正係数を1からシフトする向きについて説明する。加速時には前輪側の輪重が小さくなり後輪側の輪重が大きくなる。これに伴って後輪側の滑りが大きくなるので、前輪側の補正係数を1よりも小さく、後輪側の補正係数を1よりも大きくする。減速時には、前輪側の輪重が増加して前輪側での滑りが増加する。このため前輪側の減速が遅れるので、減速時にも前輪側の補正係数を1よりも小さくし、後輪側の補正係数を1よりも大きくする。   The direction in which the correction coefficient is shifted from 1 will be described. During acceleration, the wheel weight on the front wheel side decreases and the wheel weight on the rear wheel side increases. As a result, the rear wheel side slip increases, so the front wheel side correction coefficient is smaller than 1 and the rear wheel side correction coefficient is larger than 1. During deceleration, the wheel weight on the front wheel side increases and slippage on the front wheel side increases. For this reason, since the deceleration on the front wheel side is delayed, the correction coefficient on the front wheel side is made smaller than 1 and the correction coefficient on the rear wheel side is made larger than 1 even during deceleration.

図5に目標速度に対する速度指令を模式的に示す。横軸は時間で、図5の下側は目標速度を示し、上側は速度指令を示し、ここで実線が前輪側、破線が後輪側である。加速時には後輪側の速度指令を前輪側よりも大きくし、これによって負荷の大きい後輪側で生じる滑りを、速度指令の差で補正する。減速時にも、前輪側の速度指令を後輪側の速度指令よりも小さくし、減速時に負荷の大きい前輪側で生じる滑りを、速度指令を小さくすることにより吸収する。なお図5の左側の在荷の場合、図5の右側の空荷の場合よりも、前輪側と後輪側の速度指令の差を大きくする。   FIG. 5 schematically shows a speed command for the target speed. The horizontal axis is time, the lower side of FIG. 5 indicates the target speed, the upper side indicates the speed command, and the solid line is the front wheel side and the broken line is the rear wheel side. At the time of acceleration, the speed command on the rear wheel side is made larger than that on the front wheel side, and thereby the slip generated on the rear wheel side with a large load is corrected by the difference in speed command. Even during deceleration, the speed command on the front wheel side is made smaller than the speed command on the rear wheel side, and slip that occurs on the front wheel side with a large load during deceleration is absorbed by reducing the speed command. In the case of the left load in FIG. 5, the difference in speed command between the front wheel side and the rear wheel side is made larger than in the case of the empty load on the right side in FIG.

実施例では以下の効果が得られる。
(1) 前輪側と後輪側とに速度指令の差を設けることにより、加減速時の前輪側と後輪側とでの滑りの差を吸収し、走行車を安定して走行させることができる。
(2) これによって、モータ間の干渉や、走行車の振動、車輪の摩耗などを小さくできる。
(3) 在荷の場合に速度指令の差を大きくすることにより、より確実に滑りを吸収することができる。
(4) 補正テーブル32を用いることにより、簡単に速度指令の差を求めることができる。
In the embodiment, the following effects can be obtained.
(1) By providing a difference in speed command between the front wheel side and the rear wheel side, the difference in slip between the front wheel side and the rear wheel side during acceleration / deceleration can be absorbed, and the traveling vehicle can be driven stably. it can.
(2) This can reduce interference between motors, vibration of traveling vehicles, wear of wheels, and the like.
(3) By increasing the difference in speed command when there is a load, slip can be absorbed more reliably.
(4) By using the correction table 32, the speed command difference can be easily obtained.

実施例ではスタッカークレーンの前後のモータを制御対象としたが、スタッカークレーン以外の他の走行車にも同様に適用できる。また補正部へ入力する加速度は、目標速度を微分したものに限らず、適宜のセンサから得られる速度を微分したものでも良い。
In the embodiment, the motors before and after the stacker crane are controlled, but the present invention can be similarly applied to other traveling vehicles other than the stacker crane. Further, the acceleration input to the correction unit is not limited to the one obtained by differentiating the target speed, and may be obtained by differentiating the speed obtained from an appropriate sensor.

実施例のスタッカークレーンの要部側面図Side view of main part of stacker crane of embodiment 実施例の走行制御系を示すブロック図The block diagram which shows the traveling control system of execution example 実施例での補正テーブルを模式的に示す図The figure which shows the correction table in an Example typically 実施例での前輪側への補正係数を模式的に示す図The figure which shows typically the correction coefficient to the front-wheel side in an Example. 実施例での、目標速度パターンと前輪側と後輪側への速度指令を模式的に示す図The figure which shows typically the target speed pattern and the speed command to the front-wheel side and the rear-wheel side in an Example. 変形例の走行制御系の要部ブロック図Block diagram of the principal part of a modified traveling control system

符号の説明Explanation of symbols

2 スタッカークレーン
4 台車
6,7 走行車輪
8,9 モータ
10 マスト
12 昇降台
14 移載装置
16 物品
18 ドラム
20 昇降モータ
21 吊持材
22 制御盤
24 走行レール
25 被検出プレート
26 リニアセンサ
30 目標速度発生器
31 補正部
32 補正テーブル
33 微分器
34,35 速度制御部
36,37 インバータ
38,40 加算器
39 乗算器
2 Stacker crane 4 Carriage 6, 7 Traveling wheel 8, 9 Motor 10 Mast 12 Lifting platform 14 Transfer device 16 Article 18 Drum 20 Lifting motor 21 Lifting material 22 Control panel 24 Traveling rail 25 Detected plate 26 Linear sensor 30 Target speed Generator 31 Correction unit 32 Correction table 33 Differentiator 34, 35 Speed control unit 36, 37 Inverter 38, 40 Adder 39 Multiplier

Claims (3)

前輪と後輪とを各々モータで駆動し、制御部により前記各モータを制御する走行車において、
加速時にも減速時にも後輪側モータへの速度指令を前輪側モータへの速度指令よりも大きくするように、前記制御部を構成したことを特徴とする走行車。
In a traveling vehicle in which front wheels and rear wheels are each driven by a motor, and each motor is controlled by a control unit,
A traveling vehicle in which the control unit is configured so that a speed command to a rear wheel side motor is larger than a speed command to a front wheel side motor during acceleration and deceleration.
前輪側モータと後輪側モータとの速度指令の差を、加減速度の絶対値が大きいほど大きく、かつ走行車への荷重が大きい場合に大きくするようにしたことを特徴とする、請求項1の走行車。 2. The difference in speed command between the front wheel side motor and the rear wheel side motor increases as the absolute value of the acceleration / deceleration increases, and increases when the load on the traveling vehicle is large. Traveling car. 前記制御部に、目標速度の発生手段と、加減速度と荷重の大小とに対して、前輪側モータと後輪側モータとの速度指令の差を定めるためのデータを記憶したテーブルと、該テーブルのデータにより目標速度を補正して前輪側モータへの速度指令と後輪側モータへの速度指令とを発生するための手段と、前記速度指令により各モータを制御するための手段、とを設けたことを特徴とする、請求項2の走行車。
A table storing data for determining a difference in speed command between the front wheel side motor and the rear wheel side motor with respect to the target speed generating means, acceleration / deceleration and load magnitude; Means for correcting the target speed based on the above data and generating a speed command to the front wheel side motor and a speed command to the rear wheel side motor, and means for controlling each motor by the speed command. The traveling vehicle according to claim 2, wherein:
JP2007101582A 2007-04-09 2007-04-09 Traveling car Expired - Fee Related JP4817125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101582A JP4817125B2 (en) 2007-04-09 2007-04-09 Traveling car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101582A JP4817125B2 (en) 2007-04-09 2007-04-09 Traveling car

Publications (2)

Publication Number Publication Date
JP2008254912A true JP2008254912A (en) 2008-10-23
JP4817125B2 JP4817125B2 (en) 2011-11-16

Family

ID=39978874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101582A Expired - Fee Related JP4817125B2 (en) 2007-04-09 2007-04-09 Traveling car

Country Status (1)

Country Link
JP (1) JP4817125B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169616A (en) * 2000-12-05 2002-06-14 Daifuku Co Ltd Movable body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169616A (en) * 2000-12-05 2002-06-14 Daifuku Co Ltd Movable body

Also Published As

Publication number Publication date
JP4817125B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4189826B2 (en) Traveling cart and traveling cart system
JP4755063B2 (en) Electric vehicle, its slip control device and control method
CN107848526B (en) Vehicle turning control device
JP4314639B2 (en) Transport device
TWI351380B (en)
JP2017093003A (en) Slip control device
JP2016111834A (en) Braking/driving force control device of vehicle
JPWO2014132416A1 (en) Work vehicle
JP4672387B2 (en) Steering control method and apparatus for tracked vehicle
CN104661858A (en) Wheel control device, vehicle, wheel control method
JP5768876B2 (en) Traveling car
JP5527081B2 (en) Driving force estimation device for electric vehicle
JP4817125B2 (en) Traveling car
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP2006166572A (en) Vehicle controller and electric vehicle
JP2008182827A (en) Electric vehicle controller and electric vehicle control method
JP2015220912A (en) Vehicle control device
JP4083697B2 (en) Electric vehicle control device and electric vehicle control method
JP4945493B2 (en) Electric motor control method and electric motor control device
JP6003757B2 (en) Control device for each wheel independent drive cart
JP4257745B2 (en) Travel control device for moving body
JP2019054707A (en) Slip control device
JP6714351B2 (en) Vehicle control device
JP4495819B2 (en) Electric vehicle control device
JP2005041383A (en) Movable body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4817125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110821

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees