JP2006238513A - Drive system of electric vehicle - Google Patents

Drive system of electric vehicle Download PDF

Info

Publication number
JP2006238513A
JP2006238513A JP2005045414A JP2005045414A JP2006238513A JP 2006238513 A JP2006238513 A JP 2006238513A JP 2005045414 A JP2005045414 A JP 2005045414A JP 2005045414 A JP2005045414 A JP 2005045414A JP 2006238513 A JP2006238513 A JP 2006238513A
Authority
JP
Japan
Prior art keywords
torque
drive system
carriage
motor
pitching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045414A
Other languages
Japanese (ja)
Other versions
JP4602113B2 (en
Inventor
Motomi Shimada
嶋田  基巳
Satoru Horie
堀江  哲
Eiichi Toyoda
豊田  瑛一
Yoshihiro Miyaji
佳浩 宮路
Keita Suzuki
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005045414A priority Critical patent/JP4602113B2/en
Publication of JP2006238513A publication Critical patent/JP2006238513A/en
Application granted granted Critical
Publication of JP4602113B2 publication Critical patent/JP4602113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive system of an electric vehicle that can reduce the occurrence of the slippages and slidings of the vehicle by stabilizing an axial variation by suppressing an oscillatory pitching of a bogie , and can make compatible the stable acceleration/deceleration performance and proper riding quality. <P>SOLUTION: The drive system of the electric vehicle comprises bogie devices 2a, 2b that support the vehicle body 4; a plurality of wheel shafts that support the bogies 2a, 2b, and make the vehicle body 4 move; a motor that drives the wheel shafts; a torque adjustment value calculation means 7 that calculates the motor torque adjusting signals ΔIqpa, ΔIqpb, ΔIqpc and ΔIqpd that control the torque of the motor; displacement detection means 5a, 5b, 5c and 5d that detect the displacements Za, Zb, Zc and Zd of the bogie 2; and drive control devices 8a to 8d. The torque adjustment of the motor by the torque adjustment value calculation means 7 is performed, on the basis of output signals of the displacement detection means 5a to 5d of the bogies. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉄道車両の駆動システムにかかり、特に台車のダイナミクス的な挙動を検出し、その検出信号をもとに台車のダイナミクス的な挙動を抑えるように電動機の発生トルクを調整し、また前記電動機の発生トルクを駆動力としてレール面に有効に伝達するように電動機の発生トルク力を調整することを特徴とする鉄道車両の駆動システムに関する。   The present invention relates to a railway vehicle drive system, and particularly detects the dynamic behavior of a carriage, adjusts the generated torque of the electric motor based on the detection signal so as to suppress the dynamic behavior of the carriage, and the electric motor. The present invention relates to a railway vehicle drive system that adjusts the generated torque force of an electric motor so that the generated torque is effectively transmitted to a rail surface as a drive force.

近年普及しているインバータ駆動方式の鉄道車両は、イニシャルコスト低減やメンテナンス性向上の観点から、電動機の数を削減する代わりに、電動機1台あたりを高出力化して必要な駆動力を確保するケースが多い。この場合、ひとつの輪軸が負担しなければならない引張力が増加するため、雨天時などの粘着状態の悪い環境下では空転、滑走が発生しやすくなる。   Inverter-driven railway vehicles that have become popular in recent years are cases where the required driving force is secured by increasing the output per motor instead of reducing the number of motors from the viewpoint of reducing initial costs and improving maintainability. There are many. In this case, since the tensile force that one wheel shaft must bear increases, slipping and sliding are likely to occur in an environment with a poor adhesion state such as rainy weather.

粘着状態の悪い環境下、すなわち引張力が容易に粘着限界を超過し得る状況では、輪軸が負担できる最大引張力Fmax(N)は、軸重W(N)と粘着係数(最大接線力係数)μからなる下記(1)式で決まる。
Fmax=W・μ …(1)
In an environment with poor adhesion, that is, when the tensile force can easily exceed the adhesion limit, the maximum tensile force Fmax (N) that can be borne by the wheelset is the axle load W (N) and the adhesion coefficient (maximum tangential force coefficient). It is determined by the following equation (1) consisting of μ.
Fmax = W · μ (1)

(1)式に示したように、最大引張力Fmax(N)は軸重W(N)と粘着係数(最大接線力係数)μの積で決まる。粘着係数(最大接線力係数)μは、降雨の状況、気温、日照条件等の環境的パラメータ、走行速度、車輪のレール間接触状態等の物理的パラメータの影響により時々刻々変化し、晴天(乾燥)時で0.3、雨天(湿潤)時で0.1前後の数値となる。   As shown in the equation (1), the maximum tensile force Fmax (N) is determined by the product of the axial load W (N) and the adhesion coefficient (maximum tangential force coefficient) μ. Adhesion coefficient (maximum tangential force coefficient) μ changes from time to time due to the influence of physical parameters such as environmental conditions such as rainfall conditions, air temperature, sunshine conditions, travel speed, and contact between the rails of the wheels. ) At a time of 0.3, and wet (wet) at a value of around 0.1.

したがって、軸重が概ね一定値の安定した状態では、最大引張力Fmax(N)は粘着係数(最大接線力係数)μに比例する。粘着制御(空転/滑走制御)は、電動機のトルクが最大引張力Fmax(N)を超えることで発生する空転/滑走を、電動機のトルクを瞬時に引下げて最大引張力Fmax(N)以下とすることにより空転/滑走を収束させる制御方式である。   Therefore, in a stable state where the axial weight is substantially constant, the maximum tensile force Fmax (N) is proportional to the adhesion coefficient (maximum tangential force coefficient) μ. Adhesion control (idling / sliding control) is the idling / sliding that occurs when the motor torque exceeds the maximum tensile force Fmax (N), and instantaneously lowers the motor torque to make it less than the maximum tensile force Fmax (N). This is a control method for converging idling / sliding.

ところで、軸重W(N)は加減速時に発生する台車のダイナミクス的な荷重変化により時々刻々変化する。しかし、これまでの粘着制御においては軸重W(N)のダイナミクス的変化を考慮した粘着制御は見られない。このことは、(1)式において軸重W(N)が何らかの原因で変動する状況下においては、瞬時的に見た場合に電動機のトルク引下げの目標値である最大引張力Fmax(N)が変動するため、確実に空転/滑走を収束させることができない場合があり得ることを意味する。   Incidentally, the axle load W (N) changes from moment to moment due to a dynamic load change of the carriage that occurs during acceleration / deceleration. However, in the past adhesion control, the adhesion control in consideration of the dynamic change of the axial load W (N) is not seen. This is because the maximum tensile force Fmax (N), which is a target value for reducing the torque of the motor, is instantaneously viewed under a situation in which the axle load W (N) fluctuates for some reason in the equation (1). It means that the idling / sliding may not be reliably converged due to fluctuations.

ここで、軸重W(N)を変動させる要因のひとつとして、台車のピッチングが考えられる。ここで、「ピッチング」は、特に乗り物における回転運動の自由度を示す用語であり、進行方向に対して水平左右軸まわりの回転をいう。ちなみに、進行方向の軸まわりの回転は「ローリング」、進行方向に対して垂直上下軸まわりの回転は「ヨーイング」と呼ばれる。   Here, as one of the factors that change the axle load W (N), the pitching of the carriage can be considered. Here, “pitching” is a term that indicates the degree of freedom of rotational movement particularly in a vehicle, and refers to rotation about a horizontal left-right axis with respect to the traveling direction. Incidentally, rotation around the axis in the traveling direction is called “rolling”, and rotation around the vertical axis perpendicular to the traveling direction is called “yawing”.

図5のブロック図を用いて、従来の電気車の駆動システムの一例を説明する。車輪1a,1bは図示していない軸箱および軸箱支持装置を介して台車枠2aを支持している。車輪1c,1dは図示していない軸箱および軸箱支持装置を介して台車枠2bを支持している。また、台車枠2a,2bは車体支持装置3a,3bにより車体4の上下方向の荷重を支持している。駆動制御装置8aは、運転台14からの運転指令信号CMDに基づいて、車両を加減速させるために輪軸1a,1cを駆動する図示していない電動機のトルクを発生させる3相交流電力を、電力線13aを介して供給する。同様に、駆動制御装置8bは、運手台14からの運転指令信号CMDに基づいて、車両を加減速させるために輪軸1b,1dを駆動する図示していない電動機のトルクを発生させる3相交流電力を、電力線13bを介して供給する。   An example of a conventional electric vehicle drive system will be described with reference to the block diagram of FIG. The wheels 1a and 1b support the carriage frame 2a via an unillustrated axle box and an axle box support device. The wheels 1c and 1d support the bogie frame 2b via an unillustrated axle box and an axle box support device. The carriage frames 2a and 2b support the load in the vertical direction of the vehicle body 4 by the vehicle body support devices 3a and 3b. The drive control device 8a generates three-phase AC power for generating torque of a motor (not shown) that drives the wheel shafts 1a and 1c in order to accelerate and decelerate the vehicle based on the operation command signal CMD from the cab 14. Supply via 13a. Similarly, the drive control device 8b generates a torque of a motor (not shown) that drives the wheel shafts 1b and 1d to accelerate and decelerate the vehicle based on the operation command signal CMD from the handle 14. Electric power is supplied through the power line 13b.

図6の側面図を用いて、電気車の駆動システムにおける一般的な台車の構成を説明する。車輪1a,1bはベアリング機構を有する軸箱9a,9bを軸に回転し、軸箱9a,9bは軸箱支持装置10a,10bを介して台車枠2aを支持している。また、台車枠2aは車体支持装置3aにより車体4の上下方向の荷重を支持している。一方、電動機が発生する駆動力は軸箱9a,9bを介して台車枠2aに伝達され、さらにけん引装置11を介して車体4に伝達される。   The configuration of a general carriage in the electric vehicle drive system will be described with reference to the side view of FIG. The wheels 1a and 1b rotate around axle boxes 9a and 9b having bearing mechanisms, and the axle boxes 9a and 9b support the carriage frame 2a via axle box support devices 10a and 10b. The bogie frame 2a supports the load in the vertical direction of the vehicle body 4 by the vehicle body support device 3a. On the other hand, the driving force generated by the electric motor is transmitted to the carriage frame 2a via the axle boxes 9a and 9b, and further transmitted to the vehicle body 4 via the traction device 11.

台車ピッチングは、台車枠2aが輪軸1a,1bと軸箱支持装置10a,10bで柔支持していることから発生する、台車回転中心を軸とした回転運動である。台車ピッチングを発生させる原因は主に次の2つである。   The cart pitching is a rotational motion around the cart rotation center, which occurs because the cart frame 2a is softly supported by the wheel shafts 1a and 1b and the axle box support devices 10a and 10b. There are mainly two causes for generating the cart pitching.

(原因a)車両の加減速する際に、台車の重心と回転中心のずれに対してモーメント力として作用することにより発生する台車ピッチング
(原因b)引張力がけん引装置を介して台車枠から車体へ伝達される際に、けん引装置と台車回転中心のずれに対してモーメント力として作用することにより発生する台車ピッチング
(Cause a) Bogie pitching caused by acting as a moment force on the deviation between the center of gravity and the rotation center of the carriage when the vehicle is accelerated / decelerated (Cause b) The tensile force is applied to the vehicle body from the carriage frame via the towing device. Trolley pitching caused by acting as a moment force on the displacement between the traction device and the trolley rotation center

(原因a)により発生する台車ピッチングは、車両の加減速度に応じた定常的な台車ピッチングである。これにより発生する軸重変動も定常的となり、同じ台車内で一方(前位)の軸重が低減、他方(後位)の軸重が増加する。特に、軸重が低減する前位軸については、(1)式から理解できるように最大引張力が減少するため、空転/滑走が発生しやすい状況となる。   The cart pitching caused by (Cause a) is a steady cart pitching according to the acceleration / deceleration of the vehicle. As a result, the fluctuation of the axle load that occurs is steady, and one (front) axle weight is reduced and the other (rear) axle weight is increased in the same carriage. In particular, as for the front shaft where the axial weight is reduced, the maximum tensile force is reduced as can be understood from the equation (1), so that idling / sliding is likely to occur.

この、(原因a)による軸重変動が発生した場合に、空転/滑走が発生しにくくする制御方式、車両方式が提案されている(例えば、特許文献1参照)。この方式は、100パーセントの軸重補償を可能にすると共に、車体、台車けん引伝達構造の簡素化を図るために、車体、台車間のけん引力伝達部のレール面からの高さを車体連結器のレール面からの高さと同じ高さに配置し、かつ、一方の制御装置が複数台の複数軸ボギー台車内の前輪を駆動し、他方の制御装置が前記各台車内の後輪を駆動するものである。また、一方の制御装置は、軸重が軽減した分だけ、けん引力を低減する軸重補償制御を実施し、他方の制御装置は、軸重が増加した分だけ、けん引力を増加させる軸重補償制御を実施するものである。   There has been proposed a control method and a vehicle method that make it difficult for idling / sliding to occur when a change in axle load due to (Cause a) occurs (see, for example, Patent Document 1). This method enables 100% axial load compensation and simplifies the structure of the traction transmission structure between the vehicle body and the trolley. Are arranged at the same height as the rail surface, and one control device drives the front wheels in the plurality of multi-axis bogies, and the other control device drives the rear wheels in the carts. Is. In addition, one control device performs axle load compensation control that reduces the traction force by the amount that the axle load is reduced, and the other control device increases the axle load that increases the traction force by the amount that the axle load has increased. Compensation control is performed.

また、搬送車の停止精度を低下させることなく搬送車のピッチング方向の振動を抑制することを可能とする搬送車の走行制御方式が提案されている(例えば、特許文献2参照)。この方法は、加減速字のピッチングを低減することによって停止精度を向上させることを目的とし、インバータ制御方式の鉄道車両を前提としておらず、ピッチングをモータ反力から検出している。したがって、粘着に影響する継続的なピッチング振動は想定しておらず、周波数を絞って制御することは考えていない。
特開平9−156502号公報 特開平5−134748号公報
In addition, a traveling control system for a transport vehicle that can suppress vibration in the pitching direction of the transport vehicle without reducing the stopping accuracy of the transport vehicle has been proposed (see, for example, Patent Document 2). This method aims to improve stopping accuracy by reducing the pitching of acceleration / deceleration characters, and does not assume an inverter-controlled railway vehicle, and detects pitching from the motor reaction force. Therefore, continuous pitching vibration that affects the adhesion is not assumed, and it is not considered to control by narrowing the frequency.
JP-A-9-156502 Japanese Patent Laid-Open No. 5-134748

一方、(原因b)により発生する台車ピッチングは、おもに電動機のトルク変動、あるいは車両間の編成動揺のため、台車から車体への伝達するけん引力が変動することにより発生する、周期的(振動的)な軸重変動である。電動機のトルク変動は、通常のトルク立上げ、立ち下げ時のほか、粘着制御時のトルク引下げによっても発生することがある。この(原因b)に起因する台車ピッチングによる軸重変動についは、(原因a)による台車ピッチングとは異なり、それが発生するタイミングを特定することが難しいことから、効果的な対策が講じられていない。   On the other hand, the bogie pitching caused by (Cause b) is a periodic (vibrating) that occurs when the traction force transmitted from the bogie to the vehicle body fluctuates mainly due to torque fluctuations of the motor or knitting fluctuation between vehicles. ) Axial load fluctuation. The torque fluctuation of the electric motor may be generated not only by normal torque startup and shutdown, but also by torque reduction during adhesion control. Unlike the bogie pitching due to (cause a), it is difficult to specify the timing of occurrence of the axle load variation due to bogie pitching due to this (cause b), so effective measures have been taken. Absent.

本発明の目的は、振動的な台車ピッチングを抑制することにより、軸重変動を安定化し、これにより空転・滑走の発生機会を低減し、雨天時の安定した加減速性能と良好な乗り心地を低コストに両立できる電気車の駆動システムを提供することにある。   The object of the present invention is to stabilize the axle load fluctuation by suppressing the vibration cart pitching, thereby reducing the chances of idling and sliding, and providing stable acceleration / deceleration performance and good riding comfort in rainy weather. An object of the present invention is to provide an electric vehicle drive system compatible with low cost.

上記課題を解決する為に、本発明は、台車のダイナミクス的な挙動を検出し、その検出信号をもとに台車のダイナミクス的な挙動を抑えるように電動機の発生トルクを調整し、かつ、前記電動機の発生トルクをレール面に駆動力として有効に伝達できるように電動機の発生トルク力を調整する。   In order to solve the above problems, the present invention detects the dynamic behavior of a carriage, adjusts the generated torque of the electric motor so as to suppress the dynamic behavior of the carriage based on the detection signal, and The generated torque force of the electric motor is adjusted so that the generated torque of the electric motor can be effectively transmitted as a driving force to the rail surface.

すなわち、本発明は、車両を支持する台車装置と、前記台車装置を支持し前記車両の移動を可能とする複数の輪軸と、前記輪軸を駆動する電動機と、前記電動機のトルクを制御するトルク制御手段と、前記台車の挙動を検出する挙動検出手段を備えた電気車の駆動システムにおいて、前記トルク制御手段による前記電動機のトルク調整は、前記台車の挙動検出手段の出力信号に基づいて行うことを特徴とし、前記台車の挙動検出手段は、特定の周波数成分の台車挙動のみを抽出して出力する機能を有し、さらに、前記トルク制御手段は、前記台車の挙動検出手段の出力した特定の周波数成分の出力信号に基づいて、前記特定の周波数成分と同一の周波数成分を持つトルク成分を加減することを特徴とする。   That is, the present invention relates to a carriage device that supports a vehicle, a plurality of wheel shafts that support the carriage device and allow the vehicle to move, an electric motor that drives the wheel shaft, and torque control that controls torque of the electric motor. And an electric vehicle drive system comprising behavior detecting means for detecting the behavior of the carriage, wherein the torque control means adjusts the torque of the electric motor based on an output signal of the carriage behavior detecting means. The bogie behavior detecting means has a function of extracting and outputting only the bogie behavior of a specific frequency component, and the torque control means has a specific frequency output by the bogie behavior detecting means. A torque component having the same frequency component as the specific frequency component is adjusted based on an output signal of the component.

本発明によれば、振動的な台車ピッチングを抑制することにより、軸重変動を安定化し、また同時に軸重移動を補償できることから、空転、滑走の発生機会を低減し、雨天時の安定した加減速性能と良好な乗り心地を抵コストに両立することができる。   According to the present invention, by suppressing the oscillating bogie pitching, it is possible to stabilize the fluctuation of the axle load and simultaneously compensate for the movement of the axle load, thereby reducing the chance of idling and sliding, and stable addition in the rain. Deceleration performance and good ride comfort can be achieved at low cost.

以下、本発明の実施形態を、図面を用いて説明する。図1のブロック図を用いて、本発明の電気車の駆動システムの一実施形態を説明する。車輪1a,1bは、図示していない軸箱および軸箱支持装置を介して台車枠2aを支持する。車輪1c,1dは図示していない軸箱および軸箱支持装置を介して台車枠2bを支持する。また、台車枠2a,2bは車体支持装置3a,3bにより車体4の上下方向に荷重を支持する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. An embodiment of an electric vehicle drive system according to the present invention will be described with reference to the block diagram of FIG. The wheels 1a and 1b support the carriage frame 2a via an unillustrated axle box and an axle box support device. The wheels 1c and 1d support the carriage frame 2b via an unillustrated axle box and an axle box support device. Further, the bogie frames 2a and 2b support loads in the vertical direction of the vehicle body 4 by the vehicle body support devices 3a and 3b.

変位検出手段5aは台車3aと車体4の距離Zaを、変位検出手段5bは台車3aと車体4の距離Zbを検出する。変位検出手段5a,5bは、台車枠2aのピッチング運動を検出するために、台車枠3aと車体4の互いに異なる位置において距離Za,Zbを測定できるように設置する。変位検出手段5cは台車3bと車体4の距離Zc、変位検出手段5dは台車3bと車体4の距離Zdを検出する。変位検出手段5c,5dは、台車枠2bのピッチング運動を検出するために、台車枠3bと車体4の互いに異なる位置において距離Zc,Zdを測定できるように設置する。   The displacement detection means 5a detects the distance Za between the carriage 3a and the vehicle body 4, and the displacement detection means 5b detects the distance Zb between the carriage 3a and the vehicle body 4. The displacement detection means 5a and 5b are installed so that the distances Za and Zb can be measured at different positions of the carriage frame 3a and the vehicle body 4 in order to detect the pitching motion of the carriage frame 2a. The displacement detection means 5c detects the distance Zc between the carriage 3b and the vehicle body 4, and the displacement detection means 5d detects the distance Zd between the carriage 3b and the vehicle body 4. The displacement detection means 5c and 5d are installed so that the distances Zc and Zd can be measured at different positions of the carriage frame 3b and the vehicle body 4 in order to detect the pitching motion of the carriage frame 2b.

変位検出手段5aにより検出した台車車体間距離Zaは伝達手段6aによりトルク調整値演算手段7に入力する。同様に、変位検出手段5b,5c,5dによりそれぞれ検出した台車車体間距離Zb,Zc,Zdは、それぞれ伝送手段6b,6c,6dによりトルク調整値演算手段7に入力する。   The distance between the cart bodies Za detected by the displacement detection means 5a is input to the torque adjustment value calculation means 7 by the transmission means 6a. Similarly, the bogie distances Zb, Zc, Zd detected by the displacement detection means 5b, 5c, 5d are input to the torque adjustment value calculation means 7 by the transmission means 6b, 6c, 6d, respectively.

トルク調整値演算手段7は、変位検出手段5a,5b,5c,5dから伝送手段6a,6b,6c,6dを介して入力される台車車体間距離Za,Zb,Zc,Zdをもとに、台車枠2a,2bの台車ピッチングを抑制するように、輪軸1a,1b,1c,1dを駆動する図示していない電動機のトルクを調整するための電動機トルク信号ΔIqpa,ΔIqpb,ΔIqpc,ΔIqpdを算出する。   The torque adjustment value calculation means 7 is based on the bogie distances Za, Zb, Zc, Zd input from the displacement detection means 5a, 5b, 5c, 5d via the transmission means 6a, 6b, 6c, 6d. Motor torque signals ΔIqpa, ΔIqpb, ΔIqpc, ΔIqpd for adjusting the torque of a motor (not shown) that drives the wheel shafts 1a, 1b, 1c, 1d are calculated so as to suppress the cart pitching of the cart frames 2a, 2b. .

駆動装置8aは、トルク調整値演算手段7が算出した電動機トルク調整信号ΔIqp_aと、運転制御装置14が出力する運転指令信号CMDに基づいて、輪軸1aを駆動する図示していない電動機のトルクを発生させる3相交流電力を、電力線13aを介して供給する。同様に、駆動装置8b,8c,8dは、それぞれトルク調整値演算手段7が算出した電動機トルク調整信号ΔIqpb,ΔIqpc,ΔIqpdと、運転制御装置14が出力する運転指令信号CMDに基づいて、輪軸1b,1c,1dを駆動する図示していない電動機のトルクを発生させる3相交流電力をそれぞれ電力線13b,13c,13dを介して供給する。   Based on the motor torque adjustment signal ΔIqp_a calculated by the torque adjustment value calculation means 7 and the operation command signal CMD output from the operation control device 14, the drive device 8a generates torque of an electric motor (not shown) that drives the wheel shaft 1a. The three-phase AC power to be supplied is supplied through the power line 13a. Similarly, the drive devices 8b, 8c, and 8d are respectively configured based on the motor torque adjustment signals ΔIqpb, ΔIqpc, ΔIqpd calculated by the torque adjustment value calculation means 7 and the operation command signal CMD output by the operation control device 14. , 1c, and 1d are supplied via power lines 13b, 13c, and 13d, respectively, to generate torque of a motor (not shown) that drives the motor.

これらの構成により、変位検出手段5a,5b,5c,5dにより検出する台車ピッチング量に応じて、輪軸1a,1b,1c,1dを駆動する図示していない電動機のトルクを個別に調整することにより、台車ピッチングを抑制して輪軸1a,1b,1c,1dの軸重変動を安定化し、また軸重移動を補償できることから、車両全体として粘着資源を有効利用できる。   With these configurations, the torque of the motor (not shown) that drives the wheel shafts 1a, 1b, 1c, and 1d is individually adjusted according to the cart pitching amount detected by the displacement detection means 5a, 5b, 5c, and 5d. Further, since the pitching of the carriage is suppressed to stabilize the axle load fluctuations of the wheel shafts 1a, 1b, 1c, and 1d and the axle load movement can be compensated, the adhesive resource can be effectively used as the entire vehicle.

図2の側面図を用いて、本発明の電気車の駆動システムの一実施形態における台車の構成を説明する。車輪1a,1bはベアリング機構を有する軸箱9a,9bを中心軸として回転し、軸箱9a,9bは軸箱支持装置10a,10bを介して台車枠2aを支持する。また、台車枠2aは車体支持装置3aにより車体4の上下方向の荷重を支持する。一方、電動機が発生する駆動力は軸箱9a,9bを介して台車枠2aに伝達され、さらにけん引装置11を介して車体4に伝達される。   The configuration of the carriage in one embodiment of the electric vehicle drive system of the present invention will be described using the side view of FIG. The wheels 1a and 1b rotate around axle boxes 9a and 9b having bearing mechanisms as center axes, and the axle boxes 9a and 9b support the carriage frame 2a via axle box support devices 10a and 10b. The bogie frame 2a supports the load in the vertical direction of the vehicle body 4 by the vehicle body support device 3a. On the other hand, the driving force generated by the electric motor is transmitted to the carriage frame 2a via the axle boxes 9a and 9b, and further transmitted to the vehicle body 4 via the traction device 11.

変位検出手段5aは台車3aと車体4の距離Zaを、変位検出手段5bは台車3aと車体4の距離Zbを検出する。変位検出手段5a,5bは、台車枠2aのピッチング運動を検出するために、台車枠3aと車体4の互いに異なる位置において距離Za,Zbを測定できるように設置する。   The displacement detection means 5a detects the distance Za between the carriage 3a and the vehicle body 4, and the displacement detection means 5b detects the distance Zb between the carriage 3a and the vehicle body 4. The displacement detection means 5a and 5b are installed so that the distances Za and Zb can be measured at different positions of the carriage frame 3a and the vehicle body 4 in order to detect the pitching motion of the carriage frame 2a.

これらの構成により、変位検出手段5a,5bにより検出する台車ピッチング量に応じて、輪軸1a,1bを駆動する図示していない電動機のトルクを個別に調整することにより、台車ピッチングを抑制し、これにより輪軸1a,1bの軸重変動を安定化できることから、一台車として粘着資源の有効利用を促進できる。   With these configurations, the cart pitching is suppressed by individually adjusting the torque of the motor (not shown) that drives the wheel shafts 1a and 1b according to the cart pitching amount detected by the displacement detection means 5a and 5b. As a result, the axle load fluctuations of the wheel shafts 1a and 1b can be stabilized, so that effective use of adhesive resources can be promoted as a single cart.

図3を用いて、本発明の電気車の駆動システムの一実施形態における駆動装置の構成を説明する。駆動装置8は、電流指令値15とベクトル制御演算器16と、電流検出器17u,17v,17と、PWM信号演算器18と、フィルタコンデンサ20と、PWMインバータ21と、速度演算器24を有している。   With reference to FIG. 3, the configuration of the drive device in one embodiment of the electric vehicle drive system of the present invention will be described. The drive device 8 includes a current command value 15, a vector control calculator 16, current detectors 17 u, 17 v, 17, a PWM signal calculator 18, a filter capacitor 20, a PWM inverter 21, and a speed calculator 24. is doing.

運転制御装置が設置された運転台14から、力行による加速あるいはブレーキによる減速を制御する運転指令信号CMDが出力される。電流指令演算器15は、運転指令信号CMD、駆動トルク調整値Δiqpa、速度演算器24が出力する基準回転速度信号Frを入力とし、励磁電流指令Idp、トルク電流指令Iqpを出力する。ベクトル制御演算器16は、励磁電流指令Idpとトルク電流指令Iqpと電流検出器17u,17v,17wによる電動機電流検出値iu,iv,iwおよび速度演算器24が出力する基準回転速度信号Frを入力として、インバータ出力電圧指令Vpを出力する。PWM信号演算器18は、インバータ出力電圧指令Vpを入力として、PWMインバータ21の主回路を構成するスイッチング素子を駆動するゲート信号GPを演算する。PWMインバータ21は直流電源19よりフィルタコンデンサ20を介して得られる直流電力を3相交流電力に変換して、その電力を誘導電動機22に供給する。回転速度検出器23は誘導電動機22の回転速度を検出し、速度演算器24において基準回転速度信号Frに変換する。   An operation command signal CMD for controlling acceleration by power running or deceleration by brake is output from the cab 14 provided with the operation control device. The current command calculator 15 receives the operation command signal CMD, the drive torque adjustment value Δiqpa, and the reference rotation speed signal Fr output from the speed calculator 24, and outputs an excitation current command Idp and a torque current command Iqp. The vector control calculator 16 receives the excitation current command Idp, the torque current command Iqp, the motor current detection values iu, iv, iw from the current detectors 17u, 17v, 17w, and the reference rotational speed signal Fr output from the speed calculator 24. As a result, an inverter output voltage command Vp is output. The PWM signal calculator 18 receives the inverter output voltage command Vp as an input, and calculates a gate signal GP that drives the switching elements constituting the main circuit of the PWM inverter 21. The PWM inverter 21 converts DC power obtained from the DC power source 19 through the filter capacitor 20 into three-phase AC power and supplies the power to the induction motor 22. The rotation speed detector 23 detects the rotation speed of the induction motor 22, and the speed calculator 24 converts it to a reference rotation speed signal Fr.

これらの構成により、変位検出手段5a,5b,5c,5dにより検出する台車ピッチング量に応じて、輪軸1a,1b,1c,1dを駆動する図示していない電動機のトルクを個別に調整することにより、台車ピッチングを抑制して輪軸1a,1b,1c,1dの軸重変動が安定し、また軸重移動を補償できることから、一台車として粘着資源の有効利用を促進できる。   With these configurations, the torque of the motor (not shown) that drives the wheel shafts 1a, 1b, 1c, and 1d is individually adjusted according to the cart pitching amount detected by the displacement detection means 5a, 5b, 5c, and 5d. Since the bogie pitching is suppressed and the axle load fluctuations of the wheel shafts 1a, 1b, 1c, and 1d are stabilized and the movement of the axle load can be compensated, the effective use of the adhesive resource can be promoted as a bogie.

図4のブロック図を用いて、本発明の電気車の駆動システムの一実施形態におけるトルク調整値演算手段7の構成を説明する。トルク調整値演算手段7は、減算器25a,25b、25c、25dと、加算器26a,26bと、帯域濾過器27a,27bと、低域濾過器28a,28bと、制御器29a,29b,29c,29dとを有している。   The configuration of the torque adjustment value calculation means 7 in an embodiment of the electric vehicle drive system of the present invention will be described with reference to the block diagram of FIG. The torque adjustment value calculation means 7 includes subtracters 25a, 25b, 25c, 25d, adders 26a, 26b, band filters 27a, 27b, low band filters 28a, 28b, and controllers 29a, 29b, 29c. , 29d.

台車ピッチング信号ΔZabは、減算器25aによって、台車車体間距離Zaから台車車体間距離Zbを、減算することにより算出される。台車ピッチング信号ΔZcdは、減算器25bによって、台車車体間距離Zcから台車車体間距離Zdを、減算することにより算出される。   The cart pitching signal ΔZab is calculated by subtracting the cart body distance Zb from the cart body distance Za by the subtractor 25a. The cart pitching signal ΔZcd is calculated by subtracting the cart body distance Zd from the cart body distance Zc by the subtractor 25b.

台車aピッチング抑制トルク信号ΔIqpab1は、台車ピッチング信号ΔZabを、帯域濾過器27aと制御器29aを通過させることにより算出される。台車a軸重補償トルク調整信号ΔIqpab2は、台車ピッチング信号ΔZabを、低域濾過器28aと制御器29bを通過させることにより算出される。   The cart a pitching suppression torque signal ΔIqpab1 is calculated by passing the cart pitching signal ΔZab through the band filter 27a and the controller 29a. The carriage a-axle weight compensation torque adjustment signal ΔIqpab2 is calculated by passing the carriage pitching signal ΔZab through the low-pass filter 28a and the controller 29b.

台車bピッチング抑制トルク調整信号ΔIqpcdlは、台車ピッチング信号ΔZcdを、帯域濾過器27bと制御器29cを通過させることにより算出される。台車b軸重補償トルク調整信号ΔIqpcd2は、台車ピッチング信号ΔZabを、低域濾過器28bと制御器29dを通過させることにより算出される。   The cart b pitching suppression torque adjustment signal ΔIqpcdl is calculated by passing the cart pitching signal ΔZcd through the band filter 27b and the controller 29c. The cart b-axis weight compensation torque adjustment signal ΔIqpcd2 is calculated by passing the cart pitching signal ΔZab through the low-pass filter 28b and the controller 29d.

帯域濾過器27a,27bは、台車ピッチング運動のうち、周期的な振動成分を抽出する機能をもつ。周期的な台車ピッチング振動は、輪軸とレール間に作用する軸重の実効値を減少させるため、最大引張力Fmax(N)を減少させる要因となる。台車ピッチング振動の周期は、台車の構造により若干異なるが、概ね6Hz前後である。したがって、帯域濾過器27a,27bは、通過周波数帯域を3〜12Hzの範囲で設定できる帯域濾過フィルタ(バンドパスフィルタ)により実現すればよい。   The band filters 27a and 27b have a function of extracting periodic vibration components from the cart pitching motion. Periodic bogie pitching vibration decreases the effective value of the axle load acting between the wheel shaft and the rail, and thus causes the maximum tensile force Fmax (N) to decrease. The cycle of bogie pitching vibration is approximately 6 Hz, although it varies slightly depending on the bogie structure. Therefore, the band filters 27a and 27b may be realized by a band filter (band pass filter) that can set the pass frequency band in the range of 3 to 12 Hz.

低域濾過器28a,28b,28c,28dは、台車ピッチング運動のうち、定常的なピッチング変位量を抽出する機能をもつ。定常的なピッチング変位は、車両が加減速する際、レール車輪間に作用する引張力と、台車車体間のけん引装置に作用する引張力の高さ位置の違いにより発生する。加速時は、台車の進行方向前側がレール面に対して上昇、後側が下降するため、進行方向前軸の軸重が減少し、後軸の軸重が増加する。逆に減速時は、台車の進行方向前側がレール面に対して下降、後側が上昇するため、進行方向前軸の軸重が増加し、後軸の軸重が減少する。通常運転では、車両の加減速度は概ね一定となるように制御する。したがって、低域濾過器28a,28bは、遮断周波数を0.5〜2Hzの範囲で設定できる低域濾過フィルタ(ローパスフィルタ)により実現すればよい。   The low-pass filters 28a, 28b, 28c, and 28d have a function of extracting a steady pitching displacement amount from the cart pitching motion. Steady pitching displacement is caused by the difference in height position between the tensile force acting between the rail wheels and the tensile force acting on the traction device between the bogie bodies when the vehicle is accelerated or decelerated. During acceleration, the front side in the traveling direction of the carriage rises with respect to the rail surface and the rear side descends, so that the axial weight of the front shaft in the traveling direction decreases and the axial weight of the rear shaft increases. Conversely, when decelerating, the front side in the traveling direction of the carriage is lowered with respect to the rail surface and the rear side is raised, so that the axial weight of the front shaft in the traveling direction increases and the axial weight of the rear shaft decreases. In normal operation, the vehicle acceleration / deceleration is controlled to be substantially constant. Therefore, the low-pass filters 28a and 28b may be realized by a low-pass filter (low-pass filter) that can set the cutoff frequency in a range of 0.5 to 2 Hz.

制御器29a,29bは、入力信号およびその積分値のそれぞれに比例値を演算し、その加算値を出力する、比例・積分型制御器(PI制御器)により実現する、安定化制御器である。   The controllers 29a and 29b are stabilization controllers realized by a proportional / integral type controller (PI controller) that calculates a proportional value for each of the input signal and its integral value and outputs the added value. .

電動機トルク調整信号ΔIqpaは、加算器26aによって、台車aピッチング抑制トルク調整信号ΔIqp_ab1と、台車a軸重補償トルク調整信号ΔIqp_ab2を、加算することにより算出される。電動機トルク調整信号ΔIqpbは、減算器25cによって、台車aピッチング抑制トルク調整信号ΔIqp_ab1と、台車a軸重補償トルク調整信号ΔIqp_ab2を、減算することにより算出される。電動機トルク調整信号ΔIqpcは、加算器26bによって、台車bピッチング抑制トルク調整信号ΔIqpcd1と台車b軸重補償トルク調整信号ΔIqpcd2を、加算することにより算出される。電動機トルク調整信号ΔIqpdは、減算器25dにより、台車bピッチング抑制トルク調整信号ΔIqpcd1と、台車b軸重補償トルク調整信号ΔIqpcd2を、加算することにより算出される。   The motor torque adjustment signal ΔIqpa is calculated by adding the carriage a pitching suppression torque adjustment signal ΔIqp_ab1 and the carriage a axle weight compensation torque adjustment signal ΔIqp_ab2 by the adder 26a. The motor torque adjustment signal ΔIqpb is calculated by subtracting the carriage a pitching suppression torque adjustment signal ΔIqp_ab1 and the carriage a axle weight compensation torque adjustment signal ΔIqp_ab2 by the subtractor 25c. The motor torque adjustment signal ΔIqpc is calculated by adding the carriage b pitching suppression torque adjustment signal ΔIqpcd1 and the carriage b axle weight compensation torque adjustment signal ΔIqpcd2 by the adder 26b. The motor torque adjustment signal ΔIqpd is calculated by adding the cart b pitching suppression torque adjustment signal ΔIqpcd1 and the cart b axle weight compensation torque adjustment signal ΔIqpcd2 by the subtractor 25d.

これらの構成により、変位検出手段5a,5b,5c,5dにより検出する台車ピッチング量に応じて、輪軸1a,1b,1c,1dを駆動する図示していない電動機のトルクを個別に調整することにより、台車ピッチングを抑制して輪軸1a,1b,1c,1dの軸重変動を安定化し、また軸重移動を補償できることから、一車両としての粘着性能を改善できる。   With these configurations, the torque of the motor (not shown) that drives the wheel shafts 1a, 1b, 1c, and 1d is individually adjusted according to the cart pitching amount detected by the displacement detection means 5a, 5b, 5c, and 5d. Further, since the pitching of the carriage is suppressed to stabilize the axle load fluctuation of the wheel shafts 1a, 1b, 1c, and 1d, and the axle load movement can be compensated, the adhesion performance as one vehicle can be improved.

本発明の電気車の駆動システムの一実施形態を示すブロック図。The block diagram which shows one Embodiment of the drive system of the electric vehicle of this invention. 本発明の電気車の駆動システムの一実施形態における台車の構成を示す側面図。The side view which shows the structure of the trolley | bogie in one Embodiment of the drive system of the electric vehicle of this invention. 本発明の電気車の駆動システムの一実施形態における駆動装置の構成を示す図。The figure which shows the structure of the drive device in one Embodiment of the drive system of the electric vehicle of this invention. 本発明の電気車の駆動システムの一実施形態におけるトルク調整値演算手段の構成を示すブロック図。The block diagram which shows the structure of the torque adjustment value calculating means in one Embodiment of the drive system of the electric vehicle of this invention. 従来の電気車の駆動システムの一例を示すブロック図。The block diagram which shows an example of the drive system of the conventional electric vehicle. 電気車の駆動システムにおける一般的な台車の構成を示す側面図。The side view which shows the structure of the general trolley | bogie in the drive system of an electric vehicle.

符号の説明Explanation of symbols

1…輪軸、2…台車、3…車体支持装置、4…車体、5…変位検出手段、6…伝送手段、7…トルク調整値演算手段、8…制御装置、9…軸箱、10…軸箱支持装置、11…けん引装置、12…駆動装置、13…電力線、14…運転制御装置、15…電流指令演算器、16…ベクトル制御演算器、17…電流検出器、18…PWM信号演算器、19…直流電源、20…フィルタコンデンサ、21…PWMインバータ、22…誘導電動機、23…速度検出器、24…速度演算器、25…減算器、26…加算器、27…帯域濾過器、28…低域濾過器、29…制御器 DESCRIPTION OF SYMBOLS 1 ... Wheel shaft, 2 ... Bogie, 3 ... Body support device, 4 ... Vehicle body, 5 ... Displacement detection means, 6 ... Transmission means, 7 ... Torque adjustment value calculation means, 8 ... Control apparatus, 9 ... Shaft box, 10 ... Shaft Box support device, 11 ... Towing device, 12 ... Drive device, 13 ... Power line, 14 ... Operation control device, 15 ... Current command calculator, 16 ... Vector control calculator, 17 ... Current detector, 18 ... PWM signal calculator , 19 ... DC power supply, 20 ... filter capacitor, 21 ... PWM inverter, 22 ... induction motor, 23 ... speed detector, 24 ... speed calculator, 25 ... subtractor, 26 ... adder, 27 ... band filter, 28 ... Low-pass filter, 29 ... Controller

Claims (3)

車両を支持する台車装置と、前記台車装置を支持し前記車両の移動を可能とする複数の輪軸と、前記輪軸を駆動する電動機と、前記電動機のトルクを制御するトルク制御手段と、前記台車の挙動を検出する挙動検出手段を備えた電気車の駆動システムにおいて、
前記トルク制御手段による前記電動機のトルク調整は、前記台車の挙動検出手段の出力信号に基づいて行うことを特徴とする電気車の駆動システム。
A carriage device that supports the vehicle; a plurality of wheel shafts that support the carriage device and allow movement of the vehicle; an electric motor that drives the wheel shaft; torque control means that controls torque of the electric motor; and In an electric vehicle drive system equipped with behavior detection means for detecting behavior,
The electric vehicle drive system is characterized in that the torque adjustment of the electric motor by the torque control means is performed based on an output signal of the behavior detection means of the carriage.
請求項1の電気車の駆動システムにおいて、
前記台車の挙動検出手段は、特定の周波数成分の台車挙動のみを抽出して出力する機能を有することを特徴とする電気車の駆動システム。
The electric vehicle drive system according to claim 1,
The electric vehicle drive system is characterized in that the cart behavior detecting means has a function of extracting and outputting only cart behavior of a specific frequency component.
請求項2の電気車の駆動システムにおいて、
前記トルク制御手段は、前記台車の挙動検出手段の出力した特定の周波数成分の出力信号に基づいて、前記特定の周波数成分と同一の周波数成分を持つトルク成分を加減することを特徴とする電気車の駆動システム。
In the electric vehicle drive system according to claim 2,
The torque control means adjusts a torque component having the same frequency component as the specific frequency component based on an output signal of the specific frequency component output from the behavior detection means of the carriage. Drive system.
JP2005045414A 2005-02-22 2005-02-22 Electric car drive system Active JP4602113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045414A JP4602113B2 (en) 2005-02-22 2005-02-22 Electric car drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045414A JP4602113B2 (en) 2005-02-22 2005-02-22 Electric car drive system

Publications (2)

Publication Number Publication Date
JP2006238513A true JP2006238513A (en) 2006-09-07
JP4602113B2 JP4602113B2 (en) 2010-12-22

Family

ID=37045578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045414A Active JP4602113B2 (en) 2005-02-22 2005-02-22 Electric car drive system

Country Status (1)

Country Link
JP (1) JP4602113B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124555A (en) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd Electric bogie
JP2011101555A (en) * 2009-11-09 2011-05-19 Toyo Electric Mfg Co Ltd Electric vehicle drive system
JP2011173441A (en) * 2010-02-23 2011-09-08 Toyo Electric Mfg Co Ltd Electric vehicle control device
JP2012070551A (en) * 2010-09-24 2012-04-05 Toyo Electric Mfg Co Ltd Electric vehicle control device
CN103165146A (en) * 2011-12-19 2013-06-19 北京大学 Optical disk manufacturing method and optical disk manufacturing device
EP2484547A4 (en) * 2009-09-30 2017-09-13 Mitsubishi Nichiyu Forklift Co., Ltd. Electric vehicle control device, and electric vehicle and forklift which are provided with same
CN108944963A (en) * 2018-07-03 2018-12-07 西南交通大学 The locomotive adhesion control method coordinated based on dynamic axle weight transfer compensation and multiaxis
CN114312345A (en) * 2021-10-26 2022-04-12 浙江零跑科技股份有限公司 Dynamic and smooth compensation distribution control method for front and rear axle torques of four-wheel-drive pure electric vehicle
CN116476871A (en) * 2023-04-27 2023-07-25 湖南工业大学 Traction balance control system of multi-shaft electric locomotive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010038992, 近藤圭一郎 渡邊朝紀 大江晋太郎 ((財)鉄道総合技術研究所), "空転再粘着時の動的軸重移動補償法の検討", 平成6年電気学会産業応用部門全国大会講演論文集, 199408, Vol.1994, 767頁〜772頁, JP *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124555A (en) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd Electric bogie
EP2484547A4 (en) * 2009-09-30 2017-09-13 Mitsubishi Nichiyu Forklift Co., Ltd. Electric vehicle control device, and electric vehicle and forklift which are provided with same
JP2011101555A (en) * 2009-11-09 2011-05-19 Toyo Electric Mfg Co Ltd Electric vehicle drive system
JP2011173441A (en) * 2010-02-23 2011-09-08 Toyo Electric Mfg Co Ltd Electric vehicle control device
JP2012070551A (en) * 2010-09-24 2012-04-05 Toyo Electric Mfg Co Ltd Electric vehicle control device
CN103165146A (en) * 2011-12-19 2013-06-19 北京大学 Optical disk manufacturing method and optical disk manufacturing device
CN108944963A (en) * 2018-07-03 2018-12-07 西南交通大学 The locomotive adhesion control method coordinated based on dynamic axle weight transfer compensation and multiaxis
CN114312345A (en) * 2021-10-26 2022-04-12 浙江零跑科技股份有限公司 Dynamic and smooth compensation distribution control method for front and rear axle torques of four-wheel-drive pure electric vehicle
CN114312345B (en) * 2021-10-26 2024-02-13 浙江零跑科技股份有限公司 Dynamic smooth compensation distribution control method for front and rear axle torque of four-wheel drive pure electric vehicle
CN116476871A (en) * 2023-04-27 2023-07-25 湖南工业大学 Traction balance control system of multi-shaft electric locomotive

Also Published As

Publication number Publication date
JP4602113B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4602113B2 (en) Electric car drive system
US9902272B2 (en) Control device for electric motor vehicle and control method for electric motor vehicle
JP6135775B2 (en) Electric vehicle control device and electric vehicle control method
WO2015083557A1 (en) Control device for electric vehicle and control method for electric vehicle
US5677610A (en) Control apparatus for electric vehicles
KR20130045930A (en) System and method for estimating acceleration of vibration component in railcar
JP5994705B2 (en) Each wheel motor control device for each wheel independent drive cart
US9475404B2 (en) Wheel control device, vehicle, wheel control method
JP3747255B2 (en) Electric vehicle control device
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
JP2010028982A (en) Method for controlling electric vehicle and controller for the electric vehicle
WO2014156928A1 (en) Controller of independently-driven-wheel truck
JP5528154B2 (en) Electric vehicle control device
JP6064727B2 (en) Control device for each wheel independent drive cart
JP4628772B2 (en) Electric vehicle drive system and drive control method
JP2014192930A (en) Controlling device for cart in which each wheel is driven independently
JP6003757B2 (en) Control device for each wheel independent drive cart
JP4972190B2 (en) Drive system and drive control method
JP5606043B2 (en) Electric vehicle drive system
JP4495819B2 (en) Electric vehicle control device
JP4406476B2 (en) Electric vehicle control device
JP2005295659A (en) Controller for electric vehicle, and method of controlling electric vehicle
JP2011234510A (en) Vehicle control device
JP6678511B2 (en) Idling / sliding stabilization device
JP5605796B2 (en) Electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150