JP2008254898A - Carrying device - Google Patents

Carrying device Download PDF

Info

Publication number
JP2008254898A
JP2008254898A JP2007100259A JP2007100259A JP2008254898A JP 2008254898 A JP2008254898 A JP 2008254898A JP 2007100259 A JP2007100259 A JP 2007100259A JP 2007100259 A JP2007100259 A JP 2007100259A JP 2008254898 A JP2008254898 A JP 2008254898A
Authority
JP
Japan
Prior art keywords
speed
coefficient
acceleration
deceleration
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007100259A
Other languages
Japanese (ja)
Other versions
JP4314639B2 (en
Inventor
Manabu Izumi
学 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2007100259A priority Critical patent/JP4314639B2/en
Priority to KR1020080014404A priority patent/KR101202267B1/en
Priority to CN200810089871XA priority patent/CN101281391B/en
Publication of JP2008254898A publication Critical patent/JP2008254898A/en
Application granted granted Critical
Publication of JP4314639B2 publication Critical patent/JP4314639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0421Storage devices mechanical using stacker cranes with control for stacker crane operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/025Speed of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/28Impact protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce impact accompanying adjustable-speed in manually actuating a carrying device furnished with a speed detection means and a control means to control a motor. <P>SOLUTION: A filter 10 is provided between an error detection means 8 and an electric current controller 12, a prescribed coefficient K between 0 and 1 is multiplied by a difference of target speed and current speed by the filter 10, and output of the filter 10 is input to the electric current controller 12 to control the motor 14. The coefficient K is found by an expression of K=K0+nΔ (K≤Kmax) by specifying an initial value as K(KO>0), the maximum value as Kmax, (Kmax<1), duration of an adjustable-speed signal as (n) and an increase rate per hour as Δ by the filter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、スタッカークレーンや搬送台車、昇降台、コンベヤなどの搬送装置に関する。   The present invention relates to a transport device such as a stacker crane, a transport cart, a lifting platform, or a conveyor.

スタッカークレーンなどの搬送装置では、自動運転の他にマニュアル運転が可能になっているものが多い(特許文献1:特開2000−153905)。そしてマニュアル運転では、起動,加速,減速,停止の4つのスイッチを設け、加速スイッチや減速スイッチにより加減速し、停止スイッチによりブレーキをかけて停止する。マニュアル運転では最終の目標速度は搬送装置にとって予測できないので、加速スイッチや減速スイッチに応じて、直線的に加減速する。すると加減速により搬送装置や搬送物品に大きな衝撃が加わる。例えばスタッカークレーンの場合、加減速によりマストが撓んで振動し、搬送中の物品にも影響を与えることがある。また搬送車などの場合も同様に、加減速時の衝撃により搬送物品に影響が生じることがある。
特開2000−153905
Many conveying devices such as stacker cranes are capable of manual operation in addition to automatic operation (Patent Document 1: JP 2000-153905 A). In manual operation, four switches for starting, accelerating, decelerating, and stopping are provided, and acceleration / deceleration is performed by an acceleration switch or a deceleration switch, and braking is stopped by a stop switch. In the manual operation, the final target speed cannot be predicted by the transport device, so that acceleration / deceleration is linearly performed according to the acceleration switch or the deceleration switch. Then, a large impact is applied to the transfer device and the transfer article by acceleration / deceleration. For example, in the case of a stacker crane, the mast bends and vibrates due to acceleration / deceleration, which may affect articles being conveyed. Similarly, in the case of a transport vehicle or the like, the transport article may be affected by an impact during acceleration / deceleration.
JP 2000-153905 A

この発明の課題は、搬送装置をマニュアルで動作させる際の、加減速に伴う衝撃を小さくすることにある。
請求項2の発明での追加の課題は、衝撃をさらに小さくすることにある。
請求項3の発明での追加の課題は、衝撃を小さくするための制御を簡単にすることにある。
An object of the present invention is to reduce an impact associated with acceleration / deceleration when a transport device is manually operated.
An additional problem in the invention of claim 2 is to further reduce the impact.
An additional problem in the invention of claim 3 is to simplify the control for reducing the impact.

この発明は、マニュアルスイッチからの加減速信号により目標速度を生成するための手段と、該目標速度と搬送装置の現在速度との差を求めるための誤差検出手段と、求めた速度の差を解消するようにモータを制御する制御手段、とを備えた搬送装置であって、
前記速度の差に0と1との間の所定の係数を乗算した値を求めるためのフィルタを、誤差検出手段と制御手段との間に設けて、該フィルタの出力により前記制御手段を駆動するようにしたことを特徴とする。
The present invention eliminates the difference between the calculated speed, the means for generating the target speed by the acceleration / deceleration signal from the manual switch, the error detecting means for determining the difference between the target speed and the current speed of the transport device. And a control means for controlling the motor so as to
A filter for obtaining a value obtained by multiplying the speed difference by a predetermined coefficient between 0 and 1 is provided between the error detection means and the control means, and the control means is driven by the output of the filter. It is characterized by doing so.

好ましくは、前記所定の係数を、正の値である最小値を初期値として、マニュアルスイッチからの加減速信号の持続時間と共に増加させるための、係数発生手段を設ける。
特に好ましくは、前記係数発生手段を、初期値をK0(K0>0)、最大値をKmax
(Kmax<1)、加減速信号の持続時間をn、時間当たりの係数Kの増加率をΔとして、 K=K0+nΔ (K≦Kmax)となるように、持続時間nをカウントするカウンタで構成する。
Preferably, a coefficient generating means is provided for increasing the predetermined coefficient with a minimum value, which is a positive value, as an initial value together with a duration of the acceleration / deceleration signal from the manual switch.
Particularly preferably, the coefficient generating means has an initial value of K0 (K0> 0) and a maximum value of Kmax.
(Kmax <1), where the acceleration / deceleration signal duration is n, and the rate of increase of the coefficient K per hour is Δ, the counter is configured to count the duration n so that K = K0 + nΔ (K ≦ Kmax). .

この発明では、目標速度と現在速度との差に0と1との間の所定の係数をフィルタで乗算し、フィルタの出力をモータを制御する制御手段へ入力する。この結果、加速開始時や減速開始時に、目標速度に対する現在速度の応答が遅れ、搬送装置や物品に加わる衝撃が小さくなる。   In the present invention, the difference between the target speed and the current speed is multiplied by a predetermined coefficient between 0 and 1 by the filter, and the output of the filter is input to the control means for controlling the motor. As a result, at the start of acceleration or deceleration, the response of the current speed to the target speed is delayed, and the impact applied to the transfer device and the article is reduced.

ここで所定の係数を、K0を初期値(K0>0)として、加減速信号の持続時間と共に増加させると、加速や減速の開始時に、目標速度に対する応答性を特に小さくできるので、加減速度の変化を小さくして衝撃を小さくできる。そして加速や減速が続くと係数は増加し、目標速度に対する応答性が増加する。
このような係数はテーブルや関数などで発生させても良いが、好ましくはカウンタで加減速信号の持続時間nをカウントし、時間当たりの係数の増加率をΔとして、
K=K0+nΔ により発生させると、カウンタで簡単に係数を発生させることができる。このようなフィルタをソフトウェアで実装する場合、加減速信号の持続時間をカウントし、これに応じて係数を増加させ、求めた係数を速度誤差に乗算すればよい。従って極めて簡単にフィルタを実装できる。
Here, if the predetermined coefficient is increased with the duration of the acceleration / deceleration signal with K0 as an initial value (K0> 0), the responsiveness to the target speed can be particularly reduced at the start of acceleration or deceleration. The change can be reduced to reduce the impact. As acceleration and deceleration continue, the coefficient increases and the responsiveness to the target speed increases.
Such a coefficient may be generated by a table, a function, or the like. Preferably, a counter n is used to count the duration n of the acceleration / deceleration signal, and an increase rate of the coefficient per time is Δ,
When it is generated by K = K0 + nΔ, the coefficient can be easily generated by the counter. When such a filter is implemented by software, the acceleration / deceleration signal duration is counted, the coefficient is increased accordingly, and the obtained coefficient is multiplied by the speed error. Therefore, the filter can be mounted very easily.

なお比較例として、マニュアルによる加減速に対する速度パターンを、加減速による衝撃が小さくなるように定めて、例えば図1の速度パターン発生部等に記憶させることが考えられる。しかしこのようにすると記憶するデータ量が増し、記憶した速度パターンでは最終目標速度を予め定めておく必要があるので、マニュアルによる加減速で例えば速度パターンで想定しているよりも低い速度で加速を終了すると、衝撃が加わる。同様に減速時に、目標速度を0,即ち停止として減速パターンを記憶している場合に、マニュアルで速度を低下させた後に、減速を打ち切ると衝撃が働く。   As a comparative example, it is conceivable that the speed pattern for manual acceleration / deceleration is determined so that the impact due to acceleration / deceleration is reduced and stored in, for example, the speed pattern generation unit of FIG. However, if this is done, the amount of data to be stored increases, and the final target speed must be determined in advance in the stored speed pattern. Therefore, acceleration at a lower speed than that assumed in the speed pattern can be achieved by manual acceleration / deceleration. When finished, a shock is applied. Similarly, at the time of deceleration, when the target speed is 0, that is, when the deceleration pattern is stored as a stop, an impact is applied if the deceleration is stopped after the speed is manually decreased.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図4に、実施例の搬送装置を示す。搬送装置の種類はここではスタッカークレーンとし、スタッカークレーンの走行や昇降あるいはスライドフォークの前後進に対して、実施例を適用する。スタッカークレーン以外にも、有軌道や無軌道の搬送車の走行、天井走行車の走行、昇降台の昇降や、天井クレーンの走行、コンベヤの動作、移載装置での移載などに実施例を適用できる。   1 to 4 show a transport apparatus according to an embodiment. Here, the type of the transport device is a stacker crane, and the embodiment is applied to the traveling and raising / lowering of the stacker crane or the forward / backward movement of the slide fork. In addition to stacker cranes, the examples are applied to traveling on tracked and trackless transport vehicles, traveling on overhead traveling vehicles, lifting elevators, traveling on overhead cranes, operation of conveyors, and transfer on transfer equipment. it can.

各図において、2は速度パターン発生部で、自動運転の場合、目標位置を入力されると、現在位置から目標位置までの走行距離などに応じて速度パターンを発生させる。なお自動運転に固有な信号の流れを図1の鎖線で表し、マニュアル運転での信号の流れや、自動運転とマニュアル運転に共通する信号の流れを実線で表す。4はマニュアルスイッチで、マニュアル運転の起動スイッチ、加速スイッチ、減速スイッチ、停止スイッチの、例えば4つのスイッチを備え、スイッチの実装方法は任意である。カウンタ6はマニュアルスイッチ4での加速スイッチのオン時間や減速スイッチのオン時間を求め、加速の場合、加速スイッチのオン時間に比例した目標速度(速度指令)を発生させる。カウンタ6は目標速度の最大値を記憶し、減速スイッチがオンされると、減速スイッチのオン時間に比例して最大速度から減速した目標速度を、速度指令として発生する。   In each figure, reference numeral 2 denotes a speed pattern generation unit. In the case of automatic driving, when a target position is inputted, a speed pattern is generated according to a travel distance from the current position to the target position. The signal flow unique to automatic operation is represented by a chain line in FIG. 1, and the signal flow in manual operation and the signal flow common to automatic operation and manual operation are represented by solid lines. Reference numeral 4 denotes a manual switch, which includes, for example, four switches such as a manual operation start switch, an acceleration switch, a deceleration switch, and a stop switch, and a switch mounting method is arbitrary. The counter 6 obtains the on-time of the acceleration switch and the on-time of the deceleration switch in the manual switch 4 and, in the case of acceleration, generates a target speed (speed command) proportional to the on-time of the acceleration switch. The counter 6 stores the maximum value of the target speed, and when the deceleration switch is turned on, a target speed that is decelerated from the maximum speed in proportion to the ON time of the deceleration switch is generated as a speed command.

8は誤差増幅器で、速度指令と微分器16からの現在速度との速度誤差を増幅し、微分器16はモータ14の回転数などをエンコーダで監視して微分することにより、現在速度を発生する。エンコーダに代えてリニアセンサやレーザ距離計などで現在位置を求め、これらの信号を微分して現在速度としても良い。フィルタ10はマニュアルスイッチで動作している場合にのみ使用し、誤差増幅器8からの信号を処理して、電流制御部12へのトルク指令を発生させる。電流制御部12は入力されたトルク指令に応じてモータ14を制御し、モータ14の駆動電流iをフィードバックされる。実施例は、誤差増幅器8と電流制御部12との間にフィルタ10を設けた他は、従来の搬送装置と同様である。   An error amplifier 8 amplifies a speed error between the speed command and the current speed from the differentiator 16, and the differentiator 16 generates a current speed by monitoring and differentiating the rotation speed of the motor 14 with an encoder. . The current position may be obtained by using a linear sensor or a laser distance meter instead of the encoder, and these signals may be differentiated to obtain the current speed. The filter 10 is used only when operating with a manual switch, and processes a signal from the error amplifier 8 to generate a torque command to the current control unit 12. The current control unit 12 controls the motor 14 according to the input torque command, and the drive current i of the motor 14 is fed back. The embodiment is the same as the conventional transport apparatus except that the filter 10 is provided between the error amplifier 8 and the current control unit 12.

図2に、フィルタ10の構成を示す。20は乗算器で、誤差増幅器8からの速度誤差に係数Kiを乗算してトルク指令とする。カウンタ21は係数Kiを出力し、22は反転回路、23は遅延回路である。そしてマニュアルスイッチからの加速信号や減速信号によりカウンタ21を加算し、加速信号や減速信号がオフされると、遅延回路23で所定時間待機して、カウンタ21をリセットする。リセットによりカウンタ21の出力は初期値K0に変化する。ここで記号を説明すると、nは加速信号や減速信号の持続時間、Δは時間当たりの係数の変化率である。初期値K0は正の値で、係数Kの最小値であり、係数Kには最大値 Kmax (0<K0<Kmax<1) が存在する。そしてK0やKmax、Δは適宜に設定できる。遅延回路23での遅延時間は、搬送装置の加減速が終了した後、実際の速度が最終の速度指令に追随するまでの遅れ時間程度とし、遅延回路23は設けなくても良い。さらに図2では、フィルタ10をハードウェアで示したが、ソフトウェアで実装しても良い。   FIG. 2 shows the configuration of the filter 10. A multiplier 20 multiplies the speed error from the error amplifier 8 by a coefficient Ki to obtain a torque command. The counter 21 outputs a coefficient Ki, 22 is an inverting circuit, and 23 is a delay circuit. Then, the counter 21 is added by the acceleration signal or deceleration signal from the manual switch. When the acceleration signal or deceleration signal is turned off, the delay circuit 23 waits for a predetermined time and resets the counter 21. By resetting, the output of the counter 21 changes to the initial value K0. Here, the symbols are described. N is the duration of the acceleration signal and deceleration signal, and Δ is the rate of change of the coefficient per time. The initial value K0 is a positive value and is the minimum value of the coefficient K. The coefficient K has a maximum value Kmax (0 <K0 <Kmax <1). K0, Kmax, and Δ can be set as appropriate. The delay time in the delay circuit 23 is about the delay time until the actual speed follows the final speed command after the acceleration / deceleration of the transport device is completed, and the delay circuit 23 may not be provided. Further, in FIG. 2, the filter 10 is shown by hardware, but may be implemented by software.

図3にマニュアル走行時の動作を示し、図の右側の処理は係数Kの生成に関する処理である。マニュアルスイッチにより加減速信号がオンすると、オン時間をカウントして係数Kを発生させる。また加減速のオン時間に比例あるいは直線的な速度指令を生成し、速度指令と現在速度との差に係数Kを乗算して、トルク指令を生成し、このトルク指令でモータを駆動する。マニュアルスイッチでの加減速信号がオフすると、所定の遅延時間をおいて、係数Kを初期値K0へリセットする。次に加減速が再度行われると同様の制御を行い、停止スイッチがオンされるとブレーキを動作させる。実施例では加速の場合も減速の場合も、係数Kの初期値K0は一定で、最大値Kmaxも一定、時間当たりの変化率Δも一定であるが、これらを加速と減速とで異ならせても良い。   FIG. 3 shows an operation at the time of manual driving, and the processing on the right side of the drawing is processing relating to generation of the coefficient K. When the acceleration / deceleration signal is turned on by the manual switch, the on-time is counted and the coefficient K is generated. In addition, a speed command that is proportional or linear to the acceleration / deceleration ON time is generated, and a torque command is generated by multiplying the difference between the speed command and the current speed by a coefficient K, and the motor is driven by this torque command. When the acceleration / deceleration signal at the manual switch is turned off, the coefficient K is reset to the initial value K0 after a predetermined delay time. Next, the same control is performed when acceleration / deceleration is performed again, and the brake is operated when the stop switch is turned on. In the embodiment, in the case of acceleration and deceleration, the initial value K0 of the coefficient K is constant, the maximum value Kmax is constant, and the rate of change Δ per time is also constant, but these are made different between acceleration and deceleration. Also good.

図4に実施例の動作パターンを示す。実線の速度指令はマニュアルスイッチによる速度指令で、破線は係数Kを一定とした際の搬送装置の実際の速度を、鎖線は係数Kを
K=K0+nΔ により求めた際の速度を示す。図の中段は係数Kの変化を示し、下段はマニュアルスイッチの動作を示す。
FIG. 4 shows an operation pattern of the embodiment. The solid line speed command is a speed command by a manual switch, the broken line is the actual speed of the transfer device when the coefficient K is constant, and the chain line is the coefficient K.
The speed obtained by K = K0 + nΔ is shown. The middle part of the figure shows the change of the coefficient K, and the lower part shows the operation of the manual switch.

マニュアル運転を開始し、加速スイッチをオンすると、速度指令は直線的に増加する。これに対して実施例では係数Kを用い、速度指令と搬送装置の現在速度との差に係数Kを乗算したものを、トルク指令として出力する。搬送装置の制御系が所定の時間間隔でトルク指令を発生するものとすると、現在速度は微分器16で求めた最新速度、あるいは1サイクル前の速度である。速度指令と現在速度が一致する場合、トルク指令が0となるので、フィルタ10は搬送装置の次の目標速度Vobjectを、速度指令Vinstから、現在もしくは前回の速度Vmを引き算したものに係数Kを乗算したものを、現在速度もしくは前回の速度Vmに加算して定めると言うことができる。即ち、 Vobject=(Vinst−Vm)K+Vm である。   When manual operation is started and the acceleration switch is turned on, the speed command increases linearly. On the other hand, in the embodiment, the coefficient K is used, and the difference between the speed command and the current speed of the conveying device multiplied by the coefficient K is output as a torque command. Assuming that the control system of the transport device generates a torque command at predetermined time intervals, the current speed is the latest speed obtained by the differentiator 16 or the speed one cycle before. When the speed command matches the current speed, the torque command becomes 0, so the filter 10 sets the coefficient K to the next target speed Vobject of the transport device, which is obtained by subtracting the current or previous speed Vm from the speed command Vinst. It can be said that the multiplication is determined by adding to the current speed or the previous speed Vm. That is, Vobject = (Vinst−Vm) K + Vm.

実施例では、係数Kを一定とする場合も、初期値から徐々に増加させる場合も、速度指令に対する応答が遅れる。そして係数Kを初期値K0から徐々に増加させると、加速の開始時や減速の開始時に係数の値が小さくなるので、加速開始時や減速開始時の加減速度の変化を小さくして、搬送装置や物品に働く衝撃を小さくできる。係数Kを時間的に増加させると、徐々に係数が大きくなるので、全体としての応答性は係数Kを一定とする場合と基本的に変わらない。そして加速が終了すると、この時点での速度誤差を解消するようにトルク指令を発生させ続けて、目標速度で定速走行に移行する。   In the embodiment, the response to the speed command is delayed both when the coefficient K is constant and when the coefficient K is gradually increased from the initial value. When the coefficient K is gradually increased from the initial value K0, the value of the coefficient decreases at the start of acceleration or deceleration, so that the change in acceleration / deceleration at the start of acceleration or deceleration can be reduced to reduce the transfer device. And impact on the article can be reduced. When the coefficient K is increased with time, the coefficient gradually increases, so the overall response is basically the same as when the coefficient K is constant. When the acceleration is finished, the torque command is continuously generated so as to eliminate the speed error at this time, and the vehicle shifts to the constant speed running at the target speed.

減速開始時にもフィルタを用いることにより、速度指令に対する応答を遅らせる。特に減速時にも、係数Kを時間と共に増加させると、減速開始時の加減速度の変化を小さくできる。そして速度指令がほぼ0になった後、所定時間遅れて実際の速度が追随し、ブレーキの動作により停止する。図4では、速度指令がほぼ0まで減速した際に、搬送装置の応答が遅れ速度が微速でないので、オペレータは減速スイッチをオンしている。しかしブレーキを作用させて再起動するまで、負の速度は無効なので、速度指令はほぼ0よりも低下しない。   The response to the speed command is delayed by using the filter even at the start of deceleration. In particular, even during deceleration, if the coefficient K is increased with time, the change in acceleration / deceleration at the start of deceleration can be reduced. Then, after the speed command becomes almost zero, the actual speed follows with a delay of a predetermined time, and stops due to the operation of the brake. In FIG. 4, when the speed command is decelerated to almost zero, the response of the transfer device is delayed and the speed is not very slow, so the operator turns on the deceleration switch. However, until the brake is applied and restarted, the negative speed is invalid, so the speed command does not drop below almost zero.

実施例では以下の効果が得られる。
(1) 搬送装置の加速時や減速時の衝撃を小さくし、搬送装置自体や搬送物品に及ぼす影響を小さくできる。
(2) 用いる係数を比較的小さな初期値から始めて徐々に増加させると、加速の開始時や減速の開始時の衝撃を特に小さくできる。
(3) 係数Kは、加速信号や減速信号のオン時間をカウントし、これに応じて係数を変化させるだけで、簡単に求めることができる。そして求めた係数を、速度指令と現在速度との誤差に乗算すれば良く、極めて簡単にフィルタを実装できる。
In the embodiment, the following effects can be obtained.
(1) The impact at the time of acceleration or deceleration of the transfer device can be reduced, and the influence on the transfer device itself or the transfer article can be reduced.
(2) If the coefficient used is gradually increased from a relatively small initial value, the impact at the start of acceleration or deceleration can be made particularly small.
(3) The coefficient K can be obtained simply by counting the on-time of the acceleration signal and the deceleration signal and changing the coefficient accordingly. Then, it is sufficient to multiply the obtained coefficient by the error between the speed command and the current speed, and the filter can be mounted very easily.

実施例の搬送装置のブロック図Block diagram of the transport device of the embodiment 実施例でのフィルタのブロック図Block diagram of the filter in the embodiment 実施例でのマニュアル走行アルゴリズムを示すフローチャートFlowchart showing a manual running algorithm in the embodiment 実施例の特性図で、速度指令に対する速度応答と係数の変化とを示す。In the characteristic view of an Example, the speed response with respect to a speed command and the change of a coefficient are shown.

符号の説明Explanation of symbols

2 速度パターン発生部
4 マニュアルスイッチ
6 カウンタ
8 誤差増幅器
10 フィルタ
12 電流制御部
14 モータ
16 微分器
20 乗算器
21 カウンタ
22 反転回路
23 遅延回路
2 Speed pattern generation unit 4 Manual switch 6 Counter 8 Error amplifier 10 Filter 12 Current control unit 14 Motor 16 Differentiator 20 Multiplier 21 Counter 22 Inversion circuit 23 Delay circuit

Claims (3)

マニュアルスイッチからの加減速信号により目標速度を生成するための手段と、該目標速度と搬送装置の現在速度との差を求めるための誤差検出手段と、求めた速度の差を解消するようにモータを制御する制御手段、とを備えた搬送装置であって、
前記速度の差に0と1との間の所定の係数を乗算した値を求めるためのフィルタを、誤差検出手段と制御手段との間に設けて、該フィルタの出力により前記制御手段を駆動するようにしたことを特徴とする、搬送装置。
Means for generating a target speed based on an acceleration / deceleration signal from a manual switch, error detection means for determining a difference between the target speed and the current speed of the conveying device, and a motor so as to eliminate the difference between the determined speeds A transport device comprising a control means for controlling
A filter for obtaining a value obtained by multiplying the speed difference by a predetermined coefficient between 0 and 1 is provided between the error detection means and the control means, and the control means is driven by the output of the filter. A conveying device characterized in that it is configured as described above.
前記所定の係数を、正の値である最小値を初期値として、マニュアルスイッチからの加減速信号の持続時間と共に増加させるための、係数発生手段を設けたことを特徴とする、請求項1の搬送装置。 The coefficient generating means for increasing the predetermined coefficient with the duration of the acceleration / deceleration signal from the manual switch, with a minimum value which is a positive value as an initial value, is provided. Conveying device. 前記係数発生手段を、初期値をK0(K0>0)、最大値をKmax
(Kmax<1)、加減速信号の持続時間をn、時間当たりの係数Kの増加率をΔとして、 K=K0+nΔ (K≦Kmax)となるように、持続時間nをカウントするカウンタで構成したことを特徴とする、請求項2の搬送装置。
The coefficient generating means has an initial value of K0 (K0> 0) and a maximum value of Kmax.
(Kmax <1), where the acceleration / deceleration signal duration is n, and the rate of increase of the coefficient K per hour is Δ, the counter is configured to count the duration n so that K = K0 + nΔ (K ≦ Kmax). The conveying apparatus according to claim 2, wherein
JP2007100259A 2007-04-06 2007-04-06 Transport device Active JP4314639B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007100259A JP4314639B2 (en) 2007-04-06 2007-04-06 Transport device
KR1020080014404A KR101202267B1 (en) 2007-04-06 2008-02-18 Transfer apparatus
CN200810089871XA CN101281391B (en) 2007-04-06 2008-04-03 Transport apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100259A JP4314639B2 (en) 2007-04-06 2007-04-06 Transport device

Publications (2)

Publication Number Publication Date
JP2008254898A true JP2008254898A (en) 2008-10-23
JP4314639B2 JP4314639B2 (en) 2009-08-19

Family

ID=39978860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100259A Active JP4314639B2 (en) 2007-04-06 2007-04-06 Transport device

Country Status (3)

Country Link
JP (1) JP4314639B2 (en)
KR (1) KR101202267B1 (en)
CN (1) CN101281391B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155001A1 (en) * 2010-06-11 2011-12-15 ムラテックオートメーション株式会社 Conveyor system
CN106672598A (en) * 2015-11-11 2017-05-17 中联重科股份有限公司 Feeding control method, device and system and machine-made sand production line equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111193A1 (en) * 2011-02-14 2012-08-23 村田機械株式会社 Transport carriage system and method for controlling running of transport carriage
CN104192528B (en) * 2014-08-12 2017-03-15 北京天拓四方科技有限公司 The control method of band-type brake when a kind of sealing-tape machine stops
CN108408355A (en) * 2018-01-23 2018-08-17 山西汾西矿业(集团)有限责任公司设备修造厂 A kind of control method in place of the conveying mechanism of intermediate channel two-sided welding
JP7293795B2 (en) 2019-03-27 2023-06-20 株式会社タダノ Crane control method and crane
CN110315994A (en) * 2019-06-26 2019-10-11 河南美力达汽车有限公司 A kind of shock resistance system of electric car
CN111056258B (en) * 2019-11-20 2021-08-10 秒针信息技术有限公司 Method and device for intelligently adjusting conveyor belt
CN111268618B (en) * 2020-01-22 2021-12-28 广州市方圆机械设备有限公司 Liquid tank conveying method for preventing liquid from overflowing
CN112976838B (en) * 2021-02-02 2022-02-18 昆山大世界油墨涂料有限公司 Iterative learning speed synchronous control method for paper conveying mechanism of ink-jet printer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504307B2 (en) * 1990-08-01 1996-06-05 三菱電機株式会社 Electric motor speed controller
JP3591638B2 (en) * 2000-10-02 2004-11-24 村田機械株式会社 Stacker crane
JP3835184B2 (en) 2001-03-19 2006-10-18 株式会社ダイフク Shelf equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155001A1 (en) * 2010-06-11 2011-12-15 ムラテックオートメーション株式会社 Conveyor system
JP5573948B2 (en) * 2010-06-11 2014-08-20 村田機械株式会社 Conveyor system
CN106672598A (en) * 2015-11-11 2017-05-17 中联重科股份有限公司 Feeding control method, device and system and machine-made sand production line equipment
CN106672598B (en) * 2015-11-11 2019-03-29 中联重科股份有限公司 Feeding control method, device and system and machine-made sand production line equipment

Also Published As

Publication number Publication date
CN101281391A (en) 2008-10-08
KR20080090969A (en) 2008-10-09
KR101202267B1 (en) 2012-11-16
CN101281391B (en) 2011-08-31
JP4314639B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4314639B2 (en) Transport device
JP2015151211A (en) Crane device
CN107399674A (en) The control method and control device of trolley crane
JP5126298B2 (en) Transport vehicle and transport vehicle system
JP2011057320A (en) Elevator
JP5768876B2 (en) Traveling car
JP2008100773A (en) Traveling carrier
JP2011134184A (en) Motor control device for driving automatic traveling vehicle
JP6494366B2 (en) Transport device
JP5113138B2 (en) Electronic toy and moving method thereof
JP2007323478A (en) Truck
JP4509205B2 (en) Braking timing setting method
JP4021228B2 (en) Speed / position control method for stacker crane
JP2017126286A (en) Mobile body, mobile body system, and method of calculating correction coefficient for mobile body
JP3388424B2 (en) Speed and position control device of stacker crane
KR102289024B1 (en) Transport apparatus
JP2017165580A (en) Crane operation support method and crane operation support device
KR20220056394A (en) Transport apparatus and control method thereof
JP2005041383A (en) Movable body
JP2015134584A (en) Driving support device
JP6354447B2 (en) Training system, training method and training program
JP2004287555A (en) Truck system
KR20180089592A (en) Speed optimizing control system for robotic transfer vehicle
JP2007097279A (en) Stop control method of linear motor
JP2009274074A (en) Drive control apparatus of moving mechanisms

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090510

R150 Certificate of patent or registration of utility model

Ref document number: 4314639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250