JP2015134584A - Driving support device - Google Patents

Driving support device Download PDF

Info

Publication number
JP2015134584A
JP2015134584A JP2014007474A JP2014007474A JP2015134584A JP 2015134584 A JP2015134584 A JP 2015134584A JP 2014007474 A JP2014007474 A JP 2014007474A JP 2014007474 A JP2014007474 A JP 2014007474A JP 2015134584 A JP2015134584 A JP 2015134584A
Authority
JP
Japan
Prior art keywords
deceleration
obstacle
host vehicle
collision
automatic brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007474A
Other languages
Japanese (ja)
Inventor
陽介 栗原
Yosuke Kurihara
陽介 栗原
宏一 浅野
Koichi Asano
宏一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014007474A priority Critical patent/JP2015134584A/en
Publication of JP2015134584A publication Critical patent/JP2015134584A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a driving support device that can be improved in collision avoidance performance and collision damage relieving performance by adding correction corresponding to a gravity acceleration component corresponding to a slope of a road face to deceleration of an automatic brake when actuating the automatic brake on a downslope.SOLUTION: In actuating an automatic brake on a downslope, when a predicted collision time derived based on a distance and relative speed between its own vehicle 1 and an obstacle B is found to be equal to a reference time or less, the automatic brake is actuated at large deceleration Ar (=A +α) determined by adding corrected deceleration α (=g.sinθ), detected by a G sensor 5, corresponding to a gravity acceleration components parallel with a road face with a downslope θ on which the vehicle is running to predetermined deceleration A.

Description

本発明は、所定減速度での自動ブレーキにより自車両の前方の障害物との衝突回避や被害軽減を支援する運転支援装置に関する。   The present invention relates to a driving support device that supports collision avoidance and damage reduction with an obstacle ahead of a host vehicle by automatic braking at a predetermined deceleration.

従来、自動ブレーキの作動により、自車両の進行方向に存在する障害物との衝突を回避する運転支援装置が提案されており、より具体的には、前方障害物との距離と、自車両と前方障害物との相対速度から、そのままの速度で走行を続けた場合に前方障害物と衝突するまでの余裕時間である衝突到達時間TTCを算出するとともに、前方障害物との衝突を回避するために必要な衝突回避時間TTB、すなわち、自車両と前方障害物とが所定の距離離れた位置で、自車両が制動操作によって前方障害物との相対速度を0とするのに必要な時間を算出し、衝突到達時間TTCが衝突回避時間TTBとなったときに、衝突を回避するための制動操作を開始するようにしたものが考えられている(例えば、特許文献1)。   Conventionally, there has been proposed a driving support device that avoids a collision with an obstacle existing in the traveling direction of the own vehicle by the operation of an automatic brake, and more specifically, the distance from the front obstacle, In order to calculate the collision arrival time TTC, which is an allowance time until the vehicle collides with the front obstacle when traveling at the same speed from the relative speed with the front obstacle, and to avoid collision with the front obstacle The collision avoidance time TTB required for the vehicle, that is, the time required for the host vehicle to make the relative speed with the front obstacle zero by braking operation at a position where the host vehicle and the front obstacle are separated by a predetermined distance. Then, when the collision arrival time TTC becomes the collision avoidance time TTB, a braking operation for avoiding the collision is considered (for example, Patent Document 1).

特開2008−132867号公報(段落0020ほか参照)JP 2008-132867 A (see paragraph 0020 and others)

しかし、走行中の道路の勾配は変化するため、特に下り勾配の道路で自動ブレーキが作動する場合には、自車両に路面の傾斜に応じた重力加速度成分が加わるため、上記した特許文献1に記載のように、衝突到達時間TTCが衝突回避時間TTBとなったタイミングで障害物の所定距離手前に停止するように自動ブレーキを作動させたとしても、所定距離よりも短い距離で停止し、最悪の場合には障害物との衝突を回避できないなどの不都合が生じる恐れがある。   However, since the gradient of the running road changes, especially when the automatic brake is operated on a downhill road, a gravitational acceleration component corresponding to the inclination of the road surface is added to the own vehicle. As described, even when the automatic brake is operated so that the collision arrival time TTC becomes the collision avoidance time TTB and stops before a predetermined distance of the obstacle, it stops at a distance shorter than the predetermined distance, In such a case, there is a risk that inconveniences such as collision with an obstacle cannot be avoided.

本発明は、下り勾配で自動ブレーキを作動する場合に、自動ブレーキの減速度に、路面の傾斜に応じた重力加速度成分に応じた補正を加えることにより、衝突回避や衝突被害軽減の性能向上を図れるようにすることを目的とする。   The present invention improves the performance of collision avoidance and collision damage reduction by adding a correction according to the gravitational acceleration component according to the slope of the road surface to the deceleration of the automatic brake when the automatic brake is operated at a downward slope. The purpose is to be able to plan.

上記した目的を達成するために、本発明の運転支援装置は、予め設定された所定減速度での自動ブレーキにより自車両の前方の障害物との衝突回避や被害軽減を支援する運転支援装置において、自車両と前記障害物との距離を検出する距離検出手段と、自車両と前記障害物との相対速度を検出する相対速度検出手段と、自車両と前記障害物との距離および相対速度に基づいて自車両が前記障害物に衝突するまでの衝突予測時間を算出する衝突予測時間算出手段と、自車両に搭載され走行路の下り勾配を検出する勾配検出手段と、前記勾配検出手段により検出される下り勾配の走行路の路面に平行な重力加速度成分に基づく補正減速度を導出する導出手段と、前記衝突予測時間が予め設定された基準時間以下になったときに、前記所定減速度に前記導出手段による前記補正減速度を加えた減速度で自動ブレーキを作動させるブレーキ制御手段とを備えることを特徴としている(請求項1)。   In order to achieve the above object, the driving support device of the present invention is a driving support device that supports collision avoidance and damage reduction with an obstacle ahead of the host vehicle by automatic braking at a predetermined deceleration set in advance. A distance detecting means for detecting a distance between the host vehicle and the obstacle, a relative speed detecting means for detecting a relative speed between the host vehicle and the obstacle, and a distance and a relative speed between the host vehicle and the obstacle. Based on a collision prediction time calculation means for calculating a collision prediction time until the own vehicle collides with the obstacle based on the above, a gradient detection means for detecting a down gradient of the traveling road mounted on the own vehicle, and detected by the gradient detection means Deriving means for deriving a corrected deceleration based on a gravitational acceleration component parallel to the road surface of the downhill traveling road, and when the predicted collision time is equal to or less than a preset reference time, the predetermined deceleration is obtained. It is characterized in that it comprises a brake control means for actuating the automatic brake at the correction deceleration added deceleration by serial derivation means (claim 1).

請求項1に係る発明によれば、自車両と障害物との距離および相対速度に基づいて導出される衝突予測時間が基準時間以下になったときに、導出手段により導出される走行中の下り勾配の路面に平行な重力加速度成分に基づく補正減速度を、所定減速度に加えた大きな減速度で自動ブレーキが作動される。   According to the first aspect of the present invention, when the predicted collision time derived based on the distance between the host vehicle and the obstacle and the relative speed is equal to or less than the reference time, the traveling descent derived by the deriving unit The automatic brake is operated with a large deceleration obtained by adding the corrected deceleration based on the gravitational acceleration component parallel to the road surface of the gradient to the predetermined deceleration.

したがって、下り勾配で自動ブレーキを作動する場合に、自動ブレーキの減速度に、路面の傾斜による重力加速度成分に応じた補正を加えるだけでよく、簡単な構成により、衝突回避や衝突被害軽減の運転支援性能の向上を図ることが可能になる。   Therefore, when the automatic brake is operated on a downward slope, it is only necessary to add a correction according to the gravitational acceleration component due to the inclination of the road surface to the deceleration of the automatic brake. Support performance can be improved.

本発明に係る運転支援装置の一実施形態のブロック構成図である。It is a block block diagram of one Embodiment of the driving assistance device which concerns on this invention. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG.

本発明の一実施形態について、図1のブロック構成図、図2および図3の動作説明図を参照して詳細に説明する。   An embodiment of the present invention will be described in detail with reference to the block diagram of FIG. 1 and the operation explanatory diagrams of FIGS.

図1に示すように、自車両1の前部にレーザレーダ、ミリ波レーダ等のレーダからなる前方監視センサ2を備え、前方監視センサ2は、パルス波の送受信により自車両1から先行車などの前方障害物Bまでの距離等を検出し、前方監視センサ2からのパルス波の送受信に応じた出力信号がマイクロコンピュータ構成の制御部3に送られる。   As shown in FIG. 1, a front monitoring sensor 2 composed of a radar such as a laser radar or a millimeter wave radar is provided at the front of the own vehicle 1, and the front monitoring sensor 2 is transmitted from the own vehicle 1 to a preceding vehicle by transmitting and receiving pulse waves. The distance to the front obstacle B is detected, and an output signal corresponding to transmission / reception of a pulse wave from the front monitoring sensor 2 is sent to the control unit 3 having a microcomputer configuration.

そして、前方監視センサ2がレーダの場合、前方監視センサ2から自車両1の前方に向けて車幅方向に渡って複数本のパルス波が送信され、前方監視センサ2により障害物Bからの反射波が受信されることにより障害物Bが検知される。さらに、前方監視センサ2からの出力信号に基づき、制御部3によりパルス波の送信から反射波の受信までの時間から、自車両1と障害物Bとの距離Dが算出され、算出した距離の時間変化から、制御部3により自車両1と障害物Bとの相対速度Vrが検出される。   When the front monitoring sensor 2 is a radar, a plurality of pulse waves are transmitted from the front monitoring sensor 2 toward the front of the host vehicle 1 in the vehicle width direction, and reflected from the obstacle B by the front monitoring sensor 2. The obstacle B is detected by receiving the wave. Further, based on the output signal from the forward monitoring sensor 2, the distance D between the host vehicle 1 and the obstacle B is calculated from the time from the transmission of the pulse wave to the reception of the reflected wave by the control unit 3, and the calculated distance From the time change, the control unit 3 detects the relative speed Vr between the host vehicle 1 and the obstacle B.

このように、前方監視センサ2および制御部3による自車両1と障害物Bとの距離Dの算出機能が、本発明における距離検出手段に相当し、前方監視センサ2および制御部3による自車両1と障害物Bとの相対速度Vrの算出機能が、本発明における相対速度検出手段に相当する。   Thus, the function for calculating the distance D between the host vehicle 1 and the obstacle B by the front monitoring sensor 2 and the control unit 3 corresponds to the distance detecting means in the present invention, and the host vehicle by the front monitoring sensor 2 and the control unit 3. The function of calculating the relative speed Vr between 1 and the obstacle B corresponds to the relative speed detecting means in the present invention.

さらに、制御部3により、算出された自車両1と障害物Bとの距離Dを相対速度Vrで割ることによって、自車両1が障害物Bに衝突するまでの衝突予測時間TTCeが算出される。この制御部3による衝突予測時間TTCeの算出機能が、本発明における衝突予測時間算出手段に相当する。   Further, the controller 3 calculates the predicted collision time TTCe until the own vehicle 1 collides with the obstacle B by dividing the calculated distance D between the own vehicle 1 and the obstacle B by the relative speed Vr. . The function of calculating the predicted collision time TTCe by the control unit 3 corresponds to the predicted collision time calculation means in the present invention.

また、制御部3には、自動ブレーキ開始条件が成立したかどうかの判断基準となる基準時間TTCsを記憶した図示しないメモリが設けられており、算出した衝突予測時間TTCeが基準時間TTCs以下に短くなったときに、制御部3によりブレーキアクチュエータ4が制御され、ブレーキアクチュエータ4により制御部3から指令される減速度での自動ブレーキが作動される。   In addition, the control unit 3 is provided with a memory (not shown) that stores a reference time TTCs that is a criterion for determining whether or not the automatic brake start condition is satisfied, and the calculated collision predicted time TTCe is shorter than the reference time TTCs. At this time, the brake actuator 4 is controlled by the control unit 3, and automatic braking at a deceleration commanded by the control unit 3 is operated by the brake actuator 4.

ここで、後述するように補正減速度α(m/s)が加味(加算)されても自車両1の発生可能な最大減速度(例えば、1G)を超えないように、自車両1の発生可能な最大減速度よりも少し小さい値が所定減速度A(m/s)として予め設定され、基準時間TTCsは、この所定減速度で減速したときに障害物Bと衝突せずに停止するまでに要する時間(一定値)に設定されてメモリに記憶保持される。 Here, as will be described later, even if the corrected deceleration α (m / s 2 ) is added (added), the maximum deceleration (for example, 1G) that can be generated by the own vehicle 1 is not exceeded. A value slightly smaller than the maximum deceleration that can be generated is preset as the predetermined deceleration A (m / s 2 ), and the reference time TTCs stops without colliding with the obstacle B when decelerated at the predetermined deceleration. It is set to a time (a constant value) required until it is stored and stored in the memory.

ところで、図2に示すように、自車両1が下り勾配の道路を走行している場合に、自車両1障害物Bとの距離Dおよび相対速度Vrに基づいて導出される衝突予測時間TTCeが基準時間TTCs以下になれば、衝突回避条件が成立して自動ブレーキが作動開始されるが、このとき勾配検出センサであるGセンサ5により走行路の下り勾配θが検出されていると、前進する自車両1には路面に平行な重力加速度成分(g・sinθ)が下り方向にかかっていることになる。ここで、gは重力加速度を表わす。   By the way, as shown in FIG. 2, when the host vehicle 1 is traveling on a downhill road, the predicted collision time TTCe derived based on the distance D to the host vehicle 1 obstacle B and the relative speed Vr is If the time is equal to or shorter than the reference time TTCs, the collision avoidance condition is satisfied and the automatic braking is started. At this time, if the G sensor 5 that is the gradient detection sensor detects the downward gradient θ of the traveling road, the vehicle moves forward. A gravity acceleration component (g · sin θ) parallel to the road surface is applied to the host vehicle 1 in the downward direction. Here, g represents gravitational acceleration.

そこで、自車両1にかかる下り方向の重力加速度成分に相当する補正減速度α(=g・sinθ)が制御部3により導出され、導出された補正減速度αが自動ブレーキのための所定減速度Aに加算された大きな減速度Ar(=A+α)で自動ブレーキが作動開始される。これにより、自車両1に係る下り方向の重力加速度成分による加速度が補正減速度αにより打ち消され、予め設定されたとおり自車両1は障害物Bの手前所定距離の位置で停止する。なお、制御部3による補正減速度αの導出機能が、本発明における導出手段に相当する。   Therefore, a corrected deceleration α (= g · sin θ) corresponding to the gravitational acceleration component in the downward direction applied to the host vehicle 1 is derived by the control unit 3, and the derived corrected deceleration α is a predetermined deceleration for automatic braking. The automatic brake is started at a large deceleration Ar (= A + α) added to A. As a result, the acceleration due to the gravitational acceleration component in the downward direction related to the host vehicle 1 is canceled by the corrected deceleration rate α, and the host vehicle 1 stops at a predetermined distance before the obstacle B as set in advance. Note that the function of deriving the corrected deceleration rate α by the control unit 3 corresponds to deriving means in the present invention.

ところで、制御部3はGセンサ5の出力のフィードバック制御に加えて、上記したような減速度の補正のためにフィードフォワード制御も行っており、自車両1が平坦路を走行中における自動ブレーキの減速度の指令値は、例えば図3中の実線に示すように、自動ブレーキの開始時刻t1に所定減速度Aで立ち上がり、自車両1の停止時刻t2まで所定減速度Aを継続するように変化するが、この指令値に従った制御による自車両1のGセンサ5により実際に検出される減速度は、図3中の破線のように減速開始の立ち上がりが遅れ、暫くして所定減速度Aに追従するように変化する。   Incidentally, in addition to feedback control of the output of the G sensor 5, the control unit 3 also performs feedforward control for correcting the deceleration as described above, and the automatic braking of the host vehicle 1 while traveling on a flat road is performed. The deceleration command value changes so as to rise at a predetermined deceleration A at the start time t1 of the automatic brake and continue the predetermined deceleration A until the stop time t2 of the host vehicle 1, for example, as shown by the solid line in FIG. However, the deceleration actually detected by the G sensor 5 of the host vehicle 1 by the control according to this command value is delayed from the start of deceleration as indicated by the broken line in FIG. It changes so as to follow.

さらに、自車両1が下り勾配の道路を走行中における自動ブレーキの減速度の指令値は、図3中の1点鎖線のように、自動ブレーキの開始時刻t1に、所定減速度Aに補正減速度α(=g・sinθ)が加算された減速度Arで立ち上がる。一方、この指令値に従った制御による自車両1のGセンサ5により実際に検出される減速度は、上記した平坦路の場合と同様、図3中の2点鎖線のように減速開始の立ち上がりが遅れ、暫くして補正後の減速度Arに追従するように変化する。   Further, the command value for the deceleration of the automatic brake while the host vehicle 1 is traveling on a downhill road is corrected to a predetermined deceleration A at the start time t1 of the automatic brake, as indicated by the one-dot chain line in FIG. It rises at a deceleration Ar to which the speed α (= g · sin θ) is added. On the other hand, the deceleration actually detected by the G sensor 5 of the host vehicle 1 by the control according to this command value is the start of deceleration start as shown by the two-dot chain line in FIG. Is delayed and changes so as to follow the corrected deceleration rate Ar after a while.

本実施形態では、自動ブレーキの減速開始時の立ち上がりの追従性を改善するという観点から、図3中の2点差線に示す実際のGセンサ5により検出される加速度が指令値である補正後の減速度Arに一致した時点で、自動ブレーキの減速度の指令値を元の所定減速度Aに戻すようにしている。なお、衝突を回避するという観点からは、自車が停止するまで補正後の減速度Arでの自動ブレーキを継続するようにしてもかまわない。   In the present embodiment, from the viewpoint of improving the follow-up performance at the start of deceleration of the automatic brake, the corrected acceleration detected by the actual G sensor 5 indicated by the two-dot difference line in FIG. 3 is a command value. When the speed coincides with the deceleration Ar, the command value for the deceleration of the automatic brake is returned to the original predetermined deceleration A. From the viewpoint of avoiding a collision, the automatic braking at the corrected deceleration Ar may be continued until the host vehicle stops.

したがって、上記した実施形態によれば、下り勾配で自動ブレーキを作動する場合に、自車両1と障害物Bとの距離Dおよび相対速度Vrに基づいて導出される衝突予測時間TTCeが基準時間TTCs以下になったときに、Gセンサ5により検出される走行中の下り勾配θの路面に平行な重力加速度成分に相当する補正減速度α(=g・sinθ)を、所定減速度Aに加えた大きな減速度Ar(=A+α)で自動ブレーキが作動されるため、自動ブレーキの減速度の指令値として、路面の傾斜θによる重力加速度成分に応じた補正減速度αを所定減速度Aに加えるだけでよく、簡単な構成により衝突回避の運転支援性能の向上を図ることができる。   Therefore, according to the above-described embodiment, when the automatic brake is operated on a downward slope, the predicted collision time TTCe derived based on the distance D between the host vehicle 1 and the obstacle B and the relative speed Vr is the reference time TTCs. The corrected deceleration rate α (= g · sin θ) corresponding to the gravitational acceleration component parallel to the road surface of the traveling downward gradient θ detected by the G sensor 5 was added to the predetermined deceleration A when Since the automatic brake is operated at a large deceleration Ar (= A + α), a correction deceleration α corresponding to the gravitational acceleration component due to the road surface inclination θ is added to the predetermined deceleration A as a command value for the automatic brake deceleration. The driving support performance for avoiding collision can be improved with a simple configuration.

ところで、走行中の道路が上り勾配の場合には、前進する自車両1には後方に下る方向への重力加速度がかかるため、予め設定された所定減速度Aで自動ブレーキを作動させるに当たって所定減速度を大きくするように作用し、所定減速度Aで自動ブレーキを作動させても、自車両1は障害物の所定距離も長い距離手前で停止することになり、所定減速度Aを補正しなくても衝突のおそれはない。   By the way, when the traveling road is uphill, gravity acceleration is applied to the vehicle 1 that moves forward in a downward direction. Therefore, when the automatic brake is operated at a preset predetermined deceleration A, a predetermined decrease is applied. Even if the automatic brake is operated at a predetermined deceleration A that acts to increase the speed, the host vehicle 1 stops before the predetermined distance of the obstacle is long, and the predetermined deceleration A is not corrected. But there is no risk of collision.

なお、本発明は上記した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記した実施形態では、自動ブレーキにより自車両1の前方の障害物Bの手前で自車両を停止させて衝突回避する例について説明したが、自動ブレーキにより前方障害物との衝突回避のほか、前方障害物との衝突は回避できなくても衝突時の被害を極力軽減する支援を行う場合にも本発明を適用することができる。   For example, in the above-described embodiment, the example in which the own vehicle is stopped in front of the obstacle B in front of the own vehicle 1 by the automatic brake and the collision is avoided is described. In addition to the collision avoidance with the front obstacle by the automatic brake, Even if a collision with a front obstacle cannot be avoided, the present invention can be applied to a case where assistance for reducing damage at the time of collision is performed as much as possible.

また、上記した実施形態では、走行路の下り勾配を検出する勾配検出手段としてGセンサ5を用いた場合について説明したが、下り勾配を検出できる手段であれば必ずしもGセンサに限定されるものではない。   In the above-described embodiment, the case where the G sensor 5 is used as the gradient detection means for detecting the downward gradient of the traveling road has been described. However, the G sensor is not necessarily limited as long as it is a means capable of detecting the downward gradient. Absent.

1 …自車両
2 …前方監視センサ(距離検出手段、相対速度検出手段)
3 …制御部(距離検出手段、相対速度検出手段、衝突予測時間算出手段、導出手段、ブレーキ制御手段)
4 …ブレーキアクチュエータ(ブレーキ制御手段)
5 …Gセンサ(勾配検出手段)
B …障害物
DESCRIPTION OF SYMBOLS 1 ... Own vehicle 2 ... Forward monitoring sensor (distance detection means, relative speed detection means)
3. Control unit (distance detection means, relative speed detection means, collision prediction time calculation means, derivation means, brake control means)
4. Brake actuator (brake control means)
5 G sensor (gradient detection means)
B ... Obstacle

Claims (1)

予め設定された所定減速度での自動ブレーキにより自車両の前方の障害物との衝突回避や被害軽減を支援する運転支援装置において、
自車両と前記障害物との距離を検出する距離検出手段と、
自車両と前記障害物との相対速度を検出する相対速度検出手段と、
自車両と前記障害物との距離および相対速度に基づいて自車両が前記障害物に衝突するまでの衝突予測時間を算出する衝突予測時間算出手段と、
自車両に搭載され走行路の下り勾配を検出する勾配検出手段と、
前記勾配検出手段により検出される下り勾配の走行路の路面に平行な重力加速度成分に基づく補正減速度を導出する導出手段と、
前記衝突予測時間が予め設定された基準時間以下になったときに、前記所定減速度に前記導出手段による前記補正減速度を加えた減速度で自動ブレーキを作動させるブレーキ制御手段と
を備えることを特徴とする運転支援装置。
In a driving assistance device that supports collision avoidance with an obstacle ahead of the host vehicle and damage reduction by automatic braking at a predetermined deceleration set in advance,
Distance detecting means for detecting the distance between the host vehicle and the obstacle;
A relative speed detecting means for detecting a relative speed between the host vehicle and the obstacle;
A collision prediction time calculation means for calculating a collision prediction time until the host vehicle collides with the obstacle based on a distance and a relative speed between the host vehicle and the obstacle;
A gradient detecting means mounted on the host vehicle for detecting the downward gradient of the traveling road;
Derivation means for deriving a corrected deceleration based on a gravitational acceleration component parallel to the road surface of the downhill traveling road detected by the gradient detection means;
Brake control means for operating an automatic brake at a deceleration obtained by adding the corrected deceleration by the deriving means to the predetermined deceleration when the predicted collision time is equal to or less than a preset reference time. A featured driving support device.
JP2014007474A 2014-01-20 2014-01-20 Driving support device Pending JP2015134584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007474A JP2015134584A (en) 2014-01-20 2014-01-20 Driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007474A JP2015134584A (en) 2014-01-20 2014-01-20 Driving support device

Publications (1)

Publication Number Publication Date
JP2015134584A true JP2015134584A (en) 2015-07-27

Family

ID=53766791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007474A Pending JP2015134584A (en) 2014-01-20 2014-01-20 Driving support device

Country Status (1)

Country Link
JP (1) JP2015134584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113752996A (en) * 2020-06-02 2021-12-07 现代摩比斯株式会社 Front anti-collision system and method for vehicle
CN113759896A (en) * 2020-06-02 2021-12-07 现代摩比斯株式会社 Fleet driving control system and method for vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113752996A (en) * 2020-06-02 2021-12-07 现代摩比斯株式会社 Front anti-collision system and method for vehicle
CN113759896A (en) * 2020-06-02 2021-12-07 现代摩比斯株式会社 Fleet driving control system and method for vehicles
US11807204B2 (en) 2020-06-02 2023-11-07 Hyundai Mobis Co., Ltd. Forward collision avoidance system and method of vehicle
CN113752996B (en) * 2020-06-02 2023-12-19 现代摩比斯株式会社 Front collision avoidance system and method for vehicle

Similar Documents

Publication Publication Date Title
JP5510173B2 (en) Vehicle control device
JP5293699B2 (en) Vehicle control device
JP3642314B2 (en) Brake control device for vehicle
JP5668359B2 (en) Vehicle control device
WO2016104364A1 (en) Vehicle control device and vehicle control method
JP5867302B2 (en) Vehicle travel support device
JP5417832B2 (en) Vehicle driving support device
EP2916306B1 (en) Collision avoidance assist device and collision avoidance assist method
EP3738845B1 (en) Vehicle control device
JP7148243B2 (en) Improved time-to-collision calculation for vehicles
JP2015134584A (en) Driving support device
JP6361572B2 (en) Alarm control device
JP5333604B2 (en) Brake control device and brake control method
JP5565681B2 (en) Inter-vehicle distance control device
KR102130941B1 (en) Apparatus and method for supporting acceleration of vehicle
JP2012035818A (en) Vehicle control device
JP2013154813A (en) Driving support device
JP7156015B2 (en) vehicle controller
JP2012240531A (en) Travel control device for vehicle
JP2011152884A (en) Vehicle control apparatus
JP5593946B2 (en) Vehicle control device
JP2012240532A (en) Travel control device for vehicle
JP2015134583A (en) Driving support device
JP6521688B2 (en) Driving support device
JP2013216327A (en) Driving support device