JP2008253861A - Continuous high pressure hydrothermal reaction apparatus for treating biomass - Google Patents

Continuous high pressure hydrothermal reaction apparatus for treating biomass Download PDF

Info

Publication number
JP2008253861A
JP2008253861A JP2007095544A JP2007095544A JP2008253861A JP 2008253861 A JP2008253861 A JP 2008253861A JP 2007095544 A JP2007095544 A JP 2007095544A JP 2007095544 A JP2007095544 A JP 2007095544A JP 2008253861 A JP2008253861 A JP 2008253861A
Authority
JP
Japan
Prior art keywords
biomass
tube
continuous high
reaction tube
pressure hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007095544A
Other languages
Japanese (ja)
Inventor
Satoshi Makishima
聡 槇島
Yoshihiko Amano
良彦 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Bussan Food Science Co Ltd
Original Assignee
Shinshu University NUC
Bussan Food Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Bussan Food Science Co Ltd filed Critical Shinshu University NUC
Priority to JP2007095544A priority Critical patent/JP2008253861A/en
Priority to PCT/JP2008/055857 priority patent/WO2008120662A1/en
Publication of JP2008253861A publication Critical patent/JP2008253861A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an efficient continuous high pressure hydrothermal reaction apparatus and its control method for treating biomass for the purpose of separating the constituent components of the biomass. <P>SOLUTION: The continuous high pressure hydrothermal reaction apparatus is composed of a material supply device constituted of a slurry pump and a solvent supply pump capable of controlling a material grinding kneader and a material transport speed, a tubular reaction pipe, which comprises a corrosion-resistant metal, controlled in temperature by a plurality of stages of temperature raising heaters, thermostatic heaters and water cooling type cooling pipes and a material discharge device constituted of a duplex electromagnetic shutter valve placed centering around a pressure buffer chamber and constituted so as to apply a severely controlled high pressure hydrothermal reaction condition to the biomass in the tubular reaction pipe. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、農業、発酵醸造、食品加工産業などから排出される資源の循環利用と、生成素材を医薬、食品、工業材料、エネルギー資源へ転換する技術に関するものである。   The present invention relates to the recycling of resources discharged from agriculture, fermentation brewing, food processing industries, and the like, and technology for converting generated materials into medicines, foods, industrial materials, and energy resources.

バイオマス資源であるセルロースやヘミセルロースを加水分解し、糖化することによって食料やエネルギー資源として利用しようとする方法として、一般的には酸加水分解法と酵素加水分解法、微生物分解法が知られている。また比較的新しい方法として超臨界状態や亜臨界状態の水をセルロースに作用させて加水分解処理し、単糖類を生産する方法が提案されている。分解収率向上と事業化を狙った技術としては、セルロース粉末に240〜280℃の加圧熱水と接触させて加水分解したのち、急冷することによりセロオリゴ糖類を生成し、さらにその加水分解生成物を酵素分解することにより高収率で単糖類を製造する方法(特許第3041380号公報)や、キシラン含有天然物サトウキビビスを出発原料に110〜140℃の熱水処理を行って水溶性不純物を除去した後、不溶残渣に200℃以下の熱水を作用させてキシロースおよびキシロオリゴ糖を製造する方法(特開2000-236899号公報)などが公知である。また、バイオマス資源に担子菌、腐朽菌類による菌体処理工程と160-230℃、0.5-10MPaの高圧水熱反応処理工程を複合的に与えてバイオマス成分を分離する方法が発明されている(特開2005-27541号公報)。   In general, acid hydrolysis, enzymatic hydrolysis, and microbial decomposition methods are known as methods of using biomass and cellulose or hemicellulose as food and energy resources by hydrolyzing and saccharifying them. . As a relatively new method, there has been proposed a method of producing monosaccharides by allowing water in a supercritical state or a subcritical state to act on cellulose to hydrolyze it. The technology aimed at improving the yield of decomposition and commercialization includes contacting cellulose powder with 240-280 ° C pressurized hot water to hydrolyze, and then rapidly cooling to produce cellooligosaccharides. Water-soluble impurities by producing monosaccharides in high yield by enzymatic decomposition of the product (Patent No. 3041380) or by hydrothermal treatment at 110-140 ° C using xylan-containing natural sugarcane bis as a starting material A method of producing xylose and xylo-oligosaccharide by removing hot water at 200 ° C. or less after removing insoluble residue (Japanese Patent Laid-Open No. 2000-236899) is known. In addition, a method has been invented for separating biomass components by combining a biomass resource with a cell treatment process using basidiomycetes and decaying fungi and a high-pressure hydrothermal reaction process at 160-230 ° C and 0.5-10 MPa (specialty). No. 2005-27541).

特許第3041380号公報Japanese Patent No. 3041380 特開2000−236899号公報JP 2000-236899 A 特開2005−27541号公報JP 2005-27541 A

従来の酸加水分解法で木質資源に酸触媒を作用させた場合は、酸触媒の影響がセルロース、ヘミセルロースだけではなく単糖類やリグニンにまでおよび、フルフラールなど発酵を阻害する副生成物が発生したり、リグニンが化学修飾を受けて自己重合を起こしたりするため、生成物の産業利用がし難くなる課題がある。また耐酸性プラントの運用や酸の回収などに工業コストがかかり環境に大きな負荷がかかるという課題がある。   When an acid catalyst is allowed to act on wood resources using conventional acid hydrolysis methods, the acid catalyst affects not only cellulose and hemicellulose, but also monosaccharides and lignin, and byproducts such as furfural that inhibit fermentation are generated. In addition, since lignin undergoes chemical modification and causes self-polymerization, there is a problem that it is difficult to industrially use the product. In addition, there is a problem in that the operation of an acid-resistant plant and the recovery of acid require an industrial cost and a heavy load on the environment.

一方、酵素による加水分解法は、発酵を阻害する副生成物の生成することなく穏やかな条件で加水分解を進めることができる有効な方法であるが、セルロースのヘミセルロースやリグニンとの結合や、セルロース分子鎖間の水素結合を切断するのに時間を要するため、糖化速度が極めて遅いという欠点がある。反応速度を速めるためには出発原料に対して爆砕処理や摩砕処理などの前処理が必要であり、さらに酵素の大量生産や回収システムの確立と併せて工業コストがかかるという課題がある。   On the other hand, enzymatic hydrolysis is an effective method that allows hydrolysis to proceed under mild conditions without the production of by-products that inhibit fermentation. However, it is possible to combine cellulose with hemicellulose or lignin, cellulose Since it takes time to break hydrogen bonds between molecular chains, there is a disadvantage that the saccharification rate is extremely slow. In order to increase the reaction rate, pretreatment such as blasting and grinding is necessary for the starting material, and there is a problem that industrial costs are required in conjunction with mass production of enzymes and establishment of a recovery system.

超臨界水、亜臨界水をセルロースに作用させて加水分解し単糖類を得る方法は反応速度が速い利点を持つが、制御を誤るとフルフラールなどの副生成物が大量に発生して収率が低下するとともに生成物の産業用途が著しく制約される課題がある。また大型プラント化を指向した場合、水の超臨界領域(臨界点:374℃、22.1MPa)の温度、圧力、酸化力に耐えうる特殊合金で内張りした耐食性の高耐圧反応器が必要となる。   The method of hydrolyzing supercritical water and subcritical water on cellulose to obtain monosaccharides has the advantage of a high reaction rate, but if controlled incorrectly, a large amount of by-products such as furfural is generated and the yield is increased. There is a problem that the industrial use of the product is significantly restricted as well as being lowered. In the case of a large-scale plant, a corrosion-resistant high-pressure reactor lined with a special alloy that can withstand the temperature, pressure, and oxidizing power in the supercritical region of water (critical point: 374 ° C, 22.1 MPa) is required.

上記の超臨界水処理の課題を解決するために考案された特許第3041380号の方法では、セルロースに240〜280℃の加圧熱水を作用した後、至適条件で酵素を作用させることにより副生成物の発生を抑えながら90%を越える高収率でセロオリゴ糖およびその加水分解した単糖であるグルコースを得ることができる。しかしながらこの方法は工業的に精製された結晶性のセルロースを出発原料にしているため、植物細胞壁の中でセルロースがヘミセルロースを介在しリグニンに包埋される構造を持つ木質資源に応用する場合には、リグニンとヘミセルロースの存在を無視することができず、同様の収率を得ることは困難である。   In the method of Patent No. 3041380 devised to solve the above-mentioned problem of supercritical water treatment, after applying pressurized hot water of 240 to 280 ° C. to cellulose, the enzyme is allowed to act on the optimum conditions. While suppressing the generation of by-products, cellooligosaccharide and glucose, which is a hydrolyzed monosaccharide thereof, can be obtained in a high yield exceeding 90%. However, this method uses industrially purified crystalline cellulose as a starting material, so when applied to woody resources that have a structure in which cellulose is embedded in lignin via hemicellulose in the plant cell wall. The presence of lignin and hemicellulose cannot be ignored and it is difficult to obtain a similar yield.

一方、キシラン含有天然物サトウキビビスを出発原料に110〜140℃の熱水処理を行い水溶性不純物を除去した後、不溶残渣に200℃以下の熱水を作用させてキシロースおよびキシロオリゴ糖を製造する特開2000-236899号公報の方法は、後の精製脱色工程を容易にし純度の高いキシロオリゴ糖を精製する比較的効率の良い方法であるが、加水分解工程の加熱処理時間は、150〜160℃で60〜90分と長時間になり明細書の実施例から推定される収率は21〜35%程度となっている。   On the other hand, hot water treatment at 110-140 ° C is performed using xylan-containing natural product sugarcane bis as a starting material to remove water-soluble impurities, and hot water at 200 ° C or less is allowed to act on insoluble residues to produce xylose and xylooligosaccharides. The method of Japanese Patent Application Laid-Open No. 2000-236899 is a relatively efficient method that facilitates the subsequent purification and decolorization step and purifies high-purity xylo-oligosaccharides, but the heat treatment time in the hydrolysis step is 150 to 160 ° C. 60 to 90 minutes, and the yield estimated from the examples of the specification is about 21 to 35%.

以上の課題を比較的良好に解決する方法として特開2005-27541号公報では、バイオマス資源に担子菌、腐朽菌類による菌体処理工程と160-230℃、0.5-10MPaの高圧水熱反応処理工程を複合的に与えてバイオマス成分を分離する方法が発明された。しかしこの考案の実施例では、撹拌器のついた耐圧タンクにバイオマス材料を仕込み、ここに圧力ポンプにより水を圧送することにより反応管に材料を送り込み、水熱反応後の材料排出側ではフィルターによる固液分離装置がなされるシステム構成となっている。このシステムでは反応管に送られるバイオマス濃度が経時的に減少し、またバイオマス処理では大量の固形分が生成すためフィルターの目詰まりが発生し、反応管内の流速や圧力を一定に保つことが困難となり、長時間の連続処理が難しく実用性、メンテナンス性に乏しいものであった。   As a method for solving the above problems relatively well, Japanese Patent Application Laid-Open No. 2005-27541 discloses a biomass treatment process using basidiomycetes and decaying fungi and a high-pressure hydrothermal reaction treatment process at 160-230 ° C. and 0.5-10 MPa. Has been invented in a manner to separate the biomass components. However, in this embodiment of the invention, the biomass material is charged into a pressure-resistant tank equipped with a stirrer, and the material is fed into the reaction tube by pumping water with a pressure pump, and on the material discharge side after the hydrothermal reaction, a filter is used. It has a system configuration in which a solid-liquid separator is made. In this system, the concentration of biomass sent to the reaction tube decreases over time, and in biomass processing, a large amount of solids is generated, causing clogging of the filter, making it difficult to keep the flow rate and pressure in the reaction tube constant. Therefore, continuous processing for a long time is difficult, and practicality and maintenance are poor.

本発明ではバイオマス処理用の効率の良い連続式水熱反応器とその制御方法を得ることを目的とする。   An object of the present invention is to obtain an efficient continuous hydrothermal reactor for biomass treatment and a control method thereof.

バイオマスの構成成分を有用資源として成分分離する連続式高圧水熱反応装置において、材料粉砕ニーダーと材料輸送速度を制御可能なスラリーポンプと溶媒供給ポンプにより構成される材料供給装置と複数段の昇温ヒータおよび恒温ヒータと水冷式冷却管により温度が制御される耐食性金属によって構成されるチューブ式反応管と圧力緩衝室を中心に置いた二連の電磁式シャッターバルブにより構成される材料排出装置からなりチューブ式反応管内でバイオマスに厳密に制御された高圧水熱反応条件を与える。 In a continuous high-pressure hydrothermal reactor that separates components of biomass as useful resources, a material supply device composed of a material crusher kneader, a slurry pump capable of controlling the material transport rate, and a solvent supply pump, and a multi-stage temperature increase It consists of a heater, a constant temperature heater, a tube-type reaction tube composed of a corrosion-resistant metal whose temperature is controlled by a water-cooled cooling tube, and a material discharge device composed of a series of electromagnetic shutter valves centered on a pressure buffer chamber. The biomass is subjected to strictly controlled high-pressure hydrothermal reaction conditions in a tube-type reaction tube.

材料粉砕と材料供給工程の間にバイオマス材料に対して40〜80℃の温水洗浄工程を配置する。 A warm water washing process of 40 to 80 ° C. is arranged for the biomass material between the material crushing and the material supplying process.

チューブ式反応管の反応管の径を15〜50mm、傾斜角度を4〜30度とし材料供給装置は材料排出装置より高い位置に配置され、上部より重力に沿って材料をフローさせる。 The diameter of the reaction tube of the tube type reaction tube is 15 to 50 mm, the inclination angle is 4 to 30 degrees, and the material supply device is arranged at a position higher than the material discharge device, and the material flows along the gravity from above.

バイオマス材料の沈降を防止して流れを制御するため、チューブ式反応管内にスパイラル状の溝加工を施す。また管に機械的振動を付与する。 In order to control the flow by preventing the sedimentation of the biomass material, a spiral groove is formed in the tube type reaction tube. It also gives mechanical vibration to the tube.

昇温ヒータは少なくても2段以上の温度ブロックで構成し制御する。   The temperature raising heater is configured and controlled by at least two temperature blocks.

コーンコブ系のバイオマスに対して、反応管内で160〜230℃、0.5〜5MPa、5〜20分の水熱反応を与える。 A hydrothermal reaction is applied to corn-cobb biomass in a reaction tube at 160 to 230 ° C., 0.5 to 5 MPa, and 5 to 20 minutes.

チューブ式反応管の代替に電気ヒータを内蔵した金属型に反応管形状を掘り込み、管を左右に分割する機能を付与する。 Instead of a tube-type reaction tube, the shape of the reaction tube is dug into a metal mold that incorporates an electric heater, and the function of dividing the tube into right and left is given.

バイオマスの構成成分を有用資源として成分分離する連続式高圧水熱反応装置を、材料粉砕ニーダーと材料輸送速度を制御可能なスラリーポンプと、溶媒供給ポンプにより構成される材料供給装置と、複数段の昇温ヒータおよび恒温ヒータと水冷式冷却管により温度が制御される耐食性金属によって構成されるチューブ式反応管と圧力緩衝室を中心に置いた二連の電磁式シャッターバルブにより構成される材料排出装置によってシステム化することにより、成分分離に最適な水熱反応の条件である温度・時間・圧力を厳密に管理できるようになり、処理液に酸やフラールなどの有害不純物の発生が抑制され、成分の回収率が向上する効果が得られる。 A continuous high-pressure hydrothermal reactor that separates components of biomass as useful resources, a material supply kneader, a slurry pump that can control the material transport speed, a material supply device composed of a solvent supply pump, and a multi-stage Material discharge device composed of temperature rising heater, constant temperature heater and tube type reaction tube made of corrosion-resistant metal whose temperature is controlled by water cooling type cooling tube and double electromagnetic shutter valve centered on pressure buffer chamber By systematizing the system, it becomes possible to strictly control the temperature, time, and pressure, which are the optimal conditions for hydrothermal reaction for component separation, and the generation of harmful impurities such as acids and furals in the processing liquid is suppressed. The effect of improving the recovery rate is obtained.

材料粉砕と材料供給工程の間にバイオマス材料に対して40〜80℃の温水洗浄工程を配置することにより、バイオマスに含まれるタンパク質系の不純物が除去され、処理液の精製が容易となる。 By disposing a 40 to 80 ° C. warm water washing step on the biomass material between the material crushing and the material supplying step, protein-based impurities contained in the biomass are removed, and purification of the treatment liquid becomes easy.

連続式高圧水熱反応装置のチューブ式反応管の反応管の径を15〜50mm、傾斜角度を4〜30度とし材料供給装置は材料排出装置より高い位置に配置することにより、スラリーは装置上部より重力に沿ってフローし、反応管内のスラリー中のバイオマス成分の沈降が抑制され、装置の連続運転が可能となり、成分回収率が向上する効果がある。 The diameter of the reaction tube of the tube-type reaction tube of the continuous high-pressure hydrothermal reactor is 15 to 50 mm, the inclination angle is 4 to 30 degrees, and the material supply device is placed at a higher position than the material discharge device, so that the slurry is at the top of the device. It flows more along the gravity, the sedimentation of the biomass component in the slurry in the reaction tube is suppressed, the device can be operated continuously, and the component recovery rate is improved.

バイオマス材料の沈降を防止して流れを制御するため、チューブ式反応管内にスパイラル状の溝加工を施し、または反応管に機械的振動を付与することにより、反応管内のスラリー中のバイオマス成分の沈降が抑制され、装置の連続運転が可能となり、成分回収率が向上する効果がある。 In order to control the flow by preventing sedimentation of the biomass material, a spiral groove is formed in the tube-type reaction tube, or mechanical vibration is applied to the reaction tube, so that the biomass components in the slurry in the reaction tube are settled. Is suppressed, the apparatus can be operated continuously, and the component recovery rate is improved.

昇温ヒータは少なくても2段以上の温度ブロックで構成し制御することにより、バイオマススラリーが反応管に導入された時に内部温度分布が一定となり、成分分離に最適な水熱反応の温度条件が安定するため、成分回収率が向上する効果が得られる。   By configuring and controlling the temperature raising heater with at least two stages of temperature blocks, the internal temperature distribution becomes constant when the biomass slurry is introduced into the reaction tube, and the temperature condition of the hydrothermal reaction optimal for component separation is Since it stabilizes, the effect that a component recovery rate improves is acquired.

コーンコブ系のバイオマスに対して、反応管内で160〜230℃、0.5〜5MPa、5〜20分の連続式高圧水熱反応を与えることにより、酸やフラールなどの有害不純物の発生が抑制され、コーンコブに含まれるヘミセルロース成分をほぼ100%、キシロース、ヘミセルロースとして回収することが可能となる。 By applying continuous high-pressure hydrothermal reaction to corn cob biomass in a reaction tube at 160 to 230 ° C, 0.5 to 5 MPa, and 5 to 20 minutes, generation of harmful impurities such as acids and fouling is suppressed. It is possible to recover the hemicellulose component contained in 100% as xylose and hemicellulose.

チューブ式反応管の代替に電気ヒータを内蔵した金属型に反応管形状を掘り込み、管を左右に分割する機能を付与することにより、連続運転中に焼きついたバイオマス成分をワイヤーブラシなどで除去することが可能になり、メンテナンスが容易となり、常に安定した水熱反応を再現することが可能となる。 By digging the shape of the reaction tube into a metal mold that incorporates an electric heater instead of the tube reaction tube, and adding the function to divide the tube into left and right, the biomass components burned out during continuous operation are removed with a wire brush etc. It becomes possible to perform maintenance, and maintenance becomes easy, and it becomes possible to always reproduce a stable hydrothermal reaction.

天然資源であるバイオマスはその性状や成分が一定ではなく、産生地域や育成条件、季節気候要因等で材料としての安定性に乏しいことが特徴である。このようなバイオマスであってもスラリー状にして水熱反応管に送り込んだ場合に管内でバイオマス成分が沈降することなく、成分分離に最適な水熱反応の条件である温度・時間・圧力が厳密に与えられなければ最良の形態を得ることができない。また長時間にわたり安定的な連続運転ができるように、水熱反応管内に腐食が生じずメンテナンスが容易であること、処理液に酸やフラールなどの有害不純物が発生しないことに加えて、得られる成分の回収率が高いことが連続式高圧水熱反応システムに求められる条件である。   Biomass, which is a natural resource, is characterized in that its properties and components are not constant, and it is poor in stability as a material due to the production area, growing conditions, seasonal climatic factors, and the like. Even when such biomass is slurried and fed into a hydrothermal reaction tube, the biomass components do not settle in the tube, and the temperature, time, and pressure, which are the optimal conditions for hydrothermal reaction, are strict. The best form cannot be obtained unless it is given. In addition to the fact that corrosion is not generated in the hydrothermal reaction tube so that stable continuous operation can be performed over a long period of time, maintenance is easy, and no harmful impurities such as acid and fouling are generated in the treatment liquid. A high component recovery rate is a requirement for a continuous high-pressure hydrothermal reaction system.

これまでの検討で上記の条件を満たすバイオマス用の連続式高圧水熱反応装置を設計するためには、材料粉砕ニーダーと材料輸送速度を制御可能なスラリーポンプと、溶媒供給ポンプにより構成される材料供給装置と、複数段の昇温ヒータおよび恒温ヒータと水冷式冷却管により温度が制御される耐食性金属によって構成されるチューブ式反応管と圧力緩衝室を中心に置いた二連の電磁式シャッターバルブにより構成される材料排出装置をシステムとして組み合わせることが最良であった。 In order to design a continuous high-pressure hydrothermal reactor for biomass that satisfies the above conditions in the studies so far, a material composed of a material crusher kneader, a slurry pump capable of controlling the material transport speed, and a solvent supply pump Two electromagnetic shutter valves centered on a supply device, a tube-type reaction tube and a pressure buffer chamber made of corrosion-resistant metal whose temperature is controlled by a multi-stage heating heater, constant temperature heater and water-cooled cooling pipe It was best to combine the material discharge device constituted by as a system.

考案した連続式高圧水熱反応装置の概要について図を参照して説明する。図1は本装置のシステム図である。装置は材料供給装置1、チューブ式反応管2と材料排出装置3からなる。材料供給装置1に送られるバイオマスは、材料粉砕ニーダー4に送り込まれ、適量の水を加えて湿式粉砕されスラリーポンプ5に導入される。スラリー中でバイオマス成分が沈降しないようポンプ導入の直前に材料を撹拌する機構が設けられている。このような撹拌機構により濃度が均一になったスラリーは、スラリーポンプ5により一定の輸送速度でチューブ式反応管2に導入される。この系とは別に設けた溶媒槽6からは、シリンダー式溶媒供給ポンプ7によって、スラリーポンプ5によって輸送されるバイオマススラリーに水などの溶媒を反応管2の直前で付加導入することができる。 An outline of the devised continuous high-pressure hydrothermal reactor will be described with reference to the drawings. FIG. 1 is a system diagram of this apparatus. The apparatus includes a material supply device 1, a tube-type reaction tube 2, and a material discharge device 3. Biomass sent to the material supply apparatus 1 is sent to the material crushing kneader 4, wet-ground by adding an appropriate amount of water, and introduced into the slurry pump 5. A mechanism for stirring the material immediately before the introduction of the pump is provided so that the biomass component does not settle in the slurry. The slurry having a uniform concentration by such a stirring mechanism is introduced into the tubular reaction tube 2 by the slurry pump 5 at a constant transport speed. From a solvent tank 6 provided separately from this system, a cylinder solvent supply pump 7 can add a solvent such as water to the biomass slurry transported by the slurry pump 5 immediately before the reaction tube 2.

次のチューブ式反応管は、六段の温度ブロックを持つ昇温ヒータ8と恒温ヒータ9と水冷式冷却管10より構成される。冷却管への水11の供給は図に示すとおりで、反応管の耐食性金属にはステンレスを使用した。 The next tube-type reaction tube is composed of a heating heater 8 having a six-stage temperature block, a constant temperature heater 9 and a water-cooling cooling tube 10. The water 11 was supplied to the cooling pipe as shown in the figure, and stainless steel was used as the corrosion resistant metal of the reaction pipe.

材料排出装置は、二連の電磁式シャッターバルブ12と圧力緩衝室13により構成され、バイオマススラリーは固液とも最終の処理液槽14に送られる。圧力緩衝室13は二連のシャッターバルブ12の交互開閉の際にバルブ間の管内に一定の空気圧力をかけて、バイオマススラリーの排出を促せるよう、エアー15を供給する機構を持っている。この材料排出装置は木村化工機株式会社製を用い、同社の発明考案「スラリー液高温高圧反応処理システムの圧力制御機構」(特許特開平11-226385号公報)記載の排出機構と同原理である。 The material discharging apparatus is composed of two electromagnetic shutter valves 12 and a pressure buffer chamber 13, and the biomass slurry is sent to the final treatment liquid tank 14 together with the solid liquid. The pressure buffer chamber 13 has a mechanism for supplying air 15 so that a constant air pressure is applied to the pipe between the valves when the two shutter valves 12 are alternately opened and closed, and the discharge of the biomass slurry is promoted. This material discharge device is manufactured by Kimura Chemical Co., Ltd., and has the same principle as the discharge mechanism described in the company's invention “pressure control mechanism of slurry liquid high-temperature and high-pressure reaction treatment system” (Japanese Patent Laid-Open No. 11-226385). .

材料粉砕と材料供給工程の間に40〜80℃の温水でバイオマスを洗浄する工程を配置する。この工程により、バイオマスに含有されるタンパク質やアミノ酸、有機酸等の不純物が高圧水熱反応前に除去されるので、高圧水熱反応時に発生する着色性物質の生成を大幅に低減し、処理液の精製が容易となった。また、高圧水熱反応時に生じる糖質とタンパク質によるメイラード反応は抑制され、回収される糖質成分の収率が向上した。コーンコブ系のバイオマスとしてエノキタケ栽培に利用した廃培地を出発原料とする場合、処理温度が40℃未満では不純物の除去効果が低く、40℃以上の温水洗浄により約80%の可溶化画分が除去され、60℃以上の温水洗浄により90%以上の可溶化画分が除去された。また、80℃以上の温度を与えてもエネルギー分の効果が見られなかった。 A process of washing biomass with warm water of 40 to 80 ° C. is arranged between the material crushing and the material supplying process. This process removes impurities such as proteins, amino acids, and organic acids contained in the biomass before the high-pressure hydrothermal reaction, greatly reducing the production of coloring substances generated during the high-pressure hydrothermal reaction, The purification of was easier. Moreover, the Maillard reaction by the saccharide | sugar and protein which generate | occur | produce at the time of a high pressure hydrothermal reaction was suppressed, and the yield of the collect | recovered saccharide | sugar component improved. When the waste medium used for enokitake mushroom cultivation as corn cob biomass is used as the starting material, the effect of removing impurities is low when the treatment temperature is less than 40 ° C, and about 80% of the solubilized fraction is removed by washing with warm water above 40 ° C. 90% or more of the solubilized fraction was removed by washing with warm water at 60 ° C. or higher. Moreover, the effect of energy was not seen even if the temperature of 80 degreeC or more was given.

連続式高圧水熱反応装置のチューブ式反応管2の設計については、反応管の径を15〜50mm、傾斜角度を4〜30度とし材料供給装置は材料排出装置より高い位置に配置することが、発明を実施する最良の形態であった。反応管の径が15mm以下となると、バイオマススラリーにより反応管が閉塞し、スラリーポンプに過剰な圧力がかかり制御が困難であった。一方反応管の径が50mm以上に設計すると、バイオマススラリーに沈降が生じやすくなり、また反応管内に温度分布が生じ、バイオマス材料にかかる熱エネルギーが不足するケースが発生したり、発熱反応により反応が暴走して過剰な温度がかかるケースが生じたりと制御が極めて困難となった。 Regarding the design of the tube-type reaction tube 2 of the continuous high-pressure hydrothermal reactor, the diameter of the reaction tube is 15 to 50 mm, the inclination angle is 4 to 30 degrees, and the material supply device can be arranged at a higher position than the material discharge device. This is the best mode for carrying out the invention. When the diameter of the reaction tube was 15 mm or less, the reaction tube was blocked by the biomass slurry, and excessive pressure was applied to the slurry pump, making control difficult. On the other hand, if the diameter of the reaction tube is designed to be 50 mm or more, sedimentation tends to occur in the biomass slurry, temperature distribution occurs in the reaction tube, and there are cases where the thermal energy applied to the biomass material is insufficient, or the reaction occurs due to an exothermic reaction. In some cases, such as runaway and excessive temperature, control became extremely difficult.

チューブ式反応管2内にねじ溝様のスパイラル形状の加工を施すこと、また反応管にバイブレーターによる機械的振動を付与することは、反応管内のスラリー中のバイオマス材料の沈降を抑制するために有効であった。 It is effective to suppress the sedimentation of biomass material in the slurry in the reaction tube by applying a spiral groove-like process in the tube-type reaction tube 2 and applying mechanical vibration to the reaction tube by a vibrator. Met.

昇温ヒータ8は少なくても二段以上の温度ブロックで構成し制御することが最良であった。昇温ヒータ8無しでは水熱反応管内に安定した温度を形成することが困難であった。   It was best to configure and control the temperature raising heater 8 with at least two temperature blocks. Without the temperature raising heater 8, it was difficult to form a stable temperature in the hydrothermal reaction tube.

コーンコブ系のバイオマスとしてエノキタケ栽培に利用した廃培地を出発原料に成分分離実験を行った。反応管内の温度は160〜230℃、圧力を0.5〜5MPa、反応時間5〜20分として水熱反応を与えることにより、酸やフラールなどの有害不純物の発生が抑制され、コーンコブに含まれるヘミセルロース成分をほぼ100%、キシロース、ヘミセルロースとして回収することが可能であった。収率が最良の条件は、190℃、1.8MPa、10分であった。上記条件の反応が穏やかな方に外れると収率の低下を生じ、反応が過剰な方に外れるとフラールの生成量が増加し、収率の低下が生ずる。 A component separation experiment was conducted using the waste medium used for enokitake cultivation as corn cob biomass. Hemicellulose component contained in corn cob is controlled by giving hydrothermal reaction at a temperature of 160-230 ° C, pressure of 0.5-5MPa, and reaction time of 5-20min. It was possible to recover almost 100% as xylose and hemicellulose. The conditions with the best yield were 190 ° C., 1.8 MPa, and 10 minutes. When the reaction under the above conditions is deviated to a gentle side, the yield is lowered, and when the reaction is deviated to an excessive side, the amount of fural produced is increased and the yield is lowered.

図1のチューブ式反応管2ではステンレス製シームレス管を使用したが、これの代替に図2に示すような昇温ヒータ8と恒温ヒータ9を内蔵したステンレス製金型16に反応管形状17を掘り込み、連続式水熱反応を行ったところ、型の熱容量によって反応管内の温度が安定し、装置の停止ごとに型を分割して連続運転中に焼きついたバイオマス成分をワイヤーブラシなどで除去したところ、メンテナンス性が飛躍的に向上し、生産が安定した。なお金型16内の昇温ヒータ8と恒温ヒータ9と水冷式冷却管10の設定温度が、互いのブロックに影響を与えないように、ブロック間には断熱材18を施した。 In the tube-type reaction tube 2 of FIG. 1, a stainless seamless tube is used, but instead of this, a reaction tube shape 17 is provided in a stainless steel mold 16 incorporating a temperature raising heater 8 and a constant temperature heater 9 as shown in FIG. When digging and performing a continuous hydrothermal reaction, the temperature in the reaction tube is stabilized by the heat capacity of the mold, and the mold is divided every time the equipment is stopped, and biomass components burned during continuous operation are removed with a wire brush etc. As a result, maintenance was dramatically improved and production was stabilized. In addition, a heat insulating material 18 was provided between the blocks so that the set temperatures of the temperature raising heater 8, the constant temperature heater 9, and the water-cooled cooling pipe 10 in the mold 16 do not affect the blocks.

本発明の実施例について、図を参照し説明する。本発明を実施するための最良の形態が得られるよう図1の連続高圧水熱反応装置を製作した。材料供給装置1の材料粉砕ニーダー4にはマスコロイダーを配置し、スラリー供給部分のスラリーポンプ5にはステンレススピンドルと硬質ゴムのキャビティーからなるモーノスクリューポンプを配置した。この時の吐出圧は最大3.0MPa、最大吐出能力は300cc/分に設計した。溶媒供給ポンプ7についてはダイアフラム型とし、材質はステンレスとテフロン(登録商標)部で構成し、吐出量は300cc/分、吐出圧は最大3.0MPaとした。チューブ式反応管2の昇温部の容量は0.8L、反応管径25.4mm、長さ2mの2段構成とし、200V・1.25kWのメタロックヒータを6本配置した。恒温部の反応器は容量3.6L、反応管径25.4mm、長さ2mの4段構成とし、200V・1.0kWのスーパーシーズヒーターを4本配置した。また水冷式冷却管は容量1.6Lの二重管構成とした。反応管の設計温度は230℃、設計圧力は3MPaとした。   Embodiments of the present invention will be described with reference to the drawings. The continuous high pressure hydrothermal reactor shown in FIG. 1 was manufactured so as to obtain the best mode for carrying out the present invention. A mass collider is disposed in the material crusher kneader 4 of the material supply apparatus 1, and a monoscrew pump including a stainless spindle and a hard rubber cavity is disposed in the slurry pump 5 of the slurry supply portion. The discharge pressure at this time was designed to be a maximum of 3.0 MPa and the maximum discharge capacity was 300 cc / min. The solvent supply pump 7 is a diaphragm type, made of stainless steel and Teflon (registered trademark), discharge rate of 300 cc / min, and discharge pressure of 3.0 MPa at maximum. The capacity of the temperature raising part of the tube-type reaction tube 2 was 0.8 L, the reaction tube diameter was 25.4 mm, and the length was 2 m. The constant-temperature reactor has a capacity of 3.6L, a reaction tube diameter of 25.4mm, and a length of 2m, and 4 stages of 200V / 1.0kW super seed heaters. The water-cooled cooling pipe has a double-tube configuration with a capacity of 1.6L. The design temperature of the reaction tube was 230 ° C., and the design pressure was 3 MPa.

バイオマス材料として長野県で産生するエノキタケ栽培後の廃培地を選定した。エノキタケ栽培用培地は、コーンコブを主に、米ぬか、ふすま由来の成分からなり、加えてエノキタケ菌体由来の糖質、タンパク質成分等が含まれてくる。本発明の実施時のバイオマスの成分組成は、リグニン18.75%、セルロース22.89%、ヘミセルロース36.08%とタンパク質やアミノ酸等の温水可溶化画分として20.67%であった。   The waste medium after enokitake cultivation produced in Nagano Prefecture was selected as the biomass material. The medium for enokitake mushroom cultivation is mainly composed of corn cob and rice bran and bran-derived components, and in addition, carbohydrates and protein components derived from enokitake mushroom cells. The component composition of the biomass at the time of carrying out the present invention was 18.75% lignin, 22.89% cellulose, 36.08% hemicellulose, and 20.67% as a warm water solubilized fraction of proteins and amino acids.

連続式高圧水熱反応装置の材料粉砕ニーダー4に選定した廃培地と水を投入し1mm以下の粒度に粉砕し、60℃で温水洗浄し遠心分離により脱水した後、固形分濃度が12から14%になるようスラリーを形成し、スラリーポンプ5を経てチューブ式反応管2へ導入した。 The waste medium and water selected in the material crusher kneader 4 of the continuous high-pressure hydrothermal reactor are added, pulverized to a particle size of 1 mm or less, washed with warm water at 60 ° C, dehydrated by centrifugation, and the solids concentration is 12 to 14 % Slurry was formed and introduced into the tube-type reaction tube 2 via the slurry pump 5.

装置側の設定は、反応管の恒温ヒータ9の設定温度200℃、昇温管ヒータ6段には20℃から200℃に至る傾斜温度を与えた。材料排出装置14は電磁シャッターバルブ12の開放時間0.15秒、二連のバルブの開閉のタイムラグ0.5秒とすることにより、反応管内圧力を1.79-1.81MPaに制御した。このとき、反応管内のスラリーの実温度は190±10℃で反応管通過時間すなわち水熱反応時間は10分、水冷式冷却管10出口温度のスラリー温度は50℃の極めて安定した連続運転が得られた。   As for the setting on the apparatus side, a set temperature of the constant temperature heater 9 of the reaction tube was 200 ° C., and a ramp temperature from 20 ° C. to 200 ° C. was given to the six stages of the temperature rising tube heater. The material discharge device 14 controlled the pressure in the reaction tube to 1.79-1.81 MPa by setting the electromagnetic shutter valve 12 to an opening time of 0.15 seconds and a double valve opening / closing time lag of 0.5 seconds. At this time, the actual temperature of the slurry in the reaction tube is 190 ± 10 ° C, the reaction tube passage time, that is, the hydrothermal reaction time is 10 minutes, and the slurry temperature at the outlet temperature of the water-cooled cooling tube 10 is 50 ° C. It was.

連続反応によって得た液は処理液槽14で回収し、得られたスラリーは遠心分離により固液分離した。ここで得られた固形分に対し、担子菌Irpex lacteus 由来の協和発酵社製酵素製剤ドリセラーゼで、0.02M,pH=5.0の酢酸ナトリウム緩衝溶液に溶解したものを除菌・脱塩・濃縮し、セルラーゼおよびキシラナーゼ活性を持つ分子量10000以上の画分を使用し、酵素濃度0.1%w/v、pH=5.0、30℃の条件下で24時間の反応を与えた。高圧水熱反応によりバイオマス成分の60.24%を一次水溶成分として回収した。また酵素分解によりバイオマス成分の17.10%がグルコース、セロオリゴ糖として回収した。最終固形残渣22.66%を化学修飾されていないリグニンとして回収する一方で、本実施例ではフラールの発生は僅かであった。   The liquid obtained by the continuous reaction was collected in the treatment liquid tank 14, and the obtained slurry was subjected to solid-liquid separation by centrifugation. The solid content obtained here was sterilized, desalted, and concentrated with Kyowa Hakko's enzyme preparation doriserase derived from basidiomycete Irpex lacteus, dissolved in 0.02 M, pH = 5.0 sodium acetate buffer solution, A fraction having a cellulase and xylanase activity and having a molecular weight of 10,000 or more was used, and a reaction was given for 24 hours under the conditions of an enzyme concentration of 0.1% w / v, pH = 5.0, and 30 ° C. 60.24% of biomass components were recovered as primary water-soluble components by high-pressure hydrothermal reaction. Moreover, 17.10% of the biomass components were recovered as glucose and cellooligosaccharide by enzymatic decomposition. While the final solid residue of 22.66% was recovered as lignin without chemical modification, in this example, the occurrence of fouling was slight.

高圧水熱反応による一次水溶成分に酸処理を施し、構成糖に分解して主要な糖組成を分析したところ、グルコース:キシロース:ガラクトース:L-アラビノース=8.2:69.9:5.9:16.0となった。一方、既報によるとコーンコブのキシランはアラビノキシランであり、キシロース対アラビノースの比が3〜4対1であり、今回の組成は本実施例と一致し、可溶化液中の約86%がキシラン由来である事が分かった。そこで、キシラン分解物の分子量分布を見るために、HPLCおよび、MALDI TOFMS分析を行ったところ、幅広い分子量分布を持ったキシロオリゴ糖が含まれていた。また、重合度が10〜15の多糖類画分も存在していた。 When the primary water-soluble component by high-pressure hydrothermal reaction was subjected to acid treatment and decomposed into constituent sugars to analyze the main sugar composition, glucose: xylose: galactose: L-arabinose = 8.2: 69.9: 5.9: 16.0. On the other hand, according to a previous report, the xylan of corn cob is arabinoxylan, and the ratio of xylose to arabinose is 3 to 4 to 1, the composition of this time is consistent with this example, and about 86% in the solubilized solution is derived from xylan I knew that there was. Therefore, when HPLC and MALDI TOFMS analysis were performed in order to see the molecular weight distribution of the xylan decomposition product, xylooligosaccharides having a wide molecular weight distribution were included. There was also a polysaccharide fraction with a degree of polymerization of 10-15.

材料粉砕と材料供給の間に温水洗浄工程を配置する効果を検証するため、温水洗浄工程を配置せずに、廃培地の処理を行った。温水洗浄工程を配置して得られた処理液を、配置せずに得られた処理液と比較したところ、回収されるキシロオリゴ糖は39%増収し、着色物質は37%減少、イオン性物質は24%減少した。 In order to verify the effect of arranging the hot water washing step between the material grinding and the material supply, the waste medium was processed without arranging the hot water washing step. When the treatment liquid obtained by arranging the hot water washing process was compared with the treatment liquid obtained without arrangement, the recovered xylooligosaccharide increased by 39%, the coloring substance decreased by 37%, and the ionic substance 24% decrease.

以上のように、本発明によって、成分の安定していないバイオマスに、成分分離に最適な水熱反応の条件である温度・時間・圧力が厳密に与えられた。また5日間という長時間にわたる安定的な連続運転が可能となり、水熱反応管内に腐食を生じることはなく、処理液に酸やフラールなどの有害不純物が発生しないことに加えて、きわめて理想的な成分の回収が可能であった。   As described above, according to the present invention, the temperature, time, and pressure, which are the conditions of the hydrothermal reaction optimum for component separation, were strictly given to the biomass whose components are not stable. In addition, stable continuous operation over a long period of 5 days is possible, corrosion does not occur in the hydrothermal reaction tube, and no harmful impurities such as acid and fouling are generated in the processing solution, which is extremely ideal. It was possible to recover the components.

以上本発明によれば、特殊なプラント材料や強酸などの環境負荷の高い化学薬品を使用することなく、バイオマス資源に精密な反応エネルギーを与えることによりセルロース、ヘミセルロース、リグニン成分の分離が可能となる。またフルフラールなど発酵阻害副生成物を発生することなく、グルコース、キシロースなどの単糖類、セロオリゴ糖、キシロオリゴ糖、非化学修飾リグニンを効率良く分離生成することができる。これにより農業、発酵醸造産業などから排出される資源の循環利用と、得られる素材の医薬、食品、工業材料、エネルギー資源への利用が可能となる。   As described above, according to the present invention, cellulose, hemicellulose, and lignin components can be separated by giving precise reaction energy to biomass resources without using special plant materials or chemicals with high environmental impact such as strong acids. . In addition, monosaccharides such as glucose and xylose, cellooligosaccharides, xylooligosaccharides, and non-chemically modified lignin can be efficiently separated and produced without generating fermentation inhibition byproducts such as furfural. This makes it possible to use resources discharged from agriculture, the fermentation brewing industry, etc., and to use the resulting materials for medicines, foods, industrial materials, and energy resources.

連続式高圧水熱反応装置の概要を表す図Diagram showing outline of continuous high-pressure hydrothermal reactor チューブ式反応管の応用例を表す図Diagram showing application example of tube-type reaction tube

符号の説明Explanation of symbols

1 材料供給装置
2 チューブ式反応管
3 材料排出装置
4 材料粉砕ニーダー
5 スラリーポンプ
6 溶媒槽
7 溶媒供給ポンプ
8 昇温ヒータ
9 恒温ヒータ
10 水冷式冷却管
11 水
12 電磁式シャッターバルブ
13 圧力緩衝室
14 処理液槽
15 エアー
16 ステンレス製金型
17 反応管形状
18 断熱材
DESCRIPTION OF SYMBOLS 1 Material supply apparatus 2 Tube type reaction tube 3 Material discharge | emission apparatus 4 Material grinding | pulverization kneader 5 Slurry pump 6 Solvent tank 7 Solvent supply pump 8 Temperature rising heater 9 Constant temperature heater 10 Water cooling type cooling pipe 11 Water 12 Electromagnetic shutter valve 13 Pressure buffer chamber 14 Treatment liquid tank 15 Air 16 Stainless steel mold 17 Reaction tube shape 18 Heat insulating material

Claims (7)

バイオマスの構成成分を有用資源として成分分離する水熱反応装置において、材料粉砕ニーダーと材料輸送速度を制御可能なスラリーポンプと溶媒供給ポンプにより構成される材料供給装置と複数段の昇温ヒータおよび恒温ヒータと水冷式冷却管により温度が制御される耐食性金属によって構成されるチューブ式反応管と圧力緩衝室を中心に置いた二連の電磁式シャッターバルブにより構成される材料排出装置からなりチューブ式反応管内でバイオマスに厳密に制御された高圧水熱反応条件を与えることを特徴とする連続式高圧水熱反応装置。 In a hydrothermal reactor that separates components of biomass as useful resources, a material supply device comprising a material crusher kneader, a slurry pump capable of controlling the material transport rate, and a solvent supply pump, a multi-stage heating heater, and a constant temperature Tube reaction consisting of a tube-type reaction tube composed of a corrosion-resistant metal whose temperature is controlled by a heater and a water-cooled cooling tube and a material discharge device composed of two electromagnetic shutter valves centered on a pressure buffer chamber A continuous high-pressure hydrothermal reactor characterized by giving strictly controlled high-pressure hydrothermal reaction conditions to biomass in a tube. 材料粉砕と材料供給の間にバイオマス材料に対して40〜80℃の温水洗浄工程を配置することを特徴とする請求項1記載の連続式高圧水熱反応装置によるバイオマス処理方法。 The biomass treatment method using a continuous high-pressure hydrothermal reactor according to claim 1, wherein a hot water washing step of 40 to 80 ° C is arranged for the biomass material between the material grinding and the material supply. バイオマス材料の沈降を防止して流れを制御するため、チューブ式反応管の傾斜角度を4〜30度、反応管の径を15〜50mmになるよう材料供給装置は材料排出装置より高い位置に配置され上部より重力に沿って材料をフローさせることを特徴とする請求項1記載の連続式高圧水熱反応装置によるバイオマス処理方法。 In order to control the flow by preventing sedimentation of the biomass material, the material supply device is positioned higher than the material discharge device so that the inclination angle of the tube type reaction tube is 4 to 30 degrees and the diameter of the reaction tube is 15 to 50 mm. The biomass processing method using a continuous high-pressure hydrothermal reactor according to claim 1, wherein the material is caused to flow along the gravity from above. バイオマス材料の沈降を防止して流れを制御するため、チューブ式反応管内にスパイラル状の溝加工を施し、管に音波振動を付与することを特徴とする請求項1の連続式高圧水熱反応装置によるバイオマス処理方法。 2. A continuous high-pressure hydrothermal reactor according to claim 1, wherein a spiral groove is formed in the tube-type reaction tube and sonic vibration is applied to the tube in order to control the flow by preventing sedimentation of the biomass material. Biomass processing method. 昇温ヒータは少なくても2段以上の温度ブロックで制御されることを特徴とする請求項1記載の連続式高圧水熱反応装置によるバイオマスの処理方法。 The method for treating biomass by a continuous high-pressure hydrothermal reactor according to claim 1, wherein the temperature raising heater is controlled by at least two temperature blocks. コーンコブ系のバイオマスに対して、反応管内で160〜230℃、0.5〜5MPa、5〜20分の水熱反応を与えることにより、ヘミセルロース成分、非結晶性セルロース成分と結晶性セルロースおよびリグニン成分を完全分離することを特徴とする請求項1記載の連続式高圧水熱反応装置のバイオマス処理方法。 Condensation of hemicellulose component, non-crystalline cellulose component, crystalline cellulose and lignin component by giving hydrothermal reaction to corn-cobb biomass in a reaction tube at 160-230 ° C, 0.5-5MPa, 5-20min The biomass treatment method for a continuous high-pressure hydrothermal reactor according to claim 1, wherein the biomass is separated. チューブ式反応管の代替に電気ヒータを内蔵した金属型に反応管形状を掘り込み、管を左右に分割する機能を有することを特徴とする請求項1記載の連続式高圧水熱反応装置。 2. The continuous high-pressure hydrothermal reactor according to claim 1, which has a function of digging the shape of a reaction tube into a metal mold incorporating an electric heater in place of the tube reaction tube and dividing the tube into left and right.
JP2007095544A 2007-03-30 2007-03-30 Continuous high pressure hydrothermal reaction apparatus for treating biomass Pending JP2008253861A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007095544A JP2008253861A (en) 2007-03-30 2007-03-30 Continuous high pressure hydrothermal reaction apparatus for treating biomass
PCT/JP2008/055857 WO2008120662A1 (en) 2007-03-30 2008-03-27 Continuous high-pressure hydrothermal reaction apparatus for biomass treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095544A JP2008253861A (en) 2007-03-30 2007-03-30 Continuous high pressure hydrothermal reaction apparatus for treating biomass

Publications (1)

Publication Number Publication Date
JP2008253861A true JP2008253861A (en) 2008-10-23

Family

ID=39808244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095544A Pending JP2008253861A (en) 2007-03-30 2007-03-30 Continuous high pressure hydrothermal reaction apparatus for treating biomass

Country Status (2)

Country Link
JP (1) JP2008253861A (en)
WO (1) WO2008120662A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066541A (en) * 2007-09-14 2009-04-02 Hyogo Prefecture Hydrothermal reaction treatment apparatus and hydrothermal reaction treatment method
JP2010184965A (en) * 2009-02-10 2010-08-26 Tofuku Shoji Kk System for converting water-containing organic waste into fuel
JP2010190467A (en) * 2009-02-17 2010-09-02 Itec Co Ltd Heating device
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2013540163A (en) * 2010-03-24 2013-10-31 アンタコール ピーティーイー.リミテッド Method and apparatus for processing solid fluid mixtures
JP2015053292A (en) * 2014-12-04 2015-03-19 ギガフォトン株式会社 Extreme ultraviolet light source device and target supply system therefore
JP2017109187A (en) * 2015-12-18 2017-06-22 昭和電工株式会社 Hydrolysis method and apparatus of vegetable biomass
CN107614535A (en) * 2015-05-18 2018-01-19 物产食品科技股份有限公司 The manufacture method of modified polyxylan

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058444B4 (en) * 2007-11-21 2020-03-26 Antacor Ltd. Method and use of a device for the production of fuels, humus or suspensions thereof
DE102010000578A1 (en) 2010-02-26 2011-09-01 G+R Technology Group Ag Reactor for hydrothermal carbonization of biomass and method for operating the reactor
DE102010000580A1 (en) 2010-02-26 2011-09-01 G+R Technology Group Ag A system and method for providing a mixture of different biomass to a plant for recovering a reaction product from the different biomass
CA2791665C (en) 2011-01-13 2016-03-15 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
ES2768236T3 (en) * 2011-02-05 2020-06-22 Grenol Ip Gmbh Continuous reactor for hydrothermal carbonization
JP2013034988A (en) * 2011-07-14 2013-02-21 Toyo Tire & Rubber Co Ltd Highly-efficient methane fermentation of garbage using subcritical water treatment
US9662623B2 (en) * 2012-02-09 2017-05-30 Tongji University System and method for hydrothermal reaction
CN108941151B (en) * 2018-06-07 2020-05-29 深圳市华星光电技术有限公司 Liquid crystal screen liquid crystal recycling and metering device and liquid crystal screen liquid crystal recycling and metering method
CN109351297B (en) * 2018-11-29 2023-10-17 清华大学 Hydrothermal reaction system and operation method thereof
CN110128488B (en) * 2019-04-28 2022-05-10 滁州润微生物科技有限公司 Pretreatment method and system for lignocellulose prepared based on xylo-oligosaccharide
US11761582B2 (en) 2019-09-05 2023-09-19 Dhf America, Llc Pressure regulation system and method for a fluidic product having particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843125B2 (en) * 1998-02-13 2011-12-21 木村化工機株式会社 Pressure control mechanism of slurry liquid high temperature and high pressure reaction treatment system
EP1268717A4 (en) * 2000-03-23 2004-03-17 Univ West Virginia Method of converting agricultural waste to liquid fuel and associated apparatus
JP2001327943A (en) * 2000-05-23 2001-11-27 Japan Organo Co Ltd Treatment device for decomposing nonmetal member constituting transformer, capacitor or the like contaminated by pcb or pressure-sensitive paper containing pcb and method using this device
JP2003033746A (en) * 2001-07-23 2003-02-04 Japan Organo Co Ltd Device for treating waste for ship and method for treating waste in ship
JP2005027541A (en) * 2003-07-09 2005-02-03 Toshiba Corp Method for producing monosaccharides and / or oligosaccharides and method for separating wood component
JP4947961B2 (en) * 2004-11-24 2012-06-06 国立大学法人長岡技術科学大学 Pressurized hot water treatment method for mushroom cultivation waste fungus bed, compost production method using the same, and compost by this production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066541A (en) * 2007-09-14 2009-04-02 Hyogo Prefecture Hydrothermal reaction treatment apparatus and hydrothermal reaction treatment method
JP2010184965A (en) * 2009-02-10 2010-08-26 Tofuku Shoji Kk System for converting water-containing organic waste into fuel
JP2010190467A (en) * 2009-02-17 2010-09-02 Itec Co Ltd Heating device
JP2013540163A (en) * 2010-03-24 2013-10-31 アンタコール ピーティーイー.リミテッド Method and apparatus for processing solid fluid mixtures
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2015053292A (en) * 2014-12-04 2015-03-19 ギガフォトン株式会社 Extreme ultraviolet light source device and target supply system therefore
CN107614535A (en) * 2015-05-18 2018-01-19 物产食品科技股份有限公司 The manufacture method of modified polyxylan
JP2017109187A (en) * 2015-12-18 2017-06-22 昭和電工株式会社 Hydrolysis method and apparatus of vegetable biomass

Also Published As

Publication number Publication date
WO2008120662A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP2008253861A (en) Continuous high pressure hydrothermal reaction apparatus for treating biomass
EP2185734B1 (en) A method and a system for the pretreatment of lignocellulosic material
JP4990271B2 (en) Method and apparatus for saccharification and decomposition of cellulosic biomass
CA2713529C (en) Organic material production system using biomass material and method
US10344342B2 (en) Method of and apparatus for producing saccharified solution by using biomass as raw material, and continuous reactor
US20100285574A1 (en) Biomass hydrothermal decomposition apparatus and method
US20120178154A1 (en) Organic material production system using biomass material and method
CA2654306C (en) Biomass hydrothermal decomposition apparatus and method
JP5314917B2 (en) Method and apparatus for saccharification and decomposition of cellulosic biomass
JP5103260B2 (en) Method and apparatus for saccharification and decomposition of cellulosic biomass
JP2010279255A (en) Method for saccharifying biomass
EP3094734A1 (en) Process for fractionation of oligosaccharides from agri-waste
JP2005027541A5 (en) Method for producing monosaccharide and / or oligosaccharide
JP2005027541A (en) Method for producing monosaccharides and / or oligosaccharides and method for separating wood component
JP2010081855A (en) Method for producing saccharides
US9902982B2 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
CN103636917A (en) Method for extracting rice protein from rice residue by using hydraulic cavitation technology
JP2015122994A (en) Method and device for manufacturing saccharified liquid from biomass
JP4726035B2 (en) Production method of sugar and solid fuel using biomass as raw material
JP6141806B2 (en) Continuous reactor for cellulosic biomass slurry
JP5849161B2 (en) Saccharified liquid manufacturing method and saccharified liquid manufacturing apparatus using cellulosic biomass
JP2010057506A (en) Method for production of monosaccharide and/or oligosaccharides, and method for isolation of wood component
JP2015123080A5 (en)
GB2556397A (en) Method for production of sugars from biomass
JP2016028564A (en) Ethanol manufacturing method from lignocellulose-based raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709