JP2008249645A - Current detection circuit, and initialization method for current detection circuit - Google Patents

Current detection circuit, and initialization method for current detection circuit Download PDF

Info

Publication number
JP2008249645A
JP2008249645A JP2007094315A JP2007094315A JP2008249645A JP 2008249645 A JP2008249645 A JP 2008249645A JP 2007094315 A JP2007094315 A JP 2007094315A JP 2007094315 A JP2007094315 A JP 2007094315A JP 2008249645 A JP2008249645 A JP 2008249645A
Authority
JP
Japan
Prior art keywords
initialization
detection circuit
current detection
unit
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007094315A
Other languages
Japanese (ja)
Other versions
JP4877018B2 (en
Inventor
Koichi Imai
考一 今井
Reiji Okuno
礼二 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007094315A priority Critical patent/JP4877018B2/en
Publication of JP2008249645A publication Critical patent/JP2008249645A/en
Application granted granted Critical
Publication of JP4877018B2 publication Critical patent/JP4877018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current detection circuit capable of restraining fluctuation of an offset voltage generated in the current detection circuit by an external unnecessary magnetic field, even under current detection, and an initialization method for the current detection circuit, in the pulse current detection circuit using a magneto-resistive element. <P>SOLUTION: The current detection circuit 1 has a magneto-resistive part 10 having the magneto-resistive elements 11-14, and for detecting a magnetic field generated in response to a pulse current to generate a detection signal in response to the magnetic field, and an initialization part 40 having an initialization coil 44 for supplying an initialization magnetic field to the magneto-resistive elements 11-14, and for initializing the magneto-resistive elements 11-14 in response to leading-up of the detection signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気抵抗素子を用いた電流検出回路及びこの電流検出回路の初期化方法に関するものである。   The present invention relates to a current detection circuit using a magnetoresistive element and an initialization method for the current detection circuit.

電流検出回路として磁気抵抗素子を用いたものが考案されている。この電流検出回路は、電流により発生する磁界に応じて磁気抵抗素子の抵抗値を変化させ、この抵抗値の変化を電圧値の変化に変換する。磁気抵抗素子としては、MR素子やGMR素子などが知られている。この種の磁気抵抗素子では、磁界に対する抵抗値特性がヒステリシス特性を示すので、ある磁界に対して異なる抵抗値(二つの抵抗値のうち何れか不定)を示すことがある。そのために、磁気抵抗素子の抵抗値が変動してしまい、電流検出回路のオフセット電圧が変動してしまう。   A circuit using a magnetoresistive element has been devised as a current detection circuit. The current detection circuit changes the resistance value of the magnetoresistive element in accordance with the magnetic field generated by the current, and converts the change in resistance value into a change in voltage value. Known magnetoresistive elements include MR elements and GMR elements. In this type of magnetoresistive element, the resistance value characteristic with respect to the magnetic field exhibits a hysteresis characteristic, and therefore may have a different resistance value (one of the two resistance values is indeterminate) with respect to a certain magnetic field. For this reason, the resistance value of the magnetoresistive element varies, and the offset voltage of the current detection circuit varies.

特許文献1には、磁気抵抗素子の抵抗値の変動を防止するための磁気抵抗素子の初期化方法が記載されている。この磁気抵抗素子の初期化方法では、一旦、磁気抵抗素子に制御磁界を加えて磁気抵抗素子を強制的に飽和させ、ある磁界に対して一つの抵抗値のみを示すように磁気抵抗素子を初期化している。その際、この磁気抵抗素子の初期化方法では、初期化を、基準クロックに同期したタイミングで繰り返し行っている。
特許第3368964号公報
Patent Document 1 describes a method of initializing a magnetoresistive element for preventing fluctuations in the resistance value of the magnetoresistive element. In this method of initializing the magnetoresistive element, the magnetoresistive element is temporarily saturated by applying a control magnetic field to the magnetoresistive element, and the magnetoresistive element is initialized so as to show only one resistance value for a certain magnetic field. It has become. At this time, in this magnetoresistive element initialization method, the initialization is repeated at a timing synchronized with the reference clock.
Japanese Patent No. 3368964

しかしながら、電流検出回路において、特許文献1に記載の磁気抵抗素子の初期化方法を用いると、初期化中、磁気抵抗素子が飽和しているので、電流を正確に電圧に変換することができない。したがって、この種の電流検出回路を、例えば、スイッチング電源のような、フィードバック制御や保護制御のために常に電流検出を要する装置に用いることが困難であった。   However, in the current detection circuit, when the magnetoresistive element initialization method described in Patent Document 1 is used, the current cannot be accurately converted into voltage because the magnetoresistive element is saturated during initialization. Therefore, it has been difficult to use this type of current detection circuit for an apparatus that always requires current detection for feedback control and protection control, such as a switching power supply.

そこで、本発明は、電流検出中でも外部不要磁界によって電流検出回路が発生するオフセット電圧の変動を抑制することが可能な電流検出回路及び電流検出回路の初期化方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a current detection circuit and an initialization method for the current detection circuit that can suppress fluctuations in offset voltage generated by the current detection circuit due to an external unnecessary magnetic field even during current detection.

本発明の電流検出回路は、磁気抵抗素子を有し、パルス電流に応じて発生する磁界を検出して、該磁界に応じた検出信号を生成する磁気抵抗部と、磁気抵抗素子に初期化磁界を供給する初期化コイルを有し、検出信号の立下りに応じて磁気抵抗素子の初期化を行う初期化部とを備える。   The current detection circuit of the present invention has a magnetoresistive element, detects a magnetic field generated according to a pulse current, and generates a detection signal according to the magnetic field, and an initialization magnetic field in the magnetoresistive element And an initialization unit that initializes the magnetoresistive element in response to the fall of the detection signal.

この電流検出回路によれば、初期化部が、検出信号の立下りに応じて、初期化コイルから初期化磁界を供給することによって磁気抵抗素子の初期化を行うことができるので、パルス電流に同期して、パルス電流が流れていないときに、磁気抵抗素子の初期化を行うことができる。したがって、この電流検出回路によれば、電流検出中でも必要な電流情報を失うことなく、オフセット電圧の変動を抑制することが可能となる。   According to this current detection circuit, the initialization unit can initialize the magnetoresistive element by supplying the initialization magnetic field from the initialization coil in response to the fall of the detection signal. Synchronously, the magnetoresistive element can be initialized when no pulse current is flowing. Therefore, according to this current detection circuit, it is possible to suppress fluctuations in the offset voltage without losing necessary current information even during current detection.

上記した電流検出回路は、初期化部が磁気抵抗素子の初期化を行う期間、直前の検出信号の値を保持して出力する保持部を更に備えることが好ましい。   The current detection circuit described above preferably further includes a holding unit that holds and outputs the value of the immediately preceding detection signal during the period in which the initialization unit initializes the magnetoresistive element.

この構成によれば、初期化時にノイズが検出信号として出力されても、保持部が遮断して、誤った情報が外部へ漏れることを防止することができる。   According to this configuration, even when noise is output as a detection signal at the time of initialization, it is possible to prevent the holding unit from being interrupted and erroneous information from leaking to the outside.

上記した初期化部は、検出信号の値が閾値以上である場合に磁気抵抗素子の初期化を行い、検出信号の値が閾値未満である場合に磁気抵抗素子の初期化を行なわないことが好ましい。   The initialization unit described above preferably initializes the magnetoresistive element when the value of the detection signal is equal to or greater than the threshold value, and does not initialize the magnetoresistive element when the value of the detection signal is less than the threshold value. .

この構成によれば、検出信号にノイズが重畳されていても、初期化部がノイズを検出して誤った初期化を行うことを抑制することができる。   According to this configuration, even when noise is superimposed on the detection signal, it is possible to prevent the initialization unit from detecting noise and performing erroneous initialization.

また、上記した初期化部は、検出信号の立上がりを検出するまで磁気抵抗素子の初期化を継続することが好ましい。   Further, it is preferable that the initialization unit described above continues initialization of the magnetoresistive element until the rising edge of the detection signal is detected.

この構成によれば、初期化部は、パルス電流が流れていない期間を最大限に利用して、磁気抵抗素子の初期化を十分に行うことができる。また、保持部は、パルス電流が流れていない期間、検出信号を遮断することができるので、誤った電流情報が外部へ漏れることを防止することができる。   According to this configuration, the initialization unit can fully initialize the magnetoresistive element by making maximum use of a period during which no pulse current flows. In addition, since the holding unit can block the detection signal during a period when the pulse current is not flowing, erroneous current information can be prevented from leaking outside.

また、上記した初期化部は、カウンタを有し、検出信号の立下りを検出した回数が閾値に達した場合に磁気抵抗素子の初期化を行うことが好ましい。   The initialization unit described above preferably includes a counter, and initializes the magnetoresistive element when the number of times the detection signal falls is detected reaches a threshold value.

実使用状態において、磁気抵抗素子の抵抗値が変動する程の大きな外部磁界が磁気抵抗素子に印加される頻度は少ないので、磁気抵抗素子の初期化を頻繁に行う必要はない。この構成によれば、初期化の回数を減らすことができるので、低消費電流化が可能となる。特に、初期化コイルには比較的大きな電流が必要となるが、この初期化コイルの消費電流の低減を図ることができる。   In an actual use state, since the external magnetic field that is large enough to change the resistance value of the magnetoresistive element is less frequently applied to the magnetoresistive element, it is not necessary to frequently initialize the magnetoresistive element. According to this configuration, the number of initializations can be reduced, so that the current consumption can be reduced. In particular, although a relatively large current is required for the initialization coil, the current consumption of the initialization coil can be reduced.

本発明の電流検出回路の初期化方法は、磁気抵抗素子を有し、パルス電流に応じて発生する磁界を検出して、該磁界に応じた検出信号を生成する磁気抵抗部と、磁気抵抗素子に初期化磁界を供給する初期化コイルを有し、検出信号の立下りに応じて磁気抵抗素子の初期化を行う初期化部とを備える電流検出回路において、初期化部によって磁気抵抗素子を初期化する。   An initialization method for a current detection circuit according to the present invention includes a magnetoresistive element that includes a magnetoresistive element, detects a magnetic field generated according to a pulse current, and generates a detection signal according to the magnetic field, and a magnetoresistive element In an electric current detection circuit having an initialization coil for supplying an initialization magnetic field to an initialization unit for initializing the magnetoresistive element in response to a fall of the detection signal, the initialization unit initializes the magnetoresistive element. Turn into.

この電流検出回路の初期化方法では、初期化部が、検出信号の立下りに応じて、初期化コイルから初期化磁界を供給することによって磁気抵抗素子の初期化を行うことができるので、パルス電流に同期して、パルス電流が流れていないときに、磁気抵抗素子の初期化を行うことができる。したがって、この電流検出回路の初期化方法によれば、電流検出中でも必要な電流情報を失うことなく、オフセット電圧の変動を抑制することが可能となる。   In this current detection circuit initialization method, the initialization unit can initialize the magnetoresistive element by supplying an initialization magnetic field from the initialization coil in response to the fall of the detection signal. In synchronization with the current, the magnetoresistive element can be initialized when the pulse current is not flowing. Therefore, according to the initialization method of the current detection circuit, it is possible to suppress fluctuations in the offset voltage without losing necessary current information even during current detection.

本発明によれば、電流検出中でもオフセット電圧の変動を抑制することが可能な電流検出回路及び電流検出回路の初期化方法を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the initialization method of the current detection circuit and current detection circuit which can suppress the fluctuation | variation of an offset voltage even during current detection can be obtained.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
(GMR素子)
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
(GMR element)

まず、磁気抵抗素子としてGMR素子を説明する。図3は、GMR素子を示す斜視図であり、図4は、GMR素子の磁界に対する抵抗値特性を示す図である。   First, a GMR element will be described as a magnetoresistive element. FIG. 3 is a perspective view showing the GMR element, and FIG. 4 is a diagram showing resistance value characteristics of the GMR element with respect to the magnetic field.

図3に示すように、GMR素子は、受ける磁界の大きさ及び方向に応じて、抵抗値が変化する特性を有している。また、GMR素子は、軸線X方向(長手方向)の磁界に対して曲線X1,X2のようにヒステリシス特性を有している。そのために、GMR素子は、軸線X方向の磁界によって、軸線Y方向の磁界に対する抵抗値特性が異なってしまう。例えば、GMR素子は、軸線X方向の磁界に対して曲線X1の特性を示すときには、軸線Y方向の磁界に対して曲線Y1の抵抗値特性を示し、軸線X方向の磁界に対して曲線X2の特性を示すときには、軸線Y方向の磁界に対して曲線Y2の抵抗値特性を示す。そのために、ある磁界H1に対して異なる抵抗値R1又はR2を示すことがある。その結果、GMR素子の磁気抵抗素子の抵抗値が変動してしまい、後述する電流検出回路のオフセット電圧が変動してしまう。   As shown in FIG. 3, the GMR element has a characteristic that the resistance value changes according to the magnitude and direction of the magnetic field received. Further, the GMR element has hysteresis characteristics as indicated by the curves X1 and X2 with respect to the magnetic field in the axis X direction (longitudinal direction). Therefore, the GMR element has different resistance characteristics with respect to the magnetic field in the axis Y direction depending on the magnetic field in the axis X direction. For example, when the GMR element exhibits the characteristic of the curve X1 with respect to the magnetic field in the axis X direction, the GMR element exhibits the resistance characteristic of the curve Y1 with respect to the magnetic field in the axis Y direction, and the curve X2 with respect to the magnetic field in the axis X direction. When the characteristic is shown, the resistance value characteristic of the curve Y2 is shown with respect to the magnetic field in the axis Y direction. Therefore, a different resistance value R1 or R2 may be shown for a certain magnetic field H1. As a result, the resistance value of the magnetoresistive element of the GMR element changes, and the offset voltage of the current detection circuit described later changes.

そこで、本発明では、一旦、軸線X方向に制御磁界を加えて強制的に軸線X方向に磁気飽和させ、例えば、軸線X方向に対する特性が常に曲線X1(又は曲線X2)を示して、軸線Y方向に対する抵抗値特性が常に曲線Y1(又は曲線Y2)を示すようにしようとするものである。
(電流検出回路)
Therefore, in the present invention, a control magnetic field is once applied in the axis X direction to forcibly saturate in the axis X direction. For example, the characteristic with respect to the axis X direction always indicates the curve X1 (or curve X2), and the axis Y The resistance value characteristic with respect to the direction always tries to show the curve Y1 (or curve Y2).
(Current detection circuit)

次に、本発明の実施形態に係る電流検出回路について説明する。図1は、本発明の実施形態に係る電流検出回路を示す回路図である。図1に示す電流検出回路1は、GMRブリッジ部(磁気抵抗部)10と、増幅部20と、保持部30と、初期化部40とを備えている。   Next, the current detection circuit according to the embodiment of the present invention will be described. FIG. 1 is a circuit diagram showing a current detection circuit according to an embodiment of the present invention. The current detection circuit 1 shown in FIG. 1 includes a GMR bridge unit (magnetic resistance unit) 10, an amplification unit 20, a holding unit 30, and an initialization unit 40.

GMRブリッジ部10は、ホイートストンブリッジを構成する4つのGMR素子11〜14を有している。具体的には、GMR素子11は高電源ラインVddと第1の出力端子15との間に接続されており、GMR素子12は第1の出力端子15とグランド電源ラインGとの間に接続されている。同様に、GMR素子13は高電源ラインVddと第2の出力端子16との間に接続されており、GMR素子12は第2の出力端子16とグランド電源ラインGとの間に接続されている。   The GMR bridge section 10 has four GMR elements 11 to 14 constituting a Wheatstone bridge. Specifically, the GMR element 11 is connected between the high power supply line Vdd and the first output terminal 15, and the GMR element 12 is connected between the first output terminal 15 and the ground power supply line G. ing. Similarly, the GMR element 13 is connected between the high power supply line Vdd and the second output terminal 16, and the GMR element 12 is connected between the second output terminal 16 and the ground power supply line G. .

GMRブリッジ部10は、例えば、回路基板における配線パターン上に搭載される。このとき、GMR素子11〜14は、同一方向の磁界に対して、GMR素子11の抵抗値の増減とGMR素子14の抵抗値の増減とが略同一であり、GMR素子12の抵抗値の増減とGMR素子13の抵抗値の増減とが略同一となるように配置される。且つ、GMR素子11〜14は、同一方向の磁界に対して、GMR素子11,14の抵抗値の増減とGMR素子13,14の抵抗値の増減とが反対となるように配置されている。   The GMR bridge unit 10 is mounted on a wiring pattern on a circuit board, for example. At this time, in the GMR elements 11 to 14, the increase and decrease of the resistance value of the GMR element 11 and the increase and decrease of the resistance value of the GMR element 14 are substantially the same with respect to the magnetic field in the same direction. And the increase / decrease of the resistance value of the GMR element 13 are substantially the same. Further, the GMR elements 11 to 14 are arranged so that the increase and decrease of the resistance value of the GMR elements 11 and 14 and the increase and decrease of the resistance value of the GMR elements 13 and 14 are opposite to the magnetic field in the same direction.

詳説すれば、GMR素子11〜14は、磁界が印加されていない状態において、同一の抵抗値Rを有しており、これらのブリッジの均衡が保たれる。このとき、第1の出力端子15と第2の出力端子16との電位差がゼロとなり、GMRブリッジ部10の差動出力電圧(差動の検出信号)はゼロとなる。次に、GMR素子11〜14に同一方向の磁界が印加されると、例えば、GMR素子11,14の抵抗値がΔRだけ減少し、GMR素子12,13の抵抗値がΔRだけ増加する。よって、第1の出力端子15の電圧が増加すると共に第2の出力端子16の電圧が減少して、GMRブリッジ部10は差動出力電圧ΔVoを出力することとなる。   Specifically, the GMR elements 11 to 14 have the same resistance value R in a state where no magnetic field is applied, and the balance of these bridges is maintained. At this time, the potential difference between the first output terminal 15 and the second output terminal 16 becomes zero, and the differential output voltage (differential detection signal) of the GMR bridge unit 10 becomes zero. Next, when a magnetic field in the same direction is applied to the GMR elements 11 to 14, for example, the resistance values of the GMR elements 11 and 14 are decreased by ΔR, and the resistance values of the GMR elements 12 and 13 are increased by ΔR. Therefore, the voltage at the first output terminal 15 increases and the voltage at the second output terminal 16 decreases, and the GMR bridge unit 10 outputs the differential output voltage ΔVo.

このように、GMRブリッジ部10は、電流に応じて発生する磁界を検出して、この磁界に応じた抵抗値の変化を差動電圧値ΔVoの変化に変換する。   As described above, the GMR bridge unit 10 detects the magnetic field generated according to the current, and converts the change in the resistance value according to the magnetic field into the change in the differential voltage value ΔVo.

増幅部20は、GMRブリッジ部10からの差動出力電圧を増幅し、保持部30へ出力する。増幅部20は、例えば、誤差増幅アンプ21を含む。誤差増幅アンプ21のプラス入力端子は抵抗素子22を介してGMRブリッジ部10の第1の出力端子15に接続されており、プラス入力端子とグランド電源ラインGとの間には抵抗素子23が接続されている。また、誤差増幅アンプ21のマイナス入力端子は抵抗素子24を介してGMRブリッジ部10の第2の出力端子16に接続されており、マイナス入力端子と出力端子との間には抵抗素子25が接続されている。誤差増幅アンプ21の出力端子は、保持部30に接続されている。   The amplifying unit 20 amplifies the differential output voltage from the GMR bridge unit 10 and outputs it to the holding unit 30. The amplification unit 20 includes, for example, an error amplification amplifier 21. The plus input terminal of the error amplification amplifier 21 is connected to the first output terminal 15 of the GMR bridge section 10 via the resistor element 22, and the resistor element 23 is connected between the plus input terminal and the ground power supply line G. Has been. Further, the negative input terminal of the error amplification amplifier 21 is connected to the second output terminal 16 of the GMR bridge unit 10 via the resistance element 24, and the resistance element 25 is connected between the negative input terminal and the output terminal. Has been. The output terminal of the error amplification amplifier 21 is connected to the holding unit 30.

保持部30は、GMR素子11〜14の初期化が行われている期間、直前の増幅部20の出力電圧を保持して出力する。保持部30は、この動作を初期化部40からのタイミング信号に応じて行う。例えば、保持部30としては、サンプリング/ホールド回路が用いられる。   The holding unit 30 holds and outputs the output voltage of the amplifying unit 20 immediately before the GMR elements 11 to 14 are initialized. The holding unit 30 performs this operation according to the timing signal from the initialization unit 40. For example, a sampling / hold circuit is used as the holding unit 30.

初期化部40は、GMRブリッジ部10からの差動出力電圧の立下りを検出し、立下りを検出した場合にGMR素子11〜14の初期化を行う。初期化部40は、立下検出部41と、タイミング生成部42と、電流供給部43と、初期化コイル44とを有している。   The initialization unit 40 detects the fall of the differential output voltage from the GMR bridge unit 10 and initializes the GMR elements 11 to 14 when the fall is detected. The initialization unit 40 includes a fall detection unit 41, a timing generation unit 42, a current supply unit 43, and an initialization coil 44.

立下検出部41は、GMRブリッジ部10からの差動出力電圧ΔVoの値が閾値以上であるか否かを検出する。また、立下検出部41は、この差動出力電圧ΔVoの値が閾値以上である場合に、この差動出力電圧ΔVoの立下りを検出し、検出するごとにパルス状のトリガ信号Vfをタイミング生成部42へ出力する。例えば、立下検出部41は、複数のコンパレータによって実現可能である。   The fall detection unit 41 detects whether or not the value of the differential output voltage ΔVo from the GMR bridge unit 10 is equal to or greater than a threshold value. Further, when the value of the differential output voltage ΔVo is equal to or greater than the threshold value, the falling detection unit 41 detects the falling of the differential output voltage ΔVo, and each time it detects the pulse-like trigger signal Vf. The data is output to the generation unit 42. For example, the fall detection unit 41 can be realized by a plurality of comparators.

タイミング生成部42は、立下検出部41からトリガ信号Vfを受けると、パルス状のタイミング信号Vtを生成し、電流供給部43及び保持部30へ出力する。例えば、タイミング生成部42としては、ワンショットマルチバイブレータや遅延回路などが用いられる。   When receiving the trigger signal Vf from the fall detection unit 41, the timing generation unit 42 generates a pulsed timing signal Vt and outputs it to the current supply unit 43 and the holding unit 30. For example, a one-shot multivibrator or a delay circuit is used as the timing generation unit 42.

電流供給部43は、タイミング生成部42からのタイミング信号に応じて、初期化コイル44に電流を供給する。   The current supply unit 43 supplies a current to the initialization coil 44 in accordance with the timing signal from the timing generation unit 42.

初期化コイル44は、電流供給部43から電流が供給されると、GMR素子11〜14の軸線X方向に対して毎回同一方向に磁界を印加し、GMR素子11〜14を一旦飽和させ、その後、磁界の発生を停止する。   When the current is supplied from the current supply unit 43, the initialization coil 44 applies a magnetic field in the same direction each time with respect to the axis X direction of the GMR elements 11 to 14, to once saturate the GMR elements 11 to 14, and then , Stop the generation of magnetic field.

次に、図1及び図2を参照しながら、電流検出回路1の動作を説明する。図2は、図1に示す電流検出回路の各部信号波形を示すタイミングチャートである。図2では、スイッチング電源における1次側のパルス電流(スイッチング電流)を検出する電流検出回路1の動作波形が示されている。   Next, the operation of the current detection circuit 1 will be described with reference to FIGS. 1 and 2. FIG. 2 is a timing chart showing signal waveforms at various parts of the current detection circuit shown in FIG. FIG. 2 shows an operation waveform of the current detection circuit 1 that detects a primary-side pulse current (switching current) in the switching power supply.

まず、GMRブリッジ部10によって、パルス電流に応じた磁界が検出されると、例えば、GMR素子11,14の抵抗値が減少すると共に、GMR素子12,13の抵抗値が増加し、第1及び第2の出力端子15,16間にパスル状の差動出力電圧ΔVoが発生する(図2(a))。すると、初期化部40における立下検出部41によって、差動出力電圧ΔVoが閾値Vthと比較され、閾値Vth以上である場合には、差動出力電圧ΔVoの立下りが検出されて、立下りが検出されるごとにトリガ信号Vfが出力される(図2(b))。トリガ信号Vfがタイミング生成部42に入力されると、タイミング生成部42では、タイミング信号Vtが生成される(図2(c))。   First, when a magnetic field corresponding to the pulse current is detected by the GMR bridge unit 10, for example, the resistance values of the GMR elements 11 and 14 are decreased, and the resistance values of the GMR elements 12 and 13 are increased. A pulse-like differential output voltage ΔVo is generated between the second output terminals 15 and 16 (FIG. 2A). Then, the fall detection unit 41 in the initialization unit 40 compares the differential output voltage ΔVo with the threshold value Vth. If the differential output voltage ΔVo is equal to or higher than the threshold value Vth, the fall of the differential output voltage ΔVo is detected and the fall is detected. The trigger signal Vf is output every time the signal is detected (FIG. 2B). When the trigger signal Vf is input to the timing generator 42, the timing generator 42 generates a timing signal Vt (FIG. 2C).

すると、電流供給部43によって、初期化コイル44に電流が供給され、初期化コイル44によって磁界が生じる。この磁界はGMR素子11〜14の軸線X方向に対して毎回同一方向に印加され、GMR素子11〜14が一旦飽和する。ここで、タイミング生成部42によって生成されるタイミング信号Vtのパルス幅Ttは、パルス電流が流れていないオフ期間Toffより短いので、電流供給部43から初期化コイル44への電流供給時間も短く、再びパルス電流が流れるオン期間Tonまでには、初期化コイル44によるGMR素子11〜14への磁界の印加は停止される。   Then, current is supplied to the initialization coil 44 by the current supply unit 43, and a magnetic field is generated by the initialization coil 44. This magnetic field is applied in the same direction each time with respect to the axis X direction of the GMR elements 11 to 14, and the GMR elements 11 to 14 are once saturated. Here, since the pulse width Tt of the timing signal Vt generated by the timing generation unit 42 is shorter than the off period Toff in which no pulse current flows, the current supply time from the current supply unit 43 to the initialization coil 44 is also short. The application of the magnetic field to the GMR elements 11 to 14 by the initialization coil 44 is stopped by the on period Ton in which the pulse current flows again.

一方、差動出力電圧ΔVoが閾値Vth未満である場合には、立下検出部41ではトリガ信号Vfが出力されず(図2(b)における時刻ta)、GMR素子11〜14の初期化を行うことを抑制することができる。   On the other hand, when the differential output voltage ΔVo is less than the threshold value Vth, the falling detection unit 41 does not output the trigger signal Vf (time ta in FIG. 2B), and initializes the GMR elements 11 to 14. It can be suppressed.

保持部30では、タイミング生成部42からタイミング信号Vtが出力されている期間Tt、直前のローレベルの差動出力電圧ΔVoを保持して出力する(図2(d))。   The holding unit 30 holds and outputs the previous low-level differential output voltage ΔVo during the period Tt during which the timing signal Vt is output from the timing generation unit 42 (FIG. 2D).

このように、本実施形態の電流検出回路1及びこの電流検出回路1の初期化方法によれば、初期化部40が、GMRブリッジ部10の差動出力電圧ΔVoの立下りを検出した場合に、初期化コイル44から初期化磁界を供給することによってGMR素子11〜14の初期化を行うことがきるので、パルス電流に同期して、パルス電流が流れていないオフ期間Toffに、GMR素子11〜14の初期化を行うことができる。したがって、本実施形態の電流検出回路1によれば、電流検出中でも必要な電流情報(オン期間Tonのパルス電流)を失うことなく、オフセット電圧の変動を抑制することが可能となる。   Thus, according to the current detection circuit 1 and the initialization method of the current detection circuit 1 of the present embodiment, when the initialization unit 40 detects the falling of the differential output voltage ΔVo of the GMR bridge unit 10. Since the initialization magnetic field is supplied from the initialization coil 44, the GMR elements 11 to 14 can be initialized. Therefore, the GMR element 11 is synchronized with the pulse current during the off period Toff in which no pulse current flows. ~ 14 can be initialized. Therefore, according to the current detection circuit 1 of the present embodiment, it is possible to suppress fluctuations in the offset voltage without losing necessary current information (pulse current in the on period Ton) even during current detection.

また、本実施形態の電流検出回路1によれば、GMR素子11〜14の初期化中、保持部30が差動出力電圧ΔVoを初期化直前のローレベルに保持して出力するので、初期化時にノイズが差動出力電圧ΔVoとして出力されても、保持部30が遮断して、外部へ漏れることを防止することができる。   Further, according to the current detection circuit 1 of the present embodiment, during the initialization of the GMR elements 11 to 14, the holding unit 30 holds and outputs the differential output voltage ΔVo at a low level immediately before initialization. Even when noise is sometimes output as the differential output voltage ΔVo, it is possible to prevent the holding unit 30 from being blocked and leaking outside.

また、本実施形態の電流検出回路1によれば、差動出力電圧ΔVoが閾値Vth未満である場合には、初期化部40における立下検出部41が、初期化のためのトリガ信号Vfを出力しないので、差動出力電圧ΔVoにノイズが重畳されていても、初期化部40がノイズを検出して誤った初期化を行うことを抑制することができる。   Further, according to the current detection circuit 1 of the present embodiment, when the differential output voltage ΔVo is less than the threshold value Vth, the falling detection unit 41 in the initialization unit 40 outputs the trigger signal Vf for initialization. Since no output is made, even if noise is superimposed on the differential output voltage ΔVo, it is possible to prevent the initialization unit 40 from detecting noise and performing erroneous initialization.

ここで、従来、スイッチング電源の電流検出回路としては、カレントトランスが一般的であった。カレントトランスは、トランスの一種であるので、信号伝送の効率を上げるためには透磁率の高い磁性材料を用いたコアが必要であり、その結果大型なものとなっていた。一方、GMR素子は、磁界に対する素子感度が高いので、空気中でも電流から発生する磁束を検出することができ、カレントトランスのような磁性材料を用いて信号を増幅する必要が無く、小型化に適している。本実施形態の電流検出回路1では、GMR素子を用いているので、小型化が可能である。   Heretofore, a current transformer has been generally used as a current detection circuit of a switching power supply. Since a current transformer is a kind of transformer, a core using a magnetic material having a high magnetic permeability is required to increase the efficiency of signal transmission, resulting in a large size. On the other hand, GMR elements have high element sensitivity to magnetic fields, so they can detect magnetic flux generated from current even in air, and do not need to amplify signals using a magnetic material such as a current transformer, making them suitable for miniaturization. ing. In the current detection circuit 1 of the present embodiment, since the GMR element is used, the size can be reduced.

なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made.

本実施形態では、初期化部は、電流が流れないオフ期間Toffにおける短期間TfだけGMR素子の初期化を行ったが、電流が流れないオフ期間Toff全てを利用してGMR素子の初期化を行ってもよい。この場合、立下検出部が、例えば、差動出力電圧ΔVoの立下りによってセット、立上りによってリセットするSRラッチ回路を備えればよい。この構成によれば、初期化部は、パルス電流が流れていない期間Toffを最大限に利用して、GMR素子の初期化を十分に行うことができる。また、保持部は、パルス電流が流れていない期間Toff、差動出力電圧ΔVoを遮断することができるので、誤った電流情報が外部へ漏れることを防止することができる。   In this embodiment, the initialization unit initializes the GMR element only for the short period Tf in the off period Toff in which no current flows. However, the initialization unit initializes the GMR element by using all of the off period Toff in which no current flows. You may go. In this case, the falling detection unit may include, for example, an SR latch circuit that is set by the falling of the differential output voltage ΔVo and reset by the rising. According to this configuration, the initialization unit can fully initialize the GMR element by making maximum use of the period Toff during which no pulse current flows. In addition, since the holding unit can cut off the differential output voltage ΔVo during the period Toff in which no pulse current flows, it is possible to prevent erroneous current information from leaking to the outside.

また、本実施形態では、初期化部は、差動出力電圧ΔVoの立下りを検出するごとにGMR素子の初期化を行ったが、初期化の回数を減らしてもよい。例えば、立下検出部が、カウンタを有し、差動出力電圧ΔVoの立下りを検出した回数がある値に達した場合にGMR素子の初期化を行えばよい。この構成によれば、初期化の回数を減らすことができるので、低消費電流化が可能となる。特に、初期化コイルには比較的大きな電流が必要となるが、この初期化コイルの消費電流の低減を図ることができる。実使用状態において、磁気抵抗素子の抵抗値が変動する程の大きな外部磁界が磁気抵抗素子に印加される頻度は少ないので、磁気抵抗素子の初期化を頻繁に行う必要はない。   In the present embodiment, the initialization unit initializes the GMR element every time the falling of the differential output voltage ΔVo is detected, but the number of initializations may be reduced. For example, the fall detection unit has a counter, and the GMR element may be initialized when the number of times the fall of the differential output voltage ΔVo is detected reaches a certain value. According to this configuration, the number of initializations can be reduced, so that the current consumption can be reduced. In particular, although a relatively large current is required for the initialization coil, the current consumption of the initialization coil can be reduced. In an actual use state, since the external magnetic field that is large enough to change the resistance value of the magnetoresistive element is less frequently applied to the magnetoresistive element, it is not necessary to frequently initialize the magnetoresistive element.

また、本実施形態では、磁気抵抗部にホイートストンブリッジ型のGMRブリッジ部10が用いられたが、磁気抵抗部の構成は本実施形態に限られるものではない。例えば、磁気抵抗部は、図5に示すように、GMR素子51,52と、これらのGMR素子51,52にそれぞれ定電流を供給する電流源53,54とで構成されてもよい。   In the present embodiment, the Wheatstone bridge type GMR bridge unit 10 is used as the magnetoresistive unit. However, the configuration of the magnetoresistive unit is not limited to this embodiment. For example, as shown in FIG. 5, the magnetoresistive section may be composed of GMR elements 51 and 52 and current sources 53 and 54 that supply constant currents to these GMR elements 51 and 52, respectively.

また、本実施形態では、磁気抵抗素子としてGMR素子を例示したが、GMR素子に限らず、MR素子など様々な磁気抵抗素子を用いることができる。
用いることができる。
In the present embodiment, the GMR element is exemplified as the magnetoresistive element. However, the present invention is not limited to the GMR element, and various magnetoresistive elements such as an MR element can be used.
Can be used.

本発明の実施形態に係る電流検出回路を示す回路図である。It is a circuit diagram showing a current detection circuit concerning an embodiment of the present invention. 図1に示す電流検出回路の各部信号波形を示すタイミングチャートである。It is a timing chart which shows each part signal waveform of the current detection circuit shown in FIG. GMR素子を示す斜視図である。It is a perspective view which shows a GMR element. GMR素子の磁界に対する抵抗値特性を示す図である。It is a figure which shows the resistance value characteristic with respect to the magnetic field of a GMR element. 本発明の変形例に係る磁気抵抗部を示す回路図である。It is a circuit diagram which shows the magnetoresistive part which concerns on the modification of this invention.

符号の説明Explanation of symbols

11〜14…GMR素子(磁気抵抗素子)、1…電流検出回路、10…GMRブリッジ部(磁気抵抗部)、20…増幅部、21…誤差増幅アンプ、30…保持部、40…初期化部、41…立下検出部、42…タイミング生成部、43…電流供給部、44…初期化コイル。
DESCRIPTION OF SYMBOLS 11-14 ... GMR element (magnetoresistance element), 1 ... Current detection circuit, 10 ... GMR bridge part (magnetoresistance part), 20 ... Amplification part, 21 ... Error amplification amplifier, 30 ... Holding part, 40 ... Initialization part 41 ... Falling detection unit, 42 ... Timing generation unit, 43 ... Current supply unit, 44 ... Initialization coil.

Claims (6)

磁気抵抗素子を有し、パルス電流に応じて発生する磁界を検出して、該磁界に応じた検出信号を生成する磁気抵抗部と、
前記磁気抵抗素子に初期化磁界を供給する初期化コイルを有し、前記検出信号の立下りに応じて前記磁気抵抗素子の初期化を行う初期化部と、
を備える、電流検出回路。
A magnetoresistive unit that includes a magnetoresistive element, detects a magnetic field generated according to a pulse current, and generates a detection signal according to the magnetic field;
An initialization coil that supplies an initialization magnetic field to the magnetoresistive element, and an initialization unit that initializes the magnetoresistive element in response to a fall of the detection signal;
A current detection circuit.
前記初期化部が前記磁気抵抗素子の初期化を行う期間、直前の検出信号の値を保持して出力する保持部を更に備える、請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, further comprising a holding unit that holds and outputs the value of the immediately preceding detection signal during a period in which the initialization unit initializes the magnetoresistive element. 前記初期化部は、前記検出信号の値が閾値以上である場合に前記磁気抵抗素子の初期化を行い、前記検出信号の値が閾値未満である場合に前記磁気抵抗素子の初期化を行なわない、請求項1又は2に記載の電流検出回路。   The initialization unit initializes the magnetoresistive element when the value of the detection signal is equal to or greater than a threshold value, and does not initialize the magnetoresistive element when the value of the detection signal is less than the threshold value. The current detection circuit according to claim 1 or 2. 前記初期化部は、前記検出信号の立上がりを検出するまで前記磁気抵抗素子の初期化を継続する、請求項1〜3に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the initialization unit continues the initialization of the magnetoresistive element until the rising edge of the detection signal is detected. 前記初期化部は、カウンタを有し、前記検出信号の立下りを検出した回数が閾値に達した場合に前記磁気抵抗素子の初期化を行う、請求項1〜4に記載の電流検出回路。   5. The current detection circuit according to claim 1, wherein the initialization unit includes a counter and performs initialization of the magnetoresistive element when the number of times of detecting the falling edge of the detection signal reaches a threshold value. 磁気抵抗素子を有し、パルス電流に応じて発生する磁界を検出して、該磁界に応じた検出信号を生成する磁気抵抗部と、磁気抵抗素子に初期化磁界を供給する初期化コイルを有し、前記検出信号の立下りに応じて前記磁気抵抗素子の初期化を行う初期化部とを備える電流検出回路において、
前記初期化部によって前記磁気抵抗素子を初期化する電流検出回路の初期化方法。
A magnetoresistive element that includes a magnetoresistive unit that detects a magnetic field generated according to a pulse current and generates a detection signal according to the magnetic field, and an initialization coil that supplies an initialization magnetic field to the magnetoresistive element. And an initialization unit that initializes the magnetoresistive element in response to a fall of the detection signal,
An initialization method for a current detection circuit, wherein the magnetoresistive element is initialized by the initialization unit.
JP2007094315A 2007-03-30 2007-03-30 Current detection circuit and initialization method of the current detection circuit Active JP4877018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094315A JP4877018B2 (en) 2007-03-30 2007-03-30 Current detection circuit and initialization method of the current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094315A JP4877018B2 (en) 2007-03-30 2007-03-30 Current detection circuit and initialization method of the current detection circuit

Publications (2)

Publication Number Publication Date
JP2008249645A true JP2008249645A (en) 2008-10-16
JP4877018B2 JP4877018B2 (en) 2012-02-15

Family

ID=39974749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094315A Active JP4877018B2 (en) 2007-03-30 2007-03-30 Current detection circuit and initialization method of the current detection circuit

Country Status (1)

Country Link
JP (1) JP4877018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232871A (en) * 2009-03-26 2010-10-14 Tdk Corp Signal transmitter
WO2011111537A1 (en) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 Current sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119596A (en) * 1988-08-24 1990-05-07 General Electric Co (Ge) Method and device for detecting unipolar current of conductor and electronic commutation type motor control by detecting motor current
JPH06235759A (en) * 1992-12-31 1994-08-23 Honeywell Inc Magnetization switching type closed-loop magnetomer
JPH0792199A (en) * 1993-07-28 1995-04-07 Matsushita Electric Ind Co Ltd Current sensor
JPH11213307A (en) * 1998-01-30 1999-08-06 Toshiba Corp Magnetic disk device and thermal asperity cancelling method applied to this device
JP2003075157A (en) * 2001-09-06 2003-03-12 Seiko Instruments Inc Electronic equipment
JP2003121517A (en) * 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp Magnetic detector
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119596A (en) * 1988-08-24 1990-05-07 General Electric Co (Ge) Method and device for detecting unipolar current of conductor and electronic commutation type motor control by detecting motor current
JPH06235759A (en) * 1992-12-31 1994-08-23 Honeywell Inc Magnetization switching type closed-loop magnetomer
JP3368964B2 (en) * 1992-12-31 2003-01-20 ハネウエル・インコーポレーテッド Switchable magnetization closed-loop magnetometer
JPH0792199A (en) * 1993-07-28 1995-04-07 Matsushita Electric Ind Co Ltd Current sensor
JPH11213307A (en) * 1998-01-30 1999-08-06 Toshiba Corp Magnetic disk device and thermal asperity cancelling method applied to this device
JP2003075157A (en) * 2001-09-06 2003-03-12 Seiko Instruments Inc Electronic equipment
JP2003121517A (en) * 2001-10-12 2003-04-23 Aichi Micro Intelligent Corp Magnetic detector
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232871A (en) * 2009-03-26 2010-10-14 Tdk Corp Signal transmitter
WO2011111537A1 (en) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 Current sensor

Also Published As

Publication number Publication date
JP4877018B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP6166741B2 (en) Magnetic field sensor with automatic sensitivity adjustment
KR101517510B1 (en) Magnetic field detector having a variable threshold
EP3524991B1 (en) Bipolar chopping for i/f noise and offset reduction in magnetic field sensors
EP3121609A1 (en) Direct-current residual-current detecting device
JP5299675B2 (en) Signal transmission device
EP2093583B1 (en) Magnetic sensor circuit
JP2011017618A (en) Electric current sensor
KR101096269B1 (en) input buffer
JP2008292325A (en) Signal detection circuit
CN104321662A (en) Magnetic element control device, magnetic element control method, and magnetic detection device
JP4877018B2 (en) Current detection circuit and initialization method of the current detection circuit
CN104567947A (en) Magnetic sensor circuit
JP6454228B2 (en) Magnetic sensor device
JP7103836B2 (en) Zero cross detection circuit and sensor device
JP2012109948A (en) Hysteresis device
CN106932736B (en) Closed loop device calibration using broadband signals
JP7080098B2 (en) Zero cross detection circuit and sensor device
US9590604B1 (en) Current comparator
JPH01162179A (en) Magnetic field detector and method and circuit apparatus for generating electric signal therewith
TW201831918A (en) Magnetic field sensing apparatus and detection method thereof
JP6446859B2 (en) Integrated circuit
WO2015104776A1 (en) Current detection device
JP2016142652A (en) Power sensor
WO2021251085A1 (en) Magnetic sensor
JP2015021881A (en) Current detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4877018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3