WO2021251085A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2021251085A1
WO2021251085A1 PCT/JP2021/018985 JP2021018985W WO2021251085A1 WO 2021251085 A1 WO2021251085 A1 WO 2021251085A1 JP 2021018985 W JP2021018985 W JP 2021018985W WO 2021251085 A1 WO2021251085 A1 WO 2021251085A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
output
comparator
circuit
Prior art date
Application number
PCT/JP2021/018985
Other languages
French (fr)
Japanese (ja)
Inventor
美穂 前
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021251085A1 publication Critical patent/WO2021251085A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present disclosure relates to a magnetic sensor, and more specifically, to a technique for stabilizing an output signal in the magnetic sensor.
  • a magnetic sensor that detects a magnetic field using a magnetoelectric conversion element such as a Hall element or a magnetoresistive (MR) element is known.
  • the MR element has a Wheatstone bridge circuit formed by four resistance elements including two resistance elements whose resistance value is lowered by an external magnetic field. ..
  • the magnetic sensor detects a magnetic field in an MR element by utilizing a change in the intermediate potential difference of a bridge circuit caused by an external magnetic field.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-356530 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2000-174254 (Patent Document 3) describe magnetic sensors using MR elements as described above. Is disclosed.
  • the magnetic-electric conversion element used in a magnetic sensor is formed by a semiconductor element formed in a thin film or an alloy thin film.
  • the area of the thin film becomes smaller, so that the resistance value of the magnetic-electric conversion element itself increases. Then, the power consumption in the magnetic-electric conversion element increases accordingly, and the heat generation of the magnetic-electric conversion element may also increase.
  • the output from the magnetic sensor becomes an intermittent output, or the output signal is repeatedly turned on and off when the presence or absence of an external magnetic field is gradually switched. Chattering is likely to occur, and the output signal may become unstable.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to stabilize an output signal while reducing power consumption in a magnetic sensor.
  • the magnetic sensor includes a first terminal and a second terminal, an output terminal, a magnetic-electric conversion element, a comparator, a holding circuit, and an output circuit.
  • the first terminal receives a constant voltage signal.
  • the second terminal receives a pulsed intermittent signal.
  • the comparator compares the first detection signal and the second detection signal from the magnetic-electric conversion element.
  • the holding circuit is driven by a constant voltage signal from the first terminal and holds the output signal of the comparator in response to the intermittent signal from the second terminal.
  • the output circuit switches the signal level output from the output terminal based on the first signal held in the holding circuit.
  • the magnetic conversion element and the comparator are driven corresponding to the intermittent signal from the second terminal.
  • the comparator forms a hysteresis of the output signal based on the first signal from the holding circuit.
  • a constant voltage signal and an intermittent signal are received from the outside as a power source for driving the circuit. Since the magnetic conversion element and the comparator are intermittently driven in response to the intermittent signal, the power consumption can be reduced as compared with the case where they are constantly driven. Further, since the holding circuit is driven by a constant voltage signal, even if the output of the comparator disappears due to intermittent driving, the signal for output to the output terminal can be kept held. Further, by forming the hysteresis of the comparator based on the output signal of the holding circuit, chattering of the output signal can be appropriately suppressed. Therefore, in the magnetic sensor, the output signal can be stabilized while reducing the power consumption.
  • FIG. 1 is a circuit diagram for explaining the magnetic sensor 100 according to the embodiment.
  • the magnetic sensor 100 has a CLK terminal, a VDD terminal, an output terminal OUT, a ground terminal GND, an MR element 110, a comparator 120, a DFF (D flipflop) circuit 130, and an output. It includes a circuit 140, a pulse generation circuit 150, and a switch (GSW) 160.
  • the VDD terminal receives a constant voltage signal for a power supply supplied from the outside.
  • the constant voltage signal received at the VDD terminal is supplied to the MR element 110, the comparator 120, the DFF circuit 130, and the output circuit 140.
  • the CLK terminal receives an intermittent drive signal having a pulse shape from the outside.
  • the intermittent signal received at the CLK terminal is supplied to the pulse generation circuit 150.
  • the pulse generation circuit 150 receives the intermittent signal supplied from the CLK terminal and generates a pulse signal (second signal) having the same period as the intermittent signal and having a pulse width shorter than that of the intermittent signal.
  • the pulse signal generated by the pulse generation circuit 150 is supplied to the DFF circuit 130 circuit and the switch 160.
  • the MR element 110 is a magneto-electric conversion element that converts a change in an external magnetic field into an electric signal.
  • an AMR (Anisotropic Magneto Resistance) element As the MR element 110, an AMR (Anisotropic Magneto Resistance) element, a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, a BMR (Ballistic Magneto Resistance) element, a CMR (Colossal Magneto Resistance) element, or the like can be used. can.
  • the MR element 110 is connected in series with the switch 160 between the VDD terminal and the ground terminal GND connected to the reference potential.
  • the MR element 110 includes four resistance elements R1 to R4 forming a bridge circuit. More specifically, one end of the resistance element R1 is connected to the VDD terminal, and the other end is connected to one end of the resistance element R2. The other end of the resistance element R2 is connected to the switch 160. Further, one end of the resistance element R3 is connected to the VDD terminal, and the other end is connected to one end of the resistance element R4. The other end of the resistance element R4 is connected to the switch 160. That is, the directly connected resistance elements R1 and R2 and the directly connected resistance elements R3 and R4 are connected in parallel.
  • the resistance elements R2 and R3 have a characteristic that the resistance value becomes smaller when the magnetic field strength of the external magnetic field becomes larger than a predetermined sensitivity threshold value. Therefore, when there is an external magnetic field (when the magnetic field strength of the external magnetic field is larger than the sensitivity threshold value of the MR element 110), the potential of the connection node N1 between the resistance element R1 and the resistance element R2 (first detection signal). ) Is smaller than in the absence of an external magnetic field. On the other hand, the potential (second detection signal) of the connection node N2 between the resistance element R3 and the resistance element R4 becomes larger when there is an external magnetic field than when there is no external magnetic field.
  • the switch 160 is a switch for switching between supplying and shutting off the power supply to the MR element 110.
  • the switch 160 is, for example, an N-type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and is in a conductive state when the pulse signal generated by the pulse generation circuit 150 is at a high level, and is non-conducting when the pulse signal is at a low level. It becomes. That is, power is supplied to the MR element 110 according to the pulse signal generated by the pulse generation circuit 150.
  • N-type MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the comparator 120 has a positive power supply terminal, a negative power supply terminal, an inverting input terminal, a non-inverting input terminal, and an output terminal.
  • the positive power supply terminal is connected to the VDD terminal.
  • the negative power supply terminal is connected to the connection node N3 between the MR element 110 and the switch 160. Therefore, similarly to the MR element 110, power is supplied to the comparator 120 according to the pulse signal generated by the pulse generation circuit 150.
  • the inverting input terminal of the comparator 120 is connected to the connection node N1 between the resistance element R1 and the resistance element R2 in the MR element 110. Further, the non-inverting input terminal is connected to the connection node N2 between the resistance element R3 and the resistance element R4. If the MR element 110 is set so that the potential of the connection node N1 is higher than the potential of the connection node N2 when there is no external magnetic field, it is non-inverting with the inverting input terminal of the comparator 120 in the absence of an external magnetic field. Since a negative potential difference is generated between the input terminal and the input terminal, the output of the comparator 120 becomes low level.
  • connection node N1 decreases and the potential of the connection node N2 increases, so that a positive potential difference occurs between the inverting input terminal and the non-inverting input terminal of the comparator 120. As a result, the output of the comparator 120 becomes a high level.
  • the comparator The output signal from 120 becomes high level, and when the deviation is smaller than the threshold value, the output signal from the comparator 120 becomes low level.
  • the DFF circuit 130 has a data terminal D, a clock terminal C, and an output terminal Q.
  • the data terminal D is connected to the output terminal of the comparator 120 and receives the output signal of the comparator 120.
  • the clock terminal C receives a trigger signal for holding the signal received at the data terminal D.
  • the clock terminal C receives a signal in which the pulse signal (second signal) from the pulse generation circuit 150 is inverted. Therefore, the DFF circuit 130 holds the state of the output signal of the comparator 120 at the falling timing of the pulse signal (second signal) from the pulse generation circuit 150, and outputs the held signal (first signal) to the output terminal Q. Output from.
  • the output terminal Q of the DFF circuit 130 is connected to the output circuit 140.
  • the DFF circuit 130 is driven by a constant voltage signal from the VDD terminal, and the drive / stop is not switched by the intermittent signal from the CLK terminal. Therefore, even if the power supply to the comparator 120 is stopped in response to the pulse signal from the pulse generation circuit 150 and the output signal from the comparator 120 disappears, the output signal from the DFF circuit 130 is maintained.
  • the output circuit 140 includes switches SW1 and SW2 connected in series between the VDD terminal and the ground terminal GND.
  • the switch SW1 is an N-type MOSFET and is connected to the VDD terminal.
  • the switch SW2 is a P-type MOSFET and is connected to the ground terminal GND.
  • the connection node N4 between the switch SW1 and the switch SW2 is connected to the output terminal OUT.
  • Each control terminal of the switches SW1 and SW2 is connected to the output terminal Q of the DFF circuit 130. Therefore, when the output of the DFF circuit 130 is high level (that is, when there is an external magnetic field), the signal level output from the output terminal OUT becomes high level, and when the output of the DFF circuit 130 is low level (that is, when there is an external magnetic field). That is, when there is no external magnetic field), the signal level from the output terminal OUT becomes low level.
  • the output signal (first signal) from the DFF circuit 130 is also fed back to the comparator 120.
  • the output signal from the DFF circuit 130 is supplied to the HYS terminal of the comparator 120.
  • the HYS terminal is a terminal for changing a determination threshold value used for comparing two input signals in the comparator 120 to give a trigger for forming a hysteresis of an output signal.
  • the above threshold value is made smaller than when it is at a low level.
  • the threshold value for determination of the comparator 120 is set as compared with the case where the output signal of the DFF circuit 130 is at a low level. It gets smaller. Therefore, in the comparator 120, when the deviation (difference voltage) between the two signals from the MR element 110 becomes sufficiently lower than the deviation when the output signal changes from low level to high level, the output of the comparator 120 Will change from high level to low level. That is, the hysteresis of the output signal of the comparator 120 is formed based on the output signal (first signal) from the DFF circuit 130.
  • the MR element 110 When the MR element 110 is placed in an environment of magnetic field strength near the sensitivity threshold value, it takes a short time due to the influence of a slight change in the magnetic field strength or electrical noise in the detection circuit of the magnetic sensor 100. During this period, the output of the comparator 120 repeats high level and low level, so-called chattering phenomenon may occur. As described above, in the comparator 120, chattering of the output signal of the comparator 120 can be prevented by forming a hysteresis based on the output of the DFF circuit 130.
  • the comparator 120 is driven in response to the pulse signal from the pulse generation circuit 150 in order to reduce power consumption. Therefore, when the hysteresis is formed by using the output signal of the comparator 120, the hysteresis is reset every time the power supply to the comparator 120 is cut off.
  • the DFF circuit 130 is driven by a constant voltage signal from the VDD terminal, the hysteresis is formed based on the output signal of the DFF circuit 130, so that the hysteresis is irrespective of the power supply state to the comparator 120.
  • the trigger signal for formation can be maintained. As a result, the occurrence of chattering can be appropriately suppressed, and as a result, the output of the magnetic sensor can be further stabilized.
  • the "VDD terminal” and the “CLK terminal” correspond to the “first terminal” and the “second terminal” of the present disclosure, respectively.
  • the "DFF circuit 130" in the embodiment corresponds to the "holding circuit” in the present disclosure.
  • FIG. 2 is a timing chart of the magnetic sensor 100 of FIG. In FIG. 2, the presence / absence of an external magnetic field, the constant voltage signal received at the VDD terminal, the intermittent signal received at the CLK terminal, the power consumption of the magnetic sensor 100, and the output signal output from the output terminal OUT are shown from the upper stage. ..
  • FIGS. 1 and 2 For example, consider a case where the magnetic force of a magnet attached to a rotating shaft of a motor or the like is detected by a magnetic sensor 100. In this case, a state with an external magnetic field and a state without an external magnetic field appear alternately. In FIG. 2, between time t0 and time t6 and after time t11 corresponds to a state where there is an external magnetic field.
  • the magnetic sensor 100 is activated and a constant voltage signal is supplied to the VDD terminal. Further, an intermittent signal having a predetermined period is supplied to the CLK terminal.
  • the constant voltage signal is supplied, the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150 are driven, and the power generated by these devices is consumed.
  • the switch 160 since the switch 160 is in a non-conducting state, power is not consumed in the MR element 110 and the comparator 120.
  • the state in which only the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150 are driven is also referred to as a "base state" below.
  • the pulse generation circuit 150 When the pulse of the intermittent signal is received at time t2, the pulse generation circuit 150 generates a pulse signal having a pulse width shorter than that of the intermittent signal, and the switch 160 is put into a conductive state.
  • the MR element 110 and the comparator 120 are driven only during the time t2 to t3 when the switch 160 is in the conduction state, and the detection of the external magnetic field at the position where the magnetic sensor 100 is attached is performed. This increases power consumption.
  • the resistance values of the resistance elements R2 and R3 of the MR element 110 decrease due to the external magnetic field, and the output of the comparator 120 becomes a high level. Since the signal is not updated in the DFF circuit 130 between the times t2 and t3, the output of the output circuit 140 remains at the low level.
  • the input signal of the clock terminal C of the DFF circuit 130 changes to a high level at that timing.
  • the DFF circuit 130 holds the input signal of the data terminal D (that is, the output of the comparator 120) at that timing.
  • the output signal from the output terminal Q of the DFF circuit 130 transitions from low level to high level. As a result, the output signal from the output circuit 140 also becomes a high level.
  • the pulse signal from the pulse generation circuit 150 becomes low level, so that the switch 160 is switched to the non-conducting state.
  • the supply of the constant voltage signal to the MR element 110 and the comparator 120 is stopped, so that the power consumption is reduced to the level of the base state.
  • the output signal drops to a low level due to the stop of the comparator 120 at time t3, the high level state is maintained in the DFF circuit 130, and the constant voltage signal continues in the DFF circuit 130 and the output circuit 140.
  • the output signal from the output terminal OUT continues to be in a high level state.
  • the intermittent signal is supplied again to the CLK terminal, and the pulse signal from the pulse generation circuit 150 becomes high level, but since the state of the external magnetic field has not changed, even if the pulse signal falls at time t5. , The signal state held in the DFF circuit 130 does not change, and the output from the output circuit 140 also maintains a high level state.
  • the MR element 110 detects a state in which there is no external magnetic field. As a result, the output of the comparator 120 changes from high level to low level. Then, at the timing of the fall of the pulse signal at time t8, the signal holding state of the DFF circuit 130 is updated, and the state of the output signal from the output terminal OUT transitions from the high level to the low level.
  • the intermittent signal is supplied again at time t9, but since the state without an external magnetic field continues, the signal holding state of the DFF circuit 130 and the state of the output signal from the output terminal OUT at the falling edge of the pulse signal at time t10. Maintains a low level.
  • the external magnetic field changes to a certain state again at time t11
  • the external magnetic field is detected by the MR element 110 at the pulse signal supply timing (time t12) immediately after that.
  • the signal holding state of the DFF circuit 130 is updated, and the state of the output signal from the output terminal OUT transitions from the low level to the high level.
  • the operation between the times t2 and t13 is repeated according to the state of the external magnetic field.
  • the comparator 120 Since the hysteresis in the comparator 120 is performed based on the output signal of the DFF circuit 130 (that is, the output signal from the output terminal OUT), the comparator 120 is in a state where the magnetic sensor 100 recognizes that there is an external magnetic field. The threshold value for magnetic field detection in is continuously lowered. Therefore, even if the MR element 110 and the comparator 120 are intermittently driven, hysteresis is appropriately realized.
  • FIG. 3 is a circuit diagram of the magnetic sensor 100 # of the comparative example.
  • the magnetic sensor 100 # basically includes the same elements as the magnetic sensor 100 of the embodiment.
  • the magnetic sensor 100 # has a point that the power supplied to the apparatus is only an intermittent signal and a point that the hysteresis of the comparator 120 using the output signal of the DFF circuit 130 is not formed. Is different. That is, all of the MR element 110, the comparator 120, the DFF circuit 130, and the output circuit 140 are intermittently driven by the intermittent signal.
  • the description of the element overlapping with FIG. 1 is not repeated.
  • the magnetic sensor 100 # is driven only while the intermittent signal is at a high level at the VDD terminal.
  • an intermittent signal is supplied to the VDD terminal during a period of time t20 to t27 with an external magnetic field (time t21)
  • the switch 160 is brought into a conductive state by the pulse signal from the pulse generation circuit 150, and the MR element 110 And power is supplied to the comparator 120.
  • the DFF circuit 130 and the output circuit 140 are also driven by the intermittent signal. This increases power consumption.
  • the pulse signal from the pulse generation circuit 150 is at a high level (time t21 to t22), the external magnetic field is detected by the MR element 110, and the output of the comparator 120 transitions from the low level to the high level. Then, at the falling timing of the pulse signal (time t22), the output signal of the comparator 120 is held by the DFF circuit 130, and the output signal of the output circuit 140 transitions to a high level.
  • the switch 160 Since the switch 160 is in a non-conducting state between the times t22 and t23, the MR element 110 and the comparator 120 do not consume power, but only the power consumed by the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150.
  • the magnetic field is not detected by the MR element 110 even if the intermittent signal is supplied, so that the output signal from the output terminal OUT remains at a low level.
  • the output signal from the output terminal OUT becomes high level only between the times t36 and t37 while the intermittent signal is being supplied.
  • the power consumption is consumed only while the intermittent signal is supplied, so that the power consumption of the entire device can be significantly reduced.
  • the output signal from the output terminal OUT becomes low level only while the intermittent signal is at high level. Therefore, in order to correctly detect the state of the external magnetic field, the output signal is taken into consideration by the external control device that processes the output signal of the magnetic sensor 100 # while considering the timing between the intermittent signal and the output signal of the magnetic sensor 100 #. It is necessary to separately form a circuit for holding the.
  • the DFF circuit 130 and the DFF circuit 130 and the intermittent drive of the MR element 110 and the comparator 120 are received from the outside by receiving a constant voltage signal and an intermittent signal.
  • the output circuit 140 By constantly driving the output circuit 140, it is possible to bring the output signal from the output terminal OUT closer to the state of the actual external magnetic field while reducing the power consumption to some extent. Therefore, the holding circuit in the external control device becomes unnecessary.
  • the output signal can be stabilized while reducing the power consumption.
  • FIG. 5 is a circuit diagram of the magnetic sensor 100A according to the modified example.
  • the magnetic sensor 100A has a configuration in which the MR element 110 in the magnetic sensor 100 shown in FIG. 1 is replaced with the Hall element 110A.
  • FIG. 5 the detailed description of the elements overlapping with FIG. 1 is not repeated.
  • the Hall element 110A is connected in series with the switch 160 between the VDD terminal and the ground terminal GND.
  • the Hall element 110A generates an electromotive force (Hall voltage) proportional to the magnitude of the external magnetic field between the output terminals T1 and T2. Therefore, the presence or absence of an external magnetic field can be detected by connecting the output terminals T1 and T2 to the non-inverting input terminal and the inverting input terminal of the comparator 120, respectively, and comparing the Hall voltage with a predetermined threshold value.

Abstract

This magnetic sensor (100) comprises a VDD terminal (VDD), a CLK terminal (CLK), an output terminal (OUT), an MR terminal (110), a comparator (120), a DFF circuit (130), and an output circuit (140). The VDD terminal receives a constant-voltage signal. The CLK terminal receives a pulsed intermittent signal. The comparator compares a first sensing signal and a second sensing signal from the MR terminal. The DFF circuit is driven by the constant-voltage signal from the VDD terminal, and retains the output signal from the comparator in response to the intermittent signal from the CLK terminal. The output circuit converts the signal level outputted from the output terminal on the basis of a first signal retained by the DFF circuit. The MR terminal and the comparator are driven in accordance with the intermittent signal from the CLK terminal. The comparator forms output signal hysteresis on the basis of the first signal from the DFF circuit.

Description

磁気センサMagnetic sensor
 本開示は、磁気センサに関し、より特定的には、磁気センサにおける出力信号を安定化するための技術に関する。 The present disclosure relates to a magnetic sensor, and more specifically, to a technique for stabilizing an output signal in the magnetic sensor.
 ホール素子あるいは磁気抵抗(MR:Magneto Resistance)素子のような磁電変換素子を用いて磁界を検出する磁気センサが知られている。磁電変換素子としてMR素子が用いられる磁気センサにおいては、MR素子は、外部磁界によって抵抗値が低下する2つの抵抗素子を含む4つの抵抗素子によって形成されたホイートストーンブリッジ回路を有している。磁気センサは、MR素子において、外部磁界によって生じるブリッジ回路の中間電位差の変化を利用して磁界を検出する。 A magnetic sensor that detects a magnetic field using a magnetoelectric conversion element such as a Hall element or a magnetoresistive (MR) element is known. In a magnetic sensor in which an MR element is used as a magnetoelectric conversion element, the MR element has a Wheatstone bridge circuit formed by four resistance elements including two resistance elements whose resistance value is lowered by an external magnetic field. .. The magnetic sensor detects a magnetic field in an MR element by utilizing a change in the intermediate potential difference of a bridge circuit caused by an external magnetic field.
 特許第5636991号公報(特許文献1)、特開2000-356530号公報(特許文献2)および特開2000-174254号公報(特許文献3)には、上記のようなMR素子を用いた磁気センサが開示されている。 Japanese Patent No. 5636991 (Patent Document 1), Japanese Patent Application Laid-Open No. 2000-356530 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2000-174254 (Patent Document 3) describe magnetic sensors using MR elements as described above. Is disclosed.
特許第5636991号公報Japanese Patent No. 5636991 特開2000-356530号公報Japanese Unexamined Patent Publication No. 2000-356530 特開2000-174254号公報Japanese Unexamined Patent Publication No. 2000-174254
 近年では、磁気センサの小型化に対する要求が高まっており、それに伴って磁気センサに用いられる磁電変換素子についての小型化も必要とされている。一般的に、磁気センサに用いられる磁電変換素子は、薄膜に形成された半導体素子あるいは合金薄膜によって形成される。磁電変換素子を小型化すると、薄膜の面積が小さくなることによって、磁電変換素子自体の抵抗値が増加する。そうすると、それに伴って磁電変換素子における消費電力が増加し、磁電変換素子の発熱も増加し得る。 In recent years, there has been an increasing demand for miniaturization of magnetic sensors, and along with this, miniaturization of magnetic-electric conversion elements used in magnetic sensors is also required. Generally, the magnetic-electric conversion element used in a magnetic sensor is formed by a semiconductor element formed in a thin film or an alloy thin film. When the magnetic-electric conversion element is miniaturized, the area of the thin film becomes smaller, so that the resistance value of the magnetic-electric conversion element itself increases. Then, the power consumption in the magnetic-electric conversion element increases accordingly, and the heat generation of the magnetic-electric conversion element may also increase.
 このような課題に対して、上記の特許文献においては、磁電変換素子にパルス状の間欠電源を供給して、磁電変換素子の駆動時間を短縮することによって消費電力を低減している。 In response to such a problem, in the above patent document, power consumption is reduced by supplying a pulse-shaped intermittent power supply to the magnetic-electric conversion element and shortening the driving time of the magnetic-electric conversion element.
 一方で、磁電変換素子を外部間欠駆動した場合には、それに伴って磁気センサからの出力が断続的な出力となったり、外部磁界の有無が緩やかに切り替わる場合に出力信号のON/OFFが繰り返されるチャタリングが生じ易くなったりして、出力信号が不安定になるおそれがある。 On the other hand, when the magnetic-electric conversion element is externally intermittently driven, the output from the magnetic sensor becomes an intermittent output, or the output signal is repeatedly turned on and off when the presence or absence of an external magnetic field is gradually switched. Chattering is likely to occur, and the output signal may become unstable.
 本開示は、上記のような課題を解決するためになされたものであって、その目的は、磁気センサにおいて、消費電力を低減しつつ、出力信号を安定化することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to stabilize an output signal while reducing power consumption in a magnetic sensor.
 本開示に係る磁気センサは、第1端子および第2端子と、出力端子と、磁電変換素子と、コンパレータと、保持回路と、出力回路とを備える。第1端子は、定電圧信号を受ける。第2端子は、パルス状の間欠信号を受ける。コンパレータは、磁電変換素子からの第1検知信号および第2検知信号を比較する。保持回路は、第1端子からの定電圧信号により駆動され、第2端子からの間欠信号に応答してコンパレータの出力信号を保持する。出力回路は、保持回路に保持された第1信号に基づいて、出力端子から出力される信号レベルを切換える。磁電変換素子およびコンパレータは、第2端子からの間欠信号に対応して駆動される。コンパレータは、保持回路からの第1信号に基づいて出力信号のヒステリシスを形成する。 The magnetic sensor according to the present disclosure includes a first terminal and a second terminal, an output terminal, a magnetic-electric conversion element, a comparator, a holding circuit, and an output circuit. The first terminal receives a constant voltage signal. The second terminal receives a pulsed intermittent signal. The comparator compares the first detection signal and the second detection signal from the magnetic-electric conversion element. The holding circuit is driven by a constant voltage signal from the first terminal and holds the output signal of the comparator in response to the intermittent signal from the second terminal. The output circuit switches the signal level output from the output terminal based on the first signal held in the holding circuit. The magnetic conversion element and the comparator are driven corresponding to the intermittent signal from the second terminal. The comparator forms a hysteresis of the output signal based on the first signal from the holding circuit.
 本開示に係る磁気センサによれば、回路を駆動するための電源として外部から定電圧信号と間欠信号とを受ける。磁電変換素子およびコンパレータは、間欠信号に対応して間欠的に駆動されるため、常時駆動される場合と比較して消費電力を低減することができる。また、保持回路が定電圧信号で駆動されるため、間欠駆動によってコンパレータの出力が消失しても、出力端子に出力するための信号を保持したままとすることができる。さらに、保持回路の出力信号に基づいてコンパレータのヒステリシスが形成されることにより、出力信号のチャタリングを適切に抑制することができる。したがって、磁気センサにおいて、消費電力を低減しつつ出力信号を安定化することができる。 According to the magnetic sensor according to the present disclosure, a constant voltage signal and an intermittent signal are received from the outside as a power source for driving the circuit. Since the magnetic conversion element and the comparator are intermittently driven in response to the intermittent signal, the power consumption can be reduced as compared with the case where they are constantly driven. Further, since the holding circuit is driven by a constant voltage signal, even if the output of the comparator disappears due to intermittent driving, the signal for output to the output terminal can be kept held. Further, by forming the hysteresis of the comparator based on the output signal of the holding circuit, chattering of the output signal can be appropriately suppressed. Therefore, in the magnetic sensor, the output signal can be stabilized while reducing the power consumption.
実施の形態に係る磁気センサを説明するための回路図である。It is a circuit diagram for demonstrating the magnetic sensor which concerns on embodiment. 図1の磁気センサにおけるタイミングチャートである。It is a timing chart in the magnetic sensor of FIG. 比較例の磁気センサの回路図である。It is a circuit diagram of the magnetic sensor of the comparative example. 図3の磁気センサにおけるタイミングチャートである。It is a timing chart in the magnetic sensor of FIG. 変形例の磁気センサの回路図である。It is a circuit diagram of the magnetic sensor of a modification.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 (磁気センサの構成)
 図1は、実施の形態に係る磁気センサ100を説明するための回路図である。図1を参照して、磁気センサ100は、CLK端子と、VDD端子と、出力端子OUTと、接地端子GNDと、MR素子110と、コンパレータ120と、DFF(Dフリップフロップ)回路130と、出力回路140と、パルス発生回路150と、スイッチ(GSW)160とを備える。
(Magnetic sensor configuration)
FIG. 1 is a circuit diagram for explaining the magnetic sensor 100 according to the embodiment. With reference to FIG. 1, the magnetic sensor 100 has a CLK terminal, a VDD terminal, an output terminal OUT, a ground terminal GND, an MR element 110, a comparator 120, a DFF (D flipflop) circuit 130, and an output. It includes a circuit 140, a pulse generation circuit 150, and a switch (GSW) 160.
 VDD端子は、外部から供給される電源用の定電圧信号を受ける。VDD端子で受けた定電圧信号は、MR素子110、コンパレータ120、DFF回路130、出力回路140に供給される。 The VDD terminal receives a constant voltage signal for a power supply supplied from the outside. The constant voltage signal received at the VDD terminal is supplied to the MR element 110, the comparator 120, the DFF circuit 130, and the output circuit 140.
 また、CLK端子は、パルス状を有する駆動用の間欠信号を外部から受ける。CLK端子で受けた間欠信号は、パルス発生回路150に供給される。パルス発生回路150は、CLK端子から供給される間欠信号を受け、当該間欠信号と同じ周期で、かつ、当該間欠信号よりも短いパルス幅を有するパルス信号(第2信号)を生成する。パルス発生回路150で生成されたパルス信号は、DFF回路130回路およびスイッチ160に供給される。 In addition, the CLK terminal receives an intermittent drive signal having a pulse shape from the outside. The intermittent signal received at the CLK terminal is supplied to the pulse generation circuit 150. The pulse generation circuit 150 receives the intermittent signal supplied from the CLK terminal and generates a pulse signal (second signal) having the same period as the intermittent signal and having a pulse width shorter than that of the intermittent signal. The pulse signal generated by the pulse generation circuit 150 is supplied to the DFF circuit 130 circuit and the switch 160.
 MR素子110は、外部磁界の変化を電気信号に変換する磁電変換素子である。MR素子110として、AMR(Anisotropic Magneto Resistance)素子、GMR(Giant Magneto Resistance)素子、TMR(Tunnel Magneto Resistance)素子、BMR(Ballistic Magneto Resistance)素子、およびCMR(Colossal Magneto Resistance)素子などを用いることができる。 The MR element 110 is a magneto-electric conversion element that converts a change in an external magnetic field into an electric signal. As the MR element 110, an AMR (Anisotropic Magneto Resistance) element, a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, a BMR (Ballistic Magneto Resistance) element, a CMR (Colossal Magneto Resistance) element, or the like can be used. can.
 MR素子110は、VDD端子と、基準電位に接続された接地端子GNDとの間に、スイッチ160と直列に接続されている。MR素子110は、ブリッジ回路を形成する4つの抵抗素子R1~R4を含んでいる。より詳細には、抵抗素子R1の一方端はVDD端子に接続されており、他方端は抵抗素子R2の一方端に接続されている。抵抗素子R2の他方端はスイッチ160に接続されている。また、抵抗素子R3の一方端はVDD端子に接続されており、他方端は抵抗素子R4の一方端に接続されている。抵抗素子R4の他方端はスイッチ160に接続されている。すなわち、直接接続された抵抗素子R1,R2と、直接接続された抵抗素子R3,R4とが、並列に接続されている。 The MR element 110 is connected in series with the switch 160 between the VDD terminal and the ground terminal GND connected to the reference potential. The MR element 110 includes four resistance elements R1 to R4 forming a bridge circuit. More specifically, one end of the resistance element R1 is connected to the VDD terminal, and the other end is connected to one end of the resistance element R2. The other end of the resistance element R2 is connected to the switch 160. Further, one end of the resistance element R3 is connected to the VDD terminal, and the other end is connected to one end of the resistance element R4. The other end of the resistance element R4 is connected to the switch 160. That is, the directly connected resistance elements R1 and R2 and the directly connected resistance elements R3 and R4 are connected in parallel.
 抵抗素子R2,R3は、外部磁界の磁界強度が所定の感度しきい値より大きくなると抵抗値が小さくなる特性を有している。そのため、外部磁界がある場合(外部磁界の磁界強度がMR素子110の感度しきい値より大きい場合)には、抵抗素子R1と抵抗素子R2との間の接続ノードN1の電位(第1検知信号)は、外部磁界がない場合よりも小さくなる。一方、抵抗素子R3と抵抗素子R4との間の接続ノードN2の電位(第2検知信号)は、外部磁界がある場合には、外部磁界がない場合よりも大きくなる。 The resistance elements R2 and R3 have a characteristic that the resistance value becomes smaller when the magnetic field strength of the external magnetic field becomes larger than a predetermined sensitivity threshold value. Therefore, when there is an external magnetic field (when the magnetic field strength of the external magnetic field is larger than the sensitivity threshold value of the MR element 110), the potential of the connection node N1 between the resistance element R1 and the resistance element R2 (first detection signal). ) Is smaller than in the absence of an external magnetic field. On the other hand, the potential (second detection signal) of the connection node N2 between the resistance element R3 and the resistance element R4 becomes larger when there is an external magnetic field than when there is no external magnetic field.
 スイッチ160は、MR素子110への電源の供給と遮断とを切換えるためのスイッチである。スイッチ160は、たとえばN型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、パルス発生回路150で生成されたパルス信号がハイレベルの場合に導通状態となり、ローレベルの場合に非導通となる。すなわち、パルス発生回路150で生成されたパルス信号に従って、MR素子110に電源が供給される。 The switch 160 is a switch for switching between supplying and shutting off the power supply to the MR element 110. The switch 160 is, for example, an N-type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and is in a conductive state when the pulse signal generated by the pulse generation circuit 150 is at a high level, and is non-conducting when the pulse signal is at a low level. It becomes. That is, power is supplied to the MR element 110 according to the pulse signal generated by the pulse generation circuit 150.
 コンパレータ120は、正側電源端子と、負側電源端子と、反転入力端子と、非反転入力端子と、出力端子とを有する。正側電源端子はVDD端子に接続される。負側電源端子は、MR素子110とスイッチ160との接続ノードN3に接続される。したがって、MR素子110と同様に、パルス発生回路150で生成されたパルス信号に従って、コンパレータ120に電源が供給される。 The comparator 120 has a positive power supply terminal, a negative power supply terminal, an inverting input terminal, a non-inverting input terminal, and an output terminal. The positive power supply terminal is connected to the VDD terminal. The negative power supply terminal is connected to the connection node N3 between the MR element 110 and the switch 160. Therefore, similarly to the MR element 110, power is supplied to the comparator 120 according to the pulse signal generated by the pulse generation circuit 150.
 コンパレータ120の反転入力端子は、MR素子110における、抵抗素子R1と抵抗素子R2との間の接続ノードN1に接続される。また、非反転入力端子は、抵抗素子R3と抵抗素子R4との間の接続ノードN2に接続される。MR素子110において、外部磁界がない場合に接続ノードN1の電位が接続ノードN2の電位よりも高くなるように設定しておくと、外部磁界がない状態では、コンパレータ120の反転入力端子と非反転入力端子との間に負の電位差が生じるため、コンパレータ120の出力はローレベルになる。一方、外部磁界がある場合には、接続ノードN1の電位が低下し、接続ノードN2の電位が高くなるため、コンパレータ120の反転入力端子と非反転入力端子との間に正の電位差が生じる。これによって、コンパレータ120の出力がハイレベルになる。 The inverting input terminal of the comparator 120 is connected to the connection node N1 between the resistance element R1 and the resistance element R2 in the MR element 110. Further, the non-inverting input terminal is connected to the connection node N2 between the resistance element R3 and the resistance element R4. If the MR element 110 is set so that the potential of the connection node N1 is higher than the potential of the connection node N2 when there is no external magnetic field, it is non-inverting with the inverting input terminal of the comparator 120 in the absence of an external magnetic field. Since a negative potential difference is generated between the input terminal and the input terminal, the output of the comparator 120 becomes low level. On the other hand, when there is an external magnetic field, the potential of the connection node N1 decreases and the potential of the connection node N2 increases, so that a positive potential difference occurs between the inverting input terminal and the non-inverting input terminal of the comparator 120. As a result, the output of the comparator 120 becomes a high level.
 言い換えれば、非反転入力端子に入力される信号(第1検知信号)から、反転入力端子に入力される信号(第2検知信号)を差し引いた偏差が所定のしきい値より大きい場合にはコンパレータ120からの出力信号がハイレベルとなり、当該偏差がしきい値よりも小さい場合にはコンパレータ120からの出力信号がローレベルとなる。 In other words, if the deviation obtained by subtracting the signal input to the inverting input terminal (second detection signal) from the signal input to the non-inverting input terminal (first detection signal) is larger than the predetermined threshold value, the comparator The output signal from 120 becomes high level, and when the deviation is smaller than the threshold value, the output signal from the comparator 120 becomes low level.
 DFF回路130は、データ端子Dと、クロック端子Cと、出力端子Qとを有する。データ端子Dは、コンパレータ120の出力端子に接続されており、コンパレータ120の出力信号を受ける。クロック端子Cは、データ端子Dで受けた信号を保持するためのトリガ信号を受ける。クロック端子Cは、パルス発生回路150からのパルス信号(第2信号)が反転された信号を受ける。したがって、DFF回路130は、パルス発生回路150からのパルス信号(第2信号)の立下がりタイミングにおいて、コンパレータ120の出力信号の状態を保持し、保持された信号(第1信号)を出力端子Qから出力する。DFF回路130の出力端子Qは、出力回路140に接続される。 The DFF circuit 130 has a data terminal D, a clock terminal C, and an output terminal Q. The data terminal D is connected to the output terminal of the comparator 120 and receives the output signal of the comparator 120. The clock terminal C receives a trigger signal for holding the signal received at the data terminal D. The clock terminal C receives a signal in which the pulse signal (second signal) from the pulse generation circuit 150 is inverted. Therefore, the DFF circuit 130 holds the state of the output signal of the comparator 120 at the falling timing of the pulse signal (second signal) from the pulse generation circuit 150, and outputs the held signal (first signal) to the output terminal Q. Output from. The output terminal Q of the DFF circuit 130 is connected to the output circuit 140.
 DFF回路130は、VDD端子からの定電圧信号によって駆動されており、CLK端子からの間欠信号によって駆動/停止が切換わらない。そのため、パルス発生回路150からのパルス信号に応じてコンパレータ120への電源供給が停止し、コンパレータ120からの出力信号が消失しても、DFF回路130からの出力信号は維持される。 The DFF circuit 130 is driven by a constant voltage signal from the VDD terminal, and the drive / stop is not switched by the intermittent signal from the CLK terminal. Therefore, even if the power supply to the comparator 120 is stopped in response to the pulse signal from the pulse generation circuit 150 and the output signal from the comparator 120 disappears, the output signal from the DFF circuit 130 is maintained.
 出力回路140は、VDD端子と接地端子GNDとの間に直列に接続されたスイッチSW1,SW2を含む。スイッチSW1はN型のMOSFETであり、VDD端子に接続されている。スイッチSW2はP型のMOSFETであり、接地端子GNDに接続されている。スイッチSW1とスイッチSW2との間の接続ノードN4は、出力端子OUTに接続されている。 The output circuit 140 includes switches SW1 and SW2 connected in series between the VDD terminal and the ground terminal GND. The switch SW1 is an N-type MOSFET and is connected to the VDD terminal. The switch SW2 is a P-type MOSFET and is connected to the ground terminal GND. The connection node N4 between the switch SW1 and the switch SW2 is connected to the output terminal OUT.
 スイッチSW1,SW2の各々の制御端子は、DFF回路130の出力端子Qに接続されている。そのため、DFF回路130の出力がハイレベルの場合(すなわち、外部磁界がある場合)には、出力端子OUTから出力される信号レベルがハイレベルになり、DFF回路130の出力がローレベルの場合(すなわち、外部磁界がない場合)には、出力端子OUTからの信号レベルはローレベルになる。 Each control terminal of the switches SW1 and SW2 is connected to the output terminal Q of the DFF circuit 130. Therefore, when the output of the DFF circuit 130 is high level (that is, when there is an external magnetic field), the signal level output from the output terminal OUT becomes high level, and when the output of the DFF circuit 130 is low level (that is, when there is an external magnetic field). That is, when there is no external magnetic field), the signal level from the output terminal OUT becomes low level.
 また、DFF回路130からの出力信号(第1信号)は、コンパレータ120へもフィードバックされる。DFF回路130からの出力信号は、コンパレータ120のHYS端子に供給される。HYS端子は、コンパレータ120における2つの入力信号の比較に用いる判定用のしきい値を変更して、出力信号のヒステリシスを形成するためのトリガを与えるための端子である。 Further, the output signal (first signal) from the DFF circuit 130 is also fed back to the comparator 120. The output signal from the DFF circuit 130 is supplied to the HYS terminal of the comparator 120. The HYS terminal is a terminal for changing a determination threshold value used for comparing two input signals in the comparator 120 to give a trigger for forming a hysteresis of an output signal.
 より詳細には、HYS端子で受けたDFF回路130の出力信号がハイレベルの場合には、ローレベルの場合に比べて上記のしきい値を小さくする。これにより、DFF回路130の出力信号がハイレベルの場合(すなわち外部磁界がある場合)には、DFF回路130の出力信号がローレベルの場合に比べて、コンパレータ120の判定用のしきい値が小さくなる。したがって、コンパレータ120において、MR素子110からの2つの信号の偏差(差電圧)が、出力信号がローレベルからハイレベルに変化したときの偏差よりも十分に低くなった時点で、コンパレータ120の出力がハイレベルからローレベルに変化することになる。すなわち、DFF回路130からの出力信号(第1信号)に基づいて、コンパレータ120の出力信号のヒステリシスが形成される。 More specifically, when the output signal of the DFF circuit 130 received at the HYS terminal is at a high level, the above threshold value is made smaller than when it is at a low level. As a result, when the output signal of the DFF circuit 130 is at a high level (that is, when there is an external magnetic field), the threshold value for determination of the comparator 120 is set as compared with the case where the output signal of the DFF circuit 130 is at a low level. It gets smaller. Therefore, in the comparator 120, when the deviation (difference voltage) between the two signals from the MR element 110 becomes sufficiently lower than the deviation when the output signal changes from low level to high level, the output of the comparator 120 Will change from high level to low level. That is, the hysteresis of the output signal of the comparator 120 is formed based on the output signal (first signal) from the DFF circuit 130.
 MR素子110が、感度しきい値付近の磁界強度の環境に置かれている場合、磁界強度の微小な変化、あるいは、磁気センサ100の検出回路内における電気的なノイズなどの影響により、短時間の間にコンパレータ120の出力がハイレベルとローレベルとを繰り返す、いわゆるチャタリング現象が生じる可能性がある。上記のように、コンパレータ120において、DFF回路130の出力に基づいてヒステリシスを形成することによって、コンパレータ120の出力信号のチャタリングを防止することができる。 When the MR element 110 is placed in an environment of magnetic field strength near the sensitivity threshold value, it takes a short time due to the influence of a slight change in the magnetic field strength or electrical noise in the detection circuit of the magnetic sensor 100. During this period, the output of the comparator 120 repeats high level and low level, so-called chattering phenomenon may occur. As described above, in the comparator 120, chattering of the output signal of the comparator 120 can be prevented by forming a hysteresis based on the output of the DFF circuit 130.
 上述のように、コンパレータ120は、消費電力の削減のために、パルス発生回路150からのパルス信号に応答して駆動される。そのため、コンパレータ120の出力信号を用いてヒステリシスを形成すると、コンパレータ120への電源が遮断される度にヒステリシスがリセットされることになる。その一方で、DFF回路130はVDD端子からの定電圧信号により駆動されているので、DFF回路130の出力信号に基づいてヒステリシスを形成することで、コンパレータ120への電源供給状態にかかわらず、ヒステリシス形成用のトリガ信号を維持することができる。これにより、チャタリングの発生を適切に抑制することができ、結果として、磁気センサの出力をより安定化することができる。 As described above, the comparator 120 is driven in response to the pulse signal from the pulse generation circuit 150 in order to reduce power consumption. Therefore, when the hysteresis is formed by using the output signal of the comparator 120, the hysteresis is reset every time the power supply to the comparator 120 is cut off. On the other hand, since the DFF circuit 130 is driven by a constant voltage signal from the VDD terminal, the hysteresis is formed based on the output signal of the DFF circuit 130, so that the hysteresis is irrespective of the power supply state to the comparator 120. The trigger signal for formation can be maintained. As a result, the occurrence of chattering can be appropriately suppressed, and as a result, the output of the magnetic sensor can be further stabilized.
 なお、実施の形態の磁気センサ100において、「VDD端子」および「CLK端子」は、本開示の「第1端子」および「第2端子」にそれぞれ対応する。実施の形態における「DFF回路130」は、本開示における「保持回路」に対応する。 In the magnetic sensor 100 of the embodiment, the "VDD terminal" and the "CLK terminal" correspond to the "first terminal" and the "second terminal" of the present disclosure, respectively. The "DFF circuit 130" in the embodiment corresponds to the "holding circuit" in the present disclosure.
 次に、図2を用いて、図1の磁気センサ100の詳細な動作について説明する。図2は、図1の磁気センサ100におけるタイミングチャートである。図2においては、上段から外部磁界の有無、VDD端子で受ける定電圧信号、CLK端子で受ける間欠信号、磁気センサ100の消費電力、および、出力端子OUTから出力される出力信号が示されている。 Next, the detailed operation of the magnetic sensor 100 of FIG. 1 will be described with reference to FIG. FIG. 2 is a timing chart of the magnetic sensor 100 of FIG. In FIG. 2, the presence / absence of an external magnetic field, the constant voltage signal received at the VDD terminal, the intermittent signal received at the CLK terminal, the power consumption of the magnetic sensor 100, and the output signal output from the output terminal OUT are shown from the upper stage. ..
 図1および図2を参照して、たとえば、モータなどの回転軸に取り付けられた磁石の磁力を磁気センサ100によって検出するような場合を考える。この場合、外部磁界がある状態と、外部磁界がない状態とが交互に現れる。図2においては、時刻t0~t6の間および時刻t11以降が、外部磁界がある状態に対応する。 With reference to FIGS. 1 and 2, for example, consider a case where the magnetic force of a magnet attached to a rotating shaft of a motor or the like is detected by a magnetic sensor 100. In this case, a state with an external magnetic field and a state without an external magnetic field appear alternately. In FIG. 2, between time t0 and time t6 and after time t11 corresponds to a state where there is an external magnetic field.
 時刻t1において磁気センサ100が起動され、VDD端子に定電圧信号が供給される。さらに、CLK端子に所定の周期の間欠信号が供給される。定電圧信号が供給されると、DFF回路130、出力回路140およびパルス発生回路150が駆動され、これらの機器による電力が消費される。このとき、スイッチ160は非導通の状態であるので、MR素子110およびコンパレータ120において電力は消費されない。なお、DFF回路130、出力回路140およびパルス発生回路150のみが駆動される状態を、以下では「ベース状態」とも称する。 At time t1, the magnetic sensor 100 is activated and a constant voltage signal is supplied to the VDD terminal. Further, an intermittent signal having a predetermined period is supplied to the CLK terminal. When the constant voltage signal is supplied, the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150 are driven, and the power generated by these devices is consumed. At this time, since the switch 160 is in a non-conducting state, power is not consumed in the MR element 110 and the comparator 120. The state in which only the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150 are driven is also referred to as a "base state" below.
 時刻t2において間欠信号のパルスを受けると、パルス発生回路150によって、間欠信号よりも短いパルス幅のパルス信号が生成され、スイッチ160が導通状態とされる。スイッチ160が導通状態となる時刻t2~t3の間だけ、MR素子110およびコンパレータ120が駆動され、磁気センサ100が取り付けられている位置における外部磁界の検出が行われる。これにより、消費電力が増加する。 When the pulse of the intermittent signal is received at time t2, the pulse generation circuit 150 generates a pulse signal having a pulse width shorter than that of the intermittent signal, and the switch 160 is put into a conductive state. The MR element 110 and the comparator 120 are driven only during the time t2 to t3 when the switch 160 is in the conduction state, and the detection of the external magnetic field at the position where the magnetic sensor 100 is attached is performed. This increases power consumption.
 時刻t2~t3においては、外部磁界がある状態であるため、外部磁界によってMR素子110の抵抗素子R2,R3の抵抗値が低下し、コンパレータ120の出力がハイレベルになる。時刻t2~t3の間においては、DFF回路130において信号の更新が行われていないため、出力回路140の出力はローレベルのままである。 Since there is an external magnetic field at times t2 to t3, the resistance values of the resistance elements R2 and R3 of the MR element 110 decrease due to the external magnetic field, and the output of the comparator 120 becomes a high level. Since the signal is not updated in the DFF circuit 130 between the times t2 and t3, the output of the output circuit 140 remains at the low level.
 時刻t3において、パルス発生回路150からのパルス信号が立下がると、そのタイミングでDFF回路130のクロック端子Cの入力信号がハイレベルに変化する。これに応答して、DFF回路130において、そのタイミングにおけるデータ端子Dの入力信号(すなわち、コンパレータ120の出力)が保持される。時刻t3においては、外部磁界がある状態であり、コンパレータ120の出力がハイレベルであるため、DFF回路130の出力端子Qからの出力信号がローレベルからハイレベルに遷移する。これにより、出力回路140からの出力信号もハイレベルになる。 At time t3, when the pulse signal from the pulse generation circuit 150 falls, the input signal of the clock terminal C of the DFF circuit 130 changes to a high level at that timing. In response to this, the DFF circuit 130 holds the input signal of the data terminal D (that is, the output of the comparator 120) at that timing. At time t3, since there is an external magnetic field and the output of the comparator 120 is high level, the output signal from the output terminal Q of the DFF circuit 130 transitions from low level to high level. As a result, the output signal from the output circuit 140 also becomes a high level.
 また、時刻t3においては、パルス発生回路150からのパルス信号がローレベルとなるため、スイッチ160が非導通状態に切換えられる。これによってMR素子110およびコンパレータ120への定電圧信号の供給が停止されるので、消費電力がベース状態のレベルに低減される。 Further, at time t3, the pulse signal from the pulse generation circuit 150 becomes low level, so that the switch 160 is switched to the non-conducting state. As a result, the supply of the constant voltage signal to the MR element 110 and the comparator 120 is stopped, so that the power consumption is reduced to the level of the base state.
 なお、時刻t3においてコンパレータ120の停止によって出力信号がローレベルに低下するが、DFF回路130でハイレベル状態が保持されており、かつ、DFF回路130および出力回路140には、定電圧信号が継続して供給されているため、出力端子OUTからの出力信号はハイレベル状態が継続される。 Although the output signal drops to a low level due to the stop of the comparator 120 at time t3, the high level state is maintained in the DFF circuit 130, and the constant voltage signal continues in the DFF circuit 130 and the output circuit 140. The output signal from the output terminal OUT continues to be in a high level state.
 時刻t4において、CLK端子に間欠信号が再び供給され、パルス発生回路150からのパルス信号がハイレベルになるが、外部磁界の状態が変化していないため、時刻t5でパルス信号が立下がっても、DFF回路130に保持される信号状態は変化せず、出力回路140からの出力もハイレベルの状態が持続される。 At time t4, the intermittent signal is supplied again to the CLK terminal, and the pulse signal from the pulse generation circuit 150 becomes high level, but since the state of the external magnetic field has not changed, even if the pulse signal falls at time t5. , The signal state held in the DFF circuit 130 does not change, and the output from the output circuit 140 also maintains a high level state.
 時刻t6において、外部磁界がない状態となるが、この時点ではMR素子110およびコンパレータ120が非駆動状態のため、出力端子OUTからの出力信号の状態は変化しない。 At time t6, there is no external magnetic field, but at this point, the MR element 110 and the comparator 120 are not driven, so the state of the output signal from the output terminal OUT does not change.
 時刻t7において間欠信号が供給され、パルス発生回路150からのパルス信号によってMR素子110およびコンパレータ120が駆動されると、MR素子110によって外部磁界がない状態が検出される。これにより、コンパレータ120の出力がハイレベルからローレベルに変化する。そして、時刻t8のパルス信号の立下がりのタイミングにおいて、DFF回路130の信号保持状態が更新されて、出力端子OUTからの出力信号の状態がハイレベルからローレベルへと遷移する。 When the intermittent signal is supplied at time t7 and the MR element 110 and the comparator 120 are driven by the pulse signal from the pulse generation circuit 150, the MR element 110 detects a state in which there is no external magnetic field. As a result, the output of the comparator 120 changes from high level to low level. Then, at the timing of the fall of the pulse signal at time t8, the signal holding state of the DFF circuit 130 is updated, and the state of the output signal from the output terminal OUT transitions from the high level to the low level.
 時刻t9において間欠信号が再び供給されるが、外部磁界のない状態が継続されているため、時刻t10のパルス信号の立下りにおいてDFF回路130の信号保持状態および出力端子OUTからの出力信号の状態は、ローレベルが維持される。 The intermittent signal is supplied again at time t9, but since the state without an external magnetic field continues, the signal holding state of the DFF circuit 130 and the state of the output signal from the output terminal OUT at the falling edge of the pulse signal at time t10. Maintains a low level.
 時刻t11において、再び外部磁界がある状態に変化すると、その直後のパルス信号の供給タイミング(時刻t12)において、MR素子110によって外部磁界が検出される。そして、時刻t13のパルス信号の立下りのタイミングにおいて、DFF回路130の信号保持状態が更新され、出力端子OUTからの出力信号の状態がローレベルからハイレベルに遷移する。以降は、外部磁界の状態に応じて、時刻t2~t13の間の動作が繰り返される。 When the external magnetic field changes to a certain state again at time t11, the external magnetic field is detected by the MR element 110 at the pulse signal supply timing (time t12) immediately after that. Then, at the falling timing of the pulse signal at time t13, the signal holding state of the DFF circuit 130 is updated, and the state of the output signal from the output terminal OUT transitions from the low level to the high level. After that, the operation between the times t2 and t13 is repeated according to the state of the external magnetic field.
 なお、コンパレータ120におけるヒステリシスがDFF回路130の出力信号(すなわち、出力端子OUTからの出力信号)に基づいて行なわれるため、磁気センサ100において外部磁界があると認識されている状態においては、コンパレータ120における磁界検出用のしきい値が継続的に低下された状態となる。そのため、MR素子110およびコンパレータ120が間欠駆動されても、ヒステリシスが適切に実現される。 Since the hysteresis in the comparator 120 is performed based on the output signal of the DFF circuit 130 (that is, the output signal from the output terminal OUT), the comparator 120 is in a state where the magnetic sensor 100 recognizes that there is an external magnetic field. The threshold value for magnetic field detection in is continuously lowered. Therefore, even if the MR element 110 and the comparator 120 are intermittently driven, hysteresis is appropriately realized.
 このように、磁気センサ100においては、CLK端子で受ける間欠信号から生成される微小パルス信号の間だけMR素子110およびコンパレータ120が駆動されるため、これらの機器を常時駆動状態とする場合に比べて、磁気センサ100全体の消費電力を低減することができる。また、DFF回路130の出力信号に基づいてコンパレータ120のヒステリシスを形成することで、MR素子110およびコンパレータ120への電源供給状態にかかわらず、ヒステリシス形成用のトリガ信号を維持することができるため、磁気センサの出力をより安定化することができる。 As described above, in the magnetic sensor 100, since the MR element 110 and the comparator 120 are driven only during the minute pulse signal generated from the intermittent signal received at the CLK terminal, the MR element 110 and the comparator 120 are driven, as compared with the case where these devices are always in the driving state. Therefore, the power consumption of the entire magnetic sensor 100 can be reduced. Further, by forming the hysteresis of the comparator 120 based on the output signal of the DFF circuit 130, the trigger signal for forming the hysteresis can be maintained regardless of the power supply state to the MR element 110 and the comparator 120. The output of the magnetic sensor can be more stabilized.
 図3は比較例の磁気センサ100#の回路図である。図3を参照して、磁気センサ100#においては、基本的には実施の形態の磁気センサ100と同じ要素が含まれている。磁気センサ100と比較すると、磁気センサ100#は、装置に供給される電源が間欠信号のみとなっている点、および、DFF回路130の出力信号を用いたコンパレータ120のヒステリシスが形成されていない点が異なっている。すなわち、MR素子110、コンパレータ120、DFF回路130および出力回路140のいずれもが、間欠信号によって間欠的に駆動される。なお、図3において、図1と重複する要素の説明は繰り返さない。 FIG. 3 is a circuit diagram of the magnetic sensor 100 # of the comparative example. With reference to FIG. 3, the magnetic sensor 100 # basically includes the same elements as the magnetic sensor 100 of the embodiment. Compared with the magnetic sensor 100, the magnetic sensor 100 # has a point that the power supplied to the apparatus is only an intermittent signal and a point that the hysteresis of the comparator 120 using the output signal of the DFF circuit 130 is not formed. Is different. That is, all of the MR element 110, the comparator 120, the DFF circuit 130, and the output circuit 140 are intermittently driven by the intermittent signal. In addition, in FIG. 3, the description of the element overlapping with FIG. 1 is not repeated.
 図4は、図3の磁気センサ100#におけるタイミングチャートである。図4においては、上段から外部磁界の有無、VDD端子で受ける間欠信号、磁気センサ100の消費電力、および、出力端子OUTから出力される出力信号が示されている。図4においては、図2と同様に、外部磁界がある状態と、外部磁界がない状態とが交互に現れる場合を示している。 FIG. 4 is a timing chart of the magnetic sensor 100 # of FIG. In FIG. 4, the presence / absence of an external magnetic field, the intermittent signal received at the VDD terminal, the power consumption of the magnetic sensor 100, and the output signal output from the output terminal OUT are shown from the upper stage. FIG. 4 shows a case where a state with an external magnetic field and a state without an external magnetic field appear alternately as in FIG. 2.
 図3および図4を参照して、磁気センサ100#の場合には、VDD端子に間欠信号がハイレベルの間に限って、磁気センサ100#が駆動される。時刻t20~t27の外部磁界がある状態の期間中に、VDD端子に間欠信号が供給されると(時刻t21)、パルス発生回路150からのパルス信号によってスイッチ160が導通状態とされてMR素子110およびコンパレータ120に電力が供給される。また、間欠信号によってDFF回路130および出力回路140も駆動される。これにより消費電力が増加する。 With reference to FIGS. 3 and 4, in the case of the magnetic sensor 100 #, the magnetic sensor 100 # is driven only while the intermittent signal is at a high level at the VDD terminal. When an intermittent signal is supplied to the VDD terminal during a period of time t20 to t27 with an external magnetic field (time t21), the switch 160 is brought into a conductive state by the pulse signal from the pulse generation circuit 150, and the MR element 110 And power is supplied to the comparator 120. The DFF circuit 130 and the output circuit 140 are also driven by the intermittent signal. This increases power consumption.
 パルス発生回路150からのパルス信号がハイレベルの間(時刻t21~t22)において、MR素子110によって外部磁界が検出されて、コンパレータ120の出力がローレベルからハイレベルに遷移する。そして、パルス信号の立下りタイミング(時刻t22)において、DFF回路130によってコンパレータ120の出力信号が保持され、出力回路140の出力信号がハイレベルに遷移する。 While the pulse signal from the pulse generation circuit 150 is at a high level (time t21 to t22), the external magnetic field is detected by the MR element 110, and the output of the comparator 120 transitions from the low level to the high level. Then, at the falling timing of the pulse signal (time t22), the output signal of the comparator 120 is held by the DFF circuit 130, and the output signal of the output circuit 140 transitions to a high level.
 時刻t22~t23の間は、スイッチ160は非導通状態であるため、MR素子110およびコンパレータ120による電力消費はなく、DFF回路130、出力回路140およびパルス発生回路150による電力のみが消費される。 Since the switch 160 is in a non-conducting state between the times t22 and t23, the MR element 110 and the comparator 120 do not consume power, but only the power consumed by the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150.
 時刻t23において、間欠信号がローレベルになると、DFF回路130、出力回路140およびパルス発生回路150も停止されるため、消費電力はゼロとなる。これにより、DFF回路130および出力回路140の出力信号がローレベルとなるため、外部磁界がある状態であるにもかかわらず、出力端子OUTの出力はローレベルとなる。 When the intermittent signal becomes low level at time t23, the DFF circuit 130, the output circuit 140, and the pulse generation circuit 150 are also stopped, so that the power consumption becomes zero. As a result, the output signals of the DFF circuit 130 and the output circuit 140 become low level, so that the output of the output terminal OUT becomes low level even though there is an external magnetic field.
 時刻t24において間欠信号が再度供給されると、時刻t21~t23と同様の動作が実行され、時刻t25~t26の間だけ出力端子OUTからの出力信号がハイレベルになる。 When the intermittent signal is supplied again at the time t24, the same operation as the time t21 to t23 is executed, and the output signal from the output terminal OUT becomes high level only during the time t25 to t26.
 時刻t27~t34の間の外部磁界がない状態においては、間欠信号が供給されてもMR素子110によって磁界が検出されないので、出力端子OUTからの出力信号はローレベルのままとなる。時刻t34において再び外部磁界がある状態になると、間欠信号が供給されている間の時刻t36~t37の間だけ、出力端子OUTからの出力信号がハイレベルになる。 In the state where there is no external magnetic field between the times t27 and t34, the magnetic field is not detected by the MR element 110 even if the intermittent signal is supplied, so that the output signal from the output terminal OUT remains at a low level. When the external magnetic field is present again at the time t34, the output signal from the output terminal OUT becomes high level only between the times t36 and t37 while the intermittent signal is being supplied.
 このように、比較例の磁気センサ100#においては、間欠信号が供給されている間だけしか電力が消費されないので、装置全体の消費電力を大幅に低減できる。しかしながら、磁気センサ100#においては、外部磁界がある状態が継続されていても、間欠信号がハイレベルの間に限って出力端子OUTからの出力信号がローレベルとなってしまう。そのため、外部磁界の状態を正しく検出するためには、当該磁気センサ100#の出力信号を処理する外部制御装置によって、間欠信号と磁気センサ100#の出力信号とのタイミングを考慮しながら、出力信号を保持するための回路を別途形成することが必要となる。 As described above, in the magnetic sensor 100 # of the comparative example, the power consumption is consumed only while the intermittent signal is supplied, so that the power consumption of the entire device can be significantly reduced. However, in the magnetic sensor 100 #, even if the state where there is an external magnetic field continues, the output signal from the output terminal OUT becomes low level only while the intermittent signal is at high level. Therefore, in order to correctly detect the state of the external magnetic field, the output signal is taken into consideration by the external control device that processes the output signal of the magnetic sensor 100 # while considering the timing between the intermittent signal and the output signal of the magnetic sensor 100 #. It is necessary to separately form a circuit for holding the.
 これに比べて、図1および図2で示した実施の形態の磁気センサ100においては、外部から定電圧信号および間欠信号を受け、MR素子110およびコンパレータ120を間欠駆動しつつ、DFF回路130および出力回路140を常時駆動することによって、消費電力をある程度低減しながら、出力端子OUTからの出力信号を実際の外部磁界の状態に近づけることができる。そのため、外部制御装置における保持回路が不要となる。 In comparison with this, in the magnetic sensor 100 of the embodiment shown in FIGS. 1 and 2, the DFF circuit 130 and the DFF circuit 130 and the intermittent drive of the MR element 110 and the comparator 120 are received from the outside by receiving a constant voltage signal and an intermittent signal. By constantly driving the output circuit 140, it is possible to bring the output signal from the output terminal OUT closer to the state of the actual external magnetic field while reducing the power consumption to some extent. Therefore, the holding circuit in the external control device becomes unnecessary.
 さらに、実施の形態の磁気センサ100においては、DFF回路130の出力信号を用いて、コンパレータ120のヒステリシスが形成されるため、外部磁界のある状態と外部磁界のない状態の境界における出力信号のチャタリングを抑制することができる。したがって、実施の形態の磁気センサ100においては、消費電力を低減しつつ出力信号を安定化することができる。 Further, in the magnetic sensor 100 of the embodiment, since the hysteresis of the comparator 120 is formed by using the output signal of the DFF circuit 130, chattering of the output signal at the boundary between the state with the external magnetic field and the state without the external magnetic field. Can be suppressed. Therefore, in the magnetic sensor 100 of the embodiment, the output signal can be stabilized while reducing the power consumption.
 (変形例)
 上記の実施の形態の磁気センサ100においては、磁電変換回路としてMR素子を用いる場合について説明した。変形例においては、磁電変換回路としてホール素子を用いる場合について説明する。
(Modification example)
In the magnetometer 100 of the above embodiment, a case where an MR element is used as a magnetoelectric conversion circuit has been described. In the modification, a case where a Hall element is used as the magnetic-electric conversion circuit will be described.
 図5は、変形例に係る磁気センサ100Aの回路図である。磁気センサ100Aにおいては、図1で示した磁気センサ100におけるMR素子110がホール素子110Aに置き換わった構成となっている。図5において、図1と重複する要素の詳細な説明は繰り返さない。 FIG. 5 is a circuit diagram of the magnetic sensor 100A according to the modified example. The magnetic sensor 100A has a configuration in which the MR element 110 in the magnetic sensor 100 shown in FIG. 1 is replaced with the Hall element 110A. In FIG. 5, the detailed description of the elements overlapping with FIG. 1 is not repeated.
 ホール素子110Aは、VDD端子と接地端子GNDとの間に、スイッチ160と直列に接続されている。ホール素子110Aは、外部磁界の大きさに比例した起電力(ホール電圧)を出力端子T1,T2間に発生する。そのため、当該出力端子T1,T2をコンパレータ120の非反転入力端子および反転入力端子にそれぞれ接続し、ホール電圧を所定のしきい値と比較することによって、外部磁界の有無を検出することができる。 The Hall element 110A is connected in series with the switch 160 between the VDD terminal and the ground terminal GND. The Hall element 110A generates an electromotive force (Hall voltage) proportional to the magnitude of the external magnetic field between the output terminals T1 and T2. Therefore, the presence or absence of an external magnetic field can be detected by connecting the output terminals T1 and T2 to the non-inverting input terminal and the inverting input terminal of the comparator 120, respectively, and comparing the Hall voltage with a predetermined threshold value.
 そして、外部装置から定電圧信号および間欠信号を受け、ホール素子110Aおよびコンパレータ120を間欠駆動しつつ、DFF回路130および出力回路140を常時駆動し、さらに、DFF回路130の出力信号を用いてコンパレータ120のヒステリシスを形成することによって、磁気センサの消費電力を低減しつつ出力信号を安定化することができる。 Then, it receives a constant voltage signal and an intermittent signal from an external device, and while intermittently driving the Hall element 110A and the comparator 120, it constantly drives the DFF circuit 130 and the output circuit 140, and further, the comparator using the output signal of the DFF circuit 130. By forming the hysteresis of 120, the output signal can be stabilized while reducing the power consumption of the magnetic sensor.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 100,100A,100# 磁気センサ、110 MR素子、110A ホール素子、120 コンパレータ、130 DFF回路、140 出力回路、150 パルス発生回路、160,SW1,SW2 スイッチ、C クロック端子、D データ端子、GND 接地端子、N1~N4 接続ノード、OUT,Q,T1,T2 出力端子、R1~R4 抵抗素子。 100, 100A, 100 # magnetic sensor, 110 MR element, 110A Hall element, 120 comparator, 130 DFF circuit, 140 output circuit, 150 pulse generation circuit, 160, SW1, SW2 switch, C clock terminal, D data terminal, GND grounding Terminal, N1 to N4 connection node, OUT, Q, T1, T2 output terminal, R1 to R4 resistance element.

Claims (6)

  1.  定電圧信号を受ける第1端子と、
     パルス状の間欠信号を受ける第2端子と、
     出力端子と、
     磁電変換素子と、
     前記磁電変換素子からの第1検知信号および第2検知信号を比較するコンパレータと、
     前記第1端子からの定電圧信号により駆動され、前記第2端子からの間欠信号に応答して前記コンパレータの出力信号を保持するように構成された保持回路と、
     前記保持回路に保持された第1信号に基づいて、前記出力端子から出力される信号レベルを切換える出力回路とを備え、
     前記磁電変換素子および前記コンパレータは、前記第2端子からの間欠信号に対応して駆動され、
     前記コンパレータは、前記保持回路からの前記第1信号に基づいて、前記出力信号のヒステリシスを形成する、磁気センサ。
    The first terminal that receives a constant voltage signal and
    The second terminal that receives the pulsed intermittent signal,
    With the output terminal
    Magnetic-electric conversion element and
    A comparator that compares the first detection signal and the second detection signal from the magnetic conversion element, and
    A holding circuit driven by a constant voltage signal from the first terminal and configured to hold the output signal of the comparator in response to an intermittent signal from the second terminal.
    It is provided with an output circuit for switching the signal level output from the output terminal based on the first signal held in the holding circuit.
    The magnetic conversion element and the comparator are driven in response to an intermittent signal from the second terminal.
    The comparator is a magnetic sensor that forms a hysteresis of the output signal based on the first signal from the holding circuit.
  2.  前記コンパレータは、
      前記第1検知信号から前記第2検知信号を差し引いた偏差がしきい値より大きい場合は前記出力信号をハイレベルとし、前記偏差が前記しきい値より小さい場合は前記出力信号をローレベルとし、
      前記第1信号がハイレベルの場合には、前記第1信号がローレベルの場合に比べて前記しきい値を小さくする、請求項1に記載の磁気センサ。
    The comparator is
    When the deviation obtained by subtracting the second detection signal from the first detection signal is larger than the threshold value, the output signal is set to high level, and when the deviation is smaller than the threshold value, the output signal is set to low level.
    The magnetic sensor according to claim 1, wherein when the first signal is at a high level, the threshold value is made smaller than when the first signal is at a low level.
  3.  前記出力回路は、前記第1端子からの定電圧信号により駆動される、請求項1または2に記載の磁気センサ。 The magnetic sensor according to claim 1 or 2, wherein the output circuit is driven by a constant voltage signal from the first terminal.
  4.  前記第2端子からの間欠信号を利用して、当該間欠信号よりも短いパルス幅を有する第2信号を生成するように構成されたパルス発生回路をさらに備え、
     前記保持回路は、前記第2信号の立下りタイミングにおける前記コンパレータの出力を保持する、請求項1~3のいずれか1項に記載の磁気センサ。
    Further, a pulse generation circuit configured to generate a second signal having a pulse width shorter than that of the intermittent signal by using the intermittent signal from the second terminal is provided.
    The magnetic sensor according to any one of claims 1 to 3, wherein the holding circuit holds the output of the comparator at the falling timing of the second signal.
  5.  前記第2信号に従って動作し、前記磁電変換素子および前記コンパレータへの、前記第1端子からの定電圧信号の供給と遮断とを切換えるスイッチをさらに備える、請求項4に記載の磁気センサ。 The magnetic sensor according to claim 4, further comprising a switch that operates according to the second signal and switches between supply and cut of a constant voltage signal from the first terminal to the magnetic conversion element and the comparator.
  6.  前記磁電変換素子は、AMR(Anisotropic Magneto Resistance)素子、GMR(Giant Magneto Resistance)素子、TMR(Tunnel Magneto Resistance)素子、BMR(Ballistic Magneto Resistance)素子、CMR(Colossal Magneto Resistance)素子、あるいはホール素子である、請求項1~5のいずれか1項に記載の磁気センサ。 The magnetoelectric conversion element is an AMR (Anisotropic Magneto Resistance) element, a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, a BMR (Ballistic Magneto Resistance) element, a CMR (Colossal Magneto Resistance) element, or a Hall element. The magnetic sensor according to any one of claims 1 to 5.
PCT/JP2021/018985 2020-06-12 2021-05-19 Magnetic sensor WO2021251085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020102255 2020-06-12
JP2020-102255 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251085A1 true WO2021251085A1 (en) 2021-12-16

Family

ID=78845960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018985 WO2021251085A1 (en) 2020-06-12 2021-05-19 Magnetic sensor

Country Status (1)

Country Link
WO (1) WO2021251085A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109417U (en) * 1990-02-27 1991-11-11
JPH10126242A (en) * 1996-08-26 1998-05-15 Goto Tadatoshi Detection and management device for playing balls in game spot
JP2000174254A (en) * 1998-12-07 2000-06-23 Sharp Corp Semiconductor integrated circuit for magnetic detection
JP2001337147A (en) * 2000-03-23 2001-12-07 Matsushita Electric Ind Co Ltd Magnetic field sensor
JP2012181128A (en) * 2011-03-02 2012-09-20 Rohm Co Ltd Magnetic sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109417U (en) * 1990-02-27 1991-11-11
JPH10126242A (en) * 1996-08-26 1998-05-15 Goto Tadatoshi Detection and management device for playing balls in game spot
JP2000174254A (en) * 1998-12-07 2000-06-23 Sharp Corp Semiconductor integrated circuit for magnetic detection
JP2001337147A (en) * 2000-03-23 2001-12-07 Matsushita Electric Ind Co Ltd Magnetic field sensor
JP2012181128A (en) * 2011-03-02 2012-09-20 Rohm Co Ltd Magnetic sensor

Similar Documents

Publication Publication Date Title
JP5427248B2 (en) Magnetic field detector with variable threshold
US9664752B2 (en) Magnetic field sensor for detecting a magnetic field in any direction above thresholds
JP5698724B2 (en) Low power magnetic field sensor
JP4901720B2 (en) Magnetic sensor circuit and portable terminal having the magnetic sensor circuit
JP5634041B2 (en) Magnetic sensor and electronic device equipped with the same
JP2008032424A (en) Sensor circuit, semiconductor device, electronic equipment
EP2093583B1 (en) Magnetic sensor circuit
US8248066B2 (en) Hall integrated circuit with adjustable hysteresis
CN109959881B (en) Magnetic sensor, semiconductor device, and electric device
WO2014146594A1 (en) Low-power magnetic resistance switch sensor
US9222988B2 (en) Magnetic sensor, magnetic sensor driving method, and computer-readable recording medium
JP6158682B2 (en) Magnetic sensor circuit
WO2021251085A1 (en) Magnetic sensor
JP6600471B2 (en) Magnetic sensor device
JP5729254B2 (en) Hysteresis device
US8497674B2 (en) Magnetic detection apparatus
KR100728572B1 (en) Semiconductor memory apparatus
US10983178B2 (en) Active sensor circuitry
US11841247B2 (en) Sensor device
JP2016121909A (en) Detector
JPH07235001A (en) Magnetic sensor detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP