JP2008249317A - Furnace bottom structure of waste melting furnace - Google Patents

Furnace bottom structure of waste melting furnace Download PDF

Info

Publication number
JP2008249317A
JP2008249317A JP2007115104A JP2007115104A JP2008249317A JP 2008249317 A JP2008249317 A JP 2008249317A JP 2007115104 A JP2007115104 A JP 2007115104A JP 2007115104 A JP2007115104 A JP 2007115104A JP 2008249317 A JP2008249317 A JP 2008249317A
Authority
JP
Japan
Prior art keywords
layer
refractory
heat insulating
melting furnace
waste melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007115104A
Other languages
Japanese (ja)
Inventor
Mitsumasa Todaka
光正 戸高
Koichi Motoyama
浩一 本山
Satoru Fujisaki
覚 藤崎
Hideyuki Tsuda
秀行 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Krosaki Harima Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Krosaki Harima Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2007115104A priority Critical patent/JP2008249317A/en
Publication of JP2008249317A publication Critical patent/JP2008249317A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent stopping of a facility by melting damage of a shell caused by permeation of a melt, particularly, metal such as Fe and Cu, while reducing consumables required for hot water outlet work, the quantity of utility used and also the number of persons required for hole opening/blocking-up work, by largely increasing a hot water outlet interval by restraining a temperature drop in slag, in a furnace bottom part of a waste melting furnace for performing continuous operation. <P>SOLUTION: This furnace bottom structure of the waste melting furnace is composed of a multilayered structure of laminating a refractory material on a shell upper surface. The furnace bottom structure of the waste melting furnace is characterized by forming a first layer being the uppermost layer as a castable layer composed of a silicon carbide refractory material 4, a second layer of a first layer back face as a castable layer composed of an alumina refractory material 5, a third layer of a second layer back face as a layer composed of a heat insulating refractory material 6 and a fourth layer of a third layer back face as a heat insulating layer composed of a high functional heat insulating material 7 being a micro-porous mold mainly composed of a silica particulate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一般廃棄物、産業廃棄物等の廃棄物を溶融処理する廃棄物溶融炉の炉底構造に関し、特に溶融物の保温性向上に最適な積層構造を有する廃棄物溶融炉の炉底構造に関する。   The present invention relates to a bottom structure of a waste melting furnace for melting waste such as general waste and industrial waste, and more particularly, a bottom of a waste melting furnace having a laminated structure that is optimal for improving heat retention of the melt. Concerning structure.

一般廃棄物、産業廃棄物等の廃棄物を溶融処理する廃棄物溶融炉においては、炉底部の侵食防止、溶融物の温度低下の抑制等が非常に重要な課題であるところ、従来から廃棄物溶融炉の炉底構造としては、耐スラグ浸透性、耐スポーリング性、および耐火性等に優れる耐火物を鉄皮上面に層状に積層した構造のものが多用されている(例えば、特許文献1参照)。   In waste melting furnaces that melt waste such as general waste and industrial waste, it has been a very important issue to prevent erosion of the bottom of the furnace and to control the temperature drop of the melt. As a furnace bottom structure of a melting furnace, a structure in which refractories having excellent slag penetration resistance, spalling resistance, fire resistance, and the like are laminated in a layered manner on the upper surface of the iron skin is frequently used (for example, Patent Document 1). reference).

特許文献1に開示されている廃棄物溶融炉の炉底構造を図4に示す。コークスと石灰石とともに溶融炉内に装入された廃棄物は、炉の下部側面に設けられた送風羽口から酸素富化された空気が吹き込まれることによって、溶融炉内を降下する過程で乾燥および熱分解反応が進行し、残った灰分は送風羽口近くでコークスベッドを形成する炉底コークスの燃焼熱等により溶融される。   The bottom structure of the waste melting furnace disclosed in Patent Document 1 is shown in FIG. The waste material charged into the melting furnace together with coke and limestone is dried and dried in the process of descending the melting furnace by blowing oxygen-enriched air from the blower tuyere provided on the lower side of the furnace. The pyrolysis reaction proceeds, and the remaining ash is melted by the combustion heat of the bottom coke forming a coke bed near the blower tuyere.

溶融金属および溶融スラグとして炉底に降下した溶融物は、炉外に通じる出湯口から出湯(排出)される。ここで、当該炉底に貯留されるスラグの出湯作業は、概ね60分間隔で実施されているのが現状である。これは、この種の炉底構造を有する廃棄物溶融炉においては、図4に示すように溶融物と接する第1層には熱伝導率が高く耐スラグ浸透性に優れた炭化珪素質耐火物4が、その背面の第2層には高アルミナ質耐火物5が、その背面の第3層には断熱性耐火物13が用いられるのが一般的であるが、これらの耐火物の熱伝導率λは0.2〜11W/m・K程度のものであるためスラグの温度低下の抑制に限界があり、概ね60分間隔で出湯作業を実施しないとスラグが凝固して、溶融物の排出が困難となるからである。   Molten metal and the molten material that has fallen to the bottom of the furnace as molten slag are discharged (discharged) from a hot water outlet that leads to the outside of the furnace. Here, the present situation is that the hot water discharge operation of the slag stored in the furnace bottom is performed at intervals of approximately 60 minutes. This is because, in a waste melting furnace having this kind of furnace bottom structure, a silicon carbide refractory having high thermal conductivity and excellent slag penetration resistance is provided in the first layer in contact with the melt as shown in FIG. 4, the high-alumina refractory 5 is generally used for the second layer on the back side, and the heat-insulating refractory 13 is used for the third layer on the back side. Since the rate λ is about 0.2 to 11 W / m · K, there is a limit to the suppression of the slag temperature drop, and the slag solidifies and the melt is discharged unless the hot water is discharged at intervals of about 60 minutes. This is because it becomes difficult.

また、この種の炉底構造を有する廃棄物溶融炉においては、出湯するたびにマッドの開孔作業と閉塞作業が必要となる。したがって、前記したように出湯作業が概ね60分間隔で実施されることから、マッドの開孔・閉塞作業についても当該間隔で行う必要があり多大な人的コストを要している。同様に、開孔機を構成しているロッド、ビット等についても出湯するたびに高温なスラグに接触するため、消耗品としての費用が大なるものであり、当該開孔機を運転するためのエアー、酸素、水等の用役コストについても無視できない費用となる。   Further, in a waste melting furnace having this kind of furnace bottom structure, mud opening work and closing work are required each time the hot water is discharged. Therefore, as described above, the hot water discharge operation is performed at intervals of approximately 60 minutes, and therefore it is necessary to perform the mud opening and closing operations at the intervals as well, which requires a great deal of human cost. Similarly, the rods, bits, etc. that make up the hole opening machine come into contact with high-temperature slag each time the hot water is discharged, so the cost as a consumable item increases, and it is necessary to operate the hole opening machine. Service costs for air, oxygen, water, etc. are also costs that cannot be ignored.

さらに、上記従来技術の構成では、長期間の連続操業において、例えば耐火物のクラックや耐火物の目地から第1層の炭化珪素質耐火物4および第2層の高アルミナ質耐火物5に溶融物1、特にFe,Cu等のメタルが侵入すると、第2層の背面に設けている断熱性耐火物13は耐火性が低いため当該溶融物1により溶損し、場合によっては炉底の鉄皮が溶損し、溶融炉設備の停止になるおそれもある。
特開2006−300357号公報
Further, in the configuration of the above prior art, in a long-term continuous operation, for example, the first layer of silicon carbide refractory 4 and the second layer of high alumina refractory 5 are melted from the crack of the refractory or the joint of the refractory. If a metal such as Fe, Cu or the like enters, the heat-insulating refractory 13 provided on the back surface of the second layer is low in fire resistance, so it is melted by the melt 1, and in some cases, the iron core at the bottom of the furnace May melt and cause melting furnace equipment to stop.
JP 2006-300377 A

本発明の目的は、前記従来技術の課題を解決するものであって、連続運転を実施している廃棄物溶融炉の炉底部において、スラグの温度低下の抑制により出湯間隔を大幅に増加させ、これにより出湯作業にかかる消耗品や用役の使用量さらには開孔・閉塞作業に要する人員を削減させるとともに、溶融物による鉄皮溶損などによる設備の停止を防止することをその目的とする。   The object of the present invention is to solve the problems of the prior art, and at the bottom of a waste melting furnace that is continuously operating, greatly increases the interval between tapping by suppressing the decrease in the temperature of the slag, The purpose of this is to reduce the amount of consumables and utilities used for the hot water work, as well as the personnel required for opening and closing work, and to prevent the equipment from shutting down due to molten iron skin erosion. .

本発明者は、前記課題を解決すべく、廃棄物溶融炉の炉底構造解析および伝熱計算を重ねた結果、以下の技術的知見を得た。   As a result of repeating the bottom structure analysis and heat transfer calculation of the waste melting furnace in order to solve the above problems, the present inventor has obtained the following technical knowledge.

(A)前記したように本発明の第一義的な目的はスラグの温度低下の抑制であり、これを実現するために溶融物の保温性向上に最適な積層構造を有する廃棄物溶融炉の炉底構造を新たに創出することにあるところ、炉底構造を構成する耐火物層の最下層に、すなわち、鉄皮上面に、熱伝導率λが0.05W/m・K以下の高機能断熱材、より具体的には、シリカ微粒子を主材とした微孔性成形体である高機能断熱材からなる断熱層を形成することにより、鉄皮への熱伝導量を抑制でき、これにより溶融物の保温性を大幅に向上できること。 (A) As described above, the primary purpose of the present invention is to suppress the temperature drop of the slag, and in order to realize this, the waste melting furnace having the optimum laminated structure for improving the heat retaining property of the melt When creating a new bottom structure, it has a high thermal conductivity λ of 0.05 W / m · K or less on the bottom layer of the refractory layer that constitutes the bottom structure, that is, on the upper surface of the iron shell. By forming a heat insulating layer, more specifically, a heat insulating layer made of a high-performance heat insulating material, which is a microporous molded body mainly composed of silica fine particles, the amount of heat conduction to the iron skin can be suppressed, thereby It can greatly improve the heat retention of the melt.

(B)なお、現在市販されているあるいは現在入手可能な熱伝導率λが0.05W/m・K以下の高機能断熱材の耐熱温度は約1100℃程度である。このため、可能性としては極めて低いものであるが、仮に当該高機能断熱材からなる断熱層にまで溶融物、特にFe,Cu等のメタルが浸透した場合には、当該断熱層下面の鉄皮が赤熱、溶損されるおそれがないわけではない。したがって、当該断熱層への溶融物の浸透が危惧される場合には、あるいは、溶融物浸透による鉄皮溶損の確率を限りなくゼロにしたい場合には、当該断熱層と鉄皮との間にバックアップ用として耐火性耐火物層を形成すべきこと。換言すると、鉄皮の上面に耐火性耐火物層を、その上面に高機能断熱材からなる断熱層を形成することにより、鉄皮への熱伝導量の抑制による溶融物の保温性向上を達成できるとともに、鉄皮溶損による設備停止をも完全に防止できること。 (B) It should be noted that a heat-resistant temperature of a high-performance heat insulating material having a thermal conductivity λ of 0.05 W / m · K or less that is currently commercially available or currently available is about 1100 ° C. For this reason, although the possibility is extremely low, if a melt, particularly a metal such as Fe or Cu, has penetrated into the heat insulating layer made of the high-performance heat insulating material, the iron skin on the lower surface of the heat insulating layer Is not without risk of red heat and melting. Therefore, when there is a concern about the penetration of the melt into the heat insulation layer, or when the probability of iron skin erosion due to the melt penetration is to be zero, the gap between the heat insulation layer and the iron skin. A fireproof refractory layer should be formed as a backup. In other words, by forming a refractory refractory layer on the top surface of the iron skin and a heat insulating layer made of a high-performance heat insulating material on the top surface, the heat retention of the melt can be improved by suppressing the amount of heat conduction to the iron skin. In addition to being able to completely prevent equipment stoppage due to iron skin erosion.

(C)一方、最上層である第1層については高温のスラグと常時接するため、耐スラグ浸透性、耐スポーリング性に優れる炭化珪素質耐火物からなるキャスタブル層を形成すべきこと。 (C) On the other hand, the first layer, which is the uppermost layer, is always in contact with the high-temperature slag, so that a castable layer made of a silicon carbide refractory having excellent slag penetration resistance and spalling resistance should be formed.

(D)ただし、第1層の炭化珪素質耐火物は熱伝導率λが高いため第1層全体が高温に維持され、溶融物、特にFe,Cu等のメタルが第1層の目地やクラックを通じて容易に下層へ浸透するおそれがある。したがって、バックアップ用に第1層背面の第2層として、耐スラグ浸透性、耐スポーリング性に優れるアルミナ質耐火物からなるキャスタブル層を形成すべきこと。 (D) However, since the silicon carbide refractory of the first layer has a high thermal conductivity λ, the entire first layer is maintained at a high temperature, and the melt, particularly metal such as Fe, Cu, etc. There is a risk of penetration into the lower layer easily. Therefore, a castable layer made of an alumina refractory having excellent slag penetration resistance and spalling resistance should be formed as a second layer on the back of the first layer for backup.

上記の知見に基づき、本発明者は、溶融物の保温性向上に最適な積層構造を有する廃棄物溶融炉の炉底構造に想到した。すなわち、本発明は、鉄皮上面に耐火物を積層した多層構造からなる廃棄物溶融炉の炉底構造において、最上層である第1層を炭化珪素質耐火物からなるキャスタブル層、第1層背面の第2層をアルミナ質耐火物からなるキャスタブル層、第2層背面の第3層を断熱性耐火物層、第3層背面の第4層をシリカ微粒子を主材とした微孔性成形体である高機能断熱材からなる断熱層としたことを特徴とする廃棄物溶融炉の炉底構造である。   Based on the above findings, the present inventor has conceived a furnace bottom structure of a waste melting furnace having a laminated structure that is optimal for improving the heat retention of the melt. That is, according to the present invention, in the bottom structure of a waste melting furnace having a multilayer structure in which refractories are laminated on the upper surface of the iron skin, the first layer, which is the uppermost layer, is a castable layer made of silicon carbide refractory, the first layer Castable layer made of alumina refractory on the second layer on the back side, heat insulating refractory layer on the third layer on the back side of the second layer, and microporous molding on the fourth layer on the back side of the third layer mainly composed of silica fine particles It is a furnace bottom structure of a waste melting furnace characterized by being a heat insulating layer made of a high-functional heat insulating material as a body.

(1)本発明に係る廃棄物溶融炉の炉底構造においては、炉底構造を構成する耐火物層の第4層として熱伝導率λが0.05W/m・K以下の高機能断熱材からなる断熱層を採用するので、鉄皮への熱伝導量の抑制ひいては炉床からの放熱量を抑制でき、これにより溶融物の保温性を大幅に向上することができる。したがって、出湯間隔を大幅に延長することができ、例えば、従来60分間隔で出湯作業していたものを90分間隔で実施することができる。よって、作業要員等の人的コストを大幅に削減することができる。また、出湯間隔を大幅に延長できるので、ロッド、ビット等の消耗品の必要数を低減できるとともに用役コストも削減することができる。 (1) In the bottom structure of the waste melting furnace according to the present invention, a high-performance heat insulating material having a thermal conductivity λ of 0.05 W / m · K or less as the fourth layer of the refractory layer constituting the bottom structure. Since the heat insulating layer made of is used, it is possible to suppress the heat conduction amount to the iron skin, and hence the heat dissipation amount from the hearth, thereby greatly improving the heat retention of the melt. Accordingly, the hot water discharge interval can be greatly extended, and, for example, the conventional hot water discharge operation at 60 minute intervals can be performed at 90 minute intervals. As a result, the human cost of the work personnel can be greatly reduced. Moreover, since the hot water discharge interval can be greatly extended, the required number of consumables such as rods and bits can be reduced and the utility cost can be reduced.

(2)すなわち、第1〜第4層からなる本発明に係る廃棄物溶融炉の炉底構造は、それぞれの耐火物が具備する長所を最大限に発揮できるように、また、それぞれの耐火物が具備する短所を補うように耐火物の層順位を考慮した積層構造であるため、従来技術では達成できなかった鉄皮への熱伝導量の抑制による溶融物の保温性を大幅に向上することができる。 (2) In other words, the bottom structure of the waste melting furnace according to the present invention consisting of the first to fourth layers can maximize the advantages of each refractory, and each refractory. Because it has a laminated structure that takes into account the layer order of refractories so as to compensate for the shortcomings, the heat retention of the melt is greatly improved by suppressing the amount of heat conduction to the iron skin, which could not be achieved with the prior art. Can do.

(3)また、第4層背面に第5層として耐火性耐火物層を形成した本発明に係る廃棄物溶融炉の炉底構造においては、仮に高機能断熱材からなる第4層にまで溶融物、特にFe,Cu等のメタルが浸透したとしても、第5層の耐火性耐火物層によって鉄皮への溶融物の侵入を完全に阻止することができるので、溶融物の保温性向上のみならず、鉄皮溶損による設備停止をも完全に防止することができる。 (3) Further, in the bottom structure of the waste melting furnace according to the present invention in which a refractory refractory layer is formed as a fifth layer on the back surface of the fourth layer, it is temporarily melted to the fourth layer made of a high-functional heat insulating material. Even if a metal such as Fe, Cu penetrates, the fifth layer of the refractory refractory layer can completely prevent the melt from entering the iron skin, so only the heat retention of the melt is improved. In addition, it is possible to completely prevent the equipment from being stopped due to the iron skin melting.

以下、図1〜図3を参照して、本発明を実施するための最良の形態を説明する。
図1は本発明に係る廃棄物溶融炉の炉底構造の一例を示す断面図であり、当該例においては鉄皮9の上面に4層からなる耐火物を積層している。以下、各層の作用ならびに選定根拠について詳細に説明する。
The best mode for carrying out the present invention will be described below with reference to FIGS.
FIG. 1 is a cross-sectional view showing an example of a bottom structure of a waste melting furnace according to the present invention. In this example, four layers of refractories are laminated on the upper surface of an iron shell 9. Hereinafter, the action of each layer and the selection basis will be described in detail.

まず、最上層である第1層については高温の溶融物1と常時接するため、耐スラグ浸透性、耐スポーリング性に優れる炭化珪素質耐火物4からなるキャスタブル層を形成する。この場合、少なくとも30質量%以上の炭化珪素を含む炭化珪素質耐火物4からなるキャスタブル層とするのが望ましい。30質量%以上の炭化珪素を含む材料を使用することにより、耐スラグ浸透性を十分に発揮することができる。また、炭化珪素を30質量%以上含有することにより熱伝導率λが高くなる。例えば、炭化珪素70質量%、その他の成分としてアルミナ+シリカ=29質量%、残り酸化カルシウム1質量%の炭化珪素質耐火物4を用いた場合、その熱伝導率λは11.3W/m・K程度である。   First, since the first layer, which is the uppermost layer, is always in contact with the high-temperature melt 1, a castable layer made of a silicon carbide refractory 4 having excellent slag penetration resistance and spalling resistance is formed. In this case, a castable layer made of a silicon carbide refractory 4 containing at least 30% by mass or more of silicon carbide is desirable. By using a material containing 30% by mass or more of silicon carbide, the slag penetration resistance can be sufficiently exhibited. Moreover, thermal conductivity (lambda) becomes high by containing 30 mass% or more of silicon carbide. For example, when silicon carbide refractory 4 having 70% by mass of silicon carbide, alumina + silica = 29% by mass and the remaining calcium oxide of 1% by mass is used as the other components, the thermal conductivity λ is 11.3 W / m · It is about K.

ただし、第1層に使用される炭化珪素質耐火物4は前記したように熱伝導率が高いため、第1層全体が高温に維持され、その結果として溶融物1、特にFe,Cu等のメタルが第1層の目地やクラックを通じて浸透するおそれがある。この溶融物1が断熱性耐火物6からなる層に到達すると断熱性が失われて炉床部が冷却され、炉床面で溶融物が凝固し、出湯口2からの溶融物の排出が不可能となる。   However, since the silicon carbide refractory 4 used for the first layer has a high thermal conductivity as described above, the entire first layer is maintained at a high temperature. As a result, the melt 1, particularly Fe, Cu, etc. There is a risk that metal may penetrate through joints and cracks in the first layer. When the melt 1 reaches the layer made of the heat insulating refractory 6, the heat insulation is lost, the hearth is cooled, the melt is solidified on the hearth surface, and the discharge of the melt from the tap 2 is not possible. It becomes possible.

このため、第1層背面の第2層としては、耐スラグ浸透性、耐スポーリング性に優れるアルミナ質耐火物5からなるキャスタブル層を形成し、これにより溶融物1が断熱性耐火物6からなる層に浸透するのを防止する。なお、第2層の本来的目的は耐火性にあることからアルミナ質耐火物5としては、耐火性能を発揮する上で少なくとも50質量%以上のアルミナを含むアルミナ質耐火物とするのが望ましく、また、第1層より小さい熱伝導率λの材料を選定するのが望ましい。例えば、アルミナ93質量%、その他の成分としてシリカ6質量%、酸化カルシウム1質量%を含有するアルミナ質耐火物5を用いることができ、その熱伝導率λは第1層よりも小さい2.1W/m・K程度である。   For this reason, as the second layer on the back surface of the first layer, a castable layer made of the alumina refractory 5 having excellent slag penetration resistance and spalling resistance is formed, whereby the melt 1 is formed from the heat insulating refractory 6. To penetrate into the layer. In addition, since the original purpose of the second layer is fire resistance, the alumina refractory 5 is desirably an alumina refractory containing at least 50% by mass or more of alumina in order to exhibit fire resistance. It is desirable to select a material having a thermal conductivity λ smaller than that of the first layer. For example, an alumina refractory 5 containing 93% by mass of alumina, 6% by mass of silica and 1% by mass of calcium oxide as other components can be used, and its thermal conductivity λ is 2.1 W smaller than that of the first layer. / M · K or so.

次に、第2層背面の第3層についてであるが、前記したように第1層、第2層の熱伝導率λは大きく、スラグ等の溶融物1の保有熱量が次層へ伝達されやすいため、この伝熱量を小さくするために、第1層、第2層より熱伝導率λの小さな断熱性耐火物6を用いた耐火物層を形成する。例えば、λ=0.26W/m・K程度の断熱性耐火物6を用いることが望ましい。   Next, as for the third layer on the back surface of the second layer, as described above, the thermal conductivity λ of the first layer and the second layer is large, and the amount of heat held by the melt 1 such as slag is transmitted to the next layer. Since it is easy, in order to reduce this heat transfer amount, a refractory layer using a heat insulating refractory 6 having a thermal conductivity λ smaller than that of the first layer and the second layer is formed. For example, it is desirable to use a heat-insulating refractory 6 having a wavelength of λ = 0.26 W / m · K.

次に、第3層背面の第4層としては、第3層の断熱性耐火物層からの鉄皮への伝熱量を最小にするため、熱伝導率λが0.05W/m・K以下の高機能断熱材7からなる断熱層を形成するが、望ましくは、第3層の断熱性耐火物層の1/10程度であるλ=0.02W/m・K程度となる材料を選択するのが好ましく、例えば、黒崎播磨株式会社が販売するPOREXTHERM WDS(登録商標)を用いることができる。当該高機能断熱材7は、ヒュームドシリカと赤外線を透過させない物質で構成され、空気分子の運動を規制する微細なマイクロポアー構造を有しており、単に空気を取り込む従来の断熱材とは異なり、固体の伝熱、空気分子の移動、赤外線の透過といった熱の移動をコントロールして、静止空気を凌ぐ熱伝導率を達成したシリカ微粒子を主材とした微孔性成形体である。   Next, as the fourth layer on the back surface of the third layer, in order to minimize the amount of heat transfer from the heat insulating refractory layer of the third layer to the iron skin, the thermal conductivity λ is 0.05 W / m · K or less. Although the heat insulating layer made of the high-functional heat insulating material 7 is formed, it is desirable to select a material that satisfies about λ = 0.02 W / m · K, which is about 1/10 of the heat insulating refractory layer of the third layer. For example, POREXTHERM WDS (registered trademark) sold by Kurosaki Harima Co., Ltd. can be used. The high-performance heat insulating material 7 is made of fumed silica and a substance that does not transmit infrared rays, has a fine micropore structure that regulates the movement of air molecules, and differs from conventional heat insulating materials that simply take in air. It is a microporous molded body mainly composed of silica fine particles that achieves thermal conductivity exceeding that of still air by controlling heat transfer such as solid heat transfer, air molecule transfer, and infrared ray transmission.

前記したように本発明の第一義的な目的はスラグの温度低下の抑制、すなわち、溶融物1の保温性向上に最適な積層構造を有する廃棄物溶融炉の炉底構造を新たに創出することにあるところ、第4層として熱伝導率λが0.05W/m・K以下の高機能断熱材7からなる断熱層を形成することにより、鉄皮9への熱伝導量を抑制でき、これにより溶融物1の保温性を大幅に向上することができる。従来の断熱性耐火物の最高使用温度約1000℃以上での熱伝導率λは0.2〜0.5W/m・K程度であり、これらを用いて極めて大なる断熱効果を確保するためには、層厚を大きく増すことが必要である。しかし、層厚を大きく増すことは、耐火物の構造安定性の観点から限界があり、実用上困難である。したがって、本発明においては、層厚を大きくすることなく、即ち、耐火物の構造安定性を確保しつつも高い断熱効果を得るために、従来の断熱性耐火物の最高使用温度約1000℃以上での熱伝導率λの約1/10程度を目標とし、λ=0.05W/m・Kを上限値に設定している。   As described above, the primary object of the present invention is to create a new bottom structure of a waste melting furnace having a laminated structure that is optimal for suppressing the temperature drop of the slag, that is, for improving the heat retention of the melt 1. In particular, by forming a heat insulating layer made of the high-performance heat insulating material 7 having a thermal conductivity λ of 0.05 W / m · K or less as the fourth layer, the amount of heat conduction to the iron skin 9 can be suppressed, Thereby, the heat retention of the melt 1 can be significantly improved. The thermal conductivity λ at the maximum use temperature of about 1000 ° C. or more of conventional heat-insulating refractories is about 0.2 to 0.5 W / m · K, and in order to secure a very large heat insulation effect using these It is necessary to greatly increase the layer thickness. However, increasing the layer thickness greatly has a limit from the viewpoint of the structural stability of the refractory and is difficult in practice. Therefore, in the present invention, in order to obtain a high heat insulation effect without increasing the layer thickness, that is, while ensuring the structural stability of the refractory, the maximum use temperature of the conventional heat-insulating refractory is about 1000 ° C. or more. The target is about 1/10 of the thermal conductivity λ, and λ = 0.05 W / m · K is set as the upper limit.

第4層の層厚としては3〜20mmとするのが望ましい。第4層で用いる高機能断熱材7は圧縮性が高いため、第4層の上部に積層される耐火物およびスラグ等の溶融物の重量により圧縮収縮するので、第4層の層厚が20mmを超えると収縮代が過大となり周辺の耐火物が崩壊する可能性がある一方、層厚が20mm以下では、この収縮代は3mm程度であり各層間の目地材(モルタル)の厚み相当なので、収縮しても耐火物構造全体への影響が少なく、陥没による沈下や構造が不安定になるようなことはない。ただし、層厚が3mm未満では充分な断熱効果を得ることができない。   The thickness of the fourth layer is preferably 3 to 20 mm. Since the high-performance heat insulating material 7 used in the fourth layer has high compressibility, it compresses and shrinks due to the weight of a refractory and a slag melt laminated on the upper part of the fourth layer, so that the thickness of the fourth layer is 20 mm. Exceeding this may cause excessive shrinkage and the surrounding refractories may collapse. On the other hand, if the layer thickness is 20 mm or less, the shrinkage is about 3 mm, which is equivalent to the thickness of the joint material (mortar) between the layers. However, there is little influence on the entire refractory structure, and there is no sinking or instability due to depression. However, if the layer thickness is less than 3 mm, a sufficient heat insulating effect cannot be obtained.

また、第4層の高機能断熱材7からなる断熱層の表裏には、層厚が3mm程度のモルタルを施工するのが望ましい。断熱層の表裏にモルタルを施工することにより、高機能断熱材7が圧縮収縮したときの収縮代を確保することができ、これにより構造物全体としての安定性も増大する。また、熱によって高機能断熱材7が膨張したときの膨張代・収縮代としての機能も期待できる。第4層の層厚自体が3〜20mmであり、また、高機能断熱材が圧縮収縮したときの収縮代についても3mm程度であるから、モルタルの厚さについては、3mm程度にするのが望ましい。   Moreover, it is desirable to construct mortar with a layer thickness of about 3 mm on the front and back of the heat insulating layer made of the high-performance heat insulating material 7 of the fourth layer. By applying mortar on the front and back of the heat insulation layer, it is possible to secure a shrinkage allowance when the highly functional heat insulating material 7 is compressed and shrunk, thereby increasing the stability of the entire structure. Moreover, the function as an expansion allowance and contraction allowance when the highly functional heat insulating material 7 expands by heat can be expected. The layer thickness itself of the fourth layer is 3 to 20 mm, and the shrinkage allowance when the high-performance heat insulating material is compressed and shrunk is about 3 mm. Therefore, the thickness of the mortar is preferably about 3 mm. .

ただし、前記した現在市販されているあるいは現在入手可能な熱伝導率λが0.05W/m・K以下の高機能断熱材7の耐熱温度は約1100℃程度である。このため、可能性としては極めて低いものであるが、仮に第4層にまで溶融物1、特にFe,Cu等のメタルが浸透した場合には、第4層自体に当該溶融物1の浸透を阻止する能力がなく、鉄皮9が赤熱、溶損されて鉄皮溶損による設備停止に到るおそれがないわけではない。   However, the heat resistance temperature of the high-performance heat insulating material 7 having a thermal conductivity λ of 0.05 W / m · K or less that is currently commercially available or currently available is about 1100 ° C. For this reason, although the possibility is extremely low, if the melt 1, especially a metal such as Fe or Cu, has penetrated into the fourth layer, the penetration of the melt 1 into the fourth layer itself There is no ability to prevent it, and it is not without the fear that the iron skin 9 will be red hot and melted down, resulting in equipment shutdown due to iron skin melt damage.

このため、第4層への溶融物1、特にFe,Cu等のメタルの浸透が危惧される場合には、あるいは、溶融物浸透による鉄皮溶損の確率を限りなくゼロにしたい場合には、図2に示すように、バックアップ用として第4層背面に第5層として耐火性耐火物8からなる耐火性耐火物層を形成し、これによりスラグ及びメタル等の溶融物1が鉄皮9に侵入するのを防止することができる。   For this reason, when there is a concern about the penetration of the melt 1, particularly metal such as Fe, Cu, into the fourth layer, or when it is desired to reduce the probability of iron skin melting due to the melt penetration to zero as much as possible. As shown in FIG. 2, a refractory refractory layer made of a refractory refractory 8 is formed as a fifth layer on the back surface of the fourth layer as a backup, so that the melt 1 such as slag and metal is applied to the iron skin 9. Intrusion can be prevented.

図3は廃棄物溶融炉の炉底構造の伝熱計算に使用したモデル図であり、従来技術に係る炉底構造と第1〜第4層からなる本発明に係る炉底構造の熱伝熱量が比較できるように図示したものである。伝熱計算に使用した条件を以下に示す。
(1)炉内熱伝達係数 : 850W/m・K
(2)炉外熱伝達係数 : 8W/m・K
(3)スラグ温度 : 1500℃
(4)外気温度 : 30℃
FIG. 3 is a model diagram used for heat transfer calculation of the bottom structure of a waste melting furnace, and the heat transfer amount of the bottom structure according to the present invention comprising the bottom structure according to the prior art and the first to fourth layers. Are shown for comparison. The conditions used for heat transfer calculation are shown below.
(1) Furnace heat transfer coefficient: 850 W / m 2 · K
(2) External heat transfer coefficient: 8W / m 2 · K
(3) Slag temperature: 1500 ° C
(4) Outside temperature: 30 ° C

上記モデルを使用した伝熱計算の結果、図3の左側に示す従来技術に係る炉底構造では、炉底の鉄皮9と断熱材との境界部温度(図3のA点における温度)は、280℃となった。これに対し、図3の右側に示す本発明に係る炉底構造では、炉底の鉄皮9と断熱材との境界部温度(図3のB点における温度)は、155℃となった。すなわち、第1〜第4層からなる本発明に係る炉底構造の境界部温度は、従来技術に係る炉底構造の境界部温度より125℃低く、断熱降下率としては約55%という結果となった。これは、本発明に係る炉底構造の効果を顕著に現すものである。   As a result of the heat transfer calculation using the above model, in the bottom structure according to the prior art shown on the left side of FIG. 3, the boundary temperature (the temperature at point A in FIG. 3) between the core 9 of the furnace bottom and the heat insulating material is It became 280 degreeC. In contrast, in the furnace bottom structure according to the present invention shown on the right side of FIG. 3, the boundary temperature (the temperature at point B in FIG. 3) between the iron core 9 and the heat insulating material at the furnace bottom was 155 ° C. That is, the boundary temperature of the bottom structure according to the present invention consisting of the first to fourth layers is 125 ° C. lower than the boundary temperature of the bottom structure according to the prior art, and the adiabatic drop rate is about 55%. became. This remarkably shows the effect of the furnace bottom structure according to the present invention.

本発明に係る廃棄物溶融炉の炉底構造の一例を示す断面図である。It is sectional drawing which shows an example of the furnace bottom structure of the waste melting furnace which concerns on this invention. 本発明に係る廃棄物溶融炉の炉底構造の別の一例を示す断面図である。It is sectional drawing which shows another example of the furnace bottom structure of the waste melting furnace which concerns on this invention. 廃棄物溶融炉の炉底構造の伝熱計算に使用したモデル図である。It is the model figure used for the heat transfer calculation of the furnace bottom structure of a waste melting furnace. 従来技術に係る廃棄物溶融炉の炉底構造を示す断面図である。It is sectional drawing which shows the furnace bottom structure of the waste melting furnace which concerns on a prior art.

符号の説明Explanation of symbols

1 スラグ及びメタル等の溶融物 2 出湯口
3 開孔用ロッド・ビット 4 炭化珪素質耐火物
5 アルミナ質耐火物 6 断熱性耐火物
7 高機能断熱材 8 耐火性耐火物
9 鉄皮 10 炉底部
11 送風羽口 12 温度計
13 断熱性耐火物
DESCRIPTION OF SYMBOLS 1 Melt of slag, metal, etc. 2 Hot water outlet 3 Opening rod / bit 4 Silicon carbide refractory 5 Alumina refractory 6 Heat insulation refractory 7 High performance heat insulation 8 Refractory refractory 9 Iron skin 10 Furnace bottom 11 Blower tuyere 12 Thermometer 13 Insulating refractory

Claims (5)

鉄皮上面に耐火物を積層した多層構造からなる廃棄物溶融炉の炉底構造において、
最上層である第1層を炭化珪素質耐火物からなるキャスタブル層、
第1層背面の第2層をアルミナ質耐火物からなるキャスタブル層、
第2層背面の第3層を断熱性耐火物層、
第3層背面の第4層をシリカ微粒子を主材とした微孔性成形体である高機能断熱材からなる断熱層としたことを特徴とする廃棄物溶融炉の炉底構造。
In the bottom structure of a waste melting furnace consisting of a multilayer structure with refractories laminated on the upper surface of the iron skin,
A castable layer made of a silicon carbide refractory, the first layer being the uppermost layer;
A castable layer made of alumina refractory on the second layer on the back of the first layer;
The third layer on the back of the second layer is a heat insulating refractory layer,
A furnace bottom structure for a waste melting furnace, wherein the fourth layer on the back surface of the third layer is a heat insulating layer made of a high-functional heat insulating material that is a microporous molded body mainly composed of silica fine particles.
さらに、前記第4層背面に第5層として耐火性耐火物層を形成したことを特徴とする請求項1に記載の廃棄物溶融炉の炉底構造。
The furnace bottom structure of a waste melting furnace according to claim 1, further comprising a refractory refractory layer formed as a fifth layer on the back surface of the fourth layer.
前記第4層の層厚を3〜20mmとしたことを特徴とする請求項1または2に記載の廃棄物溶融炉の炉底構造。
The bottom structure of the waste melting furnace according to claim 1 or 2, wherein the thickness of the fourth layer is 3 to 20 mm.
前記第1層を、少なくとも30質量%以上の炭化珪素を含む炭化珪素質耐火物からなるキャスタブル層、
前記第2層を、少なくとも50質量%以上のアルミナを含むアルミナ質耐火物からなるキャスタブル層としたことを特徴とする請求項1〜3のいずれか1項に記載の廃棄物溶融炉の炉底構造。
The first layer is a castable layer made of a silicon carbide refractory containing at least 30% by mass of silicon carbide,
The bottom of the waste melting furnace according to any one of claims 1 to 3, wherein the second layer is a castable layer made of an alumina refractory containing at least 50 mass% of alumina. Construction.
前記第4層の表裏にモルタルを施工したことを特徴とする請求項1〜4のいずれか1項に記載の廃棄物溶融炉の炉底構造。
The bottom structure of a waste melting furnace according to any one of claims 1 to 4, wherein mortar is applied to the front and back of the fourth layer.
JP2007115104A 2007-03-08 2007-04-25 Furnace bottom structure of waste melting furnace Pending JP2008249317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115104A JP2008249317A (en) 2007-03-08 2007-04-25 Furnace bottom structure of waste melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007058993 2007-03-08
JP2007115104A JP2008249317A (en) 2007-03-08 2007-04-25 Furnace bottom structure of waste melting furnace

Publications (1)

Publication Number Publication Date
JP2008249317A true JP2008249317A (en) 2008-10-16

Family

ID=39974469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115104A Pending JP2008249317A (en) 2007-03-08 2007-04-25 Furnace bottom structure of waste melting furnace

Country Status (1)

Country Link
JP (1) JP2008249317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936653A (en) * 2010-09-08 2011-01-05 柳丹 Energy-saving glazing roller kiln for producing interior wall bricks
CN101936654A (en) * 2010-09-08 2011-01-05 柳丹 Energy-saving roller kiln for polished tiles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323746A (en) * 1993-05-10 1994-11-25 Shinetsu Quartz Prod Co Ltd Fire resisting, heat insulating laminated furnace wall material
JP2006300357A (en) * 2005-04-15 2006-11-02 Nippon Steel Engineering Co Ltd Refractory structure of waste melting furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323746A (en) * 1993-05-10 1994-11-25 Shinetsu Quartz Prod Co Ltd Fire resisting, heat insulating laminated furnace wall material
JP2006300357A (en) * 2005-04-15 2006-11-02 Nippon Steel Engineering Co Ltd Refractory structure of waste melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936653A (en) * 2010-09-08 2011-01-05 柳丹 Energy-saving glazing roller kiln for producing interior wall bricks
CN101936654A (en) * 2010-09-08 2011-01-05 柳丹 Energy-saving roller kiln for polished tiles

Similar Documents

Publication Publication Date Title
CN103464734A (en) Safe steel ladle lining and building method thereof
CN109341353B (en) Low heat dissipation furnace lining structure of hot rolling heating furnace
Schnabel et al. Advantages of calcium hexaluminate in a corrosive environment
WO2023169541A1 (en) Graphitization furnace
CN205629355U (en) Ladle lining
CN105481375A (en) Energy-saving and fire-resistant material
JP2008249317A (en) Furnace bottom structure of waste melting furnace
CN213052725U (en) Heat-insulation masonry structure of hot-metal bottle
JP4723893B2 (en) Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace
JP5027861B2 (en) Refractory structure of waste melting furnace
CN204584250U (en) A kind of ladle for making steel
CN111995405A (en) High-temperature-resistant heat-preservation permanent lining for steel ladle
JPWO2011111766A1 (en) Silicon manufacturing method and jig
CN102062540B (en) Composite-structured electric furnace lining
JP6363899B2 (en) Industrial furnace lining structure
CN203501788U (en) Arc-arch-top furnace lining of zirconium fiber structure
JP2021152425A (en) Molten metal container
CN110906740A (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
GB1585155A (en) Arc-furnace lining
CN204881189U (en) Ferronickel electric stove corrodes furnace lining structure with high adpedance
CN111521021B (en) Novel furnace door structure of calcium carbide industrial furnace
CN106288806B (en) metallurgical furnace
CN216864292U (en) Composite furnace lining structure of pre-vacuumized high-temperature carburizing multipurpose furnace
JP2012131672A (en) Heat insulating material for lining structure of ladle
CN208038325U (en) A kind of magnesia carbon brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091214

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Effective date: 20121210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A02