JP2006300357A - Refractory structure of waste melting furnace - Google Patents

Refractory structure of waste melting furnace Download PDF

Info

Publication number
JP2006300357A
JP2006300357A JP2005118650A JP2005118650A JP2006300357A JP 2006300357 A JP2006300357 A JP 2006300357A JP 2005118650 A JP2005118650 A JP 2005118650A JP 2005118650 A JP2005118650 A JP 2005118650A JP 2006300357 A JP2006300357 A JP 2006300357A
Authority
JP
Japan
Prior art keywords
refractory
silicon carbide
furnace
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118650A
Other languages
Japanese (ja)
Other versions
JP4723893B2 (en
Inventor
Mitsumasa Todaka
光正 戸高
Hideyuki Tsuda
秀行 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Krosaki Harima Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Krosaki Harima Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2005118650A priority Critical patent/JP4723893B2/en
Publication of JP2006300357A publication Critical patent/JP2006300357A/en
Application granted granted Critical
Publication of JP4723893B2 publication Critical patent/JP4723893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory structure improving the durability of a refractory of a furnace lower part particularly severe in wear in a waste melting furnace. <P>SOLUTION: A silicon carbide castable refractory 1 containing at least 30 mass% of silicon carbide is used as a furnace wall refractory at the furnace wall of a part in contact with molten slag in the waste melting furnace, and cooling water pipes 2 are embedded inside. A silicon carbide refractory 3 containing at least 30 mass% of silicon carbide is used as a first layer refractory in contact with a molten material at a hearth of the waste melting furnace. A high alumina refractory 4 containing at least 50 mass% of alumina is used as a second layer refractory at the back face of a first layer. A heat insulating refractory 5 is further disposed at the back face of a second layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般廃棄物、産業廃棄物等の廃棄物をシャフト炉で溶融処理する廃棄物溶融炉の耐火物構造に関するものである。   The present invention relates to a refractory structure of a waste melting furnace for melting waste such as general waste and industrial waste in a shaft furnace.

廃棄物の処理方法の一つとして、シャフト炉型の廃棄物溶融炉で廃棄物を乾燥、熱分解、燃焼、溶融して、スラグとメタルにする廃棄物溶融処理方法がある。   As one of the waste processing methods, there is a waste melting processing method in which waste is dried, pyrolyzed, burned and melted in a shaft furnace type waste melting furnace to form slag and metal.

図2は一般的な廃棄物溶融炉の断面図である。廃棄物を溶融処理するために、炉の下部の送風羽口30より酸素富化された空気を炉内に吹き込み、炉の上部からは廃棄物50をコークス及び石灰石とともに炉内に装入する。そうすると、廃棄物50が炉内を降下する過程で乾燥及び乾留ガス化(熱分解)が進行し、残った灰分は送風羽口30近くでコークスベッドを形成する炉底コークス60の燃焼熱により溶融し、炉床面に溶融スラグ及び溶融金属として降下する。炉床部の溶融物は炉床面より炉外に通じる出湯口40より排出される。こうした廃棄物溶融炉の炉内プロセスについては特許文献1に示されている。   FIG. 2 is a sectional view of a general waste melting furnace. In order to melt the waste, oxygen-enriched air is blown into the furnace from the blower tuyere 30 at the lower part of the furnace, and the waste 50 is charged into the furnace together with coke and limestone from the upper part of the furnace. Then, drying and dry distillation gasification (thermal decomposition) proceed while the waste 50 descends in the furnace, and the remaining ash is melted by the combustion heat of the furnace bottom coke 60 forming a coke bed near the blower tuyere 30. The molten slag and molten metal descend to the hearth surface. The molten material in the hearth is discharged from a hot water outlet 40 that leads from the hearth surface to the outside of the furnace. The in-furnace process of such a waste melting furnace is disclosed in Patent Document 1.

しかしながら、このような炉内プロセスが起こる廃棄物溶融炉において、特に炉下部では、耐火物(図2に示す炉壁耐火物10及び炉床耐火物20)は非常に過酷な環境に置かれ、例えば1年毎に耐火物の補修や張替を必要としていた。   However, in a waste melting furnace where such an in-furnace process occurs, particularly in the lower part of the furnace, the refractories (the furnace wall refractory 10 and the hearth refractory 20 shown in FIG. 2) are placed in a very harsh environment. For example, refractory repairs and replacements were required every year.

すなわち、従来、炉下部には高温に耐えるよう高アルミナ質耐火物を使用してきたが、送風羽口の直上部ではコークスの活発な燃焼により灰分が溶解され生成したスラグにより、送風羽口上の炉壁耐火物が侵食される。また、炉床部も同じく高温のスラグにより侵食される。   In other words, high-alumina refractories have been used in the lower part of the furnace to withstand high temperatures, but in the upper part of the blower tuyere, the furnace on the blower tuyere is slag generated by the active combustion of coke at the upper part of the blower tuyere. Wall refractories are eroded. Similarly, the hearth is eroded by high-temperature slag.

スラグによる侵食を防止するため、スラグとの反応性の低い炭化珪素質耐火物を用いることが考えられるが、送風羽口直上の炉壁では送風羽口からの酸素及びコークスの燃焼により発生したCOガスにより、炭化珪素質耐火物は容易に酸化され損耗する。 In order to prevent erosion caused by slag, it is conceivable to use a silicon carbide refractory having low reactivity with slag. However, in the furnace wall directly above the blowing tuyere, CO generated by combustion of oxygen and coke from the blowing tuyere With two gases, the silicon carbide refractory is easily oxidized and worn.

また、炉床部では、炉床面は常時スラグで覆われているため炉内ガスによる酸化はないが、炭化珪素質耐火物は伝熱性が高いため背面まで高温化し、耐火物の目地やクラック等から、溶融状態のまま鉄や銅等の金属が背面の断熱層まで浸透し、多孔質の断熱材の孔内に入り、断熱性を著しく悪くする。この場合、炉底部の鉄皮が高温化し、かつ炉底の放熱も大きくなり、炉床部が冷却されて溶融物が炉床面で凝固し、溶融物の排出が困難になるおそれがある。   Also, in the hearth, the hearth surface is always covered with slag, so there is no oxidation by the gas in the furnace, but silicon carbide refractories have high heat transfer, so the temperature rises to the back, and refractory joints and cracks From the above, a metal such as iron or copper penetrates to the heat insulating layer on the back surface in a molten state, and enters the pores of the porous heat insulating material, thereby remarkably deteriorating the heat insulating property. In this case, the iron skin at the bottom of the furnace rises in temperature, and the heat dissipation of the furnace bottom increases, the hearth is cooled, the melt is solidified on the hearth surface, and it is difficult to discharge the melt.

一方、耐スラグ性を向上させるため、クロム質耐火物を使用する例もあるが、耐用性は十分でなく、かつ使用中において、この耐火物から有害な6価クロムが生成するおそれがあり、取り扱いに十分注意を要するという難点がある。   On the other hand, in order to improve the slag resistance, there is an example of using a chrome refractory, but the durability is not sufficient, and in use, harmful hexavalent chromium may be generated from this refractory, There is a drawback that it requires careful handling.

また、これらの耐火物の長寿命化を目的として、ジャケットや冷却管で冷却する方法が提案されているが(特許文献2参照)、高アルミナ質耐火物やクロム質耐火物では熱伝導率が低く、炉内稼働面まで十分に冷却されずに実用化レベルの耐火物寿命を得ることは困難である。
特公昭55−21923号公報 特開2004−156875号公報
In addition, for the purpose of extending the life of these refractories, a method of cooling with a jacket or a cooling pipe has been proposed (see Patent Document 2). However, high alumina refractories and chrome refractories have thermal conductivity. It is difficult to obtain a practical refractory life without being sufficiently cooled to the operating surface in the furnace.
Japanese Patent Publication No.55-21923 JP 2004-156875 A

本発明が解決しようとする課題は、廃棄物溶融炉において特に損耗の激しい炉下部の耐火物の耐久性を向上させることができる耐火物構造を提供することにあり、より具体的には、スラグとの反応性が低く熱伝導率が高い炭化珪素質耐火物を用い、かつ炭化珪素質耐火物の弱点である高温酸化等の上述の問題を解決できる廃棄物溶融炉の耐火物構造を提供することにある。   The problem to be solved by the present invention is to provide a refractory structure capable of improving the durability of the refractory in the lower part of the furnace, particularly in a waste melting furnace, and more specifically, slag. A refractory structure for a waste melting furnace is provided that uses a silicon carbide refractory that has low reactivity with the heat conductivity and that can solve the above-mentioned problems such as high-temperature oxidation, which is a weak point of silicon carbide refractories. There is.

廃棄物溶融炉下部の耐火物の耐用性を延ばすため、本発明の炉壁耐火物構造は、溶融スラグと接する部位の炉壁において、炉壁耐火物として少なくとも30質量%以上の炭化珪素を含む炭化珪素質キャスタブル耐火物を用い、内部に冷却水管を埋設したものである。このように、耐スラグ性が高く、かつ熱伝導率が高い炭化珪素質キャスタブル耐火物の内部に冷却水管を埋設して冷却することにより、炭化珪素質耐火物の大きな弱点である炉内ガス(O、CO)による高温酸化による損耗の問題をなくすことができる。また、溶融スラグは冷却された炭化珪素質キャスタブル耐火物の表面で固化するため、表面被覆された状態となり、炉内ガスから保護される。ここで、炭化珪素質耐火物のO、COガスによる酸化は1000℃以上から始まるので、炉壁の炭化珪素質キャスタブル耐火物はその炉内稼働面が1000℃未満となるように冷却することが好ましい。 In order to prolong the durability of the refractory in the lower part of the waste melting furnace, the furnace wall refractory structure of the present invention includes at least 30% by mass or more of silicon carbide as the furnace wall refractory in the furnace wall at the portion in contact with the molten slag. A silicon carbide castable refractory is used, and a cooling water pipe is embedded inside. In this way, by burying the cooling water pipe inside the silicon carbide castable refractory material having high slag resistance and high thermal conductivity and cooling it, the furnace gas (which is a major weak point of the silicon carbide refractory material ( The problem of wear due to high temperature oxidation due to O 2 , CO 2 ) can be eliminated. Further, since the molten slag is solidified on the surface of the cooled silicon carbide castable refractory, the molten slag becomes a surface-coated state and is protected from the furnace gas. Here, since the oxidation of the silicon carbide refractory with O 2 and CO 2 gas starts at 1000 ° C. or higher, the silicon carbide castable refractory on the furnace wall is cooled so that the operation surface in the furnace becomes less than 1000 ° C. It is preferable.

さらに、本発明の炉床耐火物構造は、廃棄物溶融炉の炉床において、溶融物と接する第1層の耐火物として少なくとも30質量%以上の炭化珪素を含む炭化珪素質耐火物を用い、第1層背面の第2層の耐火物として少なくとも50質量%以上のアルミナを含む高アルミナ質耐火物を用い、さらに第2層の背面に断熱質耐火物を配設したものである。すなわち、炉床部は表面が常に溶融物で覆われており、炉内ガスによる酸化は防止できるため、溶融物と接する第1層の耐火物としては耐スラグ性に優れた高SiC含有の炭化珪素質耐火物を用いる。炭化珪素質耐火物は熱伝導率が高いため背面まで高温化するが、第1層背面の第2層の耐火物として、耐火性が高く炭化珪素質耐火物に比べて熱伝導率が低い高アルミナ質耐火物を用いることにより、第2層背面の温度を溶融物の凝固点以下にすることができ、溶融物が第2層背面の断熱質耐火物に侵入することを防止できる。   Furthermore, the hearth refractory structure of the present invention uses a silicon carbide refractory containing at least 30% by mass or more of silicon carbide as the first layer refractory in contact with the melt in the hearth of the waste melting furnace, A high-alumina refractory containing at least 50% by mass or more of alumina is used as the second layer refractory on the first layer back surface, and a heat insulating refractory is further disposed on the back surface of the second layer. In other words, the surface of the hearth is always covered with the melt, and oxidation by the gas in the furnace can be prevented. Therefore, as the first layer refractory in contact with the melt, the carbonization of high SiC content with excellent slag resistance is achieved. Use silicon refractories. Since silicon carbide refractories have high thermal conductivity, the temperature rises to the back. However, as the refractories for the second layer on the back of the first layer, the refractories have high fire resistance and low thermal conductivity compared to silicon carbide refractories. By using the alumina refractory, the temperature of the back surface of the second layer can be made below the freezing point of the melt, and the melt can be prevented from entering the heat insulating refractory of the back surface of the second layer.

本発明の炉壁耐火物構造によれば、炉壁耐火物として用いる炭化珪素質キャスタブル耐火物を冷却することにより、炭化珪素質キャスタブル耐火物の炉内ガスによる高温酸化が防止されるので、炭化珪素質キャスタブル耐火物による耐スラグ性の効果を十分に発揮させることができる。   According to the furnace wall refractory structure of the present invention, by cooling the silicon carbide castable refractory used as the furnace wall refractory, high temperature oxidation by the furnace gas of the silicon carbide castable refractory is prevented. The slag resistance effect by the silicon castable refractory can be sufficiently exhibited.

本発明の炉床耐火物構造によれば、溶融物と接する第1層の耐火物として用いる炭化珪素質耐火物の背面に高アルミナ質耐火物からなる第2層を配設することにより、炉床部の耐スラグ性を向上させることができると共に、溶融物が第2層背面の断熱質耐火物に侵入することを防止でき、断熱機能が消失することを防止できる。   According to the hearth refractory structure of the present invention, by disposing the second layer made of the high alumina refractory on the back surface of the silicon carbide refractory used as the first layer refractory in contact with the melt, While being able to improve the slag resistance of a floor part, it can prevent that a molten material penetrate | invades into the heat insulation refractory material of a 2nd layer back surface, and can prevent that a heat insulation function lose | disappears.

以上のとおり、本発明によれば、廃棄物溶融炉において特に損耗の激しい炉下部の耐火物の耐久性を著しく向上させることができ、その耐用期間を従来の約1年から少なくとも5年以上とすることができる。   As described above, according to the present invention, it is possible to remarkably improve the durability of the refractory in the lower part of the furnace that is particularly worn out in the waste melting furnace. can do.

以下、添付図を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の耐火物構造を適用した廃棄物用溶融炉下部の断面図である。同図に示す廃棄物用溶融炉の構成は図2に示した従来のものと同様であり、廃棄物を溶融処理するために、炉の下部の送風羽口6より酸素富化された空気を炉内に吹き込み、炉の上部からは廃棄物をコークス及び石灰石とともに炉内に装入する。そうすると、廃棄物が炉内を降下する過程で乾燥及び乾留ガス化(熱分解)が進行し、残った灰分は送風羽口6近くで図示しないコークスベッドを形成する炉底コークスの燃焼熱により溶融し、炉床面に溶融スラグ及び溶融金属として降下する。炉床部の溶融物は炉床面より炉外に通じる出湯口7より排出される。   FIG. 1 is a sectional view of a lower part of a waste melting furnace to which the refractory structure of the present invention is applied. The structure of the waste melting furnace shown in the figure is the same as that of the conventional one shown in FIG. 2, and in order to melt the waste, oxygen-enriched air is supplied from the blower tuyere 6 at the lower part of the furnace. Blowing into the furnace, waste is charged into the furnace together with coke and limestone from the top of the furnace. Then, drying and dry distillation gasification (pyrolysis) proceed as the waste descends in the furnace, and the remaining ash is melted by the combustion heat of the bottom coke forming a coke bed not shown near the blower tuyere 6. Then, it falls as molten slag and molten metal to the hearth surface. The molten material in the hearth is discharged from a hot water outlet 7 that leads from the hearth surface to the outside of the furnace.

本発明の炉壁耐火物構造では、溶融スラグと接する部位の炉壁において、炉壁耐火物として炭化珪素質キャスタブル耐火物1を用い、この炭化珪素質キャスタブル耐火物1の内部に冷却水管2を埋設する。ここで、溶融スラグと接する部位の炉壁とは、一般的には廃棄物の乾留ガス化(熱分解)後に残った灰分を溶融する燃焼溶融帯の炉壁であり、炉構造上においては朝顔部8の下方の炉壁である。   In the furnace wall refractory structure of the present invention, the silicon carbide castable refractory 1 is used as the furnace wall refractory in the furnace wall at the portion in contact with the molten slag, and the cooling water pipe 2 is provided inside the silicon carbide castable refractory 1. Buried. Here, the furnace wall in contact with the molten slag is generally the furnace wall of the combustion melting zone that melts the ash remaining after dry distillation gasification (pyrolysis) of the waste. It is a furnace wall below the part 8.

炭化珪素質キャスタブル耐火物1は、冷却水管2による冷却効果を十分に発揮させるため熱伝導率を高くする必要があり、このために少なくとも炭化珪素を30質量%以上含有する材料とする。本実施例では、炭化珪素70質量%、その他の成分としてアルミナ+シリカ=29質量%、残り酸化カルシウム1質量%を含有する炭化珪素質キャスタブル耐火物を用いた。   The silicon carbide castable refractory 1 needs to have high thermal conductivity in order to sufficiently exhibit the cooling effect by the cooling water pipe 2, and for this purpose, it is a material containing at least 30% by mass of silicon carbide. In this example, a silicon carbide castable refractory containing 70% by mass of silicon carbide, alumina + silica = 29% by mass as the other components, and 1% by mass of the remaining calcium oxide was used.

この炭化珪素質キャスタブル耐火物1を用いる部位(燃焼溶融帯)は、送風羽口6付近及びその直上部でコークス燃焼が活発に行われ、1700℃〜1800℃に達する。この高温雰囲気にさらされると炭化珪素質耐火物は通常は容易に酸化され、SiCはSiOとなり組織変化を起こして損耗が進行する。これに対して、本発明では、冷却水管2により炭化珪素質キャスタブル耐火物1を冷却しており、しかも炭化珪素質キャスタブル耐火物1は熱伝導率が高いため、炉内稼働面まで酸化が始まる温度(1000℃)以下の400℃〜500℃程度に保たれ、炉内ガスによる高温酸化が防止される。 In the portion (combustion melting zone) where the silicon carbide castable refractory 1 is used, coke combustion is actively performed in the vicinity of the blower tuyere 6 and immediately above it, and reaches 1700 ° C to 1800 ° C. When exposed to this high temperature atmosphere, the silicon carbide refractory is usually easily oxidized, and SiC becomes SiO 2 , causing structural changes and wear. On the other hand, in the present invention, the silicon carbide castable refractory 1 is cooled by the cooling water pipe 2, and the silicon carbide castable refractory 1 has high thermal conductivity, so that the oxidation starts to the operation surface in the furnace. The temperature is kept at about 400 ° C. to 500 ° C., which is lower than the temperature (1000 ° C.), and high temperature oxidation by the furnace gas is prevented.

この炉壁耐火物構造により、溶融スラグと接する部位の炉壁には使用が不可能であった炭化珪素質キャスタブル耐火物の使用が可能となり、炭化珪素質キャスタブル耐火物が持つ耐スラグ性が活用され、耐火物寿命が大幅に改善される。この部位では、溶融スラグとの接触による溶損と、急激な温度変化によるスポーリングが主体となって侵食が進行するが、炭化珪素質キャスタブル耐火物は、いずれの点においても良好な耐久性を有しており、従来の高アルミナ質キャスタブル耐火物では通常1年程度であった耐用期間を5年以上とすることができる。   This furnace wall refractory structure makes it possible to use silicon carbide castable refractories that could not be used on the furnace wall in contact with the molten slag, making use of the slag resistance of silicon carbide castable refractories Refractory life is greatly improved. In this part, erosion progresses mainly due to melting loss due to contact with molten slag and spalling due to rapid temperature change, but silicon carbide castable refractories have good durability in any respect. The conventional high-alumina castable refractory can have a service life of 5 years or more, which was normally about 1 year.

一方、本発明の炉床耐火物構造では、耐スラグ性の高い炭化珪素質耐火物3を溶融物と接する第1層として配設し、その背面の第2層として、高アルミナ質耐火物4からなる耐火層を配設する。さらに、その背面には断熱質耐火物5を配設して炉床部の温度低下を防止する。   On the other hand, in the hearth refractory structure of the present invention, the silicon carbide refractory 3 having high slag resistance is disposed as the first layer in contact with the melt, and the high alumina refractory 4 as the second layer on the back surface thereof. A refractory layer is provided. Further, a heat insulating refractory 5 is disposed on the back surface to prevent a temperature drop of the hearth portion.

炉床面は常にスラグにより被覆されているため炉内ガスによる酸化のおそれはないため、第1層の炭化珪素質耐火物3としては耐スラグ性を十分に発揮させるため、30質量%以上の炭化珪素を含む材料を使用する。本実施例では、炭化珪素70質量%、その他の成分としてアルミナ+シリカ=29質量%、残り酸化カルシウム1質量%を含有する炭化珪素質キャスタブル耐火物を用いた。   Since the hearth surface is always covered with slag, there is no risk of oxidation due to the gas in the furnace. Therefore, the silicon carbide refractory 3 of the first layer sufficiently exhibits slag resistance. A material containing silicon carbide is used. In this example, a silicon carbide castable refractory containing 70% by mass of silicon carbide, alumina + silica = 29% by mass as the other components, and 1% by mass of the remaining calcium oxide was used.

ただし、この第1層の炭化珪素質耐火物3は、上述のように熱伝導率が高いため、第1層全体が高温に維持され、溶融金属(Fe,Cu)は第1層の目地やクラックを通じて容易に浸透する。この溶融金属が断熱質耐火物5に到達すると断熱性が失われて炉床部が冷却され、炉床面で溶融物(スラグ、金属)が凝固し出湯口7からの溶融物の排出が不可能となる。   However, since the silicon carbide refractory 3 of the first layer has high thermal conductivity as described above, the entire first layer is maintained at a high temperature, and the molten metal (Fe, Cu) Easy to penetrate through cracks. When this molten metal reaches the adiabatic refractory 5, the heat insulation is lost, the hearth is cooled, the melt (slag, metal) is solidified on the hearth surface, and the discharge of the melt from the tap 7 is not possible. It becomes possible.

そこで、溶融金属が断熱質耐火物5に到達するのを防止するため、本発明では上述のとおり、第1層の炭化珪素質耐火物3の背面に第2層として高アルミナ質耐火物4を配設し、第2層の背面温度が溶融金属の凝固温度以下の1000℃以下となるようにすることにより、溶融金属が断熱質耐火物5に浸透することを防止する。この場合、高アルミナ質耐火物4のアルミナ含有量は、耐火性能上、50質量%以上とする。本実施例では、アルミナ93質量%、その他の成分としてシリカ6質量%、酸化カルシウム1質量%を含有する高アルミナ質キャスタブル耐火物を用いた。また、断熱質耐火物5としては、断熱キャスタブル耐火物を用いた。また、本実施例では炉床部にキャスタブル耐火物を用いたが、予め所定の形状に成形加工したプレキャスタブル耐火物や定形耐火物を使用することも可能である。   Therefore, in order to prevent the molten metal from reaching the adiabatic refractory 5, in the present invention, as described above, the high alumina refractory 4 is provided as the second layer on the back surface of the silicon carbide refractory 3 of the first layer. It arrange | positions and it prevents that a molten metal osmose | permeates the adiabatic refractory 5 by making the back surface temperature of a 2nd layer become 1000 degrees C or less below the solidification temperature of a molten metal. In this case, the alumina content of the high-alumina refractory 4 is 50% by mass or more in terms of fire resistance. In this example, a high-alumina castable refractory containing 93% by mass of alumina, 6% by mass of silica and 1% by mass of calcium oxide as other components was used. Further, as the heat insulating refractory 5, a heat insulating castable refractory was used. In the present embodiment, the castable refractory is used for the hearth, but it is also possible to use a pre-castable refractory or a fixed refractory that has been molded into a predetermined shape in advance.

本発明の耐火物構造を適用した廃棄物用溶融炉下部の断面図である。It is sectional drawing of the melting furnace for wastes to which the refractory structure of this invention is applied. 一般的な廃棄物溶融炉の断面図である。It is sectional drawing of a general waste melting furnace.

符号の説明Explanation of symbols

1 炭化珪素質キャスタブル耐火物
2 冷却水管
3 炭化珪素質耐火物
4 高アルミナ質耐火物
5 断熱質耐火物
6 送風羽口
7 出湯口
8 朝顔部
10 炉壁耐火物
20 炉床耐火物
30 送風羽口
40 出湯口
50 廃棄物
60 炉底コークス
DESCRIPTION OF SYMBOLS 1 Silicon carbide castable refractory 2 Cooling water pipe 3 Silicon carbide refractory 4 High alumina refractory 5 Thermal insulation refractory 6 Blower tuyeres 7 Hot water outlet 8 Morning glory 10 Furnace wall refractories 20 Hearth refractories 30 Blower wings Mouth 40 Hot spring outlet 50 Waste 60 Furnace bottom coke

Claims (3)

廃棄物溶融炉の溶融スラグと接する部位の炉壁において、炉壁耐火物として少なくとも30質量%以上の炭化珪素を含む炭化珪素質キャスタブル耐火物を用い、内部に冷却水管を埋設したことを特徴とする廃棄物溶融炉の炉壁耐火物構造。   In the furnace wall at the site in contact with the molten slag of the waste melting furnace, a silicon carbide castable refractory containing at least 30% by mass of silicon carbide is used as the furnace wall refractory, and a cooling water pipe is embedded inside. The furnace wall refractory structure of the waste melting furnace. 廃棄物溶融炉の炉床において、溶融物と接する第1層の耐火物として少なくとも30質量%以上の炭化珪素を含む炭化珪素質耐火物を用い、第1層背面の第2層の耐火物として少なくとも50質量%以上のアルミナを含む高アルミナ質耐火物を用い、さらに第2層の背面に断熱質耐火物を配設したことを特徴とする廃棄物溶融炉の炉床耐火物構造。   In the hearth of the waste melting furnace, a silicon carbide refractory containing at least 30% by mass of silicon carbide is used as the first layer refractory in contact with the melt, and the second layer refractory on the back of the first layer is used. A hearth refractory structure for a waste melting furnace, wherein a high-alumina refractory containing at least 50% by mass or more of alumina is used, and an adiabatic refractory is disposed on the back surface of the second layer. 廃棄物溶融炉において、溶融スラグと接触する部位の炉壁に少なくとも30質量%の炭化珪素を含む炭化珪素質キャスタブル耐火物を用い、その内部に冷却管を埋設させ、炉床部は、溶融物と接する第1層を少なくとも30質量%以上の炭化珪素を含む炭化珪素質耐火物とし、その背面の第2層は少なくとも50質量%以上のアルミナを含む高アルミナ質耐火物とし、さらに第2層の背面に断熱質耐火物を配設したことを特徴とする廃棄物溶融炉の耐火物構造。   In a waste melting furnace, a silicon carbide castable refractory containing at least 30% by mass of silicon carbide is used for a furnace wall at a site in contact with the molten slag, and a cooling pipe is embedded in the furnace wall. The first layer in contact with the silicon carbide refractory containing at least 30% by mass of silicon carbide, the second layer on the back side of the first layer being a high alumina refractory containing at least 50% by mass of alumina, and the second layer A refractory structure for a waste melting furnace, characterized in that an adiabatic refractory is disposed on the back surface of the waste melting furnace.
JP2005118650A 2005-04-15 2005-04-15 Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace Active JP4723893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118650A JP4723893B2 (en) 2005-04-15 2005-04-15 Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118650A JP4723893B2 (en) 2005-04-15 2005-04-15 Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009264020A Division JP5027861B2 (en) 2009-11-19 2009-11-19 Refractory structure of waste melting furnace

Publications (2)

Publication Number Publication Date
JP2006300357A true JP2006300357A (en) 2006-11-02
JP4723893B2 JP4723893B2 (en) 2011-07-13

Family

ID=37468864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118650A Active JP4723893B2 (en) 2005-04-15 2005-04-15 Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace

Country Status (1)

Country Link
JP (1) JP4723893B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249317A (en) * 2007-03-08 2008-10-16 Nippon Steel Engineering Co Ltd Furnace bottom structure of waste melting furnace
JP2010164227A (en) * 2009-01-14 2010-07-29 Nippon Steel Engineering Co Ltd Device for cooling tapping port section of waste gasification melting furnace
JP2011085349A (en) * 2009-10-16 2011-04-28 Nippon Steel Engineering Co Ltd Gas collecting section of shaft-type waste gasification melting furnace
KR101175176B1 (en) 2007-02-07 2012-08-20 (주)원진월드와이드 Preparation of refractory for making steel ingots
AT517370A1 (en) * 2015-06-29 2017-01-15 Urbangold Gmbh Apparatus and arrangement for the metallurgical treatment of electrical and / or electronic scrap or components and their uses and methods for the metallurgical treatment of electrical and / or electronic scrap or components

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100027A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Measuring method for subject brightness
JPH04295593A (en) * 1991-03-22 1992-10-20 Ngk Insulators Ltd Induction furnace
JPH05141868A (en) * 1991-05-17 1993-06-08 Tanabe:Kk Electrical melting furnace
JPH09318275A (en) * 1996-05-24 1997-12-12 Daido Steel Co Ltd Structure of furnace wall of melting furnace for incinerated residue
JP2000327436A (en) * 1999-05-11 2000-11-28 Asahi Glass Co Ltd Monolithic refractory and waste melting furnace using the same
JP2002295979A (en) * 2001-03-30 2002-10-09 Takuma Co Ltd Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JP2003227603A (en) * 2002-02-06 2003-08-15 Hitachi Metals Ltd Direct melting furnace
JP2004061101A (en) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd Ash melting furnace
JP2004315348A (en) * 2003-04-02 2004-11-11 Nippon Steel Corp High thermal conductive castable refractories and method for manufacturing the same
JP2005055173A (en) * 2004-08-11 2005-03-03 Mitsubishi Heavy Ind Ltd Ash melting furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729381Y2 (en) * 1989-01-23 1995-07-05 三菱重工業株式会社 Melting furnace

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100027A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Measuring method for subject brightness
JPH04295593A (en) * 1991-03-22 1992-10-20 Ngk Insulators Ltd Induction furnace
JPH05141868A (en) * 1991-05-17 1993-06-08 Tanabe:Kk Electrical melting furnace
JPH09318275A (en) * 1996-05-24 1997-12-12 Daido Steel Co Ltd Structure of furnace wall of melting furnace for incinerated residue
JP2000327436A (en) * 1999-05-11 2000-11-28 Asahi Glass Co Ltd Monolithic refractory and waste melting furnace using the same
JP2002295979A (en) * 2001-03-30 2002-10-09 Takuma Co Ltd Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JP2003227603A (en) * 2002-02-06 2003-08-15 Hitachi Metals Ltd Direct melting furnace
JP2004061101A (en) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd Ash melting furnace
JP2004315348A (en) * 2003-04-02 2004-11-11 Nippon Steel Corp High thermal conductive castable refractories and method for manufacturing the same
JP2005055173A (en) * 2004-08-11 2005-03-03 Mitsubishi Heavy Ind Ltd Ash melting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175176B1 (en) 2007-02-07 2012-08-20 (주)원진월드와이드 Preparation of refractory for making steel ingots
JP2008249317A (en) * 2007-03-08 2008-10-16 Nippon Steel Engineering Co Ltd Furnace bottom structure of waste melting furnace
JP2010164227A (en) * 2009-01-14 2010-07-29 Nippon Steel Engineering Co Ltd Device for cooling tapping port section of waste gasification melting furnace
JP2011085349A (en) * 2009-10-16 2011-04-28 Nippon Steel Engineering Co Ltd Gas collecting section of shaft-type waste gasification melting furnace
AT517370A1 (en) * 2015-06-29 2017-01-15 Urbangold Gmbh Apparatus and arrangement for the metallurgical treatment of electrical and / or electronic scrap or components and their uses and methods for the metallurgical treatment of electrical and / or electronic scrap or components
AT517370B1 (en) * 2015-06-29 2021-01-15 Urbangold Gmbh Device and arrangement for the metallurgical treatment of electrical and / or electronic scrap or components, as well as their uses and methods for the metallurgical treatment of electrical and / or electronic scrap or components

Also Published As

Publication number Publication date
JP4723893B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4723893B2 (en) Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace
JP5027861B2 (en) Refractory structure of waste melting furnace
KR20050104415A (en) Refractory wall and refractory bricks for building said wall
CN212720899U (en) Furnace body structure of ore-smelting electric furnace
CN217025359U (en) Ladle device for blowing air outside silicon furnace
CN211451852U (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
CN110906740A (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
CN101796362A (en) Tuyere structure of smelting furnace
EP1064410B1 (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
JP2003231912A (en) Gas blow nozzle
CN201440041U (en) Cooling water jacket for high-temperature smelting unit and high-temperature smelting unit with cooling water jacket
JPWO2009028416A1 (en) Iron bath smelting reduction furnace
JP2007231203A (en) Method for gasifying carbonaceous raw material
JP2008249317A (en) Furnace bottom structure of waste melting furnace
EP0083702B1 (en) Water cooled refractory lined furnaces
CN102206516A (en) Flame shield and gasification device and method
JP3963407B2 (en) Refractory for ash melting furnace
JP3712621B2 (en) Refractory structure of melting furnace
Harvey et al. Olivine and Forsterite Refractories in American
JP4413146B2 (en) Melting furnace cooling unit structure
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
JPS5848344Y2 (en) hot metal trough
KR880000948Y1 (en) Water-cooled refractory lined furnaces
Phelps Properties of Refractories and Their Relation to Conditions in Service: Conditions Encountered in Boiler Settings of Normal Design—Strength of Refractories—The Confinement of Heat—Resistance to Destruction—Melting—Slagging—Structural, Mechanical, and Thermal Spalling
JP3857089B2 (en) Ash melting treatment method and ash melting treatment apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4723893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250