JP2008249291A - Heat exchange element - Google Patents

Heat exchange element Download PDF

Info

Publication number
JP2008249291A
JP2008249291A JP2007093255A JP2007093255A JP2008249291A JP 2008249291 A JP2008249291 A JP 2008249291A JP 2007093255 A JP2007093255 A JP 2007093255A JP 2007093255 A JP2007093255 A JP 2007093255A JP 2008249291 A JP2008249291 A JP 2008249291A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer paper
ribs
heat exchange
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093255A
Other languages
Japanese (ja)
Other versions
JP4877016B2 (en
Inventor
Toshihiko Hashimoto
俊彦 橋本
Shinobu Orito
忍 織戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007093255A priority Critical patent/JP4877016B2/en
Priority to KR1020097020374A priority patent/KR101114786B1/en
Priority to CN2008800097531A priority patent/CN101641564B/en
Priority to PCT/JP2008/000784 priority patent/WO2008126372A1/en
Priority to EP08720651.2A priority patent/EP2131133B1/en
Publication of JP2008249291A publication Critical patent/JP2008249291A/en
Application granted granted Critical
Publication of JP4877016B2 publication Critical patent/JP4877016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/146Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded overmolded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange element capable of unvariably providing high heat exchange efficiency performance. <P>SOLUTION: This heat exchange element 1 has an opposed part 5 of opposing an supply air duct 3 ventilating supply air A and an exhaust air duct 4 ventilating exhaust air B via heat transfer paper 2, for exchanging heat by ventilating the supply air A and the exhaust air B every one stage of a ventilation passage formed between a plurality of heat transfer paper 2 laminated at a predetermined interval, and an orthogonal part 6 orthogonally arranging the supply air duct 3 ventilating the supply air A and the exhaust air duct 4 ventilating the exhaust air B via the heat transfer paper 2, and also has a shielding rib 9 preventing leakage of an air current from a part except for an inflow port 7 and an outflow port 8 of the supply air A and the exhaust air B. The heat exchange element can be provided for eliminating a variation in the heat exchange efficiency performance even when deformation of the heat transfer paper is caused by influence such as humidity, by arranging the heat transfer paper 2 so that the hoop direction C of the heat transfer paper 2 becomes perpendicular to the flowing direction for ventilating the supply air A and the exhaust air B of the opposed part 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、家庭用の熱交換型換気扇やビルなどの熱交換型換気装置、またはその他の空気調和装置に使用する積層構造の熱交換素子に関する。   The present invention relates to a heat exchange element having a laminated structure for use in a heat exchange type ventilator such as a household heat exchange type ventilator or a building, or other air conditioner.

従来、この種の熱交換素子は、コルゲート加工を応用したのもが知られている(例えば、特許文献1参照)。   Conventionally, this type of heat exchange element is known to apply corrugating (see, for example, Patent Document 1).

以下、その熱交換素子について、図15及び図16を参照しながら説明する。   Hereinafter, the heat exchange element will be described with reference to FIGS. 15 and 16.

図15に示すように、熱交換器101は、一定の間隔を有して対向した一対のプレート102と、プレート102間の間隙に複数の平行流路103を形成するための波形断面形状を有する板状のフィン104と、プレート102の一段おきに導入された一次気流Mと二次気流Nをそれぞれガイドするスペーサー105から形成され、フィン104によって形成された平行流路103の下流側に空間部106を有する。プレート102とフィン104及びプレート102とスペーサー105は接着剤により接合される。   As shown in FIG. 15, the heat exchanger 101 has a pair of plates 102 opposed to each other with a constant interval, and a corrugated cross-sectional shape for forming a plurality of parallel flow paths 103 in the gaps between the plates 102. A plate-like fin 104 and a spacer 105 for guiding the primary air flow M and the secondary air flow N introduced at every other stage of the plate 102 are formed on the downstream side of the parallel flow path 103 formed by the fins 104. 106. The plate 102 and the fin 104, and the plate 102 and the spacer 105 are joined by an adhesive.

また、一次気流Mと二次気流Nの流入口はそれぞれ対向する面に配置され、一次気流Mと二次気流Nの流出口は一次気流Mと二次気流Nの流入口が配置された面と垂直となる面に配置され、一次気流Mと二次気流Nの流出口が配置された面と対向となる面は閉塞されている。   In addition, the inlets of the primary airflow M and the secondary airflow N are arranged on opposite surfaces, and the outlets of the primary airflow M and the secondary airflow N are surfaces on which the inlets of the primary airflow M and the secondary airflow N are arranged. The surface opposite to the surface on which the outlets of the primary airflow M and the secondary airflow N are disposed is closed.

なお、図16に示すように、フィン104を一方から流出口が配置された面側へと連続的にピッチPが小さくなるように形成し平行流路103の流路断面積を変化させることによって熱交換効率の向上を図ったものである。
特開昭60−238689号公報
In addition, as shown in FIG. 16, the fin 104 is formed so that the pitch P is continuously reduced from one side to the surface side where the outflow port is arranged, and the channel cross-sectional area of the parallel channel 103 is changed. This is intended to improve heat exchange efficiency.
JP 60-238689 A

このような従来の熱交換器101では、プレート102間の間隔を小さくして限られた積層高さの中で伝熱面積を増加することで熱交換効率を向上する場合にプレート102とフィン104の接合部を平行流路103の構造維持のために増やさなければならないため接合部によって伝熱板の有効面積を減少させ、さらにプレート102とフィン104を接合させるために用いられる接着剤が接合部分からはみ出すことによってプレート102の有効面積を大幅に減少させるため、熱交換効率が低下するという課題があり、熱交換効率を向上するということが要求されている。   In such a conventional heat exchanger 101, the plate 102 and the fin 104 are used when the heat transfer efficiency is improved by reducing the distance between the plates 102 and increasing the heat transfer area in a limited stacking height. Since the joint portion of the heat transfer plate has to be increased in order to maintain the structure of the parallel flow path 103, the effective area of the heat transfer plate is reduced by the joint portion, and the adhesive used for joining the plate 102 and the fin 104 is joined to the joint portion. Since the effective area of the plate 102 is greatly reduced by protruding from the surface, there is a problem that the heat exchange efficiency is lowered, and it is required to improve the heat exchange efficiency.

また、プレート102及びプレート102が紙で形成されている場合、実際に製造を行うにあたってピッチPが不揃いであるフィン104とスペーサー105の厚みを精度よく揃えるのは難しく、接着する際に厚みが大きいフィン104は潰され、厚みが小さいフィン104はプレート102とうまく接合できなくなり、設計したピッチPを実現することができないとともに厚み方向の精度が低いためにプレート102の変形や、一段ごとの積層高さが異なることにより熱交換素子内に偏流を生じるため熱交換効率が低下するという課題があり、熱交換効率を向上するということが要求されている。   In addition, when the plate 102 and the plate 102 are formed of paper, it is difficult to accurately align the thicknesses of the fins 104 and the spacers 105 whose pitch P is not uniform in actual manufacturing, and the thickness is large when bonding. The fins 104 are crushed, and the fins 104 having a small thickness cannot be joined to the plate 102 well, so that the designed pitch P cannot be realized and the accuracy in the thickness direction is low. Due to the difference in size, there is a problem that the heat exchange efficiency is lowered because of the occurrence of drift in the heat exchange element, and it is required to improve the heat exchange efficiency.

また、フープ材の伝熱紙を使用する場合、伝熱紙は湿度等によりフープ方向に対して垂直方向に寸法が変動しやすいことが知られており、熱交換素子を製造した後の伝熱紙の収縮による接着部分の剥がれによる一次気流Nと二次気流M相互間の混流の増加や、紙の膨張によりプレート102が変形し熱交換素子内に偏流を生じるため熱交換効率が低下するという課題があり、伝熱紙の変形の影響を受けずに安定した熱交換効率を維持できることが要求されている。   In addition, when using a heat transfer paper made of a hoop material, it is known that the heat transfer paper tends to vary in dimensions in the direction perpendicular to the hoop direction due to humidity, etc., and heat transfer after the heat exchange element is manufactured. The heat exchange efficiency is reduced because the plate 102 is deformed due to the increase in the mixed flow between the primary air flow N and the secondary air flow M due to the peeling of the adhesive portion due to the shrinkage of the paper and the expansion of the paper, causing a drift in the heat exchange element. There is a problem, and it is required to maintain stable heat exchange efficiency without being affected by deformation of heat transfer paper.

このような従来の熱交換素子では、湿度等による伝熱紙の変形により、熱交換効率性能が不安定となってしてしまうという課題がある。   Such a conventional heat exchange element has a problem that the heat exchange efficiency performance becomes unstable due to deformation of the heat transfer paper due to humidity or the like.

本発明は、このような従来の課題を解決するものであり、高い熱交換効率性能を安定して得ることができる熱交換素子を提供することを目的とする。   This invention solves such a conventional subject, and it aims at providing the heat exchange element which can obtain a high heat exchange efficiency performance stably.

本発明の熱交換素子は、上記目的を達成するために、所定間隔を設けて積層した複数の伝熱紙間に形成される通風路の一段おきに給気空気と排気空気を通風させて熱交換し、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて対向する対向部と、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて直交する直交部を有し、且つ前記給気空気と前記排気空気の流入口及び流出口以外の部分からの気流の漏れを防止する遮蔽リブを有する熱交換素子であって、前記対向部の前記給気空気と前記排気空気を通風させる流れ方向に対して前記伝熱紙のフープ方向が垂直となるように前記伝熱紙を配置したものである。   In order to achieve the above-mentioned object, the heat exchange element of the present invention heats the supply air and the exhaust air through every other stage of the ventilation path formed between a plurality of heat transfer sheets stacked at a predetermined interval. An air supply air passage for exchanging and supplying the supply air and an exhaust air passage for passing the exhaust air are opposed to each other across the heat transfer paper, and the supply air passage and the exhaust for allowing the supply air to flow An exhaust air passage for allowing air to flow has an orthogonal portion that intersects perpendicularly across the heat transfer paper, and shields air flow leakage from portions other than the inlet and outlet of the supply air and the exhaust air A heat exchange element having a rib, wherein the heat transfer paper is arranged so that a hoop direction of the heat transfer paper is perpendicular to a flow direction in which the supply air and the exhaust air in the facing portion are ventilated. Is.

また、他の手段は、給気風路及び配気風路の内部に、給気空気及び排気空気の流入方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したものである。   Another means is that a plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air passage and the distribution air passage in parallel with the inflow direction of the supply air and the exhaust air. It is.

また、他の手段は、給気風路及び配気風路の内部に、給気空気及び排気空気の流出方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したものである。   Another means is that a plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air flow passage and the distribution air flow passage in parallel with the outflow direction of the supply air and the exhaust air. It is.

また、他の手段は、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブを連結したものである。   In addition, the other means are provided so as to be parallel to the outflow direction of the supply air and the exhaust air and the plurality of divided ribs having different lengths provided to be parallel to the inflow direction of the supply air and the exhaust air. A plurality of divided ribs having different lengths are connected.

また、他の手段は、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブをR形状で連結したものである。   In addition, the other means are provided so as to be parallel to the outflow direction of the supply air and the exhaust air and the plurality of divided ribs having different lengths provided to be parallel to the inflow direction of the supply air and the exhaust air. A plurality of divided ribs having different lengths are connected in an R shape.

また、他の手段は、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成するものである。   Another means is that the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib. Dividing ribs are formed on both sides of the heat transfer paper.

また、他の手段は、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、前記伝熱紙の端部が遮蔽リブの内部となるよう構成したものである。   Another means is that the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib. When the split ribs are formed on both sides of the heat transfer paper, the end portions of the heat transfer paper are configured to be inside the shielding ribs.

また、他の手段は、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、遮蔽リブに、凹凸形状を設けたものである。   Another means is that the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib. When the dividing ribs are formed on both sides of the heat transfer paper, the shielding ribs are provided with uneven shapes.

また、他の手段は、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設けたものである。   Another means is that the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and further the heat transfer paper is insert-molded so as to be arranged at the center portion in the height direction of the shielding rib. It is formed on both surfaces of the heat transfer paper, and a plurality of divided ribs having a predetermined interval height of the heat transfer plate are provided on one surface of the heat transfer paper.

また、他の手段は、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設け、分割リブと分割リブの間に複数本の補強リブを設けたものである。   Another means is that the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and further the heat transfer paper is insert-molded so as to be arranged at the center portion in the height direction of the shielding rib. It is formed on both sides of the heat transfer paper, provided on the front and back sides of the heat transfer paper with a plurality of split ribs with a predetermined interval height of the heat transfer plate, and provided with a plurality of reinforcing ribs between the split ribs and the split ribs It is a thing.

本発明によれば、所定間隔を設けて積層した複数の伝熱紙間に形成される通風路の一段おきに給気空気と排気空気を通風させて熱交換し、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて対向する対向部と、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて直交する直交部を有し、且つ前記給気空気と前記排気空気の流入口及び流出口以外の部分からの気流の漏れを防止する遮蔽リブを有する熱交換素子であって、前記対向部の前記給気空気と前記排気空気を通風させる流れ方向に対して前記伝熱紙のフープ方向が垂直となるように前記伝熱紙を配置したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができるという効果のある熱交換素子を提供することができる。   According to the present invention, the supply air and the exhaust air are ventilated at every other stage of the ventilation path formed between the plurality of heat transfer sheets stacked at a predetermined interval to exchange heat, and the supply air is ventilated. An air supply air passage and an exhaust air passage through which the exhaust air passes are opposed to each other across the heat transfer paper, an air supply air passage through which the air supply air is passed, and an exhaust air passage through which the exhaust air is passed. A heat exchanging element having an orthogonal portion that is perpendicular to the hot paper and having shielding ribs that prevent leakage of airflow from portions other than the inlet and outlet of the supply air and the exhaust air, By arranging the heat transfer paper so that the hoop direction of the heat transfer paper is perpendicular to the flow direction in which the supply air and the exhaust air of the facing portion are ventilated, heat transfer is performed due to the influence of humidity and the like. Variation in heat exchange efficiency performance even when paper deformation occurs It is possible to provide a heat exchange element having the effect that can be eliminated.

また、給気風路及び配気風路の内部に、給気空気及び排気空気の流入方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても伝熱紙の所定の間隔を維持できるという効果のある熱交換素子を提供することができる。   In addition, by arranging a plurality of dividing ribs having different lengths for dividing the flow path in parallel with the inflow direction of the supply air and the exhaust air, the humidity and the like Even when the heat transfer paper is deformed due to the influence, it is possible to provide a heat exchange element having an effect of maintaining a predetermined interval of the heat transfer paper.

また、給気風路及び配気風路の内部に、給気空気及び排気空気の流出方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても伝熱紙の所定の間隔を維持できるという効果のある熱交換素子を提供することができる。   In addition, by arranging a plurality of dividing ribs having different lengths for dividing the flow path in parallel to the outflow direction of the supply air and the exhaust air, the humidity and the like Even when the heat transfer paper is deformed due to the influence, it is possible to provide a heat exchange element having an effect of maintaining a predetermined interval of the heat transfer paper.

また、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブを連結したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても伝熱紙の所定の間隔を維持し、また、積層時に遮蔽リブの寸法にばらつきが生じ、ねじれ力が加わる場合においても伝熱紙の所定の間隔を維持できるという効果のある熱交換素子を提供することができる。   Also, a plurality of divided ribs having different lengths provided in parallel with the inflow direction of the supply air and the exhaust air and a plurality of different lengths provided in parallel with the outflow direction of the supply air and the exhaust air. Even if heat transfer paper is deformed due to the influence of humidity, etc., the predetermined spacing of the heat transfer paper is maintained, and the shield rib dimensions vary during lamination, resulting in twisting force. Even when heat is applied, it is possible to provide a heat exchange element that is effective in maintaining a predetermined interval between heat transfer papers.

また、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブをR形状で連結したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても伝熱紙の所定の間隔を維持し、また、積層時に遮蔽リブの寸法にばらつきが生じる場合においても伝熱紙の所定の間隔を維持でき、さらに、圧力損失を低減することができるという効果のある熱交換素子を提供することができる。   Also, a plurality of divided ribs having different lengths provided in parallel with the inflow direction of the supply air and the exhaust air and a plurality of different lengths provided in parallel with the outflow direction of the supply air and the exhaust air. By connecting the divided ribs in an R shape, even when the heat transfer paper is deformed due to the influence of humidity or the like, the predetermined interval of the heat transfer paper is maintained, and the dimensions of the shielding ribs vary during lamination. Even in this case, it is possible to provide a heat exchange element that can maintain a predetermined interval between the heat transfer papers and can reduce pressure loss.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成することにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができるという効果のある熱交換素子を提供することができる。   In addition, the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib, whereby the shielding rib and the dividing rib are heat-transferred. By forming on both sides of the paper, it is possible to provide a heat exchange element that can eliminate fluctuations in the heat exchange efficiency performance even when heat transfer paper is deformed due to the influence of humidity or the like.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、前記伝熱紙の端部が遮蔽リブの内部となるよう構成したことにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができ、製造時の接合強度のばらつきをなくすことができ、熱交換効率の変動をなくすことができるという効果のある熱交換素子を提供することができる。   In addition, the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib, whereby the shielding rib and the dividing rib are heat-transferred. When the heat transfer paper is formed on both sides of the paper, the end of the heat transfer paper is configured to be inside the shielding rib, so that the heat transfer efficiency performance can be changed even when the heat transfer paper is deformed due to the influence of humidity or the like. Thus, it is possible to provide a heat exchange element that can eliminate the variation in bonding strength during manufacture and can eliminate fluctuations in heat exchange efficiency.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、遮蔽リブに、凹凸形状を設けたことにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができ、漏れ風量を低減することができ、熱交換効率の変動をなくすことができるという効果のある熱交換素子を提供することができる。   In addition, the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib, whereby the shielding rib and the dividing rib are heat-transferred. When forming on both sides of the paper, by providing uneven shapes on the shielding ribs, fluctuations in heat exchange efficiency performance can be eliminated even when heat transfer paper is deformed due to the influence of humidity, etc. It is possible to provide a heat exchange element that can be reduced and that can eliminate fluctuations in heat exchange efficiency.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設けたことにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができ、製造過程において熱可塑性樹脂が流れやすくなり、分割リブの高さをより低くできるため給気風路および排気風路の伝熱紙の間隔を小さくでき、限られた積層寸法の条件下で伝熱板の数量を増加させることができるので熱交換効率性能が向上できるという効果のある熱交換素子を提供することができる。   Further, the shielding ribs and the dividing ribs are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shield ribs so that the shield ribs are formed on both sides of the heat transfer paper. Heat exchange even when heat transfer paper is deformed by the influence of humidity, etc., by providing multiple split ribs with a predetermined interval height of the heat transfer plate on one side of the heat transfer paper Variations in efficiency performance can be eliminated, the thermoplastic resin can easily flow in the manufacturing process, and the height of the split ribs can be lowered, so the interval between the heat transfer paper in the air supply and exhaust air passages can be reduced and limited. Since the number of heat transfer plates can be increased under the conditions of the stacked dimensions, it is possible to provide a heat exchange element that is effective in improving the heat exchange efficiency performance.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設け、分割リブと分割リブの間に複数本の補強リブを設けたことにより、湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができ、熱可塑性樹脂が流れやすくなることで分割リブの高さを低くできるため給気風路および排気風路の伝熱紙の間隔を小さくでき、限られた積層寸法の条件下で伝熱板の数量を増加させることができるので熱交換効率性能が向上し、さらに、伝熱紙の変形を分割リブ及び補強リブにより矯正できるので湿度等の影響により伝熱紙の変形が生じる場合においても熱交換効率性能の変動をなくすことができるという効果のある熱交換素子を提供することができる。   Further, the shielding ribs and the dividing ribs are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shield ribs so that the shield ribs are formed on both sides of the heat transfer paper. The heat transfer paper is provided with a plurality of divided ribs at a predetermined interval on the front and back surfaces of the heat transfer paper, and a plurality of reinforcing ribs are provided between the divided ribs and the divided ribs, thereby reducing the humidity. Even when heat transfer paper is deformed due to the influence of the above, the fluctuation of the heat exchange efficiency performance can be eliminated, and the height of the dividing ribs can be reduced by making the thermoplastic resin easier to flow. The space between the heat transfer papers in the path can be reduced, and the number of heat transfer plates can be increased under the conditions of the limited stacking dimensions, improving the heat exchange efficiency performance, and further, dividing the heat transfer paper by dividing ribs And because it can be corrected by the reinforcing rib, It is possible to provide a heat exchange element having the effect that it is possible to eliminate variations in heat exchange efficiency performance even when the deformation of the heat transfer sheet is caused by the sound.

本発明の請求項1記載の熱交換素子は、所定間隔を設けて積層した複数の伝熱紙間に形成される通風路の一段おきに給気空気と排気空気を通風させて熱交換し、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて対向する対向部と、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて直交する直交部を有し、且つ前記給気空気と前記排気空気の流入口及び流出口以外の部分からの気流の漏れを防止する遮蔽リブを有する熱交換素子であって、前記対向部の前記給気空気と前記排気空気を通風させる流れ方向に対して前記伝熱紙のフープ方向が垂直となるように前記伝熱紙を配置したこととしたものであり、伝熱紙が変形する場合に給気空気と排気空気の偏流を抑制するという作用を有する。   The heat exchange element according to claim 1 of the present invention exchanges heat by allowing supply air and exhaust air to flow through every other stage of a ventilation path formed between a plurality of heat transfer papers laminated at a predetermined interval. The air supply air passage for allowing the supply air to flow and the exhaust air passage for allowing the exhaust air to pass are opposed to each other across the heat transfer paper, the supply air passage for allowing the supply air to flow, and the exhaust air flow The exhaust air path to be provided has an orthogonal part orthogonal to the heat transfer paper, and has a shielding rib for preventing leakage of airflow from portions other than the inlet and outlet of the supply air and the exhaust air In the heat exchange element, the heat transfer paper is arranged so that a hoop direction of the heat transfer paper is perpendicular to a flow direction in which the supply air and the exhaust air in the opposed portion are ventilated. If the heat transfer paper is deformed, the supply air and exhaust air It has the effect of suppressing the flow.

また、給気風路及び配気風路の内部に、給気空気及び排気空気の流入方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したこととしたものであり、対向部の伝熱紙の変形部に分割リブがあたることで伝熱紙の変形を矯正するという作用を有する。   In addition, a plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air passage and the distribution air passage in parallel with the inflow directions of the supply air and the exhaust air. In addition, the deformation rib of the heat transfer paper at the opposing portion hits the dividing rib to correct the deformation of the heat transfer paper.

また、給気風路及び配気風路の内部に、給気空気及び排気空気の流出方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したこととしたものであり、直交部の伝熱紙の変形部に分割リブがあたることで伝熱紙の変形を矯正するという作用を有する。   In addition, a plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air passage and the distribution air passage in parallel with the outflow direction of the supply air and the exhaust air. In addition, the deformation of the heat transfer paper is corrected by hitting the dividing rib on the deformation portion of the heat transfer paper at the orthogonal portion.

また、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブを連結したこととしたものであり、対向部及び直交部の伝熱紙の変形部に分割リブがあたることで伝熱紙の変形を矯正する。さらに対向部の分割リブと直交部の分割リブによって平面が形成されるという作用を有する。   Also, a plurality of divided ribs having different lengths provided in parallel with the inflow direction of the supply air and the exhaust air and a plurality of different lengths provided in parallel with the outflow direction of the supply air and the exhaust air. The divided ribs are connected to each other, and the deformation of the heat transfer paper is corrected by the division ribs hitting the deformed portions of the heat transfer paper at the opposing portion and the orthogonal portion. Furthermore, it has the effect | action that a plane is formed by the division rib of an opposing part, and the division rib of an orthogonal part.

また、給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブをR形状で連結したこととしたものであり、対向部及び直交部の伝熱紙の変形部に分割リブがあたることで伝熱紙の変形を矯正する。また対向部の分割リブと直交部の分割リブによって平面が形成されるという作用を有し、さらに直交部から対向部に流れる風は、R形状に沿って流れるという作用を有する。   Also, a plurality of divided ribs having different lengths provided in parallel with the inflow direction of the supply air and the exhaust air and a plurality of different lengths provided in parallel with the outflow direction of the supply air and the exhaust air. The split ribs are connected in an R shape, and the deformation of the heat transfer paper is corrected by hitting the split ribs on the deformed portions of the heat transfer paper at the opposing portion and the orthogonal portion. Moreover, it has the effect | action that a plane is formed by the division rib of an opposing part, and the division rib of an orthogonal part, and also has the effect | action that the wind which flows into an opposing part from an orthogonal part flows along R shape.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成することとしたものであり、分割リブと伝熱紙がインサート成型により接着され、また分割リブと伝熱紙の接着面積が増加するため伝熱紙の変形を矯正するという作用を有する。   In addition, the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib, whereby the shielding rib and the dividing rib are heat-transferred. It is intended to be formed on both sides of the paper, and the dividing rib and heat transfer paper are bonded by insert molding, and the bonding area between the dividing rib and heat transfer paper is increased, so that the deformation of the heat transfer paper is corrected. Have

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、前記伝熱紙の端部が遮蔽リブの内部となるよう構成したこととしたものであり、分割リブと伝熱紙がインサート成型により接着され、また分割リブと伝熱紙の接着面積が増加するため伝熱紙の変形を矯正する。また伝熱紙の給気空気と排気空気の流入口及び流出口部分の接合強度が向上するという作用を有する。   In addition, the shielding rib and the dividing rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shielding rib, whereby the shielding rib and the dividing rib are heat-transferred. When forming on both sides of the paper, the end of the heat transfer paper is configured to be inside the shielding rib. The split rib and the heat transfer paper are bonded by insert molding, and the split rib and the heat transfer paper are bonded. Corrects the deformation of the heat transfer paper because the bonding area of the heat paper increases. Moreover, it has the effect | action that the joining strength of the inlet_port | entrance and outlet portion of the supply air and exhaust air of heat transfer paper improves.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成する際、遮蔽リブに、凹凸形状を設けたとしたものであり、分割リブと伝熱紙がインサート成型により接着され、また分割リブと伝熱紙の接着面積が増加するため伝熱紙の変形を矯正する。また凹凸形状が勘合し勘合部を空気が流れようとする際の圧力損失を増加させるという作用を有する。   Further, the shielding ribs and the dividing ribs are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shield ribs so that the shield ribs are formed on both sides of the heat transfer paper. When forming, the shielding rib is provided with a concavo-convex shape. The dividing rib and the heat transfer paper are bonded by insert molding, and the bonding area between the dividing rib and the heat transfer paper is increased. Correct the deformation. Moreover, it has the effect | action of increasing the pressure loss at the time of an uneven | corrugated shape fitting and air trying to flow through a fitting part.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設けたこととしたものであり、分割リブの断面積が増加するという作用を有する。   Further, the shielding ribs and the dividing ribs are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shield ribs so that the shield ribs are formed on both sides of the heat transfer paper. The heat transfer sheet is provided with a plurality of split ribs having a predetermined interval height on one side of the front and back surfaces of the heat transfer paper, and has the effect of increasing the cross-sectional area of the split ribs.

また、遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設け、分割リブと分割リブの間に複数本の補強リブを設けたこととしたものであり、分割リブと伝熱板の接着面積に補強リブと伝熱紙の接着面積が追加されるという作用を有する。   Further, the shielding ribs and the dividing ribs are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center in the height direction of the shield ribs so that the shield ribs are formed on both sides of the heat transfer paper. The heat transfer sheet is provided with a plurality of divided ribs at a predetermined interval on the front and back surfaces of the heat transfer paper, and a plurality of reinforcing ribs are provided between the divided ribs and the divided ribs. Thus, the bonding area between the reinforcing rib and the heat transfer paper is added to the bonding area between the dividing rib and the heat transfer plate.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1および図2に示すように、所定間隔を設けて積層した複数の伝熱紙2間に形成される通風路の一段おきに給気空気Aと排気空気Bを通風させて熱交換し、前記給気空気Aを通風させる給気風路3と前記排気空気Bを通風させる排気風路4が前記伝熱紙2を隔てて対向する対向部5と、前記給気空気Aを通風させる給気風路3と前記排気空気Bを通風させる排気風路4が前記伝熱紙2を隔てて直交する直交部6を有し、且つ前記給気空気Aと前記排気空気Bの流入口7及び流出口8以外の部分からの気流の漏れを防止する遮蔽リブ9を有する熱交換素子1であって、前記対向部5の前記給気空気Aと前記排気空気Bを通風させる流れ方向に対して前記伝熱紙2のフープ方向Cが垂直となるように前記伝熱紙2を配置した構成とする。
(Embodiment 1)
As shown in FIG. 1 and FIG. 2, heat exchange is performed by passing the supply air A and the exhaust air B through every other stage of the ventilation path formed between the plurality of heat transfer papers 2 stacked at a predetermined interval. A supply air passage 3 for allowing the supply air A to flow, and an exhaust air passage 4 for allowing the exhaust air B to pass through, facing each other across the heat transfer paper 2, and the supply air for allowing the supply air A to flow. An exhaust air passage 4 through which the air passage 3 and the exhaust air B are passed has an orthogonal portion 6 that is orthogonal to the heat transfer paper 2, and an inlet 7 and an outlet of the supply air A and the exhaust air B A heat exchange element 1 having a shielding rib 9 for preventing airflow leakage from a portion other than 8, wherein the heat transfer element 1 transmits the supply air A and the exhaust air B in the facing portion 5 in the flow direction. The heat transfer paper 2 is arranged so that the hoop direction C of the heat paper 2 is vertical.

図3に示すように伝熱紙はフープ形状10の材料を切断や型抜き加工によって製造され、フープ方向Cに対して給気空気Aまたは排気空気Bの流入方向を垂直となるように配置した構成とする。   As shown in FIG. 3, the heat transfer paper is manufactured by cutting or die-cutting the material of the hoop shape 10 and arranged so that the inflow direction of the supply air A or the exhaust air B is perpendicular to the hoop direction C. The configuration.

図4に示すように、前期対向部5の前記給気空気Aと前記排気空気Bを通風させる流れ方向に対して前記伝熱紙2のフープ方向Cが垂直となるように前記伝熱紙2を配置し、湿度等の影響により変形を生じる場合にはフープ方向Cに沿って変形部11が形成される。   As shown in FIG. 4, the heat transfer paper 2 is set so that the hoop direction C of the heat transfer paper 2 is perpendicular to the flow direction in which the supply air A and the exhaust air B are ventilated in the first facing portion 5. When a deformation occurs due to the influence of humidity or the like, the deformation portion 11 is formed along the hoop direction C.

上記構成により、湿度等の影響により変形部11を生じる場合には、給気風路3および排気風路4の伝熱紙2間の距離の変化が不可避であるが、対向部5における流路断面の幅方向に対する伝熱紙2間の距離のばらつきを小さくできるので給気空気Aと排気空気Bの偏流を抑制する。   With the above configuration, when the deformed portion 11 is generated due to the influence of humidity or the like, a change in the distance between the heat transfer paper 2 of the supply air passage 3 and the exhaust air passage 4 is unavoidable. The variation in the distance between the heat transfer sheets 2 with respect to the width direction can be reduced, so that the drift of the supply air A and the exhaust air B is suppressed.

このように本発明の実施の形態1の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても熱交換効率性能の変動をなくすことができることとなる。   Thus, according to the heat exchange element of Embodiment 1 of the present invention, even when the heat transfer paper 2 is deformed due to the influence of humidity or the like, fluctuations in the heat exchange efficiency performance can be eliminated.

(実施の形態2)
図5に示すように、給気風路3及び排気風路4の内部に、給気空気A及び排気空気Bの流入方向と平行に、流路を分割させるための長さの異なる分割リブ12Aを複数本配置した構成とする。
(Embodiment 2)
As shown in FIG. 5, split ribs 12 </ b> A having different lengths for splitting the flow paths are provided inside the supply air passage 3 and the exhaust air passage 4 in parallel with the inflow directions of the supply air A and the exhaust air B. It is set as the structure which arranged two or more.

上記構成により、対向部5の伝熱紙2の変形部11に分割リブ12Aがあたることで伝熱紙の変形を矯正する。   With the above configuration, the deformation of the heat transfer paper is corrected by the division rib 12A hitting the deformation portion 11 of the heat transfer paper 2 of the facing portion 5.

このように本発明の実施の形態2の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても伝熱紙2の所定の間隔を維持できることとなる。   As described above, according to the heat exchange element of the second embodiment of the present invention, even when the heat transfer paper 2 is deformed due to the influence of humidity or the like, the predetermined interval of the heat transfer paper 2 can be maintained.

(実施の形態3)
図6に示すように、給気風路3及び排気風路4の内部に、給気空気A及び排気空気Bの流出方向と平行に、流路を分割させるための長さの異なる分割リブ12Bを複数本配置した構成とする。
(Embodiment 3)
As shown in FIG. 6, split ribs 12 </ b> B having different lengths for splitting the flow paths are provided inside the supply air passage 3 and the exhaust air passage 4 in parallel with the outflow directions of the supply air A and the exhaust air B. It is set as the structure which arranged two or more.

上記構成により、直交部6の伝熱紙2の変形部11に分割リブ12Bがあたることで伝熱紙の変形を矯正する。   With the above configuration, the deformation of the heat transfer paper is corrected by the division rib 12B hitting the deformation portion 11 of the heat transfer paper 2 of the orthogonal portion 6.

このように本発明の実施の形態3の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても伝熱紙の所定の間隔を維持できることとなる。   As described above, according to the heat exchange element of Embodiment 3 of the present invention, even when the heat transfer paper 2 is deformed due to the influence of humidity or the like, the predetermined interval of the heat transfer paper can be maintained.

(実施の形態4)
図7に示すように、給気空気A及び排気空気Bの流入方向と平行となるように設けた長さの異なる複数の分割リブ12Aと給気空気A及び排気空気Bの流出方向と平行となるように設けた長さの異なる複数の分割リブ12Bを連結した構成とする。
(Embodiment 4)
As shown in FIG. 7, the plurality of divided ribs 12 </ b> A having different lengths provided so as to be parallel to the inflow direction of the supply air A and the exhaust air B and parallel to the outflow direction of the supply air A and the exhaust air B It is set as the structure which connected the some division rib 12B from which the length provided in this way differs.

上記構成により、対向部5及び直交部6の伝熱紙2の変形部11に一体となった分割リブがあたることで伝熱紙の変形を矯正する。さらに対向部の分割リブ12Aと直交部の分割リブ12Bによって平面が形成される。   With the above configuration, the deformation of the heat transfer paper is corrected by hitting the dividing rib integrated with the deformation portion 11 of the heat transfer paper 2 of the facing portion 5 and the orthogonal portion 6. Further, a plane is formed by the divided ribs 12A at the opposing portion and the divided ribs 12B at the orthogonal portion.

このように本発明の実施の形態4の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても伝熱紙2の所定の間隔を維持し、また、積層時に遮蔽リブ9の寸法にばらつきが生じ、ねじれ力が加わる場合においても伝熱紙2の所定の間隔を維持できることとなる。   As described above, according to the heat exchange element of Embodiment 4 of the present invention, even when deformation of the heat transfer paper 2 occurs due to the influence of humidity or the like, the predetermined interval of the heat transfer paper 2 is maintained, and at the time of lamination Even when the dimensions of the shielding rib 9 vary and a twisting force is applied, the predetermined interval of the heat transfer paper 2 can be maintained.

(実施の形態5)
図8に示すように、給気空気A及び排気空気Bの流入方向と平行となるように設けた長さの異なる複数の分割リブ12Aと給気空気A及び排気空気Bの流出方向と平行となるように設けた長さの異なる複数の分割リブ12BをR形状13で連結した構成とする。
(Embodiment 5)
As shown in FIG. 8, the plurality of split ribs 12A having different lengths provided so as to be parallel to the inflow direction of the supply air A and the exhaust air B, and parallel to the outflow direction of the supply air A and the exhaust air B A plurality of divided ribs 12 </ b> B having different lengths provided in such a manner are connected by an R shape 13.

上記構成により、対向部5及び直交部6の伝熱紙2の変形部11に一体となった分割リブがあたることで伝熱紙2の変形を矯正する。また対向部5の分割リブ12Aと直交部6の分割リブ12Bによって平面が形成される。さらに直交部6から対向部5に流れる風は、R形状13に沿って流れる。   With the above configuration, the deformation of the heat transfer paper 2 is corrected by hitting the dividing ribs integrated with the deformation portion 11 of the heat transfer paper 2 of the facing portion 5 and the orthogonal portion 6. A plane is formed by the divided ribs 12A of the facing portion 5 and the divided ribs 12B of the orthogonal portion 6. Further, the wind flowing from the orthogonal part 6 to the facing part 5 flows along the R shape 13.

このように本発明の実施の形態5の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても伝熱紙2の所定の間隔を維持し、また、積層時に遮蔽リブ9の寸法にばらつきが生じる場合においても伝熱紙2の所定の間隔を維持し、さらに、圧力損失を低減することができることとなる。   As described above, according to the heat exchange element of Embodiment 5 of the present invention, even when the heat transfer paper 2 is deformed due to the influence of humidity or the like, the predetermined interval of the heat transfer paper 2 is maintained, and at the time of stacking Even when the dimensions of the shielding rib 9 vary, the predetermined interval of the heat transfer paper 2 can be maintained and the pressure loss can be reduced.

(実施の形態6)
図9に示すように、遮蔽リブ9と分割リブ12cを熱可塑性樹脂にて一体で形成し、さらに伝熱紙2を遮蔽リブ9の高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブ9と分割リブ12cを伝熱紙2の両面に形成する構成とする。
(Embodiment 6)
As shown in FIG. 9, the shielding rib 9 and the dividing rib 12 c are integrally formed of a thermoplastic resin, and the heat transfer paper 2 is insert-molded so as to be arranged at the center in the height direction of the shielding rib 9. Thus, the shielding rib 9 and the dividing rib 12c are formed on both surfaces of the heat transfer paper 2.

上記構成により、分割リブ12cと伝熱紙2がインサート成型により接着され、また分割リブ12cと伝熱紙2の接着面積が増加するため伝熱紙2の変形を矯正する。   With the above configuration, the split rib 12c and the heat transfer paper 2 are bonded by insert molding, and the bonding area between the split rib 12c and the heat transfer paper 2 is increased, so that the deformation of the heat transfer paper 2 is corrected.

このように本発明の実施の形態6の熱交換素子によれば、湿度等の影響により伝熱紙2の変形が生じる場合においても熱交換効率性能の変動をなくすことができることとなる。   As described above, according to the heat exchange element of Embodiment 6 of the present invention, even when the heat transfer paper 2 is deformed due to the influence of humidity or the like, fluctuations in heat exchange efficiency performance can be eliminated.

(実施の形態7)
図10及び図11に示すように、遮蔽リブ9と分割リブ12cを熱可塑性樹脂にて一体で形成し、さらに伝熱紙2を遮蔽リブ9の高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブ9と分割リブ12cを伝熱紙の両面に形成する際、前記伝熱紙の端部14が遮蔽リブ9の内部となるよう構成した構成とする。
(Embodiment 7)
As shown in FIGS. 10 and 11, the shielding rib 9 and the dividing rib 12 c are integrally formed of a thermoplastic resin, and the heat transfer paper 2 is inserted so as to be arranged at the center in the height direction of the shielding rib 9. When the shielding ribs 9 and the dividing ribs 12c are formed on both surfaces of the heat transfer paper by molding, the heat transfer paper has an end portion 14 located inside the shield rib 9.

上記構成により、分割リブ12cと伝熱紙2がインサート成型により接着され、また分割リブ12cと伝熱紙2の接着面積が増加するため伝熱紙2の変形を矯正する。また伝熱紙2の給気空気Aと排気空気Bの流入口7及び流出口8部分の接合強度が向上する。   With the above configuration, the split rib 12c and the heat transfer paper 2 are bonded by insert molding, and the bonding area between the split rib 12c and the heat transfer paper 2 is increased, so that the deformation of the heat transfer paper 2 is corrected. Moreover, the joining strength of the inlet 7 and outlet 8 portions of the supply air A and the exhaust air B of the heat transfer paper 2 is improved.

このように本発明の実施の形態7の熱交換素子によれば、分割リブ12cと伝熱紙2がインサート成型により接着され、また分割リブ12cと伝熱紙2の接着面積が増加するため伝熱紙2の変形を矯正する。さらに製造時の接合強度のばらつきをなくすことができ、熱交換効率の変動をなくすことができることとなる。   As described above, according to the heat exchange element of Embodiment 7 of the present invention, the divided ribs 12c and the heat transfer paper 2 are bonded by insert molding, and the bonding area between the divided ribs 12c and the heat transfer paper 2 is increased. The deformation of the hot paper 2 is corrected. Further, it is possible to eliminate variations in bonding strength during manufacturing, and to eliminate fluctuations in heat exchange efficiency.

(実施の形態8)
図12に示すように、遮蔽リブ9と分割リブ12cを熱可塑性樹脂にて一体で形成し、さらに伝熱紙2を遮蔽リブ9の高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブ9と分割リブ12cを伝熱紙の両面に形成する際、遮蔽リブ9に、凹凸形状15を設けた構成とする。
(Embodiment 8)
As shown in FIG. 12, the shielding rib 9 and the dividing rib 12 c are integrally formed of a thermoplastic resin, and the heat transfer paper 2 is insert-molded so as to be arranged at the center of the shielding rib 9 in the height direction. Thus, when the shielding rib 9 and the dividing rib 12c are formed on both sides of the heat transfer paper, the shielding rib 9 is provided with the uneven shape 15.

上記構成により、分割リブ12cと伝熱紙2がインサート成型により接着され、また分割リブ12cと伝熱紙2の接着面積が増加するため伝熱紙2の変形を矯正する。さらに凹凸形状15が勘合し積層時に遮蔽リブ9間を空気が流れようとする際の圧力損失を増加させる。   With the above configuration, the split rib 12c and the heat transfer paper 2 are bonded by insert molding, and the bonding area between the split rib 12c and the heat transfer paper 2 is increased, so that the deformation of the heat transfer paper 2 is corrected. Furthermore, the uneven shape 15 is fitted to increase the pressure loss when air is about to flow between the shielding ribs 9 during lamination.

このように本発明の実施の形態8の熱交換素子によれば、分割リブ12cと伝熱紙2がインサート成型により接着され、また分割リブ12cと伝熱紙2の接着面積が増加するため伝熱紙2の変形を矯正する。さらに漏れ風量を低減することができ、熱交換効率の変動をなくすことができることとなる。   As described above, according to the heat exchange element of the eighth embodiment of the present invention, the split rib 12c and the heat transfer paper 2 are bonded by insert molding, and the bonding area between the split rib 12c and the heat transfer paper 2 is increased. The deformation of the hot paper 2 is corrected. Furthermore, the amount of leaked air can be reduced, and fluctuations in heat exchange efficiency can be eliminated.

(実施の形態9)
図13に示すように、遮蔽リブ9を熱可塑性樹脂にて一体で形成し、さらに伝熱紙2を遮蔽リブ9の高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブ9を伝熱紙2の両面に形成し、伝熱紙表裏の片面に、伝熱紙2の所定間隔の高さの複数本の分割リブ12dを設けた構成とする。
(Embodiment 9)
As shown in FIG. 13, the shielding rib 9 is integrally formed of a thermoplastic resin, and the heat transfer paper 2 is insert-molded so as to be disposed at the center of the shielding rib 9 in the height direction. Is formed on both surfaces of the heat transfer paper 2, and a plurality of divided ribs 12d having a predetermined interval height of the heat transfer paper 2 are provided on one side of the heat transfer paper.

上記構成により、分割リブ12dの断面積が増加する。   With the above configuration, the sectional area of the dividing rib 12d increases.

このように本発明の実施の形態9の熱交換素子によれば、製造過程において熱可塑性樹脂が流れやすくなり、分割リブ12dの高さをより低くできるため伝熱紙2の間隔を小さくでき、限られた積層寸法の条件下で伝熱紙2の数量を増加させることができるので熱交換効率性能が向上できることとなる。   Thus, according to the heat exchange element of the ninth embodiment of the present invention, the thermoplastic resin can easily flow in the manufacturing process, and the height of the dividing rib 12d can be further reduced, so that the interval between the heat transfer papers 2 can be reduced. Since the quantity of the heat transfer paper 2 can be increased under the condition of the limited stacking dimensions, the heat exchange efficiency performance can be improved.

(実施の形態10)
図14に示すように、遮蔽リブ9を熱可塑性樹脂にて一体で形成し、さらに伝熱紙2を遮蔽リブ9の高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブ9を伝熱紙2の両面に形成し、伝熱紙表裏の片面に、伝熱紙の所定間隔の高さの複数本の分割リブ12dを設け、分割リブと分割リブの間に複数本の補強リブ16を設けた構成とする。
(Embodiment 10)
As shown in FIG. 14, the shielding rib 9 is integrally formed of a thermoplastic resin, and the heat transfer paper 2 is insert-molded so as to be disposed at the center of the shielding rib 9 in the height direction. Is formed on both sides of the heat transfer paper 2, and a plurality of divided ribs 12d having a predetermined interval height of the heat transfer paper are provided on one side of the heat transfer paper, and a plurality of reinforcements are provided between the divided ribs. The rib 16 is provided.

上記構成により、分割リブ12dと伝熱紙2の接着面積に補強リブ16と伝熱紙2の接着面積が追加される。   With the above configuration, the bonding area between the reinforcing ribs 16 and the heat transfer paper 2 is added to the bonding area between the divided ribs 12 d and the heat transfer paper 2.

このように本発明の実施の形態10の熱交換素子によれば、熱可塑性樹脂が流れやすくなることで分割リブ12dの高さを低くできるため伝熱紙の間隔を小さくでき、限られた積層寸法の条件下で伝熱紙の数量を増加させることができるので熱交換効率性能が向上し、さらに、伝熱紙2の変形を分割リブ12d及び補強リブ16により矯正できるので湿度等の影響により伝熱紙2の変形が生じる場合においても熱交換効率性能の変動をなくすことができることとなる。   Thus, according to the heat exchange element of the tenth embodiment of the present invention, the height of the dividing rib 12d can be reduced by facilitating the flow of the thermoplastic resin, so the interval between the heat transfer papers can be reduced, and the limited lamination Since the number of heat transfer papers can be increased under dimensional conditions, the heat exchange efficiency performance is improved. Further, the deformation of the heat transfer paper 2 can be corrected by the dividing ribs 12d and the reinforcing ribs 16, so that it is affected by the influence of humidity and the like. Even when the heat transfer paper 2 is deformed, fluctuations in the heat exchange efficiency performance can be eliminated.

本発明は、家庭用の熱交換型換気扇やビルなどの熱交換型換気装置、またはその他の空気調和装置に使用する積層構造の熱交換素子に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a heat exchange element having a laminated structure used for a heat exchange ventilator such as a household heat exchange ventilator or a building, or other air conditioner.

本発明の実施の形態1の熱交換素子を示す概略斜視図1 is a schematic perspective view showing a heat exchange element according to Embodiment 1 of the present invention. 同熱交換素子を示す概略斜視図Schematic perspective view showing the heat exchange element 同熱交換素子の伝熱紙のフープ方向を示す概略斜視図Schematic perspective view showing the hoop direction of the heat transfer paper of the heat exchange element 同熱交換素子の変形部を示す概略斜視図The schematic perspective view which shows the deformation | transformation part of the same heat exchange element 本発明の実施の形態2の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 2 of this invention. 本発明の実施の形態3の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 3 of this invention. 本発明の実施の形態4の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 4 of this invention. 本発明の実施の形態5の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 5 of this invention. 本発明の実施の形態6の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 6 of this invention. 本発明の実施の形態7の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 7 of this invention. 同熱交換素子の伝熱紙の端部を示す側面構成図Side structure diagram showing the end of the heat transfer paper of the heat exchange element 本発明の実施の形態8の熱交換素子の遮蔽リブを示す概略斜視図The schematic perspective view which shows the shielding rib of the heat exchange element of Embodiment 8 of this invention 本発明の実施の形態9の熱交換素子の分割リブを示す概略斜視図The schematic perspective view which shows the division | segmentation rib of the heat exchange element of Embodiment 9 of this invention. 本発明の実施の形態10の熱交換素子を示す概略斜視図Schematic perspective view showing the heat exchange element of Embodiment 10 of the present invention. 従来の熱交換素子を示す概略斜視図Schematic perspective view showing a conventional heat exchange element 同熱交換素子を示す側面構成図Side view of the heat exchange element

符号の説明Explanation of symbols

1 熱交換素子
2 伝熱紙
3 給気風路
4 排気風路
5 対向部
6 直交部
7 流入口
8 流出口
9 遮蔽リブ
10 フープ形状
11 変形部
12A 分割リブ
12B 分割リブ
12c 分割リブ
12d 分割リブ
13 R形状
14 伝熱紙の端部
15 凹凸形状
16 補強リブ
DESCRIPTION OF SYMBOLS 1 Heat exchange element 2 Heat transfer paper 3 Supply air path 4 Exhaust air path 5 Opposite part 6 Orthogonal part 7 Inlet 8 Outlet 9 Shielding rib 10 Hoop shape 11 Deformation part 12A Dividing rib 12B Dividing rib 12c Dividing rib 12d Dividing rib 13 R shape 14 Edge of heat transfer paper 15 Uneven shape 16 Reinforcement rib

Claims (10)

所定間隔を設けて積層した複数の伝熱紙間に形成される通風路の一段おきに給気空気と排気空気を通風させて熱交換し、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて対向する対向部と、前記給気空気を通風させる給気風路と前記排気空気を通風させる排気風路が前記伝熱紙を隔てて直交する直交部を有し、且つ前記給気空気と前記排気空気の流入口及び流出口以外の部分からの気流の漏れを防止する遮蔽リブを有する熱交換素子であって、前記対向部の前記給気空気と前記排気空気を通風させる流れ方向に対して前記伝熱紙のフープ方向が垂直となるように前記伝熱紙を配置したことを特徴とする熱交換素子。 The supply air passage and the exhaust for passing air through the supply air and the exhaust air at every other stage of the ventilation passage formed between a plurality of heat transfer sheets stacked at a predetermined interval to exchange heat. An exhaust air passage for allowing air to flow across the heat transfer paper, a facing portion, an air supply air passage for passing the supply air, and an exhaust air passage for passing the exhaust air are orthogonal to each other across the heat transfer paper. A heat exchange element having a shielding rib for preventing leakage of airflow from a portion other than the inlet and outlet of the supply air and the exhaust air. A heat exchange element, wherein the heat transfer paper is arranged so that a hoop direction of the heat transfer paper is perpendicular to a flow direction in which the air and the exhaust air are passed. 給気風路及び配気風路の内部に、給気空気及び排気空気の流入方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したことを特徴とする請求項1記載の熱交換素子。 2. A plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air passage and the distribution air passage in parallel with the inflow directions of the supply air and the exhaust air. The heat exchange element as described. 給気風路及び配気風路の内部に、給気空気及び排気空気の流出方向と平行に、流路を分割させるための長さの異なる分割リブを複数本配置したことを特徴とする請求項1記載の熱交換素子。 2. A plurality of dividing ribs having different lengths for dividing the flow path are arranged in the supply air passage and the distribution air passage in parallel with the outflow direction of the supply air and the exhaust air. The heat exchange element as described. 給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブを連結したことを特徴とする請求項1記載の熱交換素子。 A plurality of split ribs of different lengths provided to be parallel to the inflow direction of supply air and exhaust air and a plurality of splits of different lengths provided to be parallel to the outflow direction of supply air and exhaust air The heat exchange element according to claim 1, wherein ribs are connected. 給気空気及び排気空気の流入方向と平行となるように設けた長さの異なる複数の分割リブと給気空気及び排気空気の流出方向と平行となるように設けた長さの異なる複数の分割リブをR形状で連結したことを特徴とする請求項1記載の熱交換素子。 A plurality of split ribs of different lengths provided to be parallel to the inflow direction of supply air and exhaust air and a plurality of splits of different lengths provided to be parallel to the outflow direction of supply air and exhaust air The heat exchange element according to claim 1, wherein the ribs are connected in an R shape. 遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成することを特徴とする請求項1記載の熱交換素子。 The shield rib and the split rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center of the shield rib in the height direction. The heat exchange element according to claim 1, wherein the heat exchange element is formed on both sides. 遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、前記伝熱紙の端部が遮蔽リブの内部となるよう構成したことを特徴とする請求項1記載の熱交換素子。 The shield rib and the split rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center of the shield rib in the height direction. The heat exchange element according to claim 1, wherein when the heat transfer paper is formed on both sides, an end of the heat transfer paper is configured to be inside the shielding rib. 遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブと分割リブを伝熱紙の両面に形成する際、遮蔽リブに、凹凸形状を設けた請求項1記載の熱交換素子。 The shield rib and the split rib are integrally formed of a thermoplastic resin, and the heat transfer paper is insert-molded so as to be arranged at the center of the shield rib in the height direction. The heat exchange element according to claim 1, wherein when forming on both surfaces, the shielding rib is provided with an uneven shape. 遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設けたことを特徴とする請求項1記載の熱交換素子。 The shielding ribs and split ribs are integrally formed of thermoplastic resin, and the heat transfer paper is insert-molded so that it is placed in the center of the height direction of the shielding ribs, thereby forming the shielding ribs on both sides of the heat transfer paper. The heat exchange element according to claim 1, wherein a plurality of divided ribs having a predetermined interval height of the heat transfer plate are provided on one side of the heat transfer paper. 遮蔽リブと分割リブを熱可塑性樹脂にて一体で形成し、さらに伝熱紙を遮蔽リブの高さ方向の中央部に配置するようにインサート成型することにより遮蔽リブを伝熱紙の両面に形成し、伝熱紙表裏の片面に、伝熱板の所定間隔の高さの複数本の分割リブを設け、分割リブと分割リブの間に複数本の補強リブを設けたことを特徴とする請求項1記載の熱交換素子。 The shielding ribs and split ribs are integrally formed of thermoplastic resin, and the heat transfer paper is insert-molded so that it is placed in the center of the height direction of the shielding ribs, thereby forming the shielding ribs on both sides of the heat transfer paper. In addition, a plurality of divided ribs having a predetermined interval height of the heat transfer plate are provided on one side of the front and back of the heat transfer paper, and a plurality of reinforcing ribs are provided between the divided ribs and the divided ribs. Item 2. The heat exchange element according to Item 1.
JP2007093255A 2007-03-30 2007-03-30 Heat exchange element Active JP4877016B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007093255A JP4877016B2 (en) 2007-03-30 2007-03-30 Heat exchange element
KR1020097020374A KR101114786B1 (en) 2007-03-30 2008-03-28 Heat exchange element
CN2008800097531A CN101641564B (en) 2007-03-30 2008-03-28 Heat exchange element
PCT/JP2008/000784 WO2008126372A1 (en) 2007-03-30 2008-03-28 Heat exchange element
EP08720651.2A EP2131133B1 (en) 2007-03-30 2008-03-28 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093255A JP4877016B2 (en) 2007-03-30 2007-03-30 Heat exchange element

Publications (2)

Publication Number Publication Date
JP2008249291A true JP2008249291A (en) 2008-10-16
JP4877016B2 JP4877016B2 (en) 2012-02-15

Family

ID=39863532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093255A Active JP4877016B2 (en) 2007-03-30 2007-03-30 Heat exchange element

Country Status (5)

Country Link
EP (1) EP2131133B1 (en)
JP (1) JP4877016B2 (en)
KR (1) KR101114786B1 (en)
CN (1) CN101641564B (en)
WO (1) WO2008126372A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070648B1 (en) * 2009-02-02 2011-10-07 인제대학교 산학협력단 air type heat exchanger
JP2012189264A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Total heat exchange element
JP2012193946A (en) * 2011-02-28 2012-10-11 Jfe Steel Corp Air preheating device and exhaust air recirculating device
JP2013137179A (en) * 2011-12-01 2013-07-11 Mitsubishi Electric Corp Total heat exchanging element and total heat exchanger
JP2017181327A (en) * 2016-03-30 2017-10-05 エスペック株式会社 Environment testing device, fluid introduction member, and environment adjustment device
JP2019510191A (en) * 2016-03-31 2019-04-11 アルファ−ラヴァル・コーポレート・アーベー Heat exchanger

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776406B (en) * 2010-01-14 2012-12-05 天津大学 Counter-flow heat exchange core body for fresh air ventilator
JP5541043B2 (en) * 2010-09-28 2014-07-09 パナソニック株式会社 Heat exchanger
CN102213558B (en) * 2011-04-13 2012-10-03 甘肃蓝科石化高新装备股份有限公司 Pure counterflow plate bundle for plate-shell type heat exchanger
US20130042996A1 (en) * 2011-08-15 2013-02-21 Yunho Hwang Transferring heat between fluids
US20140326432A1 (en) 2011-12-19 2014-11-06 Dpoint Technologies Inc. Counter-flow energy recovery ventilator (erv) core
WO2013157040A1 (en) * 2012-04-18 2013-10-24 三菱電機株式会社 Heat-exchange element and air conditioner
WO2013157045A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Heat exchange element
JP5797328B2 (en) * 2012-04-20 2015-10-21 三菱電機株式会社 Heat exchange element
KR101401443B1 (en) * 2012-05-29 2014-05-30 (주)센도리 the heat exchanger system liner flow method
JP5790600B2 (en) * 2012-07-13 2015-10-07 三菱電機株式会社 Heat exchange element
EP3217132B1 (en) * 2016-03-07 2018-09-05 Bosal Emission Control Systems NV Plate heat exchanger and method for manufacturing a plate heat exchanger
JP6485918B2 (en) * 2016-06-08 2019-03-20 株式会社アーカイブワークス Plate type heat exchanger
NL2018175B1 (en) * 2017-01-16 2018-07-26 Recair Holding B V Recuperator
CN110718723A (en) * 2018-07-13 2020-01-21 株式会社高山 Heat exchanger for batteries and fuel cell stacks
CN110439788B (en) * 2019-08-21 2024-07-09 宁波戴维医疗器械股份有限公司 Medical compressor
KR102388421B1 (en) * 2020-06-19 2022-04-19 주식회사 한누리공조 Apparatus for heat exchange

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger
JP2004286419A (en) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005282904A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Heat exchanger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238689A (en) 1984-05-11 1985-11-27 Mitsubishi Electric Corp Heat exchanger
JPH0743228B2 (en) * 1987-02-24 1995-05-15 三菱電機株式会社 Method of manufacturing heat exchange element
JPH05157480A (en) * 1991-12-09 1993-06-22 Daikin Ind Ltd Heat exchanging element
JPH06281379A (en) * 1992-09-24 1994-10-07 Daikin Ind Ltd Heat exchanging element and heat exchanging ventilator using the same
JPH0719789A (en) * 1993-07-02 1995-01-20 Abb Gadelius Kk Composite heat exchanger element of total enthalpy heat exchanger
JPH07234087A (en) * 1994-02-24 1995-09-05 Daikin Ind Ltd Heat exchanging element
JP3362611B2 (en) * 1996-09-12 2003-01-07 三菱電機株式会社 Heat exchanger and method for manufacturing heat exchange member of the heat exchanger
DE19737158A1 (en) * 1997-08-26 1999-03-04 Feustle Gerhard Dipl Ing Fh Highly efficient heat exchanger for use in sensor or time-controlled shock ventilation with heat recovery
US20030154724A1 (en) * 2002-02-20 2003-08-21 Urch John Francis Heat exchanger
CN2752702Y (en) * 2004-06-23 2006-01-18 丁宏广 Air full-heat exchanger
JP2006029692A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006329499A (en) * 2005-05-25 2006-12-07 Matsushita Electric Ind Co Ltd Heat exchanger
CN1888807A (en) * 2005-06-27 2007-01-03 乐金电子(天津)电器有限公司 Electric heat exchanging material for ventilator and producing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger
JP2004286419A (en) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005282904A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070648B1 (en) * 2009-02-02 2011-10-07 인제대학교 산학협력단 air type heat exchanger
JP2012193946A (en) * 2011-02-28 2012-10-11 Jfe Steel Corp Air preheating device and exhaust air recirculating device
JP2012189264A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Total heat exchange element
JP2013137179A (en) * 2011-12-01 2013-07-11 Mitsubishi Electric Corp Total heat exchanging element and total heat exchanger
JP2017181327A (en) * 2016-03-30 2017-10-05 エスペック株式会社 Environment testing device, fluid introduction member, and environment adjustment device
JP2019510191A (en) * 2016-03-31 2019-04-11 アルファ−ラヴァル・コーポレート・アーベー Heat exchanger
US11079186B2 (en) 2016-03-31 2021-08-03 Alfa Laval Corporate Ab Heat exchanger with sets of channels forming checkered pattern

Also Published As

Publication number Publication date
WO2008126372A1 (en) 2008-10-23
JP4877016B2 (en) 2012-02-15
CN101641564B (en) 2011-03-30
EP2131133A4 (en) 2011-01-05
KR101114786B1 (en) 2012-02-28
EP2131133B1 (en) 2015-05-06
KR20090125801A (en) 2009-12-07
EP2131133A1 (en) 2009-12-09
CN101641564A (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4877016B2 (en) Heat exchange element
JP4816517B2 (en) Heat exchange element
JP2008070046A (en) Heat exchange element
JP2013524144A (en) Heat exchanger and heat exchange sheet for heat exchanger
JP2006329499A (en) Heat exchanger
JP4848718B2 (en) Heat exchanger
US9863710B2 (en) Laminated total heat exchange element
JP2014173786A (en) Heat exchanging element
JP2017062094A (en) Heat exchange element
KR101730890B1 (en) Plastic Heat Exchanger for Heat Recovery
JP6537760B1 (en) Heat exchange element and heat exchange ventilator
JP2005282907A (en) Heat exchanger
JP2007255755A (en) Method of manufacturing heat exchanger
JP2014114968A (en) Heat exchange element and heating element housing device using the same
JP5206815B2 (en) Heat exchanger
JP5206032B2 (en) Heat exchanger
JP2014066397A (en) Heat exchange element
JP2019168148A (en) Heat exchange element and heat exchange type ventilation device using the same
JP7372472B2 (en) Heat exchange elements and heat exchange ventilation equipment
KR101377584B1 (en) Sensible heat exchangers used in ventilation ducts sensible device settings Device
JPH0849993A (en) Heat exchange element
KR20150144965A (en) Frame structure of air-to-air heat exchanger
JP3610788B2 (en) Heat exchange element and air conditioner
JP2016151404A (en) Heat exchange element
JPH0882495A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4877016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3