JP2014114968A - Heat exchange element and heating element housing device using the same - Google Patents

Heat exchange element and heating element housing device using the same Download PDF

Info

Publication number
JP2014114968A
JP2014114968A JP2012267137A JP2012267137A JP2014114968A JP 2014114968 A JP2014114968 A JP 2014114968A JP 2012267137 A JP2012267137 A JP 2012267137A JP 2012267137 A JP2012267137 A JP 2012267137A JP 2014114968 A JP2014114968 A JP 2014114968A
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
exchange element
airflow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012267137A
Other languages
Japanese (ja)
Inventor
Makoto Sugiyama
誠 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012267137A priority Critical patent/JP2014114968A/en
Publication of JP2014114968A publication Critical patent/JP2014114968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling performance of a cooling unit mounted with a heat exchange element.SOLUTION: A heat exchange element 14 exchanges heat by making a primary air current and a secondary air current flow through every other stage of air ducts formed between a plurality of heat transfer plates laminated at predetermined intervals. The heat exchange element 14 includes counter-current portions in which the primary air current and the secondary air current oppose to each other across the heat transfer plates. The heat exchange element 14 further includes: blocking portions 18a, 18b for preventing leakage of the air currents from portions excluding first inlets 16a, second inlets 17a, first outlets 16b and second outlets 17b of the air ducts; and flow passage division portions 19a, 19b for dividing inside of the air ducts into a plurality of flow passages. Flow passage lengths of the plurality of flow passages divided by the flow passage division portions 19a, 19b are different from each other. In the heat exchange element 14, in either one or both of the air ducts through which the primary air current flows and through which the secondary air current flows, the outlet is made larger than the inlet.

Description

本発明は、熱交換素子とそれを用いた発熱体収納装置に関するものである。   The present invention relates to a heat exchange element and a heating element storage device using the same.

従来、この種の熱交換素子は、コルゲート加工を応用したものが知られている(例えば、特許文献1参照)。   Conventionally, this type of heat exchange element is known to apply corrugating (see, for example, Patent Document 1).

以下、その熱交換素子について、図12(a)および図12(b)を参照しながら説明する。   The heat exchange element will be described below with reference to FIGS. 12 (a) and 12 (b).

図12(a)に示すように、熱交換器101は、一定の間隙を有して対向した一対のプレート102と、プレート102間の間隙に複数の平行流路103を形成するための波形断面形状を有する板状のフィン104と、プレート102の一段おきに導入された一次気流Mと二次気流Nをそれぞれガイドするスペーサ105から形成され、フィン104によって形成された平行流路103の下流側に空間部106を有する。プレート102とフィン104およびプレート102とスペーサ105は接着剤により接合される。また、一次気流Mと二次気流Nの流入口はそれぞれ対向する面に配置され、一次気流Mと二次気流Nの流出口は一次気流Mと二次気流Nの流入口が配置された面と垂直となる面に配置され、一次気流Mと二次気流Nの流出口が配置された面と対向となる面は閉塞されている。なお、図12(b)に示すように、フィン104を一方から流出口が配置された面側へと連続的にピッチPが小さくなるように形成し平行流路103の流路断面積を変化させることによって熱交換効率の向上を図ったものである。   As shown in FIG. 12A, the heat exchanger 101 has a pair of plates 102 opposed to each other with a certain gap, and a corrugated cross section for forming a plurality of parallel flow paths 103 in the gaps between the plates 102. A plate-like fin 104 having a shape, and a spacer 105 that guides the primary airflow M and the secondary airflow N introduced every other stage of the plate 102, and downstream of the parallel flow path 103 formed by the fins 104. Has a space 106. The plate 102 and the fin 104, and the plate 102 and the spacer 105 are joined by an adhesive. In addition, the inlets of the primary airflow M and the secondary airflow N are arranged on opposite surfaces, and the outlets of the primary airflow M and the secondary airflow N are surfaces on which the inlets of the primary airflow M and the secondary airflow N are arranged. The surface opposite to the surface on which the outlets of the primary airflow M and the secondary airflow N are disposed is closed. As shown in FIG. 12B, the fins 104 are formed so that the pitch P is continuously reduced from one side to the surface side where the outlets are arranged, and the flow path cross-sectional area of the parallel flow path 103 is changed. Thus, the heat exchange efficiency is improved.

特許第1640604号Japanese Patent No. 1640604

このような従来の熱交換器101では、平行流路103の下流側に空間部106を有しており、空間部106は気流を制御するための部材を有していないため空間部106内で偏流が生じる。また、空間部106には上下のプレート102間の間隔を維持することが難しいため、一次気流Mと二次気流Nとの送風時の圧力差によりプレート102が変形する。そのプレート102の変形により、空間部106内で更なる偏流を生じさせることで熱交換効率を低下させるとともに、圧力損失が増加することで風量が低下する。このような従来の熱交換器101を用いた冷却ユニットでは、熱交換効率の低下、圧力損失の増加による風量低下により冷却性能が低下するという課題があり、熱交換素子の熱交換効率を向上するとともに圧力損失を低減するということが要求されている。   In such a conventional heat exchanger 101, the space portion 106 is provided on the downstream side of the parallel flow path 103, and the space portion 106 does not have a member for controlling the airflow. A drift occurs. Further, since it is difficult to maintain the space between the upper and lower plates 102 in the space portion 106, the plate 102 is deformed due to a pressure difference when the primary air flow M and the secondary air flow N are blown. The deformation of the plate 102 causes further drift in the space 106 to reduce the heat exchange efficiency, and the pressure loss increases to reduce the air volume. In such a cooling unit using the conventional heat exchanger 101, there is a problem that the cooling performance is lowered due to a decrease in heat exchange efficiency and a reduction in the air volume due to an increase in pressure loss, thereby improving the heat exchange efficiency of the heat exchange element. At the same time, it is required to reduce pressure loss.

また、流出口が配置された面に近い平行流路103の流路断面積を小さくするためにプレート102とフィン104の接合部を平行流路103の構造維持のために必要な数よりも多くするため、接合部によって伝熱板の有効面積を減少させ、さらにプレート102とフィン104を接合するために用いられる接着剤が接合部からはみ出すことによってプレート102の有効面積を大幅に減少させるため、熱交換効率が低下、圧力損失が増加するという課題があり、熱交換素子の熱交換効率を向上するとともに圧力損失を低減するということが要求されている。   In addition, in order to reduce the cross-sectional area of the parallel flow path 103 close to the surface on which the outlet is disposed, the number of joints between the plate 102 and the fins 104 is greater than the number necessary for maintaining the structure of the parallel flow path 103. In order to reduce the effective area of the heat transfer plate by the joint, and further, the adhesive used to join the plate 102 and the fin 104 protrudes from the joint to significantly reduce the effective area of the plate 102. There is a problem that the heat exchange efficiency is lowered and the pressure loss is increased, and it is required to improve the heat exchange efficiency of the heat exchange element and reduce the pressure loss.

また、フィン104の代わりにプレート102上に独立した部材を配置することによって流路内を複数の平行流路103に分割した場合においても、平行流路103の最もピッチPが広い流路は平行流路103の構造を維持することができる最大のピッチPより大きくすることができず、ピッチPが連続的に小さくなるような構成であるため、平行流路103の構造維持のために必要な数よりも多くなり、流路が小さくなり圧力損失が増加することと、プレート102の有効面積が大幅に減少するため、熱交換効率が低下するという課題があり、熱交換素子の熱交換効率を向上するとともに圧力損失を低減するということが要求されている。   Even when the inside of the flow path is divided into a plurality of parallel flow paths 103 by disposing an independent member on the plate 102 instead of the fins 104, the flow path having the widest pitch P of the parallel flow paths 103 is parallel. Since the pitch P cannot be made larger than the maximum pitch P that can maintain the structure of the flow path 103 and the pitch P is continuously reduced, it is necessary for maintaining the structure of the parallel flow path 103. More than the number, the flow path becomes smaller and the pressure loss increases, and the effective area of the plate 102 is greatly reduced, so there is a problem that the heat exchange efficiency is lowered. There is a need to improve and reduce pressure loss.

また、プレート102間にフィン104とスペーサ105を挿入し接着材にて接合するため、フィン104とスペーサ105の厚みを精度良く揃える必要があるが、実際に製造を行うにあたってピッチPが不揃いであるフィン104とスペーサ105の厚みを精度よく揃えるのは難しく、接着する際に厚みが大きいフィン104は潰され、厚みが小さいフィン104はプレート102とうまく接合できなくなり、設計したピッチPを実現することができないとともに厚み方向の精度が低いために伝熱板のたわみや、一段ごとの積層高さが異なることにより熱交換素子内に偏流を生じるため、圧力損失が増加し、熱交換効率が低下するという課題があり、熱交換素子の熱交換効率を向上するとともに圧力損失を低減するということが要求されている。   Further, since the fins 104 and the spacers 105 are inserted between the plates 102 and bonded with an adhesive, the thicknesses of the fins 104 and the spacers 105 need to be accurately aligned, but the pitch P is not uniform in actual manufacturing. It is difficult to align the thicknesses of the fins 104 and the spacers 105 with high accuracy, and the fins 104 having a large thickness are crushed when bonded, and the fins 104 having a small thickness cannot be joined well to the plate 102, thereby realizing the designed pitch P. In addition, because the accuracy in the thickness direction is low and the heat transfer plate is deflected and the stacking height of each step is different, drift occurs in the heat exchange element, increasing the pressure loss and reducing the heat exchange efficiency. There is a problem that it is required to improve the heat exchange efficiency of the heat exchange element and reduce the pressure loss. That.

そこで、本発明は、このような従来の課題を解決するものであり、強度を保ちながら通風路内の偏流を解消し、熱交換素子の熱交換効率を向上するとともに圧力損失を低減することで、熱交換素子を搭載した冷却ユニットの冷却性能を向上するということを目的とするものである。   Therefore, the present invention solves such a conventional problem by eliminating the drift in the ventilation path while maintaining the strength, improving the heat exchange efficiency of the heat exchange element and reducing the pressure loss. The purpose is to improve the cooling performance of a cooling unit equipped with a heat exchange element.

そして、この目的を達成するために本発明は、所定間隔を設けて積層した複数の伝熱板間に形成される通風路の一段おきに一次気流と二次気流を流通させて熱交換する熱交換素子であって、前記熱交換素子は前記一次気流と前記二次気流とが前記伝熱板を隔てて対向する対向流部分を有し、また、前記熱交換素子は前記通風路の前記一次気流と前記二次気流の流入口および流出口以外の部分からの気流の漏れを防止する遮蔽部と前記通風路内を複数の流路に分割するための流路分割部を有し、且つ前記流路分割部によって分割された複数の前記流路の流路長がそれぞれ異なる前記熱交換素子において、前記一次気流を流通させる前記通風路と前記二次気流を流通させる前記通風路のどちらか一方あるいは両方の前記通風路において、流出口を流入口よりも大きくしたものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention is a heat exchanger for exchanging heat by circulating a primary air flow and a secondary air flow every other stage of a ventilation path formed between a plurality of heat transfer plates stacked at a predetermined interval. The heat exchange element has an opposing flow portion in which the primary airflow and the secondary airflow face each other across the heat transfer plate, and the heat exchange element is the primary airflow path. A shielding portion for preventing leakage of airflow from portions other than the airflow inlet and the outlet of the secondary airflow, and a flow path dividing portion for dividing the inside of the ventilation path into a plurality of flow paths, and In the heat exchange element in which the flow path lengths of the plurality of flow paths divided by the flow path dividing unit are different from each other, either the ventilation path for circulating the primary air flow or the ventilation path for circulating the secondary air flow Or in both the ventilation channels, And it made larger than the inlet, thereby is to achieve the intended purpose.

また、他の手段は、前記流路分割部によって分割された複数の前記流路の前記流出口、前記流入口のどちらか一方あるいは両方において、流路長が長くなるにつれて流路の開口を大きくしたものであり、これにより所期の目的を達成するものである。   Further, the other means increases the opening of the flow path as the flow path length increases in either one or both of the flow outlet and the flow inlet of the plurality of flow paths divided by the flow path dividing unit. In this way, the intended purpose is achieved.

また、他の手段は、前記流路分割部が曲がり部分を有したものであって、前記流路分割部によって分割された複数の前記流路において、前記流出口と前記流出口に最も近い曲がり部分の間に位置する複数の前記流路の幅を、流路長が長くなるにつれて大きくしたものであり、これにより所期の目的を達成するものである。   Further, the other means is that the flow passage dividing portion has a bent portion, and the plurality of flow passages divided by the flow passage dividing portion are bent closest to the outlet and the outlet. The width of the plurality of flow paths positioned between the portions is increased as the flow path length is increased, thereby achieving the intended purpose.

また、他の手段は、前記流出口と前記曲がり部分の間に位置する前記通風路において、平均流路幅よりも大きな幅を持つ流路に補助リブを設けたものであり、これにより所期の目的を達成するものである。   Another means is that the auxiliary rib is provided in the flow path having a width larger than the average flow path width in the ventilation path located between the outlet and the bent portion. To achieve this goal.

また、他の手段は、前記流出口端部から、前記曲がり部分の上流に位置する流路の幅よりも前記補助リブを設けた残りの流路幅が大きくなる位置までの範囲の一部あるいはすべてに前記補助リブを設けたものであり、これにより所期の目的を達成するものである。   Further, the other means may include a part of a range from the outlet end portion to a position where the remaining flow path width provided with the auxiliary rib is larger than the width of the flow path positioned upstream of the bent portion, or All the above-mentioned auxiliary ribs are provided, thereby achieving the intended purpose.

また、他の手段は、請求項1から5のいずれか一つに記載の熱交換素子を搭載し、前記熱交換素子の前記二次気流の流入口の上流に、二次気流を送風するための遠心送風機を設けた冷却ユニットと、発熱体を内蔵し、前記熱交換素子の前記一次気流の流入口の上流に位置し、一次気流を送風するための遠心送風機を設け、前記冷却ユニットと一体構成となった発熱体収納装置であり、これにより所期の目的を達成するものである。   Further, the other means is equipped with the heat exchange element according to any one of claims 1 to 5 for blowing the secondary airflow upstream of the inlet of the secondary airflow of the heat exchange element. A cooling unit provided with a centrifugal blower, and a heating element built in, located upstream of the primary air flow inlet of the heat exchange element, provided with a centrifugal blower for blowing the primary air flow, and integrated with the cooling unit This is a heating element storage device configured as described above, thereby achieving the intended purpose.

以上のように本発明によれば強度を保ちながら通風路内の偏流を解消し、熱交換素子の熱交換効率を向上するとともに圧力損失を低減することで、熱交換素子を搭載した冷却ユニットの冷却性能を向上できる。   As described above, according to the present invention, the drift in the ventilation passage is eliminated while maintaining the strength, the heat exchange efficiency of the heat exchange element is improved and the pressure loss is reduced, so that the cooling unit equipped with the heat exchange element is improved. Cooling performance can be improved.

本発明の実施の形態1の設置例を示す斜視図The perspective view which shows the example of installation of Embodiment 1 of this invention 発熱体収納装置の断面を示す概略図Schematic showing the cross section of the heating element storage device 熱交換素子の分解斜視図Exploded perspective view of heat exchange element 同熱交換素子の分解平面図Exploded plan view of the heat exchange element (a)従来例の斜視図、(b)従来例の断面を示す概略図(A) Perspective view of a conventional example, (b) Schematic showing a cross section of the conventional example

本発明の請求項1記載の発明は、所定間隔を設けて積層した複数の伝熱板間に形成される通風路の一段おきに一次気流と二次気流を流通させて熱交換する熱交換素子であって、前記熱交換素子は前記一次気流と前記二次気流とが前記伝熱板を隔てて対向する対向流部分を有し、また、前記熱交換素子は前記通風路の前記一次気流と前記二次気流の流入口および流出口以外の部分からの気流の漏れを防止する遮蔽部と前記通風路内を複数の流路に分割するための流路分割部を有し、且つ前記流路分割部によって分割された複数の前記流路の流路長がそれぞれ異なる前記熱交換素子において、前記一次気流を流通させる前記通風路と前記二次気流を流通させる前記通風路のどちらか一方あるいは両方の前記通風路において、流出口を流入口よりも大きくしたものであり、熱交換素子は、流出口の開口面積が流入口の開口面積よりも大きく形成されることで、流出口と流入口の開口面積が同等であった場合に比べ、熱交換素子の圧力損失を小さくすることができ、そのため風量を大きくすることができ、冷却ユニットの冷却性能を向上することができる。また、流出口の近傍には冷却ユニット以外の機構部材が位置するため流出口から流出する気流が機構部材に衝突し大きな圧力損失を生じるが、流出口の開口面積が流入口の開口面積よりも大きく形成したことで、流出口から流出する気流の風速を相対的に小さくすることができ、機構部材に気流が衝突することに起因する圧力損失を低減することができるため風量を大きくすることができ、冷却ユニットの冷却性能を向上することができる。   The invention according to claim 1 of the present invention is a heat exchange element for exchanging heat by circulating a primary air flow and a secondary air flow every other stage of a ventilation path formed between a plurality of heat transfer plates laminated at a predetermined interval. The heat exchange element has a counterflow portion where the primary airflow and the secondary airflow are opposed to each other across the heat transfer plate, and the heat exchange element is connected to the primary airflow in the ventilation path. A shielding portion for preventing leakage of airflow from portions other than the inlet and outlet of the secondary airflow, and a flow passage dividing portion for dividing the inside of the ventilation passage into a plurality of flow passages, and the flow passage In the heat exchange element in which the flow lengths of the plurality of flow paths divided by the dividing section are different from each other, either or both of the ventilation path through which the primary airflow is circulated and the ventilation path through which the secondary airflow is circulated In the ventilation path, the outlet is more than the inlet The heat exchange element is formed with a larger opening area at the outlet than the opening area at the inlet. The pressure loss of the element can be reduced, so that the air volume can be increased and the cooling performance of the cooling unit can be improved. In addition, since a mechanism member other than the cooling unit is located in the vicinity of the outlet, the airflow flowing out from the outlet collides with the mechanism member and causes a large pressure loss, but the opening area of the outlet is larger than the opening area of the inlet. By forming it large, the wind speed of the airflow flowing out from the outlet can be made relatively small, and the pressure loss caused by the airflow colliding with the mechanism member can be reduced, so the air volume can be increased. The cooling performance of the cooling unit can be improved.

また、本発明の請求項2記載の発明は、前記流路分割部によって分割された複数の前記流路の前記流出口、前記流入口のどちらか一方あるいは両方において、流路長が長くなるにつれて流路の開口を大きくしたものであり、流路分割部により形成された流路の開口は、流路長が長くなるにつれ開口が大きくなるように形成したことで、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子の熱交換効率を向上することができ、熱交換素子を搭載した冷却ユニットの冷却性能を向上することができる。   Further, in the invention according to claim 2 of the present invention, as the flow path length becomes longer at one or both of the outlet and / or the inlet of the plurality of flow paths divided by the flow path dividing portion. The opening of the channel is made larger, and the opening of the channel formed by the channel dividing part is formed so that the opening becomes larger as the channel length becomes longer, so that the channel having a shorter channel length is formed. The pressure loss difference between the flow path and the long flow path can be reduced, the drift in the flow path can be eliminated, the heat exchange efficiency of the heat exchange element can be improved, and the cooling with the heat exchange element mounted The cooling performance of the unit can be improved.

また、本発明の請求項3記載の発明は、前記流路分割部が曲がり部分を有したものであって、前記流路分割部によって分割された複数の前記流路において、前記流出口と前記流出口に最も近い曲がり部分の間に位置する複数の前記流路の幅を、流路長が長くなるにつれて大きくしたものであり、熱交換素子は、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子の熱交換効率を向上することができ、熱交換素子を搭載した冷却ユニットの冷却性能を向上することができる。   Moreover, the invention according to claim 3 of the present invention is such that the flow path dividing portion has a bent portion, and in the plurality of flow paths divided by the flow path dividing portion, the outlet and the The width of the plurality of flow paths located between the bent portions closest to the outflow port is increased as the flow path length increases, and the heat exchange element has a short flow path length and a flow path length. Can reduce the pressure loss difference with the long flow path, eliminate the drift in the flow path, improve the heat exchange efficiency of the heat exchange element, and the cooling performance of the cooling unit equipped with the heat exchange element Can be improved.

また、本発明の請求項4記載の発明は、前記流出口と前記曲がり部分の間に位置する前記通風路において、平均流路幅よりも大きな幅を持つ流路に補助リブを設けたものであり、通風時の一次気流と二次気流の圧力差による伝熱板の変形を抑制することができる効果を有するため、強度を保ちながら通風路内の偏流を解消し、圧力損失を低減することができ、熱交換素子を搭載した冷却ユニットの冷却性能を向上することができる。   According to a fourth aspect of the present invention, in the ventilation passage located between the outlet and the bent portion, an auxiliary rib is provided in a flow passage having a width larger than an average flow passage width. Yes, because it has the effect of suppressing the deformation of the heat transfer plate due to the pressure difference between the primary air flow and the secondary air flow during ventilation, eliminating uneven flow in the ventilation path while maintaining strength and reducing pressure loss It is possible to improve the cooling performance of the cooling unit equipped with the heat exchange element.

また、本発明の請求項5記載の発明は、前記流出口端部から、前記曲がり部分の上流に位置する流路の幅よりも前記補助リブを設けた残りの流路幅が大きくなる位置までの範囲の一部あるいはすべてに前記補助リブを設けたものであり、構造体としての圧力損失を増大することなく、通風時の一次気流と二次気流の圧力差による伝熱板の変形を抑制することができる効果を有するため、強度を保ちながら通風路内の偏流を解消し、圧力損失を低減することができ、熱交換素子を搭載した冷却ユニットの冷却性能を向上することができる。   In the invention according to claim 5 of the present invention, from the outlet end portion to a position where the remaining flow path width provided with the auxiliary rib is larger than the width of the flow path located upstream of the bent portion. The above-mentioned auxiliary ribs are provided in part or all of the above range, and the deformation of the heat transfer plate due to the pressure difference between the primary air flow and secondary air flow during ventilation is suppressed without increasing the pressure loss as a structure. Therefore, it is possible to eliminate the drift in the ventilation passage while maintaining the strength, to reduce the pressure loss, and to improve the cooling performance of the cooling unit equipped with the heat exchange element.

また、本発明の請求項6記載の発明は、請求項1から5のいずれか一つに記載の熱交換素子を搭載し、前記熱交換素子の前記二次気流の流入口の上流に、二次気流を送風するための遠心送風機を設けた冷却ユニットと、発熱体を内蔵し、前記熱交換素子の前記一次気流の流入口の上流に位置し、一次気流を送風するための遠心送風機を設け、前記冷却ユニットと一体構成となったものであり、冷却ユニットは、請求項1から5に記載の強度を保ちながら通風路内の偏流を解消し、熱交換効率を向上するとともに圧力損失を低減することができる熱交換素子を搭載することで、冷却ユニットの冷却性能を向上することができる。   According to a sixth aspect of the present invention, the heat exchange element according to any one of the first to fifth aspects is mounted, and upstream of the inlet of the secondary airflow of the heat exchange element, two A cooling unit provided with a centrifugal blower for blowing a secondary air flow, and a heating element, and a centrifugal blower for blowing the primary air flow are provided upstream of the primary air flow inlet of the heat exchange element. The cooling unit is integrated with the cooling unit, and the cooling unit eliminates the drift in the air passage while maintaining the strength according to claims 1 to 5, improving the heat exchange efficiency and reducing the pressure loss. The cooling performance of the cooling unit can be improved by mounting the heat exchange element that can be used.

(実施の形態1)
図1において、1はビルディングを示し、その屋上2には携帯電話の基地局3が設けられている。基地局3は箱状の発熱体収納装置4と、この発熱体収納装置4内に設けた送・受信を担う基板等により構成された発熱体5と、発熱体収納装置4の前面開口部には、開閉自在のドア7を設け、このドア7に冷却ユニット6が取り付けられている。
(Embodiment 1)
In FIG. 1, reference numeral 1 denotes a building, and a mobile phone base station 3 is provided on the rooftop 2 thereof. The base station 3 has a box-shaped heating element storage device 4, a heating element 5 formed of a substrate for sending and receiving provided in the heating element storage device 4, and a front opening of the heating element storage device 4. Is provided with an openable / closable door 7 to which a cooling unit 6 is attached.

この冷却ユニット6は、図2に示すように、外気(第2環境)用の第2吸込口8と第2吹出口9および発熱体収納装置4内(第1環境、以降、内気と呼ぶ)用の第1吸込口10および第1吹出口11を有する本体ケース12と、この本体ケース12内に設けられた外気を送風するための二次気流用遠心送風機13と、本体ケース12内において外気と内気すなわち一次気流と二次気流との熱交換を行う熱交換素子14とを備えている。   As shown in FIG. 2, the cooling unit 6 includes a second suction port 8 and a second air outlet 9 for the outside air (second environment) and the heating element storage device 4 (first environment, hereinafter referred to as “inside air”). A main body case 12 having a first suction port 10 and a first air outlet 11, a secondary air flow centrifugal blower 13 for blowing outside air provided in the main body case 12, and outside air in the main body case 12 And a heat exchange element 14 for exchanging heat between the inside air, that is, the primary air flow and the secondary air flow.

また、発熱体収納装置4は、発熱体5から発生した熱気を冷却ユニット6の第1吸込口10に送風する一次気流用遠心送風機15を備えている。   The heating element storage device 4 includes a primary airflow centrifugal blower 15 that blows hot air generated from the heating element 5 to the first suction port 10 of the cooling unit 6.

図3に示すように、熱交換素子14は、略長方形の合成樹脂製で、伝熱板である単位素子A16と単位素子B17とを交互にそれぞれ所定間隔を設けて複数枚積層した状態で溶着し、複数枚の単位素子Aと単位素子Bとが一体となるように構成としている。   As shown in FIG. 3, the heat exchange element 14 is made of a substantially rectangular synthetic resin, and is welded in a state where a plurality of unit elements A16 and unit elements B17, which are heat transfer plates, are alternately stacked at predetermined intervals. In addition, a plurality of unit elements A and unit elements B are integrated.

図4を用いて、単位素子A16と単位素子B17についてさらに詳しく説明する。   The unit element A16 and the unit element B17 will be described in more detail with reference to FIG.

単位素子Aは、遮蔽部18aと、流路分割部19aと、補助リブ20aを備えたものであり、遮蔽部18aにより第1流入口16aと第1流出口16bが形成され、流路分割部19aにより、一次気流が流通する流路を5つの流路に分割され、第1流入口16aと第1流出口16bとを結ぶように略U字形状の流路を形成している。また、流路分割部19aにより分割された5つの流路はそれぞれ長さが異なり、流路長が長い3つの流路内には熱交換素子14の形状を維持し一次気流を整流する効果を持つ補助リブ20aが備えられている。また、第1流出口16bの開口面積は第1流入口16aの開口面積よりも大きく形成されたものであり、流路分割部19aにより形成された5つの流路の開口は、流路長が長くなるにつれ開口が大きくなるように形成されたものである。また、第1流出口16bに近い曲がり部分21aに位置する流路の幅を流路長が長くなるにつれて大きくしたものである。   The unit element A includes a shielding portion 18a, a flow path dividing portion 19a, and an auxiliary rib 20a. The first inflow port 16a and the first outflow port 16b are formed by the shielding portion 18a, and the flow path dividing portion. The flow path through which the primary airflow circulates is divided into five flow paths by 19a, and a substantially U-shaped flow path is formed so as to connect the first inlet 16a and the first outlet 16b. In addition, the five flow paths divided by the flow path dividing unit 19a have different lengths, and the effect of rectifying the primary air flow while maintaining the shape of the heat exchange element 14 in the three flow paths having a long flow path length is provided. An auxiliary rib 20a is provided. The opening area of the first outlet 16b is formed larger than the opening area of the first inlet 16a, and the openings of the five channels formed by the channel dividing part 19a have a channel length. As the length increases, the opening becomes larger. Further, the width of the flow path located at the bent portion 21a close to the first outlet 16b is increased as the flow path length increases.

単位素子Bは、遮蔽部18bと、流路分割部19bと、補助リブ20bを備えたものであり、遮蔽部18bにより第2流入口17aと第2流出口17bが形成され、流路分割部19bにより、二次気流が流通する流路を5つの流路に分割され、第2流入口17aと第2流出口17bとを結ぶように略L字形状の流路を形成している。また、流路分割部19bにより分割された5つの流路はそれぞれ長さが異なり、流路長が長い3つの流路内には熱交換素子14の形状を維持し一次気流を整流する効果を持つ補助リブ20bが備えられている。また、第2流出口17bの開口面積は第2流入口17aの開口面積よりも大きく形成されたものであり、流路分割部19bにより形成された5つの流路の開口は、流路長が長くなるにつれ開口が大きくなるように形成されたものである。また、第2流出口17bに近い曲がり部分21bに位置する流路の幅を流路長が長くなるにつれて大きくしたものである。   The unit element B includes a shielding part 18b, a flow path dividing part 19b, and an auxiliary rib 20b. The second inflow port 17a and the second outflow port 17b are formed by the shielding part 18b, and the flow path dividing part. The flow path through which the secondary airflow circulates is divided into five flow paths by 19b, and a substantially L-shaped flow path is formed so as to connect the second inlet 17a and the second outlet 17b. Further, the five flow paths divided by the flow path dividing portion 19b have different lengths, and the effect of rectifying the primary air flow is maintained in the three flow paths having a long flow path length while maintaining the shape of the heat exchange element 14. An auxiliary rib 20b is provided. The opening area of the second outlet 17b is formed larger than the opening area of the second inlet 17a, and the openings of the five channels formed by the channel dividing portion 19b have a channel length. As the length increases, the opening becomes larger. Further, the width of the flow path located at the bent portion 21b close to the second outlet 17b is increased as the flow path length increases.

以上の構成により、一次気流は、発熱体収納装置4内の発熱体5から発生した熱が一次気流用遠心送風機15により吸い込まれ冷却ユニット6の本体ケース12に備えられた第1吸込口10に送風され、第1吸込口10に流入した気流は、熱交換素子14に備えられた第1流入口16aから熱交換素子14に流入し、第1流出口16bを経て第1吹出口から再び発熱体5が備えられた空間に流出する。また、二次気流は、二次気流用遠心送風機13の作用により、冷却ユニット6の本体ケース12に備えられた第2吸込口8から外気を吸込み、熱交換素子14に備えられた第2流入口17aから熱交換素子14に流入し、第2流出口17bを経て第2吹出口9から発熱体収納装置4から外部へと流出する。   With the above configuration, the primary airflow is generated in the first suction port 10 provided in the main body case 12 of the cooling unit 6 by the heat generated from the heating element 5 in the heating element storage device 4 being sucked by the centrifugal fan 15 for the primary airflow. The airflow that is blown and flows into the first suction port 10 flows into the heat exchange element 14 from the first inlet 16a provided in the heat exchange element 14, and again generates heat from the first outlet through the first outlet 16b. It flows out into the space where the body 5 is provided. Further, the secondary air flow sucks outside air from the second suction port 8 provided in the main body case 12 of the cooling unit 6 by the action of the centrifugal air blower 13 for the secondary air flow, and the second air flow provided in the heat exchange element 14. It flows into the heat exchange element 14 from the inlet 17a, and flows out from the heating element storage device 4 through the second outlet port 17b to the outside through the second outlet port 9b.

よって、発熱体5により暖められた一次気流と、一次気流より低い温度の二次気流とが熱交換素子14に流入し、伝熱板である単位素子A16と単位素子B17により一次気流と二次気流が混ざらずに熱交換することができ、一次気流が二次気流により冷やされることで、発熱体5が冷やされることとなる。   Therefore, the primary airflow warmed by the heating element 5 and the secondary airflow having a temperature lower than the primary airflow flow into the heat exchange element 14, and the primary airflow and the secondary airflow are generated by the unit elements A16 and B17 which are heat transfer plates. Heat exchange can be performed without mixing the airflow, and the heating element 5 is cooled by the primary airflow being cooled by the secondary airflow.

次に、熱交換素子14の構成による作用と効果を説明する。   Next, the operation and effect of the configuration of the heat exchange element 14 will be described.

熱交換素子14は、第1流出口16bの開口面積が第1流入口16aの開口面積よりも大きく形成されることで、第1流出口16bと第1流入口16aの開口面積が同等であった場合に比べ、熱交換素子14の圧力損失を小さくすることができ、そのため風量を大きくすることができ、冷却ユニットの冷却性能を向上することができる。また、第1流出口16bの近傍には発熱体5が位置するため第1流出口16bから流出する気流が発熱体5に衝突し大きな圧力損失を生じるが、第1流出口16bの開口面積が第1流入口16aの開口面積よりも大きく形成したことで、第1流出口16bから流出する気流の風速を相対的に小さくすることができ、発熱体5に気流が衝突することに起因する圧力損失を低減することができるため風量を大きくすることができ、冷却ユニット6の冷却性能を向上することができる。   The heat exchange element 14 is formed such that the opening area of the first outlet 16b is larger than the opening area of the first inlet 16a, so that the opening areas of the first outlet 16b and the first inlet 16a are equal. Compared with the case, the pressure loss of the heat exchange element 14 can be reduced, so that the air volume can be increased and the cooling performance of the cooling unit can be improved. In addition, since the heating element 5 is located in the vicinity of the first outlet 16b, the airflow flowing out from the first outlet 16b collides with the heating element 5 and causes a large pressure loss. However, the opening area of the first outlet 16b is large. By forming it larger than the opening area of the 1st inflow port 16a, the wind speed of the airflow which flows out out of the 1st outflow port 16b can be made relatively small, and the pressure resulting from an airflow colliding with the heat generating body 5 Since the loss can be reduced, the air volume can be increased, and the cooling performance of the cooling unit 6 can be improved.

また、第2流出口17bの開口面積が第2流入口17aの開口面積よりも大きく形成されることで、第2流出口17bと第2流入口17aの開口面積が同等であった場合に比べ、熱交換素子14の圧力損失を小さくすることができ、そのため風量を大きくすることができ、冷却ユニット6の冷却性能を向上することができる。   Further, the opening area of the second outlet 17b is formed larger than the opening area of the second inlet 17a, so that the opening areas of the second outlet 17b and the second inlet 17a are equal. The pressure loss of the heat exchange element 14 can be reduced, so that the air volume can be increased and the cooling performance of the cooling unit 6 can be improved.

また、流路分割部19aにより形成された5つの流路の開口は、流路長が長くなるにつれ開口が大きくなるように形成したことで、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子14の熱交換効率を向上することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。   Further, the openings of the five channels formed by the channel dividing unit 19a are formed so that the openings become larger as the channel length becomes longer, so that the channel having the shorter channel length and the channel length are longer. The pressure loss difference with the flow path can be reduced, the drift in the flow path can be eliminated, the heat exchange efficiency of the heat exchange element 14 can be improved, and the cooling of the cooling unit 6 on which the heat exchange element 14 is mounted is cooled. The performance can be improved.

また、流路分割部19bにより形成された5つの流路の開口は、流路長が長くなるにつれ開口が大きくなるように形成したことで、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子14の熱交換効率を向上することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。   Further, the openings of the five channels formed by the channel dividing part 19b are formed so that the openings become larger as the channel length becomes longer, so that the channel having the shorter channel length and the channel length are longer. The pressure loss difference with the flow path can be reduced, the drift in the flow path can be eliminated, the heat exchange efficiency of the heat exchange element 14 can be improved, and the cooling of the cooling unit 6 on which the heat exchange element 14 is mounted is cooled. The performance can be improved.

また、熱交換素子14は、第2流出口17bに近い曲がり部分21bに位置する流路の幅を流路長が長くなるにつれて大きくしたものであるため、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子14の熱交換効率を向上することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。   In addition, since the heat exchange element 14 is obtained by increasing the width of the flow path located at the bent portion 21b close to the second outlet 17b as the flow path length increases, the flow path and the flow path having a short flow path length. The pressure loss difference with the long flow path can be reduced, the drift in the flow path can be eliminated, the heat exchange efficiency of the heat exchange element 14 can be improved, and the cooling unit equipped with the heat exchange element 14 6 cooling performance can be improved.

また、熱交換素子14は、第1流出口16bに近い曲がり部分21aに位置する流路の幅を流路長が長くなるにつれて大きくしたものであるため、流路長が短い流路と流路長が長い流路との圧力損失差を小さくすることができ、流路内の偏流を解消し、熱交換素子14の熱交換効率を向上することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。   In addition, since the heat exchange element 14 is obtained by increasing the width of the flow path located at the bent portion 21a close to the first outlet 16b as the flow path length increases, the flow path and the flow path having a short flow path length. The pressure loss difference with the long flow path can be reduced, the drift in the flow path can be eliminated, the heat exchange efficiency of the heat exchange element 14 can be improved, and the cooling unit equipped with the heat exchange element 14 6 cooling performance can be improved.

また、単位素子A16において、流路分割部19aにより分割された5つの流路はそれぞれ長さが異なり、平均流路幅よりも大きな幅を持つ流路長が長い3つの流路内には熱交換素子14の形状を維持し一次気流を整流する効果を持つ補助リブ20aが備えられ、補助リブ20aは曲がり部分21aの上流に位置する流路分割部19aにより形成された流路の幅よりも大きな流路幅が形成されるように備えられたものであるため、構造体としての圧力損失を増大することなく、通風時の一次気流と二次気流の圧力差による伝熱板の変形を抑制することができる効果を有するため、強度を保ちながら通風路内の偏流を解消し、圧力損失を低減することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。ここで、単位素子A16における平均流路幅とは、第1流出口16bに位置する遮蔽部18aと流路分割部19aにより形成された5つの流路の開口幅を算術平均したものである。   In the unit element A16, the five flow paths divided by the flow path dividing portion 19a have different lengths, and the three flow paths having a width larger than the average flow path width and the long flow length are in the three flow paths. An auxiliary rib 20a having the effect of maintaining the shape of the exchange element 14 and rectifying the primary airflow is provided, and the auxiliary rib 20a is larger than the width of the flow path formed by the flow path dividing portion 19a located upstream of the bent portion 21a. Because it is equipped to form a large flow path width, it suppresses deformation of the heat transfer plate due to the pressure difference between the primary air flow and secondary air flow during ventilation without increasing the pressure loss of the structure. Therefore, it is possible to eliminate the drift in the ventilation path while maintaining the strength, to reduce the pressure loss, and to improve the cooling performance of the cooling unit 6 equipped with the heat exchange element 14. . Here, the average channel width in the unit element A16 is an arithmetic average of the opening widths of the five channels formed by the shielding part 18a and the channel dividing part 19a located at the first outlet 16b.

また、単位素子B17において、流路分割部19bにより分割された5つの流路はそれぞれ長さが異なり、平均流路幅よりも大きな幅を持つ流路長が長い3つの流路内には熱交換素子14の形状を維持し一次気流を整流する効果を持つ補助リブ20bが備えられ、補助リブ20bは曲がり部分21bの上流に位置する流路分割部19bにより形成された流路の幅よりも大きな流路幅が形成されるように備えられたものであるため、構造体としての圧力損失を増大することなく、通風時の一次気流と二次気流の圧力差による伝熱板の変形を抑制することができる効果を有するため、強度を保ちながら通風路内の偏流を解消し、圧力損失を低減することができ、熱交換素子14を搭載した冷却ユニット6の冷却性能を向上することができる。ここで、単位素子B17における平均流路幅とは、第2流出口17bに位置する遮蔽部18bと流路分割部19bにより形成された5つの流路の開口幅を算術平均したものである。   Further, in the unit element B17, the five flow paths divided by the flow path dividing portion 19b have different lengths, and in the three flow paths having a longer flow length than the average flow path width, An auxiliary rib 20b having the effect of maintaining the shape of the exchange element 14 and rectifying the primary airflow is provided, and the auxiliary rib 20b is larger than the width of the flow path formed by the flow path dividing portion 19b located upstream of the bent portion 21b. Because it is equipped to form a large flow path width, it suppresses deformation of the heat transfer plate due to the pressure difference between the primary air flow and secondary air flow during ventilation without increasing the pressure loss of the structure. Therefore, it is possible to eliminate the drift in the ventilation path while maintaining the strength, to reduce the pressure loss, and to improve the cooling performance of the cooling unit 6 equipped with the heat exchange element 14. . Here, the average channel width in the unit element B17 is an arithmetic average of the opening widths of the five channels formed by the shielding part 18b and the channel dividing part 19b located at the second outlet 17b.

なお、本実施の形態では、単位素子A16は第1流入口16aと第1流出口16bとを結ぶように略U字形状の流路を形成し、単位素子B17は第2流入口17aと第2流出口17bとを結ぶように略L字形状の流路を形成しているが、単位素子A16の流路が略L字形状かつ単位素子B17の流路が略L字形状、単位素子A16の流路が略U字形状かつ単位素子B17の流路が略U字形状、あるいは単位素子A16の流路が略L字形状かつ単位素子B17の流路が略U字形状であっても同様の作用効果を得ることができる。   In the present embodiment, the unit element A16 forms a substantially U-shaped flow path so as to connect the first inlet 16a and the first outlet 16b, and the unit element B17 has the second inlet 17a and the first inlet 16a. Although the substantially L-shaped flow path is formed so as to connect the two outlets 17b, the flow path of the unit element A16 is substantially L-shaped, the flow path of the unit element B17 is substantially L-shaped, and the unit element A16. Even if the flow path of the unit element B17 is substantially U-shaped, the flow path of the unit element A16 is substantially L-shaped, and the flow path of the unit element B17 is substantially U-shaped. The effect of this can be obtained.

以上のごとく本発明の熱交換素子は、所定間隔を設けて積層した複数の伝熱板間に形成される通風路の一段おきに一次気流と二次気流を流通させて熱交換する熱交換素子であって、前記熱交換素子は前記一次気流と前記二次気流とが前記伝熱板を隔てて対向する対向流部分を有し、また、前記熱交換素子は前記通風路の前記一次気流と前記二次気流の流入口および流出口以外の部分からの気流の漏れを防止する遮蔽部と前記通風路内を複数の流路に分割するための流路分割部を有し、且つ前記流路分割部によって分割された複数の前記流路の流路長がそれぞれ異なる前記熱交換素子において、前記一次気流を流通させる前記通風路と前記二次気流を流通させる前記通風路のどちらか一方あるいは両方の前記通風路において、流出口を流入口よりも大きくしたものであるので、強度を保ちながら通風路内の偏流を解消し、熱交換素子の熱交換効率を向上するとともに圧力損失を低減することで、熱交換素子を搭載した冷却ユニットの冷却性能を向上できる。   As described above, the heat exchanging element of the present invention is a heat exchanging element that exchanges heat by circulating a primary air flow and a secondary air flow every other stage of a ventilation path formed between a plurality of heat transfer plates stacked at a predetermined interval. The heat exchange element has a counterflow portion where the primary airflow and the secondary airflow are opposed to each other across the heat transfer plate, and the heat exchange element is connected to the primary airflow in the ventilation path. A shielding portion for preventing leakage of airflow from portions other than the inlet and outlet of the secondary airflow, and a flow passage dividing portion for dividing the inside of the ventilation passage into a plurality of flow passages, and the flow passage In the heat exchange element in which the flow lengths of the plurality of flow paths divided by the dividing section are different from each other, either or both of the ventilation path through which the primary airflow is circulated and the ventilation path through which the secondary airflow is circulated In the ventilation path, the outlet should be the inlet The cooling unit equipped with the heat exchange element is cooled by eliminating the drift in the ventilation path while maintaining the strength, improving the heat exchange efficiency of the heat exchange element and reducing the pressure loss. Performance can be improved.

1 ビルディング
2 屋上
3 基地局
4 発熱体収納装置
5 発熱体
6 冷却ユニット
7 ドア
8 第2吸込口
9 第2吹出口
10 第1吸込口
11 第1吹出口
12 本体ケース
13 二次気流用遠心送風機
14 熱交換素子
15 一次気流用遠心送風機
16 単位素子A
16a 第1流入口
16b 第1流出口
17 単位素子B
17a 第2流入口
17b 第2流出口
18a 遮蔽部
18b 遮蔽部
19a 流路分割部
19b 流路分割部
20a 補助リブ
20b 補助リブ
21a 曲がり部分
21b 曲がり部分
DESCRIPTION OF SYMBOLS 1 Building 2 Rooftop 3 Base station 4 Heating element storage apparatus 5 Heating element 6 Cooling unit 7 Door 8 2nd inlet 9 Second outlet 10 First inlet 11 First outlet 12 Main body case 13 Centrifugal blower for secondary airflow 14 Heat exchange element 15 Centrifugal blower for primary air flow 16 Unit element A
16a 1st inflow port 16b 1st outflow port 17 Unit element B
17a 2nd inflow port 17b 2nd outflow port 18a Shielding part 18b Shielding part 19a Channel division part 19b Channel division part 20a Auxiliary rib 20b Auxiliary rib 21a Bending part 21b Bending part

Claims (6)

所定間隔を設けて積層した複数の伝熱板間に形成される通風路の一段おきに一次気流と二次気流を流通させて熱交換する熱交換素子であって、前記熱交換素子は前記一次気流と前記二次気流とが前記伝熱板を隔てて対向する対向流部分を有し、また、前記熱交換素子は前記通風路の前記一次気流と前記二次気流の流入口および流出口以外の部分からの気流の漏れを防止する遮蔽部と前記通風路内を複数の流路に分割するための流路分割部を有し、且つ前記流路分割部によって分割された複数の前記流路の流路長がそれぞれ異なる前記熱交換素子において、前記一次気流を流通させる前記通風路と前記二次気流を流通させる前記通風路のどちらか一方あるいは両方の前記通風路において、流出口を流入口よりも大きくしたことを特徴とした熱交換素子。 A heat exchange element that exchanges heat by circulating a primary air flow and a secondary air flow every other stage of a ventilation path formed between a plurality of heat transfer plates that are stacked with a predetermined interval, wherein the heat exchange element is the primary exchange The airflow and the secondary airflow have a counterflow portion facing each other across the heat transfer plate, and the heat exchange element is other than the primary airflow and the secondary airflow inlet and outlet of the air passage. A plurality of the flow paths divided by the flow path dividing section and having a shielding section for preventing airflow leakage from the portion and a flow path dividing section for dividing the inside of the ventilation path into a plurality of flow paths In the heat exchange elements having different flow path lengths, an outlet is provided as an inlet in one or both of the ventilation path for circulating the primary airflow and the ventilation path for circulating the secondary airflow. Heat exchange, characterized by a larger than Element. 前記流路分割部によって分割された複数の前記流路の前記流出口、前記流入口のどちらか一方あるいは両方において、流路長が長くなるにつれて流路の開口を大きくしたことを特徴とした請求項1記載の熱交換素子。 In one or both of the outlet and / or the inlet of the plurality of channels divided by the channel dividing section, the opening of the channel is increased as the channel length increases. Item 2. The heat exchange element according to Item 1. 前記流路分割部が曲がり部分を有したものであって、前記流路分割部によって分割された複数の前記流路において、前記流出口と前記流出口に最も近い曲がり部分の間に位置する複数の前記流路の幅を、流路長が長くなるにつれて大きくしたことを特徴とした請求項1または2記載の熱交換素子。 The flow path dividing section has a bent portion, and a plurality of the flow paths divided by the flow path dividing section are positioned between the outlet and the bent portion closest to the outlet. The heat exchange element according to claim 1 or 2, wherein the width of the flow path is increased as the flow path length increases. 前記流出口と前記曲がり部分の間に位置する前記通風路において、平均流路幅よりも大きな幅を持つ流路に補助リブを設けたことを特徴とした請求項3記載の熱交換素子。 4. The heat exchange element according to claim 3, wherein an auxiliary rib is provided in a flow path having a width larger than an average flow path width in the ventilation path positioned between the outlet and the bent portion. 前記流出口端部から、前記曲がり部分の上流に位置する流路の幅よりも前記補助リブを設けた残りの流路幅が大きくなる位置までの範囲の一部あるいはすべてに前記補助リブを設けたことを特徴とした請求項4記載の熱交換素子。 The auxiliary rib is provided in part or all of the range from the outlet end to the position where the remaining flow path width is larger than the width of the flow path located upstream of the bent portion. The heat exchange element according to claim 4, wherein 請求項1から5のいずれか一つに記載の熱交換素子を搭載し、前記熱交換素子の前記二次気流の流入口の上流に、二次気流を送風するための遠心送風機を設けた冷却ユニットと、発熱体を内蔵し、前記熱交換素子の前記一次気流の流入口の上流に位置し、一次気流を送風するための遠心送風機を設け、前記冷却ユニットと一体構成となった発熱体収納装置。 Cooling which mounts the heat exchange element as described in any one of Claim 1 to 5, and provided the centrifugal air blower for ventilating a secondary airflow upstream of the inflow port of the secondary airflow of the said heat exchange element A unit and a heating element, a heating fan housing integrated with the cooling unit, provided with a centrifugal fan for blowing the primary airflow, located upstream of the primary airflow inlet of the heat exchange element apparatus.
JP2012267137A 2012-12-06 2012-12-06 Heat exchange element and heating element housing device using the same Pending JP2014114968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267137A JP2014114968A (en) 2012-12-06 2012-12-06 Heat exchange element and heating element housing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267137A JP2014114968A (en) 2012-12-06 2012-12-06 Heat exchange element and heating element housing device using the same

Publications (1)

Publication Number Publication Date
JP2014114968A true JP2014114968A (en) 2014-06-26

Family

ID=51171169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267137A Pending JP2014114968A (en) 2012-12-06 2012-12-06 Heat exchange element and heating element housing device using the same

Country Status (1)

Country Link
JP (1) JP2014114968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440672A (en) * 2022-02-10 2022-05-06 北京科希克科技有限公司 Fork-counterflow air heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440672A (en) * 2022-02-10 2022-05-06 北京科希克科技有限公司 Fork-counterflow air heat exchanger

Similar Documents

Publication Publication Date Title
KR101123456B1 (en) Heat exchanging element
JP4877016B2 (en) Heat exchange element
US20120236499A1 (en) Radiation unit of electronic device and electronic device using same
JP2014053276A (en) Battery system
US20150041111A1 (en) Heat Exchange Plate, Heat Exchanger, and Communication Base Station Cabinet
WO2017199339A1 (en) Outdoor unit for air conditioning device
JP2013524144A (en) Heat exchanger and heat exchange sheet for heat exchanger
AU7218301A (en) Apparatus
JP4848718B2 (en) Heat exchanger
JP2019149404A (en) Heat radiation fin structure and cooling structure of electronic substrate using the same
JP6390548B2 (en) Battery pack
JP2014114968A (en) Heat exchange element and heating element housing device using the same
WO2023171529A1 (en) Cooling device, heat-dissipating member, and semiconductor module
EP3240376B1 (en) Cabinet
JP2017062094A (en) Heat exchange element
KR101371641B1 (en) Support Panel And Heat Exchanger adopting the same
JP6377327B2 (en) Heating element storage device
JP5206815B2 (en) Heat exchanger
CN220356170U (en) Heat exchange chip, heat exchange core body and heat exchange device
CN217787587U (en) Heat dissipation device and projection equipment
JP2024010567A (en) Heat exchanger
CN112399781B (en) Heat exchange module and electronic device using same
TWI615086B (en) Heat exchanging module and electronic device applying the same
KR20240060368A (en) total enthalpy heat exchanger and heat recovery device using the same
KR20220095842A (en) High Efficient Assemblable Heat Exchanger Module with Turbulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312