JP4848718B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4848718B2
JP4848718B2 JP2005284349A JP2005284349A JP4848718B2 JP 4848718 B2 JP4848718 B2 JP 4848718B2 JP 2005284349 A JP2005284349 A JP 2005284349A JP 2005284349 A JP2005284349 A JP 2005284349A JP 4848718 B2 JP4848718 B2 JP 4848718B2
Authority
JP
Japan
Prior art keywords
air passage
air
heat transfer
transfer plate
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005284349A
Other languages
Japanese (ja)
Other versions
JP2007093137A (en
Inventor
洋 柴田
裕二 中野
俊和 山口
直之 舟田
桂輔 萩本
睦彦 松本
和樹 最首
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005284349A priority Critical patent/JP4848718B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to US11/997,389 priority patent/US20090139261A1/en
Priority to KR1020087002504A priority patent/KR100940967B1/en
Priority to EP06798124A priority patent/EP1901599B1/en
Priority to PCT/JP2006/318564 priority patent/WO2007034797A1/en
Priority to CN2006800282073A priority patent/CN101233798B/en
Priority to AT06798124T priority patent/ATE518414T1/en
Priority to DK06798124.1T priority patent/DK1901599T3/en
Publication of JP2007093137A publication Critical patent/JP2007093137A/en
Application granted granted Critical
Publication of JP4848718B2 publication Critical patent/JP4848718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換換気装置、またはその他の空気調和装置に用いられ、多数の伝熱板を交互に積層して風路Aおよび風路Bを交互に形成する熱交換器に関する。   The present invention relates to a heat exchanger that is used in a heat exchange ventilator or other air conditioning apparatus and that alternately stacks a plurality of heat transfer plates to alternately form an air path A and an air path B.

本出願人は、従来のこの種の対向流方式の熱交換器として、ポリスチレンシートの真空成形加工により加工された伝熱板A101と伝熱板B102を交互に積層した熱交換器を提案した(特許文献1参照)。   The present applicant has proposed a heat exchanger in which heat transfer plates A101 and heat transfer plates B102 processed by vacuum forming a polystyrene sheet are alternately laminated as a conventional heat exchanger of this type of counter flow ( Patent Document 1).

以下、その熱交換器について図10を参照しながら説明する。   Hereinafter, the heat exchanger will be described with reference to FIG.

伝熱板A101および伝熱板B102は平面形状が方形をなし、ポリスチレンシートの真空成形加工により成形された後、トムソン型等で余分なシートを切断することで得られ、伝熱板A101は中空凸状に形成された略L字状の風路リブ103を略平行、略等間隔に備え、風路リブ103により略L字状の風路A104および伝熱面105が形成される。   The heat transfer plate A101 and the heat transfer plate B102 are square in plan shape, and are obtained by forming a polystyrene sheet by vacuum forming, and then cutting the excess sheet with a Thomson mold or the like. The heat transfer plate A101 is hollow. The substantially L-shaped air passage ribs 103 formed in a convex shape are provided substantially parallel and at substantially equal intervals, and the air passage rib 103 forms a substantially L-shaped air passage A 104 and a heat transfer surface 105.

風路A104の出入口部分には伝熱板A101の縁を風路リブ103の凸方向とは逆方向へ折り曲げられた風路端面106が設けられ、風路リブ103の両端に風路リブ103の凸方向と同方向に中空凸状の複数の突起A107が設けられている。   At the entrance / exit portion of the air passage A 104, an air passage end surface 106 is provided by bending the edge of the heat transfer plate A 101 in the direction opposite to the convex direction of the air passage rib 103, and the air passage rib 103 has both ends of the air passage rib 103. A plurality of hollow convex protrusions A107 are provided in the same direction as the convex direction.

伝熱板A101の風路A104の入口と出口以外の外周縁部であって、風路A104の入口と出口に挟まれ、対向流となる風路部分と略平行をなす外周縁部に風路リブ103の凸方向と同方向に中空凸状に形成した外周リブA(図示省略)を備え、前記外周リブAの対角に同形状の外周リブA108bを有す。   The outer peripheral edge portion of the heat transfer plate A101 other than the inlet and outlet of the air passage A104, which is sandwiched between the inlet and outlet of the air passage A104, and is substantially parallel to the air passage portion that is opposed to the air passage. An outer peripheral rib A (not shown) formed in a hollow convex shape in the same direction as the convex direction of the rib 103 is provided, and an outer peripheral rib A 108 b having the same shape is provided at a diagonal of the outer peripheral rib A.

外周リブA108bの外側側面は風路端面106と同位置まで折り曲げた構成とする。   The outer side surface of the outer peripheral rib A 108 b is bent to the same position as the air passage end surface 106.

伝熱板A101の風路A104の出入口および外周リブA108b以外の外周縁部に同
形状の外周リブB109を設け、外周リブB109のうち外周リブB109aは外周リブA108と略平行をなし、外周リブB109bは外周リブA108と略直交をなす。
An outer peripheral rib B109 having the same shape is provided at the outer peripheral edge of the heat transfer plate A101 other than the entrance and exit of the air passage A104 and the outer peripheral rib A108b. Is substantially orthogonal to the outer peripheral rib A108.

なお、符号末尾の英小文字の添字は同一番号と同機能を有するが配置等の差異により区別するためのものであり、以降同様の記載方法とする。   Note that subscripts at the end of the code have the same functions as the same numbers, but are for distinction due to differences in arrangement, etc.

外周リブB109の形状は風路リブ103の凸方向と同方向に中空凸状であり、外周リブB109bの外側側面の中央部は伝熱面105と同位置まで折り曲げられ風路開口部110が形成され、両端部分は風路端面106と同位置まで折り曲げられ風路端面カバー111が形成される。   The shape of the outer peripheral rib B109 is a hollow convex shape in the same direction as the convex direction of the air passage rib 103, and the central portion of the outer side surface of the outer peripheral rib B 109b is bent to the same position as the heat transfer surface 105 to form the air passage opening 110. Then, both end portions are bent to the same position as the air passage end face 106 to form the air passage end face cover 111.

外周リブB109aの風路端面106側には風路リブ103の凸方向と同方向に中空凸状の突起B112aを備え、突起B112aとその上方に位置する伝熱板B102に設けられた突起B112bとが略直交し、突起B112aの上面とその上方に位置する伝熱板B102に設けられた外周リブB109a、109bの下面とが当接する構成である。   On the air path end face 106 side of the outer peripheral rib B109a, there is provided a hollow convex protrusion B112a in the same direction as the convex direction of the airflow rib 103, and a protrusion B112a and a protrusion B112b provided on the heat transfer plate B102 located above the protrusion B112a. Are substantially orthogonal to each other, and the upper surface of the protrusion B112a is in contact with the lower surfaces of the outer peripheral ribs B109a and 109b provided on the heat transfer plate B102 located thereabove.

伝熱板B102は伝熱板A101と相似関係をなしており、伝熱板B102の形状のうち伝熱板B102の外周リブA108c、108dの高さを風路リブ103の高さと等しい高さとし、さらに伝熱板B102の外周リブA108c、108dの幅を伝熱板A101の外周リブA108bの幅よりも広い形状に形成されている。   The heat transfer plate B102 has a similar relationship with the heat transfer plate A101, and the height of the outer peripheral ribs A108c and 108d of the heat transfer plate B102 in the shape of the heat transfer plate B102 is set equal to the height of the air passage rib 103. Further, the width of the outer peripheral ribs A108c and 108d of the heat transfer plate B102 is formed to be wider than the width of the outer peripheral rib A108b of the heat transfer plate A101.

伝熱板A101と伝熱板B102の外周リブA108bと略平行な風路リブ103において、風路リブ103の凸方向と同方向に中空凸状に形成した複数の突起C113を設け、あるいは風路リブ103の幅を断続的に広くした風路リブ積層部114を設け、突起C113の上面とその上方に位置する伝熱板B102の風路リブ103の下面あるいは風路リブ積層部114の上面と上方に位置する伝熱板A101の下面とが当接するように伝熱板A101および伝熱板B102の突起C113と風路リブ積層部114は積層方向に対してずらした構成とされている。   In the air passage rib 103 substantially parallel to the outer peripheral rib A 108b of the heat transfer plate A101 and the heat transfer plate B102, a plurality of projections C113 formed in a hollow convex shape in the same direction as the convex direction of the air passage rib 103 are provided, or the air passage An air passage rib laminated portion 114 in which the width of the rib 103 is intermittently widened is provided, and the upper surface of the protrusion C 113 and the lower surface of the air passage rib 103 of the heat transfer plate B 102 located above or the upper surface of the air passage rib laminated portion 114 The protrusion C113 of the heat transfer plate A101 and the heat transfer plate B102 and the air channel rib stacking portion 114 are shifted with respect to the stacking direction so that the lower surface of the heat transfer plate A101 positioned above abuts.

上記のように成形された伝熱板A101と伝熱板B102を交互に積層し、風路A104と風路B115を交互に形成し、外周側面を熱溶着する等により熱交換器を構成し、風路A104を流れる流体と風路B115を流れる流体の間で熱交換が行われる。
特開2004−286419号公報
The heat exchanger plate A101 and the heat transfer plate B102 molded as described above are alternately laminated, the air passage A104 and the air passage B115 are alternately formed, and the heat exchanger is configured by heat-welding the outer peripheral side surface, etc. Heat exchange is performed between the fluid flowing through the air passage A104 and the fluid flowing through the air passage B115.
JP 2004-286419 A

このような従来の熱交換器では、伝熱板の面積が大きくなるとたわみやすくなり、風路を流れる流体から受ける圧力が大きくなった場合、隣接する風路リブ同士が嵌合してしまい、風路高さが低くなり通気抵抗が増加する可能性があるという課題があり、風路高さを確保し通気抵抗の増加を抑制することが要求されている。   In such a conventional heat exchanger, when the area of the heat transfer plate increases, it becomes easy to bend, and when the pressure received from the fluid flowing through the air passage increases, the adjacent air passage ribs fit together, and the wind There is a problem that the passage height is lowered and the ventilation resistance may increase, and it is required to secure the air passage height and suppress the increase in the ventilation resistance.

また、風路リブ積層部が風路リブよりも幅が広いため、風路リブ積層部部分で風路幅が狭まり通気抵抗が増加するという課題があり、風路幅を減少させずに通気抵抗の増加を抑制することが要求されている。   In addition, since the air channel rib laminated portion is wider than the air channel rib, there is a problem that the air passage width is narrowed at the air channel rib laminated portion and the ventilation resistance is increased, and the air resistance is reduced without reducing the air path width. It is required to suppress the increase in

また、方形の伝熱板に形成される複数のL字状の風路は風路長に差ができるため、各風路を流れる風量に差が生じ、流出部において各風路の熱交換後の空気の温度差、いわゆる温度分布が発生するという課題があり、温度分布の改善が要求されている。   In addition, since a plurality of L-shaped air passages formed on the square heat transfer plate can have different air passage lengths, there is a difference in the amount of air flowing through each air passage, and after heat exchange of each air passage at the outflow portion There is a problem that a so-called temperature distribution is generated, and improvement of the temperature distribution is required.

特に熱交換器を搭載した機器の吹出し口と熱交換器の流出部が近接している場合、低外
気温、低風量時などには温度分布で生じた低温空気が吹き出される可能性がある。
Especially when the outlet of a device equipped with a heat exchanger and the outflow part of the heat exchanger are close to each other, there is a possibility that low-temperature air generated by the temperature distribution may be blown out at low outside air temperature, low air flow, etc. .

また、積層した伝熱板の外周側面を熱溶着する際、熱収縮により外周側の開口高さおよび風路高さが減少する可能性があるという課題があり、外周側の開口高さおよび風路高さを確保し通気抵抗の増加を抑制することが要求されている。   In addition, when heat-sealing the outer peripheral side surfaces of the laminated heat transfer plates, there is a problem that the opening height and the air passage height on the outer peripheral side may decrease due to heat shrinkage. It is required to secure the road height and suppress the increase in ventilation resistance.

また、熱溶着の際、溶着不良を防止するため、溶着作業に工数がかかるという課題があり、溶着作業の工数を低減し生産性を向上させることが要求されている。   Further, there is a problem that man-hours are required for welding work in order to prevent poor welding during heat welding, and it is required to reduce the man-hours for welding work and improve productivity.

また、伝熱板から余分なシートを切断する際、風路の入口または出口部分にバリが残り、熱溶着の際、バリにより入口または出口部分の開口高さが減少し通気抵抗が増大する可能性があるという課題があり、バリによる開口高さの減少を防ぎ、通気抵抗の増加を抑制することが要求されている。   Also, when cutting excess sheets from the heat transfer plate, burrs remain at the inlet or outlet of the air passage, and during heat welding, the opening height of the inlet or outlet can be reduced by the burrs and the ventilation resistance can be increased. Therefore, there is a demand for preventing a decrease in opening height due to burrs and suppressing an increase in ventilation resistance.

本発明はこのような従来の課題を解決するものであり、風路高さを確保し通気抵抗の増加を抑制することができ、温度分布の改善ができ、外周側の開口高さおよび風路高さを確保し通気抵抗の増加を抑制することができ、溶着作業の工数を低減し生産性を向上させることができ、バリによる開口高さの減少を防ぎ通気抵抗の増加を抑制することができる熱交換器を提供することを目的としている。   The present invention solves such a conventional problem, and can ensure the air passage height and suppress an increase in ventilation resistance, can improve the temperature distribution, the opening height on the outer peripheral side and the air passage. The height can be secured and the increase in ventilation resistance can be reduced, the number of welding work can be reduced and the productivity can be improved, the decrease in opening height due to burrs can be prevented and the increase in ventilation resistance can be suppressed. It aims to provide a heat exchanger that can be used.

本発明の熱交換器は上記目的を達成するために、ほぼ長方形の複数の伝熱板A、伝熱板Bを積層し、この伝熱板間に交互に形成される風路Aと風路Bを流れる空気の間で熱交換を行う熱交換器において、前記伝熱板は、略L字状で、伝熱板の一方の面に中空凸状に形成した複数の風路保持手段を設けて1枚のシートを素材として一体成型し、前記複数の風路保持手段により略L字状の複数の風路と伝熱面と前記風路の両端に流入部および流出部が形成され、前記伝熱板Aと前記伝熱板Bとは略同一の形状であって、前記伝熱板Aの前記流入部および前記流出部が前記伝熱板Bの前記流入部および前記流出部と対向する位置関係となるように前記伝熱板Aと前記伝熱板Bを180°回転させ交互に積層し、このと
き、伝熱板の短辺側に略平行な風路保持手段で形成される風路部分を直交流領域とし、伝熱板A、伝熱板Bともに伝熱板の長辺側に略平行な風路保持手段で形成される風路部分であって、前記直交流領域以外の領域を対向流領域とし、この対向流領域を形成する風路保持手段の形状を曲線状とすることによって前記対向流領域では、一方の伝熱板の伝熱面の下面に他方の伝熱板の風路保持手段の頂部を当接させたものである。
In order to achieve the above object, the heat exchanger according to the present invention includes a plurality of substantially rectangular heat transfer plates A and B, and an air passage A and an air passage formed alternately between the heat transfer plates. In the heat exchanger for exchanging heat between the air flowing through B, the heat transfer plate is substantially L-shaped, and is provided with a plurality of air path holding means formed in a hollow convex shape on one surface of the heat transfer plate. The sheet is integrally molded as a raw material, and a plurality of substantially L-shaped air paths and heat transfer surfaces and inflow and outflow parts are formed at both ends of the air path by the plurality of air path holding means, The heat transfer plate A and the heat transfer plate B have substantially the same shape, and the inflow portion and the outflow portion of the heat transfer plate A face the inflow portion and the outflow portion of the heat transfer plate B. The heat transfer plate A and the heat transfer plate B are alternately rotated by 180 ° so as to be in a positional relationship, and at this time, the heat transfer plate A is substantially parallel to the short side of the heat transfer plate. The air passage portion formed by the passage holding means is an orthogonal flow region, and both the heat transfer plate A and the heat transfer plate B are air passage portions formed by the air passage holding means substantially parallel to the long side of the heat transfer plate. Te, wherein the area other than the cross-flow region and a counter-flow area, by the shape of the air path holding means for forming the counterflow region curvilinear, the in opposing flow region, one of the heat transfer of the heat transfer plate The top of the air path holding means of the other heat transfer plate is brought into contact with the lower surface of the surface.

この手段により、風路高さを確保し通気抵抗の増加を抑制することができ、風路幅が減少せず通気抵抗の増加を抑制することができる熱交換器が得られる。   By this means, it is possible to obtain a heat exchanger that can secure the air passage height and suppress the increase of the air flow resistance, and can suppress the increase of the air flow resistance without reducing the air passage width.

また、他の手段は、風路Aおよび風路Bを流れる流体が対向流となる部分を形成する風路保持手段を不等間隔に配置したものである。   Another means is that air path holding means for forming a portion in which the fluid flowing in the air path A and the air path B becomes an opposing flow are arranged at unequal intervals.

この手段により、熱交換器の流出部における熱交換後の空気の温度分布を改善することができる熱交換器が得られる。   By this means, a heat exchanger capable of improving the temperature distribution of air after heat exchange at the outflow portion of the heat exchanger is obtained.

また、他の手段は、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が狭く、遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したものである。   The other means is that, among the plurality of air passages formed in an approximately L shape, the air passage width of the air passage having a short air passage length on the shielding means A side is narrow and the air passage length on the shielding means B side is narrow. The air passage holding means are arranged at unequal intervals so that the air passage width of the long air passage is widened.

この手段により、風路長が短い風路の風量を減少させ、風路長が長い風路の風量を増加させることができ、熱交換器の流出部における熱交換後の空気の温度分布を改善すること
ができる熱交換器が得られる。
By this means, it is possible to decrease the air volume of the air path with a short air path length, increase the air volume of the air path with a long air path length, and improve the temperature distribution of the air after heat exchange at the outflow part of the heat exchanger A heat exchanger that can be obtained is obtained.

また、他の手段は、熱交換器へ通風する搬送手段または前記熱交換器の前後の風路形状に応じて、略L字状に形成された複数の風路の風量差を小さくするように、風路保持手段を不等間隔に配置したものである。   Further, the other means reduces the air volume difference between the plurality of air paths formed in a substantially L shape according to the conveying means for ventilating the heat exchanger or the shape of the air path before and after the heat exchanger. The air path holding means are arranged at unequal intervals.

この手段により、各風路の風量差を小さくすることができ、熱交換器の流出部における熱交換後の空気の温度分布を改善することができる熱交換器が得られる。   By this means, it is possible to reduce the air volume difference between the air passages, and to obtain a heat exchanger that can improve the temperature distribution of air after heat exchange at the outflow portion of the heat exchanger.

また、他の手段は、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が広く、遮蔽手段B側の風路長が長い風路の風路幅が狭くなるように風路保持手段を不等間隔に配置したものである。   The other means is that the air passage length on the shielding means B side is wide and the air passage length on the shielding means B side is wide. The air path holding means are arranged at unequal intervals so that the air path width of the long air path is narrowed.

この手段により、各風路の風量差を小さくすることができ、熱交換器の流出部における熱交換後の空気の温度分布を改善することができる熱交換器が得られる。   By this means, it is possible to reduce the air volume difference between the air passages, and to obtain a heat exchanger that can improve the temperature distribution of air after heat exchange at the outflow portion of the heat exchanger.

また、他の手段は、略L字状に形成された複数の風路のうち、中央部分の風路の風路幅が狭く、遮蔽手段A側の風路長が短い風路および遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したものである。   Another means is that the air passage width of the central portion of the plurality of air passages formed in a substantially L shape is narrow and the air passage length on the shielding means A side is short and the shielding means B The air passage holding means are arranged at unequal intervals so that the air passage width of the air passage having a longer air passage length is wide.

この手段により、各風路の風量差を小さくすることができ、熱交換器の流出部における熱交換後の空気の温度分布を改善することができる熱交換器が得られる。   By this means, it is possible to reduce the air volume difference between the air passages, and to obtain a heat exchanger that can improve the temperature distribution of air after heat exchange at the outflow portion of the heat exchanger.

本発明によれば、風路Aおよび風路Bを流れる流体が対向流となる部分の風路保持手段の形状を曲線状とすることにより風路高さを確保し、通気抵抗の増加を抑制するという効果のある熱交換器を提供できる。   According to the present invention, the height of the air passage holding means in the portion where the fluid flowing in the air passage A and the air passage B becomes a counter flow is curved, thereby ensuring the air passage height and suppressing an increase in ventilation resistance. It is possible to provide a heat exchanger that has the effect of

また、風路幅を減少させずに風路高さを確保することにより、通気抵抗の増加を抑制するという効果のある熱交換器を提供できる。   Moreover, the heat exchanger with the effect of suppressing the increase in ventilation resistance can be provided by ensuring the height of the air passage without reducing the air passage width.

また、風路Aおよび風路Bを流れる流体が対向流となる部分を形成する風路保持手段を不等間隔に配置することにより、温度分布を改善するという効果のある熱交換器を提供できる。   Moreover, the heat exchanger which has the effect of improving temperature distribution can be provided by arrange | positioning the air path holding | maintenance means which forms the part into which the fluid which flows through the air path A and the air path B turns into a counterflow at unequal intervals. .

また、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が狭く、遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置することにより、温度分布を改善するという効果のある熱交換器を提供できる。   Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage having a short air passage length on the shielding means A side is narrow and the air passage length of the air passage having a long air passage length on the shielding means B side is long. By arranging the air passage holding means at unequal intervals so that the passage width is widened, it is possible to provide a heat exchanger having an effect of improving the temperature distribution.

また、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が広く、遮蔽手段B側の風路長が長い風路の風路幅が狭くなるように風路保持手段を不等間隔に配置することにより、温度分布を改善するという効果のある熱交換器を提供できる。   Of the plurality of air passages formed in a substantially L shape, the air passage width of the short air passage on the shielding means A side is wide and the air passage length on the shielding means B side is long. By arranging the air passage holding means at unequal intervals so that the passage width becomes narrow, a heat exchanger having an effect of improving the temperature distribution can be provided.

また、略L字状に形成された複数の風路のうち、中央部分の風路の風路幅が狭く、遮蔽手段A側の風路長が短い風路および遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置することにより、温度分布を改善するという効果のある熱交換器を提供できる。   Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage in the central portion is narrow, the air passage length on the shielding means A side is short, and the air passage length on the shielding means B side. By disposing the air passage holding means at unequal intervals so that the air passage width of the long air passage becomes wider, a heat exchanger having an effect of improving the temperature distribution can be provided.

本発明の請求項1記載の熱交換器は、ほぼ長方形の複数の伝熱板A、伝熱板Bを積層し、この伝熱板間に交互に形成される風路Aと風路Bを流れる空気の間で熱交換を行う熱交換器において、前記伝熱板は、略L字状で、伝熱板の一方の面に中空凸状に形成した複数の風路保持手段を設けて1枚のシートを素材として一体成型し、前記複数の風路保持手段により略L字状の複数の風路と伝熱面と前記風路の両端に流入部および流出部が形成され、前記伝熱板Aと前記伝熱板Bとは略同一の形状であって、前記伝熱板Aの前記流入部および前記流出部が前記伝熱板Bの前記流入部および前記流出部と対向する位置関係となるように前記伝熱板Aと前記伝熱板Bを180°回転させ交互に積層し、このとき、伝熱板の短辺側に略平行な風路保持手段で形成される風路部分を直交流領域とし、伝熱板A、伝熱板Bともに伝熱板の長辺側に略平行な風路保持手段で形成される風路部分であって、前記直交流領域以外の領域を対向流領域とし、この対向流領域を形成する風路保持手段の形状を曲線状とすることによって前記対向流領域では、一方の伝熱板の伝熱面の下面に他方の伝熱板の風路保持手段の頂部を当接させたものであり、対向流部分の前記風路保持手段が曲線状のため、前記伝熱板Aと前記伝熱板Bを交互に積層下した際、隣接する伝熱板の前記風路保持手段は互いに反対方向へ湾曲することとなり、隣接する伝熱板の前記風路保持手段は積層方向で同位置に配置されることがなく、前記風路保持手段の上面が上方に位置する伝熱板の下面に当接し、風路高さを確保するという作用を有する。 In the heat exchanger according to claim 1 of the present invention, a plurality of substantially rectangular heat transfer plates A and B are laminated, and air paths A and B formed alternately between the heat transfer plates are arranged. In the heat exchanger for exchanging heat between flowing air, the heat transfer plate is substantially L-shaped, and is provided with a plurality of air path holding means formed in a hollow convex shape on one surface of the heat transfer plate. The sheet is integrally molded as a raw material, and a plurality of substantially L-shaped air paths, heat transfer surfaces, and inflow portions and outflow portions are formed at both ends of the air paths by the plurality of air path holding means. The plate A and the heat transfer plate B have substantially the same shape, and the positional relationship in which the inflow portion and the outflow portion of the heat transfer plate A oppose the inflow portion and the outflow portion of the heat transfer plate B. The heat transfer plate A and the heat transfer plate B are rotated by 180 ° so as to be alternately stacked, and at this time, the air path holding hand substantially parallel to the short side of the heat transfer plate The air flow path portion formed by the cross flow region, and the heat transfer plate A and the heat transfer plate B are both air flow path portions formed by air path holding means substantially parallel to the long side of the heat transfer plate, A region other than the cross flow region is defined as a counter flow region, and the shape of the airflow path holding means forming the counter flow region is curved, so that the lower surface of the heat transfer surface of one heat transfer plate in the counter flow region. The top of the air flow path holding means of the other heat transfer plate is brought into contact with the air flow path holding means, and the heat flow plate A and the heat transfer plate B are alternately arranged because the air flow path holding means in the counterflow portion is curved. The air path holding means of the adjacent heat transfer plates are bent in opposite directions, and the air path holding means of the adjacent heat transfer plates are arranged at the same position in the stacking direction. The upper surface of the air passage holding means is in contact with the lower surface of the heat transfer plate located above to secure the air passage height. For use.

また、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が狭く、遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したものであり、前記風路保持手段を略等間隔に配置した場合に対し、前記風路長の短い風路の幅を狭くすることにより前記風路長の短い風路を流れる流体の風量が減少し、前記風路長が長い風路の風路の幅を広くすることにより前記風路長が長い風路を流れる風量が増加するため、それぞれの風路での風量のバラつきがなくなり各風路の熱交換後の温度差を減少させるという作用を有する。 Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage having a short air passage length on the shielding means A side is narrow and the air passage length of the air passage having a long air passage length on the shielding means B side is long. The air passage holding means are arranged at unequal intervals so that the road width is wide, and the width of the air passage with a short air passage length is narrower than when the air passage holding means are arranged at substantially equal intervals. As a result, the air volume of the fluid flowing through the short air path is reduced, and the air flow through the long air path is increased by widening the width of the long air path. Since the air flow increases, there is no variation in the air volume in each air passage, and the temperature difference after heat exchange of each air passage is reduced.

また、略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が広く、遮蔽手段B側の風路長が長い風路の風路幅が狭くなるように風路保持手段を不等間隔に配置したものであり、熱交換器に空気を送風する送風手段等との位置関係、前記熱交換器の入口または出口部分の風路形状等により、前記風路保持手段を略等間隔に配置した前記熱交換器の長風路側の風路を流れる風量が多い場合に対し、前記風路長の短い風路の幅を広くすることにより前記風路長の短い風路を流れる流体の風量が増加し、前記風路長が長い風路の風路の幅を狭くすることにより前記風路長が長い風路を流れる風量が減少するため、それぞれの風路での風量のバラつきがなくなり各風路の熱交換後の温度差を減少させるという作用を有する。 Of the plurality of air passages formed in a substantially L shape, the air passage width of the short air passage on the shielding means A side is wide and the air passage length on the shielding means B side is long. The air passage holding means are arranged at unequal intervals so that the passage width is narrow, and the positional relationship with the air blowing means for blowing air to the heat exchanger, the air passage at the inlet or outlet portion of the heat exchanger The width of the short air passage is widened when there is a large amount of air flowing through the air passage on the long air passage side of the heat exchanger in which the air passage holding means are arranged at substantially equal intervals depending on the shape or the like. As a result, the air volume of the fluid flowing through the air path having the short air path length increases, and the air volume flowing through the air path having the long air path length is reduced by narrowing the width of the air path having the long air path length. Therefore, there is no variation in the air volume in each air passage, and it has the effect of reducing the temperature difference after heat exchange in each air passage .

また、略L字状に形成された複数の風路のうち、中央部分の風路の風路幅が狭く、遮蔽手段A側の風路長が短い風路および遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したものであり、熱交換器に空気を送風する送風手段等との位置関係、前記熱交換器の入口または出口部分の風路形状等により、前記風路保持手段を略等間隔に配置した前記熱交換器の中央部分の風路を流れる風量が多い場合に対し、前記中央部分の風路の幅を狭くすることにより前記中央部分の風路を流れる流体の風量が増加し、前記遮蔽手段A側の風路長が短い風路および前記遮蔽手段B側の風路長が長い風路の風路幅を広くすることにより前記風路長が長い風路および前記風路長が短い風路を流れる風量が減少するため、それぞれの風路での風量のバラつきがなくなり各風路の熱交換後の温度差を減少させるという作用を有する。 Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage in the central portion is narrow, the air passage length on the shielding means A side is short, and the air passage length on the shielding means B side. The air passage holding means are arranged at unequal intervals so that the air passage width of the long air passage is wide, and the positional relationship with the air blowing means for blowing air to the heat exchanger, the inlet of the heat exchanger Or, depending on the shape of the air passage at the outlet portion, etc., when there is a large amount of air flowing through the air passage in the central portion of the heat exchanger in which the air passage holding means are arranged at substantially equal intervals, the width of the air passage in the central portion is Narrowing increases the air volume of the fluid flowing through the air passage in the central portion, and the air passage width of the air passage having a short air passage length on the shielding means A side and the air passage length having a long air passage length on the shielding means B side. Since the amount of air flowing through the air passage having a long air passage length and the air passage having a short air passage length is reduced by widening the air passage length, Has the effect of reducing the temperature difference between the air volume of the variation is eliminated after the heat exchange of the air path in the air duct respectively.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本実施の形態に用いる熱交換器の概略分解斜視図、図2は伝熱板の積層時の概略斜視図、図3は伝熱板積層時の積層方向からの概略透視図、図4は開口部近傍の遮蔽リブAと遮蔽リブBの積層状態の概略断面図、図5は熱溶着前の流入口の概略断面図、図6は熱溶着後の流入口の概略断面図である。
(Embodiment 1)
1 is a schematic exploded perspective view of a heat exchanger used in the present embodiment, FIG. 2 is a schematic perspective view when the heat transfer plates are stacked, and FIG. 3 is a schematic perspective view from the stacking direction when the heat transfer plates are stacked. 4 is a schematic cross-sectional view of the laminated state of the shielding rib A and the shielding rib B near the opening, FIG. 5 is a schematic cross-sectional view of the inlet before thermal welding, and FIG. 6 is a schematic sectional view of the inlet after thermal welding. .

図1および図2において、伝熱板A101と伝熱板B102を交互に積層することにより構成される熱交換器はそれぞれの伝熱板の上下に風路A1と風路B2とが構成され、風路A1と風路B2を流れる流体はそれぞれの伝熱板を介して熱交換を行い、それぞれの風路の出入口部分ではお互いが直交して流れ、中央部分ではお互いが対向する方向に流れる対向流型であり、外周側面の熱溶着により一体化される。   1 and 2, the heat exchanger configured by alternately stacking the heat transfer plate A101 and the heat transfer plate B102 includes an air path A1 and an air path B2 above and below each heat transfer plate, The fluids flowing through the air passage A1 and the air passage B2 exchange heat through the respective heat transfer plates, and flow in directions opposite to each other at the entrance / exit portion of each air passage, and flow in directions opposite to each other at the central portion. It is a flow type and is integrated by thermal welding of the outer peripheral side surface.

実際は多数の伝熱板A101と伝熱板B102が交互に積層されているが、簡略のため4つの伝熱板を示している。   Actually, a large number of heat transfer plates A101 and heat transfer plates B102 are alternately stacked, but four heat transfer plates are shown for simplicity.

伝熱板A101および伝熱板B102は平面形状が方形をなし、厚さが例えば0.2mmのハイインパクトポリスチレンシートの真空成形加工により成形されており、伝熱板A101は中空凸状に、例えば伝熱面105の表面に対し凸高さ2.6mm、幅2mmに形成され、対向流部分がカーブ形状の略L字状の風路保持手段としての曲線風路リブ3を略平行、略等間隔に9本備え、曲線風路リブ3により略L字状の風路A1および伝熱面105が形成される。   The heat transfer plate A101 and the heat transfer plate B102 have a square planar shape and are formed by vacuum forming a high impact polystyrene sheet having a thickness of, for example, 0.2 mm. The heat transfer plate A101 has a hollow convex shape, for example, The curved air passage ribs 3 are formed to have a convex height of 2.6 mm and a width of 2 mm with respect to the surface of the heat transfer surface 105, and the counterflow portion is a substantially L-shaped air passage holding means having a curved shape. Nine air gaps A1 and a substantially L-shaped air passage A1 and a heat transfer surface 105 are formed by the curved air passage rib 3.

風路A1の流入口4および流出口5は伝熱板A101の縁を曲線風路リブ3の凸方向とは逆方向へ、例えば伝熱面105の表面に対し2.4mmの位置まで折り曲げられた気密手段としての風路端面106を設け、風路端面106の両端、たとえば端から10mmの部分は風路端面106よりも長い、たとえば伝熱面105の表面に対し5.2mmの位置まで折り曲げられた気密手段としての風路端面カバー111aを設け、風路端面106と風路端面カバー111aにより風路開口部6aが形成される。   The inlet 4 and outlet 5 of the air passage A1 are bent at the edge of the heat transfer plate A101 in a direction opposite to the convex direction of the curved air passage rib 3, for example, to a position of 2.4 mm with respect to the surface of the heat transfer surface 105. An air passage end face 106 is provided as an airtight means, and both ends of the air passage end face 106, for example, a portion 10 mm from the end are longer than the air passage end face 106, for example, to a position of 5.2 mm with respect to the surface of the heat transfer surface 105. The air path end face cover 111a as the airtight means is provided, and the air path end face 106 and the air path end face cover 111a form the air path opening 6a.

なお、符号末尾の英小文字の添字は同一符号で同機能を有するが配置等の差異により区別するためのものであり、以降同様の記載方法とする。   Note that subscripts at the end of the code are the same code and have the same function, but are for distinction due to differences in arrangement, etc.

曲線風路リブ3の両端に曲線風路リブ3の凸方向と同方向に中空凸状であり曲線風路リブ3の高さよりも高い高さの複数の突起A107を、例えば高さが伝熱面105に対し5.2mmとして18個設ける。   A plurality of protrusions A107 that are hollow and convex in the same direction as the convex direction of the curved air passage rib 3 at both ends of the curved air passage rib 3 and whose height is higher than the height of the curved air passage rib 3, for example, the height is heat transfer. Eighteen pieces of 5.2 mm are provided for the surface 105.

伝熱板A101の風路A1の入口と出口以外の外周縁部であって、風路A1の流入口4と流出口5に挟まれた直線部分に曲線風路リブ3の凸方向と同方向に中空凸状であり突起A107と等しい高さに形成した遮蔽手段としての外周リブA7aを例えばその幅が10mmとなるように備え、外周リブA7aの上面は伝熱面105と平行をなし、外側側面は風路端面カバー111aと同位置まで折り曲げた形状とする。   The outer peripheral edge of the heat transfer plate A101 other than the inlet and outlet of the air passage A1, and the same direction as the convex direction of the curved air passage rib 3 in the straight portion sandwiched between the inlet 4 and outlet 5 of the air passage A1 The outer peripheral rib A7a as a shielding means having a hollow convex shape and formed at the same height as the protrusion A107 is provided so that the width thereof is, for example, 10 mm, the upper surface of the outer peripheral rib A7a is parallel to the heat transfer surface 105, and The side surface is bent to the same position as the air path end surface cover 111a.

伝熱板A101の風路A1の流入口4、流出口5および外周リブA7a以外の外周縁部にL字状の遮蔽手段Bとしての外周リブB8を外周リブA7aと同じ幅に形成し、外周リブB8のうち外周リブA7aと対角にあたる外周リブB8aは外周リブA7aと等しい高さに形成し、それ以外の外周リブB8b、8cは曲線風路リブ3と等しい高さに形成される。   An outer peripheral rib B8 as an L-shaped shielding means B is formed at the same width as the outer peripheral rib A7a on the outer peripheral edge of the heat transfer plate A101 other than the inlet 4, outlet 5 and outer peripheral rib A7a. Out of the ribs B8, the outer peripheral rib B8a that is opposite to the outer peripheral rib A7a is formed at the same height as the outer peripheral rib A7a, and the other outer peripheral ribs B8b and 8c are formed at the same height as the curved air passage rib 3.

外周リブB8aの外周側面は風路端面カバー111aと同位置まで折り曲げられ気密手段としての側面カバー9が形成され、外周リブB8b、8cの外周側面のコーナー部分か
ら外周リブA7と同寸法の位置までは風路端面カバー111aと同位置まで折り曲げられ風路端面カバー111bを形成し、それ以外の部分は外周リブB8b、8cの上面から例えば2.2mmの位置まで折り曲げられ、風路開口部6bが形成される。
The outer peripheral side surface of the outer peripheral rib B8a is bent to the same position as the air path end surface cover 111a to form a side cover 9 as an airtight means, from the corner portion of the outer peripheral side surface of the outer peripheral ribs B8b and 8c to the position of the same size as the outer peripheral rib A7. Is bent to the same position as the air path end cover 111a to form the air path end cover 111b, and other portions are bent from the upper surface of the outer peripheral ribs B8b and 8c to a position of, for example, 2.2 mm, and the air path opening 6b is formed. It is formed.

流入口4および流出口5と隣接する外周リブB8b、8cのコーナー部には曲線風路リブ3の凸方向と同方向に中空凸状であり突起A107と等しい高さに形成した突起B112を備える。   The corner portions of the outer peripheral ribs B8b and 8c adjacent to the inflow port 4 and the outflow port 5 are provided with projections B112 which are hollow and convex in the same direction as the convex direction of the curved air passage rib 3 and are formed at the same height as the projection A107. .

外周リブA7aおよび外周リブB8aの風路側には外周風路保持手段としての半円状凹部10を伝熱面105と同一面を有する形状にそれぞれ4個備える。   On the air path side of the outer peripheral rib A7a and the outer peripheral rib B8a, four semicircular recesses 10 as outer peripheral air path holding means are provided in a shape having the same surface as the heat transfer surface 105, respectively.

伝熱板B102は伝熱板A101と相似関係をなしており、伝熱板B102のうち外周リブA7bおよび外周リブB8d、8e、8fの高さを曲線風路リブ3の高さと等しい高さとし、伝熱板Aの外周リブA7aと同じ幅に形成されている。   The heat transfer plate B102 is similar to the heat transfer plate A101, and the height of the outer peripheral rib A7b and the outer peripheral ribs B8d, 8e, and 8f of the heat transfer plate B102 is equal to the height of the curved air passage rib 3. The same width as the outer peripheral rib A7a of the heat transfer plate A is formed.

伝熱板B102の外周リブA7bと外周リブB8dには外周リブA7bの幅の半分のたとえば5mmの幅であり、伝熱面105に対し曲線風路リブ3の凸方向と同方向にたとえば7.8mmの高さに形成された側面保持手段としての側面補強部11を積層時に伝熱板A101に備えられた半円状凹部10と隣接する位置にそれぞれ4つ備え、両端の側面補強部11は外周リブA7bおよび外周リブB8dの端と一致している。   The outer peripheral rib A7b and the outer peripheral rib B8d of the heat transfer plate B102 have a width of, for example, 5 mm, which is half the width of the outer peripheral rib A7b, and in the same direction as the convex direction of the curved air passage rib 3 with respect to the heat transfer surface 105, for example. Four side reinforcing portions 11 as side surface holding means formed at a height of 8 mm are provided at positions adjacent to the semicircular concave portions 10 provided in the heat transfer plate A101 during lamination, and the side reinforcing portions 11 at both ends are It coincides with the ends of the outer peripheral rib A7b and the outer peripheral rib B8d.

上記構成において、伝熱板A101と伝熱板B102を交互に積層した際、図3に示すように曲線風路リブ3は隣接する伝熱板に形成された曲線風路リブ3と積層方向において一致しないため、隣接する曲線風路リブ3同士が勘合することなく、曲線風路リブ3の上面は必ず上方に配置された伝熱板の下面に当接し、風路高さを確保することができる。   In the above configuration, when the heat transfer plates A101 and the heat transfer plates B102 are alternately laminated, the curved air passage ribs 3 and the curved air passage ribs 3 formed on the adjacent heat transfer plates as shown in FIG. Therefore, the upper surfaces of the curved air passage ribs 3 always come into contact with the lower surface of the heat transfer plate disposed above without securing the adjacent curved air passage ribs 3 to each other, thereby ensuring the air passage height. it can.

この風路高さは通気抵抗などの熱交換器の性能面および成型加工性などから設計されている。   This air path height is designed from the viewpoint of the performance of the heat exchanger such as ventilation resistance and molding processability.

また、図4に示すように側面補強部11の上面が伝熱板A101の外周リブA7aの下面と当接し、半円状凹部10の下面が伝熱板B102の外周リブB8dの上面と当接し、熱溶着時の熱収縮による開口高さの減少と外周側の風路高さの減少を抑制することができる。   Further, as shown in FIG. 4, the upper surface of the side reinforcing portion 11 contacts the lower surface of the outer peripheral rib A7a of the heat transfer plate A101, and the lower surface of the semicircular recess 10 contacts the upper surface of the outer peripheral rib B8d of the heat transfer plate B102. In addition, it is possible to suppress a decrease in the opening height and a decrease in the height of the air passage on the outer peripheral side due to the heat shrinkage at the time of heat welding.

また、隣接する伝熱板の外周リブA7aの外周側面と外周リブB8dの外周側面の溶着面積を大きくとることができるため、熱溶着の際、熱収縮による未溶着部分の発生を防ぐことができ、生産性を向上させることができる。   Moreover, since the welding area of the outer peripheral side surface of outer peripheral rib A7a of the adjacent heat exchanger plate and the outer peripheral side surface of outer peripheral rib B8d can be taken large, generation | occurrence | production of the unwelded part by heat contraction can be prevented in the case of heat welding. , Productivity can be improved.

また、図5に示すように流入口4の風路開口部6aおよび風路開口部6bは伝熱面からの開口高さh2が風路高さh1よりも高くなるように、例えばh2=3mm>h1=2.6mmとなるように成形されており、切断時に風路開口部6aおよび風路開口部6bの切断部にバリ12が残り、熱溶着の際に図6に示すようにバリ12が流入口4の開口高さを塞ぐように倒れた場合でも、風路高さと同等以上の開口高さを確保できるように、すなわちh3≧h1=2.6mmとなるように設計されており、バリ12による開口高さの減少を抑制することができる。   Further, as shown in FIG. 5, the air passage opening 6a and the air passage opening 6b of the inlet 4 have an opening height h2 from the heat transfer surface higher than the air passage height h1, for example, h2 = 3 mm. > H1 = 2.6 mm, and burrs 12 remain at the cut portions of the air passage opening 6a and the air passage opening 6b at the time of cutting, and as shown in FIG. Is designed to ensure an opening height equal to or higher than the airway height, that is, h3 ≧ h1 = 2.6 mm, even when it falls down so as to block the opening height of the inlet 4. A decrease in opening height due to the burr 12 can be suppressed.

また、バリ12を許容範囲内で伝熱板A101および伝熱板B102に残すことができるため生産性も向上する。   Further, since the burr 12 can be left on the heat transfer plate A101 and the heat transfer plate B102 within an allowable range, productivity is also improved.

なお、本実施の形態1では、伝熱板の材料としてハイインパクトポリスチレンシートを
用い、真空成形による一体成形としたが、材料として、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエチレンテレフタラート等のその他の熱可塑性樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性樹脂フィルム、樹脂が混入された紙材などを用いてもよく、また成形方法についても、圧空成形、圧空真空成形、プレス成形等の他の工法により伝熱板を一体成形しても、同様の作用効果を得ることができる。
In the first embodiment, a high-impact polystyrene sheet is used as the material for the heat transfer plate, and it is integrally formed by vacuum forming. However, as the material, other thermoplastic resins such as polystyrene, polypropylene, polyethylene, polyethylene terephthalate, etc. Films, thin metal plates such as aluminum, or paper materials having heat and moisture permeability, microporous resin films, paper materials mixed with resin, etc. may be used. Even if the heat transfer plate is integrally formed by another method such as vacuum forming or press forming, the same effect can be obtained.

また、シートの厚さを0.2mmとしたが、シート材の厚さは0.05〜0.5mmの範囲のシートを使用することが好ましい。   Moreover, although the thickness of the sheet is 0.2 mm, it is preferable to use a sheet having a thickness of 0.05 to 0.5 mm.

その理由としては、0.05mm以下となると、凹凸形状の成形時、および成形後の伝熱板の取り扱い時にシート材に破れ等の破損が起こりやすくなり、また成形された伝熱板にコシがなくその取り扱い性が悪くなり、また0.5mmを超えると伝熱性が低下する。   The reason for this is that when the thickness is 0.05 mm or less, the sheet material is likely to be broken when the uneven shape is formed and when the heat transfer plate after the forming is handled, and the molded heat transfer plate is not easily damaged. However, the handleability is deteriorated, and if it exceeds 0.5 mm, the heat conductivity is lowered.

シート厚さが薄くなるほど伝熱性が高くなりかつ成形性が低下する傾向にあり、逆にシート厚さが厚くなるほど伝熱性が低下する傾向にある。   As the sheet thickness decreases, the heat transfer property tends to increase and the moldability tends to decrease. Conversely, as the sheet thickness increases, the heat transfer property tends to decrease.

したがって、成形性、伝熱性を満足するにはシート材の厚さは0.05〜0.5mmの範囲のシートを使用することが好ましく、さらには0.15〜0.25mmの範囲であることが最も望ましい。   Therefore, in order to satisfy the formability and heat transfer, it is preferable to use a sheet having a thickness of 0.05 to 0.5 mm, more preferably 0.15 to 0.25 mm. Is most desirable.

また、曲線風路リブ3の形状を1山のカーブを有する形状としたが、積層時に隣接する伝熱板の曲線風路リブ3同士が勘合しない形状であれば複数の山数としても同様の作用効果を得ることが出来る。   Moreover, although the shape of the curved air path rib 3 was made into the shape which has a curve of one mountain, if the shape where the curved air path rib 3 of the adjacent heat exchanger plate does not fit at the time of lamination | stacking, it is the same also as a several mountain number A working effect can be obtained.

また、外周風路保持手段として半円状凹部10としたが、他の形状であっても積層時に下方に位置する伝熱板B102の外周リブB8の上面と当接する形状であれば、同様の作用効果を得ることができる。   Further, although the semicircular concave portion 10 is used as the outer peripheral air path holding means, other shapes can be used as long as they are in contact with the upper surface of the outer peripheral rib B8 of the heat transfer plate B102 positioned below during lamination. An effect can be obtained.

また、各部の寸法値および個数は一例であり、特にその値に限定されることなく、通気抵抗、熱交換効率などの熱交換器の性能面および成形加工性などから適宜設計された場合でも、同様の作用効果を得ることができる。   In addition, the dimensional value and the number of each part are only examples, and are not particularly limited to those values, even when appropriately designed from the aspect of heat exchanger performance such as ventilation resistance and heat exchange efficiency and molding processability. Similar effects can be obtained.

(実施の形態2)
図7は伝熱板Aの平面図である。なお、実施の形態1と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細は説明は省略する。
(Embodiment 2)
FIG. 7 is a plan view of the heat transfer plate A. FIG. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and have the same operational effects, and detailed description thereof will be omitted.

図7に示すように、伝熱板A101に形成される略L字状の風路A1a〜1jは外周リブA7a側の風路A1aの風路長が最短となり、外周リブB8側の風路A1jが最長となる。   As shown in FIG. 7, the substantially L-shaped air passages A1a to 1j formed in the heat transfer plate A101 have the shortest air passage length of the air passage A1a on the outer peripheral rib A7a side, and the air passage A1j on the outer peripheral rib B8 side. Is the longest.

風路幅は風路長が最短となる風路A1aの幅が狭く、風路A1jの幅が広くなるように配置されており、各風路の幅は風路A1aの幅<風路A1bの幅<風路A1cの幅<風路A1dの幅<風路A1eの幅<風路A1fの幅<風路A1gの幅<風路A1hの幅<風路A1iの幅<風路A1jの幅の関係となるように設計されており、この各風路の幅寸法は伝熱板の寸法、風量、成形加工性などから適宜設計される。   The air passage width is arranged so that the air passage A1a having the shortest air passage length is narrow and the air passage A1j is wide. The width of each air passage is such that the width of the air passage A1a <the air passage A1b. Width <width of air passage A1c <width of air passage A1d <width of air passage A1e <width of air passage A1f <width of air passage A1g <width of air passage A1h <width of air passage A1i <width of air passage A1j The width of each air passage is appropriately designed based on the size of the heat transfer plate, the air volume, the formability, and the like.

伝熱板B102に関しても同様に設計されているが、簡略のため伝熱板A101のみ示す。   The heat transfer plate B102 is designed in the same manner, but only the heat transfer plate A101 is shown for simplicity.

上記構成において、図中矢印Aの方向から流れてきた流体は風路A1a〜1jの各風路へそれぞれ流入し、熱交換され流出口5から流出するが、風路長が短い風路の幅が狭く、風路長が長い風路の幅が広いため、各風路を流れる風量差が減少するため、風路幅が均等の場合に対し、流出口での各風路の温度差を減少させることができる。   In the above configuration, the fluid flowing from the direction of the arrow A in the drawing flows into each of the air passages A1a to 1j, is heat-exchanged and flows out from the outlet 5, but the width of the air passage having a short air passage length. Since the width of the air passages is narrow and the air passage length is wide, the difference in the amount of air flowing through each air passage is reduced, so the temperature difference of each air passage at the outlet is reduced compared to the case where the air passage width is uniform. Can be made.

また、風路A1aの流入口4aと風路B2(図示省略)の流入部における曲線風路リブ3の位置関係が同一線上にある場合でも、対向流部分において隣接する伝熱板の曲線風路リブ3は勘合しないため、各風路幅を任意に設計することができる。   Even when the positional relationship between the curved air passage ribs 3 at the inlet 4a of the air passage A1a and the inflow portion of the air passage B2 (not shown) is on the same line, the curved air passage of the adjacent heat transfer plate in the counterflow portion. Since the rib 3 is not fitted, each air passage width can be designed arbitrarily.

なお、本実施の形態2では、各風路の幅がすべて異なる寸法としたが、たとえば風路A1dの幅=風路A1eの幅のように部分的に等しい風路幅としても良い。   In the second embodiment, the widths of the air paths are all different from each other. However, the air path width may be partially equal, for example, the width of the air path A1d = the width of the air path A1e.

参考例
以上述べてきた事項は、熱交換器に流入する流体(空気)が均等な風速と静圧を持ち、かつ熱交換器の出口近傍に吹出しを妨げる構造がない場合に有用なものであるが、機器設計上このような理想的な空気を熱交換器に流す風路形状を設けにくい。例えば、送風機の吹出し口と熱交換器の流入口の大きさは一致しないので、送風機の吹出し口から熱交換器の流入口までの距離を充分にとらないと均一な流入気流とならないが、機器が大きくなるのでこのような風路形状を選択しにくい。次に、このような状況においても有用なもので、図8および図9に基づいて説明する。
( Reference example )
The matters described above are useful when the fluid (air) flowing into the heat exchanger has uniform wind speed and static pressure, and there is no structure that prevents the blowout near the outlet of the heat exchanger. In terms of device design, it is difficult to provide an air passage shape that allows such ideal air to flow through the heat exchanger. For example, the size of the blower outlet and the inlet of the heat exchanger do not match, so if the distance from the blower outlet to the inlet of the heat exchanger is not enough, a uniform inflow airflow will not be obtained. Therefore, it is difficult to select such a wind path shape. Next, it is also useful in such a situation, and will be described with reference to FIGS.

図8および図9は伝熱板A101と送風機13の吹出し口14の位置関係を示す概略配置図である。   8 and 9 are schematic layout diagrams showing the positional relationship between the heat transfer plate A101 and the outlet 14 of the blower 13. FIG.

なお、実施の形態1および2と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in the first and second embodiments are denoted by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図8では、風路A1a〜1jへ空気を搬送する送風機13の吹出し口14は風路A1の風路長が長い風路側に配置されており、風路A1a〜1jの風路幅は送風機13の吹出し口14が下方に配置されている風路長が最長となる風路A1jの幅が狭く、風路A1aの幅が広くなるように曲線風路リブ3が配置されており、各風路の幅は風路A1aの幅>風路A1bの幅>風路A1cの幅>風路A1dの幅>風路A1eの幅>風路A1fの幅>風路A1gの幅>風路A1hの幅>風路A1iの幅>風路A1jの幅の関係となるように設計されており、この各風路の幅寸法は伝熱板の寸法、風量、成形加工性などから適宜設計される。   In FIG. 8, the outlet 14 of the blower 13 that conveys air to the air passages A1a to 1j is arranged on the air passage side where the air passage length of the air passage A1 is long, and the air passage width of the air passages A1a to 1j is the blower 13. The curved air passage ribs 3 are arranged so that the width of the air passage A1j having the longest air passage length is narrow and the width of the air passage A1a is wide. The width of the air passage A1a> the width of the air passage A1b> the width of the air passage A1c> the width of the air passage A1d> the width of the air passage A1e> the width of the air passage A1f> the width of the air passage A1g> the width of the air passage A1h. > The width of the air passage A1i> The width of the air passage A1j is designed, and the width dimension of each air passage is appropriately designed from the dimensions of the heat transfer plate, the air volume, the moldability, and the like.

伝熱板B102に関しても同様に設計されているが、簡略のため伝熱板A101のみ示す。   The heat transfer plate B102 is designed in the same manner, but only the heat transfer plate A101 is shown for simplicity.

上記構成において、送風機13の吹出し口14から吹出された流体は風路A1a〜1jの各風路へそれぞれ流入し、熱交換され流出口5から流出するが、吹出し口14の真上に配置された風路長が長い風路の幅が狭く、吹出し口14から遠い位置の風路長が短い風路の幅が広いため、送風機13の吹出し口14との位置関係から流入する風量が多い風路A1j側の各風路を流れる風量差が減少し、風路幅が均等の場合に対し、流出口での各風路の温度差を減少させることができる。   In the above configuration, the fluid blown out from the blowout port 14 of the blower 13 flows into each of the wind passages A1a to 1j and is heat-exchanged and flows out from the outflow port 5, but is disposed directly above the blowout port 14. Since the width of the long air passage is narrow and the width of the air passage short at the position far from the air outlet 14 is wide, the amount of air flowing in is large due to the positional relationship with the air outlet 14 of the blower 13. The difference in the amount of air flowing through each air passage on the side of the path A1j is reduced, and the temperature difference of each air passage at the outlet can be reduced as compared with the case where the air passage width is uniform.

また、風路A1aの流入口4aと風路B2(図示省略)の流入部における曲線風路リブ3の位置関係が同一線上にある場合でも、対向流部分において隣接する伝熱板の曲線風路リブ3は勘合しないため、各風路幅を任意に設計することができる。   Even when the positional relationship between the curved air passage ribs 3 at the inlet 4a of the air passage A1a and the inflow portion of the air passage B2 (not shown) is on the same line, the curved air passage of the adjacent heat transfer plate in the counterflow portion. Since the rib 3 is not fitted, each air passage width can be designed arbitrarily.

なお、この例では、各風路の幅がすべて異なる寸法としたが、送風機と熱交換器の配置関係により各風路間の風量差が小さい箇所などにおいては、たとえば風路A1hの幅=風路A1iの幅のように部分的に等しい風路幅としても良い。 In this example , the width of each air passage is different from each other. However, in a place where the air volume difference between each air passage is small due to the arrangement relationship between the blower and the heat exchanger, for example, the width of the air passage A1h = wind It is good also as a partially equal wind path width like the width | variety of path A1i.

次に、図9では風路A1a〜1jへ空気を搬送する送風機13の吹出し口14は風路A1の中央風路部分に配置されており、風路A1a〜1jの風路幅は送風機13の吹出し口14が下方に配置されている中央風路部分の風路A1eの幅が狭く、両端の風路A1a、風路A1jの幅が広くなるように曲線風路リブ3が配置されており、各風路の幅は風路A1aの幅>風路A1bの幅>風路A1cの幅>風路A1dの幅>風路A1eの幅<風路A1fの幅<風路A1gの幅<風路A1hの幅<風路A1iの幅<風路A1jの幅の関係となるように設計されており、この各風路の幅寸法は伝熱板の寸法、風量、成形加工性などから適宜設計される。   Next, in FIG. 9, the air outlet 14 of the blower 13 that conveys air to the air passages A <b> 1 a to 1 j is disposed in the central air passage portion of the air passage A <b> 1, and the air passage width of the air passages A <b> 1 a to 1 j is The curved air passage rib 3 is arranged so that the width of the air passage A1e of the central air passage portion where the air outlet 14 is disposed below is narrow and the width of the air passage A1a and air passage A1j at both ends is widened. The width of each air passage is the width of the air passage A1a> the width of the air passage A1b> the width of the air passage A1c> the width of the air passage A1d> the width of the air passage A1e <the width of the air passage A1f <the width of the air passage A1g <the air passage. The width of A1h <the width of air path A1i <the width of air path A1j is designed so that the width dimension of each air path is appropriately designed from the dimensions of the heat transfer plate, the air volume, and the formability. The

伝熱板B102に関しても同様に設計されているが、簡略のため伝熱板A101のみ示す。   The heat transfer plate B102 is designed in the same manner, but only the heat transfer plate A101 is shown for simplicity.

上記構成において、送風機13の吹出し口14から吹出された流体は風路A1a〜1jの各風路へそれぞれ流入し、熱交換され流出口5から流出するが、吹出し口14の真上に配置された中央部分の風路の幅が狭く、吹出し口14から遠い位置の両端の風路の幅が広いため、送風機13の吹出し口14との位置関係から流入する風量が多い中央部の各風路を流れる風量差が減少し、風路幅が均等の場合に対し、流出口での各風路の温度差を減少させることができる。   In the above configuration, the fluid blown out from the blowout port 14 of the blower 13 flows into each of the wind passages A1a to 1j and is heat-exchanged and flows out from the outflow port 5, but is disposed directly above the blowout port 14. Since the width of the air passage in the central portion is narrow and the width of the air passages at both ends far from the air outlet 14 is wide, each air passage in the central portion where the amount of air flowing in is large due to the positional relationship with the air outlet 14 of the blower 13. As compared with the case where the air flow difference flowing through the air flow is reduced and the air passage width is uniform, the temperature difference between the air passages at the outlet can be reduced.

また、風路A1aの流入口4aと風路B2(図示省略)の流入部における曲線風路リブ3の位置関係が同一線上にある場合でも、対向流部分において隣接する伝熱板の曲線風路リブ3は勘合しないため、各風路幅を任意に設計することができる。   Even when the positional relationship between the curved air passage ribs 3 at the inlet 4a of the air passage A1a and the inflow portion of the air passage B2 (not shown) is on the same line, the curved air passage of the adjacent heat transfer plate in the counterflow portion. Since the rib 3 is not fitted, each air passage width can be designed arbitrarily.

なお、この例では、各風路の幅がすべて異なる寸法としたが、送風機と熱交換器の配置関係により各風路間の風量差が小さい箇所などにおいては、たとえば風路A1eの幅=風路A1fの幅のように部分的に等しい風路幅としても良い。 In this example , the widths of the air paths are all different dimensions. However, in places where the air volume difference between the air paths is small due to the arrangement relationship between the blower and the heat exchanger, for example, the width of the air path A1e = wind It is good also as a partially equal wind path width like the width | variety of path A1f.

本発明は、熱交換換気装置、または移動電話基地局、簡易無線局などの内部に発熱体を有する筐体に取り付けられる冷却装置としての用途にも適用できる。   The present invention can also be applied to a heat exchange ventilator or a cooling device attached to a housing having a heating element inside a mobile telephone base station, a simple radio station, or the like.

本発明の実施の形態1による熱交換器の概略分解斜視図1 is a schematic exploded perspective view of a heat exchanger according to Embodiment 1 of the present invention. 同伝熱板積層時の概略斜視図Schematic perspective view when the heat transfer plates are stacked 同伝熱板積層時の積層方向からの概略透視図Schematic perspective view from the stacking direction when the heat transfer plates are stacked 同開口部近傍の外周リブAと外周リブBの積層状態の概略断面図Schematic sectional view of the laminated state of the outer peripheral rib A and the outer peripheral rib B near the opening 同熱溶着前の流入口の概略断面図Schematic cross-sectional view of the inlet before heat welding 同熱溶着後の流入口の概略断面図Schematic cross-sectional view of the inlet after heat welding 本発明の実施の形態2による伝熱板Aの平面図The top view of the heat exchanger plate A by Embodiment 2 of this invention 参考例による伝熱板Aと送風機の位置関係を示す概略配置図Schematic layout diagram showing the positional relationship between the heat transfer plate A and the blower according to the reference example 同伝熱板Aと送風機の位置関係を示す概略配置図Schematic layout diagram showing the positional relationship between the heat transfer plate A and the blower 従来の熱交換器を示す概略分解斜視図Schematic exploded perspective view showing a conventional heat exchanger

1 風路A
1a 風路A
1b 風路A
1c 風路A
1d 風路A
1e 風路A
1f 風路A
1g 風路A
1h 風路A
1i 風路A
1j 風路A
2 風路B
3 曲線風路リブ
4 流入口
4a 流入口
5 流出口
6 風路開口部
6a 風路開口部
6b 風路開口部
7 外周リブA
7a 外周リブA
7b 外周リブA
8 外周リブB
8a 外周リブB
8b 外周リブB
8c 外周リブB
8d 外周リブB
8e 外周リブB
8f 外周リブB
9 側面カバー
10 半円状凹部
11 側面補強部
12 バリ
13 送風機
14 吹出し口
101 伝熱板A
102 伝熱板B
105 伝熱面
106 風路端面
107 突起A
112 突起B
1 Airway A
1a Airway A
1b Airway A
1c Airway A
1d Airway A
1e Airway A
1f Airway A
1g Airway A
1h Airway A
1i Airway A
1j Airway A
2 Wind B
3 Curved air passage rib 4 Inlet 4a Inlet 5 Outlet 6 Air passage opening 6a Air passage opening 6b Air passage opening 7 Outer peripheral rib A
7a Outer peripheral rib A
7b Outer peripheral rib A
8 Outer peripheral rib B
8a Outer peripheral rib B
8b Outer peripheral rib B
8c Outer peripheral rib B
8d Outer peripheral rib B
8e Outer peripheral rib B
8f Outer peripheral rib B
DESCRIPTION OF SYMBOLS 9 Side cover 10 Semicircular recessed part 11 Side reinforcement part 12 Burr 13 Blower 14 Outlet 101 Heat-transfer plate A
102 Heat transfer plate B
105 Heat transfer surface 106 Air passage end surface 107 Projection A
112 Protrusion B

Claims (6)

ほぼ長方形の複数の伝熱板A、伝熱板Bを積層し、この伝熱板間に交互に形成される風路Aと風路Bを流れる空気の間で熱交換を行う熱交換器において、
前記伝熱板は、略L字状で、伝熱板の一方の面に中空凸状に形成した複数の風路保持手段を設けて1枚のシートを素材として一体成型し、
前記複数の風路保持手段により略L字状の複数の風路と伝熱面と前記風路の両端に流入部および流出部が形成され、
前記伝熱板Aと前記伝熱板Bとは略同一の形状であって、
前記伝熱板Aの前記流入部および前記流出部が前記伝熱板Bの前記流入部および前記流出部と対向する位置関係となるように前記伝熱板Aと前記伝熱板Bを180°回転させ交互に積層し、
このとき、伝熱板の短辺側に略平行な風路保持手段で形成される風路部分を直交流領域とし、
伝熱板A、伝熱板Bともに伝熱板の長辺側に略平行な風路保持手段で形成される風路部分であって、前記直交流領域以外の領域を対向流領域とし、
この対向流領域を形成する風路保持手段の形状を曲線状とすることによって
前記対向流領域では、一方の伝熱板の伝熱面の下面に他方の伝熱板の風路保持手段の頂部を当接させたことを特徴とする熱交換器。
In a heat exchanger in which a plurality of substantially rectangular heat transfer plates A and B are stacked and heat exchange is performed between air flowing in the air passage A and air passage B formed alternately between the heat transfer plates. ,
The heat transfer plate is substantially L-shaped, and is provided with a plurality of air path holding means formed in a hollow convex shape on one surface of the heat transfer plate and integrally molded as a single sheet,
An inflow portion and an outflow portion are formed at both ends of the plurality of substantially L-shaped air passages and the heat transfer surface and the air passage by the air passage holding means,
The heat transfer plate A and the heat transfer plate B have substantially the same shape,
The heat transfer plate A and the heat transfer plate B are 180 ° so that the inflow portion and the outflow portion of the heat transfer plate A face the inflow portion and the outflow portion of the heat transfer plate B. Rotate and stack alternately
At this time, the air flow path portion formed by the air flow path holding means substantially parallel to the short side of the heat transfer plate is a cross flow region,
Both the heat transfer plate A and the heat transfer plate B are air passage portions formed by the air passage holding means substantially parallel to the long side of the heat transfer plate, and the region other than the cross flow region is a counter flow region,
By the shape of the air path holding means for forming the counterflow region curvilinear,
In the counterflow region, the top of the air path holding means of the other heat transfer plate is brought into contact with the lower surface of the heat transfer surface of one heat transfer plate.
風路Aおよび風路Bを流れる流体が対向流となる部分を形成する風路保持手段を不等間隔に配置したことを特徴とする請求項1記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the air passage holding means for forming a portion in which the fluid flowing through the air passage A and the air passage B becomes a counter flow is arranged at unequal intervals. 前記伝熱板には、一つの長辺側外周部に設けた直線状の遮蔽手段Aと他方の長辺と一つの
短辺にわたって設けた略L字状の遮蔽手段Bを備え、
略L字状に形成された複数の風路のうち、前記遮蔽手段A側の風路長が短い風路の風路幅が狭く、前記遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したことを特徴とする請求項2記載の熱交換器。
The heat transfer plate includes a linear shielding means A provided on one long side outer peripheral portion, and a substantially L-shaped shielding means B provided over the other long side and one short side,
Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage having a short air passage length on the shielding means A side is narrow, and the air flow of the air passage having a long air passage length on the shielding means B side is long. 3. The heat exchanger according to claim 2, wherein the air passage holding means are arranged at unequal intervals so that the passage width is widened.
熱交換器へ通風する搬送手段または前記熱交換器の前後の風路形状に応じて、略L字状に形成された複数の風路の風量差を小さくするように、風路保持手段を不等間隔に配置したことを特徴とする請求項2記載の熱交換器。 Depending on the conveying means for ventilating the heat exchanger or the shape of the air path before and after the heat exchanger, the air path holding means is not used so as to reduce the difference in air volume between the plurality of substantially L-shaped air paths. The heat exchanger according to claim 2, wherein the heat exchangers are arranged at equal intervals. 前記伝熱板には、一つの長辺側外周部に設けた直線状の遮蔽手段Aと他方の長辺と一つの短辺にわたって設けた略L字状の遮蔽手段Bを備え、
略L字状に形成された複数の風路のうち、遮蔽手段A側の風路長が短い風路の風路幅が広く、遮蔽手段B側の風路長が長い風路の風路幅が狭くなるように風路保持手段を不等間隔に配置したことを特徴とする請求項4記載の熱交換器。
The heat transfer plate includes a linear shielding means A provided on one long side outer peripheral portion, and a substantially L-shaped shielding means B provided over the other long side and one short side,
Among the plurality of air passages formed in a substantially L shape, the air passage width of the air passage having a short air passage length on the shielding means A side is wide and the air passage width of the air passage having a long air passage length on the shielding means B side. The heat exchanger according to claim 4, wherein the air path holding means are arranged at unequal intervals so as to be narrow.
前記伝熱板には、一つの長辺側外周部に設けた直線状の遮蔽手段Aと他方の長辺と一つの短辺にわたって設けた略L字状の遮蔽手段Bを備え、
略L字状に形成された複数の風路のうち、中央部分の風路の風路幅が狭く、遮蔽手段A側の風路長が短い風路および遮蔽手段B側の風路長が長い風路の風路幅が広くなるように風路保持手段を不等間隔に配置したことを特徴とする請求項4記載の熱交換器。
The heat transfer plate includes a linear shielding means A provided on one long side outer peripheral portion, and a substantially L-shaped shielding means B provided over the other long side and one short side,
Of the plurality of air passages formed in a substantially L shape, the air passage width of the air passage in the central portion is narrow, the air passage length on the shielding means A side is short, and the air passage length on the shielding means B side is long. The heat exchanger according to claim 4, wherein the air passage holding means are arranged at unequal intervals so that the air passage width of the air passage is widened.
JP2005284349A 2005-09-20 2005-09-29 Heat exchanger Active JP4848718B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005284349A JP4848718B2 (en) 2005-09-29 2005-09-29 Heat exchanger
KR1020087002504A KR100940967B1 (en) 2005-09-20 2006-09-20 Cooler for heater-containing box
EP06798124A EP1901599B1 (en) 2005-09-20 2006-09-20 Cooler for heater-containing box
PCT/JP2006/318564 WO2007034797A1 (en) 2005-09-20 2006-09-20 Cooler for heater-containing box
US11/997,389 US20090139261A1 (en) 2005-09-20 2006-09-20 Cooler for heater-containing box
CN2006800282073A CN101233798B (en) 2005-09-20 2006-09-20 Cooler for heater-containing box
AT06798124T ATE518414T1 (en) 2005-09-20 2006-09-20 COOLERS FOR CABINETS WITH HEATERS
DK06798124.1T DK1901599T3 (en) 2005-09-20 2006-09-20 Cooler for box containing heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284349A JP4848718B2 (en) 2005-09-29 2005-09-29 Heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011026820A Division JP5206815B2 (en) 2011-02-10 2011-02-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2007093137A JP2007093137A (en) 2007-04-12
JP4848718B2 true JP4848718B2 (en) 2011-12-28

Family

ID=37979068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284349A Active JP4848718B2 (en) 2005-09-20 2005-09-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4848718B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277647B2 (en) * 2008-01-29 2013-08-28 パナソニック株式会社 Heat exchange device and heating element storage device using the same
JP5077154B2 (en) * 2008-09-04 2012-11-21 株式会社豊田自動織機 Plate heat exchanger for boiling cooling
EP2696665A4 (en) * 2011-04-08 2016-04-13 Panasonic Ip Man Co Ltd Heat exchanging apparatus
JP5909648B2 (en) * 2012-08-01 2016-04-27 パナソニックIpマネジメント株式会社 Heating element storage device
JP6646806B2 (en) * 2015-10-09 2020-02-14 パナソニックIpマネジメント株式会社 Dehumidifier
JP2020076552A (en) * 2018-11-09 2020-05-21 梅津 健兒 Aluminum plate air-to-air heat exchanger
AU2022230856A1 (en) * 2021-03-03 2023-10-12 Daikin Industries, Ltd. Heat exchanger and air treatment device
CN116952038B (en) * 2023-09-14 2023-12-08 南京宜热纵联节能科技有限公司 Indirect heat exchange device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814765B2 (en) * 1991-04-12 1998-10-27 三菱電機株式会社 Heat exchanger
JPH0534089A (en) * 1991-07-25 1993-02-09 Daikin Ind Ltd Heat exchanging element
JP3461697B2 (en) * 1997-10-01 2003-10-27 松下エコシステムズ株式会社 Heat exchange element
JP4889869B2 (en) * 2001-03-26 2012-03-07 パナソニックエコシステムズ株式会社 Heat exchanger
JP4279021B2 (en) * 2002-03-28 2009-06-17 パナソニックエコシステムズ株式会社 Heat exchanger
JP4311056B2 (en) * 2003-03-25 2009-08-12 パナソニック株式会社 Heat exchanger
JP2004293862A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005195190A (en) * 2003-12-26 2005-07-21 Toyo Radiator Co Ltd Multiplate heat exchanger

Also Published As

Publication number Publication date
JP2007093137A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4848718B2 (en) Heat exchanger
CA2664832C (en) Heat exchanging element
US7866379B2 (en) Heat exchanger
EP2131133B1 (en) Heat exchange element
EP1901599B1 (en) Cooler for heater-containing box
CN100402966C (en) Heat exchanger
JP4311056B2 (en) Heat exchanger
JP2004293862A (en) Heat exchanger
JP4279021B2 (en) Heat exchanger
KR100917518B1 (en) Heat exchanger
JP5206815B2 (en) Heat exchanger
JP4466156B2 (en) Heat exchanger
KR101730890B1 (en) Plastic Heat Exchanger for Heat Recovery
JPH0875385A (en) Heat exchanging element
JP7372472B2 (en) Heat exchange elements and heat exchange ventilation equipment
JP6392659B2 (en) Heat exchanger and manufacturing method thereof
KR20180115853A (en) Plastic Heat Exchanger for Heat Recovery
WO2024053082A1 (en) Heat exchange element and heat exchange ventilation device
JP2014114968A (en) Heat exchange element and heating element housing device using the same
KR20080084569A (en) Total heat exchanger and manufacturing method for the same
KR20080026941A (en) Total heat exchanger element using different material
JPH0849994A (en) Heat exchange element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R151 Written notification of patent or utility model registration

Ref document number: 4848718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3