JP4889869B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4889869B2
JP4889869B2 JP2001087015A JP2001087015A JP4889869B2 JP 4889869 B2 JP4889869 B2 JP 4889869B2 JP 2001087015 A JP2001087015 A JP 2001087015A JP 2001087015 A JP2001087015 A JP 2001087015A JP 4889869 B2 JP4889869 B2 JP 4889869B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer plate
air passage
ridge
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001087015A
Other languages
Japanese (ja)
Other versions
JP2002286391A (en
Inventor
洋 柴田
拓也 村山
睦彦 松本
和樹 最首
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP2001087015A priority Critical patent/JP4889869B2/en
Publication of JP2002286391A publication Critical patent/JP2002286391A/en
Application granted granted Critical
Publication of JP4889869B2 publication Critical patent/JP4889869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換換気装置、またはその他の空気調和装置に用いられ、多数の伝熱板を交互に積層して第一の風路及び第二の風路を交互に形成する熱交換器に関する。
【0002】
【従来の技術】
従来、この種の熱交換器は、特開平8−178577号公報に記載されたものが知られている。
【0003】
以下、その熱交換器について図49及び50を参照しながら説明する。
【0004】
図に示すように、板状のライナ(伝熱板)101は、第一の凸条リブ102と第二の凸条リブ103と縦断凹条リブ104と凸条スペーサ105と横断凹条リブ106とカバー107と延接部108が一体成型される。熱交換器は、前記ライナ(伝熱板)101を交互に90°ずつ向きをずらし積層されることにより形成されており、前記熱交換器は、前記ライナ(伝熱板)101を積層する際、前記第一の凸条リブ102の上面と、隣接する前記ライナ(伝熱板)101の下面が接着され、あるいは前期第一の凸条リブ102の上面、第二の凸条リブ103、横断凹条リブ106及び凸条スペーサ107の頂部に接着剤が塗布され、隣接する前記ライナ(伝熱板)101の下面および各要素が当接する部分との間が接着され、さらに前記縦断リブ104と前記第二の凸条リブ103とが接するように積層されることにより、隣接する前記ライナ(伝熱板)101との間に形成される風路の出入口部以外は密封されることになる。
【0005】
【発明が解決しようとする課題】
このような従来の熱交換器では、ライナ(伝熱板)を積層する際、ライナ(伝熱板)の端面を接着剤により接着することにより密封性を向上させているが、熱交換器としては、ライナ(伝熱板)の材料及び接着剤の複数の材料が使用されているために、リサイクルを行う場合、材料を分別する必要があり、リサイクル化が困難であるという課題があり、熱交換器の単一材料化によるリサイクル性の向上が要求されている。
【0006】
また、隣接するライナ(伝熱板)同士が接着されていないとライナ(伝熱板)同士の密封性が低下するという課題があり、接着されなくとも隣接するライナ(伝熱板)間の密封性の高い構造が要求されている。
【0007】
また、多数のライナ(伝熱板)を積層する際、ライナ(伝熱板)一枚づつに接着剤を塗布しながら積層する必要があるため、接着剤を塗布すること無くライナ(伝熱板)を積層することにより工数を低減させ製造コストを安価にすることが要求されている。
【0008】
本発明は、このような従来の課題を解決するものであり、熱交換器の単一材料化によるリサイクル性が高く、また、接着剤を用いなくとも密封性が高く、製造コストが安価な熱交換器を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の熱交換器は上記目的を達成するために、第一の伝熱板及び第二の伝熱板は、伝熱面と、前記第一の伝熱板及び前記第二の伝熱板の外周部に、第一の風路及び第二の風路の出入口部分を残すように前記伝熱面に対して凸条に中空に形成され、折り返すように形成された外側側面を有する第一の凸条部と、前記第一の凸条部の上面に凹入された第一の凹条部と、前記第一の凹条部と重合する第二の凹条部と、前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接する、前記伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように形成された折り返し部と、交互に積層されたそれぞれの伝熱板の間隔を保持する第二の凸条部とを備えるように一体成形され、第一の伝熱板及び第二の伝熱板は、第一の風路及び第二の風路の出入口部分に、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際に上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に密接し、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制するための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれることを特徴とするものである。
【0010】
本発明によれば、伝熱板を構成するすべての要素を一体成形し、接着剤等を用いなくても、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、接着剤等の伝熱板材料以外の二次材料が用いられることなく伝熱板の材料のみで構成されるためにリサイクル可能であり、接着剤等を用いなくても、風路の密封性が高く、また、伝熱板を構成するすべての要素を一体成形し、かつ接着剤等の二次材料を用いることなく形成されるため、製造コストの安価な熱交換器が得られる。そして本発明によれば、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面に密接するため、伝熱板の水平方向への位置ずれが抑制され、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下を防止することができる熱交換器が得られる。また他の手段は、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の上面の裏面に当接あるいは密接する第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれることを特徴とするものである。そして本発明によれば、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面に密接するため、伝熱板の水平方向への位置ずれが抑制され、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下を防止することができると同時に、第一の突起部の上面と第一の凸条部の上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、伝熱板のたわみを抑制し、伝熱板のたわみによる伝熱板間の密封性の低下を防止できる熱交換器が得られる。また他の手段は、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に当接あるいは密接し、さらに、前記第一の凸条部の内側側面に密接する側面と対向する側面が、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凹条部の側面とも当接する第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれることを特徴とするものである。そして本発明によれば、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面及び、第一の凸条部の上面に凹入された第一の凹入部の外側面と密接するため、伝熱板の水平方向への位置ずれの抑制効果が向上し、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下の防止効果が向上すると同時に、第一の突起部の上面と第一の凸条部の上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、伝熱板のたわみを抑制し、伝熱板のたわみによる伝熱板間の密封性の低下を防止できる熱交換器が得られる。
【0011】
また他の手段は、第一の凸条部の上面に凹入された第一の凹条部の断面形状は、前記第一の凹条部の最大幅が前記第一の凹条部の開口部の幅よりも広い形状であり、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりもい形状であることを特徴とするものである。
【0012】
そして本発明によれば、第一の凹入部と第二の凹入部とが勘合することにより、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上するため、接着剤等を用いなくても、一方の風路の出入口部分における他の一方の風路の密封性が高い熱交換器が得られる。
【0013】
また他の手段は、第一の凸条部の上面に凹入された第一の凹条部は、断続的に凹入されており、第二の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、断続する前記第一の凹条部と重合するように断続的に凹入されていることを特徴とするものである。
【0014】
そして本発明によれば、第一の凹入部及び第二の凹入部を断続的に形成する構成とすることにより、第一の凹入部及び第二の凹入部の成形時に過剰な薄肉化により伝熱板が破れることを防止し、伝熱板の破れによる密封性の低下を防止できる熱交換器を得ることができる。
【0015】
また他の手段は、第一の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された第一の凸条部と、前記第二の伝熱板に形成された第一の凸条部が交差する位置まで凹入されており、前記第一の凹条部の頂部と前記第一の凸条部の上面が当接する高さに形成されていることを特徴とするものである。
【0016】
そして本発明によれば、積層方向に押圧負荷がかかった際、第一の風路と第二の風路とが隣り合う、第一の伝熱板に形成された第一の凸条部と第二の伝熱板に形成された第一の凸条部とが交差する部分の変形を抑制し、変形による密接性の低下を防止することのできる熱交換器が得られる。
【0017】
また他の手段は、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された第一の凸条部と前記第二の伝熱板に形成された第一の凸条部が交差する位置における密封性を向上させる交差部密閉部を有することを特徴とするものである。
【0018】
そして本発明によれば、上方に配置される伝熱板に形成された交差部密閉部が下方に配置される伝熱板に形成された第一の凸条部の端面を覆うように密接することにより、第一の風路と第二の風路とが隣り合う、第一の伝熱板に形成された第一の凸条部と第二の伝熱板に形成された第一の凸条部とが交差する部分における一方の風路と他のもう一方の風路との密封性が高い熱交換器が得られる。
【0025】
また他の手段は、第一の伝熱板は、第二の伝熱板の第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された第一の凸条部の内側側面及び前記第一の凸条部の上面の裏面及び第一の凹条部の側面に密接、あるいは当接する前記第一の凸条部よりも狭い幅の第三の凸条部が、前記第一の凸条部と連続して前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺に中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたことを特徴とするものである。
【0026】
そして本発明によれば、第一の風路及び第二の風路のそれぞれの出入口が形成されることのない外周部において、第二の伝熱板に形成された第三の凸条部の折り返し部の内面及び第三の凸条部の上面に凹入された第一の凹入部の側面と、第一の伝熱板に形成された第二の凸条部の側面が密接するように重合することにより、伝熱板の第二の凸条部及び第三の凸条部の対向する方向への位置ずれが抑制され、位置ずれに起因する第二の凸条部と第三の凸条部の折り返し部の重なりによる密封性の低下が防止できる熱交換器が得られる。
【0027】
また他の手段は、第二の伝熱板は、前記第二の伝熱板の外周部の第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された第一の凸条部の上面に、第一の凹条部が凹入形成されていない形状であり、前記第一の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、外側側面が前記第二の伝熱板に形成された前記第一の凸条部の内側側面に密接し、上面が前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に密接するように、前記第一の風路及び前記第二の風路の出入口が形成されることのない辺に、第三の凸条部が中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたことを特徴とするものである。
【0028】
そして本発明によれば、第一の風路及び第二の風路のそれぞれの出入口が形成されることのない外周部において、第一の伝熱板に形成された第三の凸条部の内側側面と第二の伝熱板に形成された第一の凸条部の外側側面が密接し、さらに第二の伝熱板の風路出入口が形成されることのない外周部に形成された第一の凸条部の上面には、第一の凹条部が凹入成形されていないために、第一の凸条部の上面と第一の伝熱板の伝熱面の裏面との接触面積が増大し、風路の出入口部分が形成されることのない外周部での密封性が高い熱交換器が得られる。
【0029】
また他の手段は、第一の伝熱板及び第二の伝熱板を交互に積層した際、上面が前記第二の伝熱板に形成された第一の凸条部の上面の裏面と当接し、また側面が前記第一の凸条部の内側側面と密接する第二の突起部が、少なくとも一つ以上、前記第一の伝熱板に形成された第三の凸条部と一体に形成されていることを特徴とするものである。
【0030】
そして本発明によれば、第二の突起部の上面が、隣接する第一の凸条部の上面の裏面に当接、あるいは密接することにより、積層方向に押圧負荷がかかった場合、あるいは、熱交換器の外周側から内側へ向かって負荷がかかった場合、風路の出入口部分が形成されることのない外周部での第一の凸条部及び第三の凸条部の変形を抑制し、変形に起因する密封性の低下を防止すると同時に、第三の凸条部の側面及び第二の突起部の側面が第一の凸条部の内側側面と密接することにより、伝熱板の積層後の位置ずれを抑制し、位置ずれに起因する密封性の低下を防止することができる熱交換器が得られる。
【0031】
また他の手段は、第一の伝熱板及び第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部が伝熱面に対して垂直をなすように折り返し状に形成され、また、前記伝熱面に対して、前記第一の伝熱板及び前記第二の伝熱板の水平方向の寸法が等しい形状に形成されていることを特徴とするものである。
【0032】
そして本発明によれば、伝熱板の外周側面において、それぞれ外側へ押し広げられて積層された部分は、積層後、内側へ押圧されて密接することとなり、外周側面部の密封性の高い熱交換器が得られる。
【0033】
また他の手段は、第一の伝熱板及び、第二の伝熱板は、第一の凸条部、第二の凸条部、第三の凸条部、第一の凹条部、第二の凹条部、第一の突起部、第二の突起部、折り返し部及び交差部密閉部のうちの少なくとも一つの要素の肉厚が、伝熱面の肉厚よりも厚く形成されていることを特徴とするものである。
【0034】
そして本発明によれば、伝熱板の外周部に形成された風路の出入口部分以外を密封する部位の肉厚を厚くし、強度を向上させることにより、熱交換器に外力が加わった際に、伝熱板の外周部に形成された風路の出入口部分以外を密封する部位が変形することを抑制し、変形に起因する密封性の低下を防止することができる熱交換器が得られる。
【0035】
また他の手段は、熱交換器の外周側面を溶着したことを特徴とするものである。
【0036】
そして本発明によれば、熱交換器の外周部におけるそれぞれの伝熱板の密接面を溶着することにより、外周側面部の密封性が向上され、風路の出入口部分以外での密封性の高い熱交換器が得られる。
【0037】
また他の手段は、第一の伝熱板及び第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部の先端を、外側へすそ広がりの形状を有するように形成し、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した後、前記熱交換器の外周側面を溶着したことを特徴とするものである。
【0038】
そして本発明によれば、伝熱板の縁部先端が外側へすそ広がり状をなしているため、重なり合う伝熱板の外側に位置する伝熱板の縁部の先端を、内側に位置する伝熱板の外周側面に押しつけながら溶着することができ、外周側面の溶着性が向上し、外周側面部の密封性が高い熱交換器が得られる。
【0039】
【発明の実施の形態】
本発明は、伝熱性及び透湿性を有する、または、伝熱性のみを有する材質からなる第一の伝熱板及び第二の伝熱板を交互に積層して第一の風路及び第二の風路を交互に形成する熱交換器において、前記第一の伝熱板及び前記第二の伝熱板は、前記第一の風路を流れる流体と前記第二の風路を流れる流体との間の熱交換を行う伝熱面と、前記第一の伝熱板及び前記第二の伝熱板の外周部に、前記第一の風路及び前記第二の風路の出入口部分を残すように前記伝熱面に対して中空凸条に形成され、凸方向とは反対方向に折り返すように形成された外側側面を有する前記第一の風路及び前記第二の風路画定用の第一の凸条部と、前記第一の凸条部の強度を向上させると同時に前記第一の風路及び前記第二の風路の出入口以外での前記第一の伝熱板及び前記第二の伝熱板との間を密封するために前記第一の凸条部の上面に凹入された第一の凹条部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の凹条部と重合することにより前記第一の風路及び前記第二の風路の出入口部分以外を密封すると同時に、前記第一の伝熱板及び前記第二の伝熱板の出入口部分の強度を向上させる前記第一の風路及び前記第二の風路の出入口部分の伝熱面に凹入された第二の凹条部と、前記第一の伝熱板及び前記第二の伝熱板の外周縁部に、前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接することにより、前記第一の風路及び前記第二の風路の出入口部分以外を密封する、前記伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように形成された折り返し部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層する際、交互に積層されたそれぞれの伝熱板の間隔を保持する第二の凸条部とを備えるように一体成形され、第一の伝熱板及び第二の伝熱板は、第一の風路及び第二の風路の出入口部分に、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際に上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に密接し、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制するための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれるものであり、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、隣接する前記第一の伝熱板及び前記第二の伝熱板に形成された前記第一の凸条部の上面に凹入形成された前記第一の凹条部と、前記第二の凹条部とが、前記第二の凹状部の外寸を前記第一の凹状部の内寸と等しい寸法、あるいは、締まり嵌めとなる程度の大きい寸法とすることにより、密接するように重合すること、また前記第一の凸条部の上面の前記第一の凹条部が凹入形成されていない面が隣接する前記第一の伝熱板及び前記第二の伝熱板の前記伝熱面の下面と密接すること、また、前記第一の伝熱板及び前記第二の伝熱板の外周部に形成された折り返し部の内面が、隣接する前記第一の伝熱板及び前記第二の伝熱板に形成された前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接することにより前記第一の伝熱板及び前記第二の伝熱板とにより形成される前記第一の風路及び前記第二の風路の出入口部分以外を密封するという作用を有し、また前記第一の突起部と前記第一の凸条部の内側側面が密接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制し、位置ずれに起因する密封性の低下を防止止するという作用を有する。また、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に当接あるいは密接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層時の位置ずれを抑制すると同時に、積層方向に押圧された場合に、第一の風路及び第二の風路の出入口部の開口高さを保持し、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を向上させるための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれるものであり、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、前記第一の突起部と前記第一の凸条部の内側側面が密接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制し、位置ずれに起因する密封性の低下を防止し、また、積層方向に押圧された場合に、前記第一の突起部の上面が前記第一の凸条部の上面の裏面に当接、あるいは密接しているため、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を保持し、前記第一の伝熱板及び前記第二の伝熱板の押圧負荷による変形に起因する密封性の低下を防止するという作用を有する。また、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に当接あるいは密接し、さらに、前記第一の凸条部の内側側面に密接する側面と対向する側面が、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凹条部の側面とも当接することにより、前記第一の伝熱板及び第二の伝熱板の積層時の位置ずれを抑制すると同時に、積層方向に押圧された場合に、第一の風路及び第二の風路の出入口部の開口高さを保持し、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を向上させるための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれるものであり、伝熱板を構成するすべての要素を一体成形し、接着剤等を用いなくても、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、前記第一の突起部の側面が、前記第一の凸条部の内側側面が密接し、かつ、前記第一の凸条部の内側側面に密接する側面と対向する側面が隣接する前記第一の伝熱板及び前記第二の伝熱板に形成された前記第一の凹条部の側面とも当接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれの抑制が向上し、位置ずれに起因する密封性の低下の防止効果が向上し、また、積層方向に押圧された場合に、前記第一の突起部の上面が前記第一の凸条部の上面の裏面に当接、あるいは密接しているため、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を保持し、前記第一の伝熱板及び前記第二の伝熱板の押圧負荷による変形に起因する密封性の低下を防止するという作用を有する。
【0040】
また、第一の凸条部の上面に凹入された第一の凹条部の断面形状は、前記第一の凹条部の最大幅が前記第一の凹条部の開口部の幅よりも広い形状であり、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりもい形状としたものであり、前記第一の伝熱板及び前記第二の伝熱板を交互に積層する際、隣接する前記第一の伝熱板及び前記第二の伝熱板に形成された前記第一の凹条部の上側に前記第二の凹条部が勘合し、前記第一の凹条部の開口部の幅に対し、前記第二の凹条部の開口部の幅が広いために、前記第一の凹条部の開口部内側と前記第二の凹条部の開口部の外側とが密接することとなり、また、前記第二の凹条部の最大幅は、開口部よりも広い形状を有しているために、前記第一の凹条部と前記第二の凹条部との密封性が向上するという作用を有する。
【0041】
また、第一の凸条部の上面に凹入された第一の凹条部は、断続的に凹入されており、第二の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、断続する前記第一の凹条部と重合するように断続的に凹入されたものであり、前記第一の伝熱板及び前記第二の伝熱板に前記第一の凹条部及び前記第二の凹条部を一体成形する際に、前記第一の凹条部及び前記第二の凹条部の肉厚が薄肉化する場合、前記第一の凹条部及び前記第二の凹条部を断続的に形成することにより、前記第一の凹条部及び前記第二の凹条部の成形時の薄肉化を低減させ、過剰な薄肉化により伝熱板が破けることを防止し、前記第一の凹条部及び前記第二の凹条部の密封性が向上するという作用を有する。
【0042】
また、第一の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された前記第一の凸条部と、前記第二の伝熱板に形成された前記第一の凸条部が交差する位置まで凹入されており、前記第一の凹条部の頂部と前記第一の凸条部の上面が当接する高さに形成されたものであり、前記第一の凹条部の頂面と前記第一の凸条部の上面が当接することにより、前記第一伝熱板及び前記第二の伝熱板を交互に積層し、前記第一の伝熱板に形成された前記第一の凸条部と、前記第二の伝熱板に形成された前記第一の凸条部が交差する位置に、積層方向に押圧負荷がかかった場合、前記第一の伝熱板に形成された前記第一の凸条部と、前記第二の伝熱板に形成された前記第一の凸条部が交差する位置での各伝熱板の押圧負荷方向への変形を抑制し、変形による密封性の低下を防止するという作用を有する。
【0043】
また、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された第一の凸条部と前記第二の伝熱板に形成された前記第一の凸条部が交差する位置において、隣接する前記第一の伝熱板及び前記第二の伝熱板に設けられた前記第一の凸条部の端面と密接することにより前記第一の伝熱板に形成された前記第一の凸条部と前記第二の伝熱板に形成された前記第一の凸条部が交差する位置における密封性を向上させる交差部密閉部が、前記第一の凸条部の外側側面と同一面上に前記第一の凸条部と連続して、かつ、伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように成形された折り返し部と連続して形成されたものであり、前記第一の凸条部が交差する位置において、隣接する前記第一の伝熱板及び前記第二の伝熱板に形成された前記第一の凸条部の端面と前記交差部密閉部の内面とが密接することより、前記第一の凸条部が交差する位置での密封性を向上させるという作用を有する。
【0047】
また、第一の伝熱板及び第二の伝熱板の平面形状が、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、いずれの伝熱板においても第一の風路及び第二の風路の出入口が形成されることのない辺を有する形状である伝熱板により構成される熱交換器において、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第二の伝熱板の前記第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された前記第一の凸条部の内側側面及び前記第一の凸条部の上面の裏面及び前記第一の凹条部の側面に密接、あるいは当接することにより、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺を密封する前記第一の凸条部よりも狭い幅の第三の凸条部が、前記第一の凸条部と連続して前記第一の伝熱板の外周部で前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺に中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたものであり、前記第三の凸条部は、前記第二の伝熱板の外周部で前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺に形成された前記第一の凸条部の内側側面及び前記第一の凸条部の上面の裏側及び前記第一の凹条部の側面に密接、あるいは当接することにより、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない外周部を密封すると同時に、積層方向に押圧負荷がかかった場合、前記第一の伝熱板に形成された前記第三の凸条部の上面と前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面とが当接、あるいは密接していることにより、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない外周部の伝熱板の変形を抑制し、伝熱板の変形に起因する密封性の低下を防止するという作用を有する。
【0048】
また、第一の伝熱板及び第二の伝熱板の平面形状が、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、いずれの伝熱板においても第一の風路及び第二の風路の出入口が形成されることのない辺を有する形状である伝熱板により構成される熱交換器において、前記第二の伝熱板は、前記第二の伝熱板の外周部の第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された第一の凸条部の上面に、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺での密封性を向上させるために、第一の凹条部が凹入形成されていない形状であり、前記第一の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、外側側面が前記第二の伝熱板に形成された前記第一の凸条部の内側側面に密接し、上面が前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に密接するように、前記第一の風路及び前記第二の風路の出入口が形成されることのない辺に、第三の凸条部が中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたものであり、前記第二の伝熱板に形成された前記第一の凸条部の外側側面と前記第一の伝熱板に形成された前記第三の凸条部の内側側面と密接し、前記第一の凸条部の上面に前記第一の凹条部が凹入成形されていないために、前記第二の伝熱板に形成された前記第一の凸条部の上面と前記第一の伝熱板の伝熱面の下面との接触面積は増大し、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない外周部での密封性を向上させるという作用を有する。
【0049】
また、第一の伝熱板及び第二の伝熱板を交互に積層した際、上面が前記第二の伝熱板に形成された第一の凸条部の上面の裏面と当接し、また側面が前記第一の凸条部の内側側面と密接することにより、第一の風路及び第二の風路の出入口部分が形成されることのない辺の強度を向上させるための第二の突起部が、少なくとも一つ以上、前記第一の伝熱板に形成された第三の凸条部と一体に形成されているものであり、前記第一の伝熱板及び前記第二の伝熱板を積層した際、前記第二の突起部の上面が、隣接する前記第一の凸条部の上面の裏面に当接、あるいは密接することにより、積層方向に押圧負荷がかかった場合、あるいは、熱交換器の外周側から内側へ向かって負荷がかかった場合、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺での伝熱板の変形を抑制し、伝熱板の変形に起因する密封性の低下を防止すると同時に、前記第三の凸条部の側面及び前記第二の突起部の側面が前記第一の凸条部の側内面と密接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制し、位置ずれに起因する密封性の低下を防止するという作用を有する。
【0050】
また、第一の伝熱板及び第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部が伝熱面に対して垂直をなすように折り返し状に形成され、また、前記伝熱面に対して、前記第一の伝熱板及び前記第二の伝熱板の水平方向の寸法が等しい形状に形成されているものであり、任意の前記第一及び第二の伝熱板の片側の縁部の内面は、隣接する伝熱板の縁部の外側面と密接するが、伝熱板に対して水平寸法が等しいために、縁部の内面が密接することになる伝熱板の縁部は、押し広げられるながら隣接する伝熱板の縁部の外側面に密接するように積層されることになり、前記第一及び第二の風路の出入口以外の熱交換器の外周面を密封するという作用を有する。
【0051】
また、第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の外周部の強度を向上させるために、前記第一の伝熱板及び、前記第二の伝熱板は、第一の凸条部、第二の凸条部、第三の凸条部、第一の凹条部、第二の凹条部、第一の突起部、第二の突起部、折り返し部及び交差部密閉部のうちの少なくとも一つの要素の肉厚が伝熱面の肉厚よりも厚く形成されているものであり、前記第一の伝熱板及び前記第二の伝熱板により形成される第一の風路及び第二の風路の出入口部分以外を密封するための、前記第一の伝熱板及び前記第二の伝熱板の外周部を構成する部位の肉厚を厚くし、強度を向上させることにより、熱交換器に外力が加わった際に、前記第一の伝熱板及び前記第二の伝熱板により形成される前記第一の風路及び前記第二の風路の出入口部分以外を密封するための、前記第一の伝熱板及び前記第二の伝熱板の外周部を構成する部位が変形することを抑制し、変形に起因する密封性の低下を防止するという作用を有する。
【0052】
また、第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の第一の風路及び第二の風路出入口以外の外周側面の密封性を向上させるために、前記熱交換器の外周側面を溶着したものであり、前記熱交換器の外周部における、前記第一の伝熱板及び前記第二の伝熱板の密接面を溶着することにより、前記第一の伝熱板及び前記第二の伝熱板とにより形成される前記第一の風路及び前記第二の風路の出入口部分以外での密封性を向上するという作用を有する。
【0053】
また、第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の前記第一の伝熱板及び前記第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部の先端を、外側へすそ広がりの形状を有するように形成し、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した後、前記熱交換器の外周側面を溶着したものであり、前記熱交換器の外周側面を熱溶着する際、積層された各伝熱板の縁部先端が外側へすそ広がり状をなしているため、重なり合う伝熱板の外側に位置する伝熱板の縁部の先端を、内側に位置する伝熱板の外周側面に押しつけながら溶着することができ、外周側面の溶着性が向上し、前記第一の伝熱板及び前記第二の伝熱板とにより形成される前記第一の風路及び前記第二の風路の出入口部分以外での密封性が向上するという作用を有する。
【0054】
以下、本発明の実施例について図面を参照しながら説明する。
【0055】
【実施例】
(実施例1)
以下、本発明の実施例1について、図1、2、3、4、5及び図6を参照しながら説明する。
【0056】
図1は本実施例に用いる熱交換器の概略分解斜視図、図2はその風路出入口部の概略断面図、図3はその側面部の概略断面図、図4は伝熱板の積層時の概略斜視図、図5は、その風路出入口部分の概略断面図であり、図6はその側面部の概略断面図である。
【0057】
図1及び図6において、第一の伝熱板1と第二の伝熱板2を交互に積層することにより構成される熱交換器は、それぞれの伝熱板の上下に第一の風路3と第二の風路4とが構成され、第一の風路3と第二の風路4を流れる流体は、それぞれの伝熱板を介して熱交換を行い、それぞれの風路の出入口付近ではお互いが交差する方向に流れ、中央部分ではお互いが対向する方向に流れる対向流型である。実際は、多数の第一の伝熱板1と第二の伝熱板2が交互に積層されているが、簡略のため3つの伝熱板を示している。
【0058】
図1、2及び3において、平面形状が六角形をなす第一の伝熱板1は、薄厚、たとえば0.2mmのポリスチレンフィルムからなり、その上面及び下面を流れる流体の熱交換が行われる伝熱面5と、第一の伝熱板の対向する一対の辺の外周部に、第一の伝熱板1の上面方向に、第一の伝熱板1に対して外側側面を有する中空凸状に形成された第一の凸条部としての第一の遮蔽リブ6aと、第一の遮蔽リブ6aが形成された以外の、第一の伝熱板の対向する一対の辺の外周部に、第一の遮蔽リブ6aと連続し、第一の遮蔽リブ6aと同様、第一の伝熱板1の上面方向に、第一の伝熱板1に対して外側側面を有する中空凸状に、第一の遮蔽リブ6aよりも幅が狭く、第一の遮蔽リブ6aよりも高い形状をなすように形成されたの第三の凸条部としての第二の遮蔽リブ6bと、第一の遮蔽リブ6aの上面に、第一の伝熱板1の下面方向に凹入形成された頂部が円弧状の第一の凹条部としての連続する第一の溝7と、第一の風路3の出入口となる、第一の遮蔽リブ6a及び第二の遮蔽リブ6bが形成された以外の、第一の伝熱板の対向する一対の辺の外周部から所定の距離だけ内側に、第一の伝熱板1の下面方向に凹入形成された第二の凹条部としての連続する第二の溝8と、第一の風路3の出入口となる第一の伝熱板1の対向する一対の辺の外周部の縁部分に、第一の伝熱板1の下面方向に折り返し状に形成された折り返し部としてのカバー107と、第一の遮蔽リブ6a及び第二の遮蔽リブ6bと平行に所定の間隔を置いて、第一の伝熱板1の上面方向に凸状に形成された第二の凸条部としての凸状スペーサ105とが、ポリスチレンフィルムの真空成形により一体成形されたものであり、第二の伝熱板2は、第一の伝熱板1における第二の遮蔽リブ6bの形状が、幅、高さが第一の遮蔽リブ6aと同寸法である第三の遮蔽リブ6cが形成されている以外は第一の伝熱板1と同形状である。
【0059】
第一の遮蔽リブ6a、第三の遮蔽リブ6c及び凸状スペーサ105は、第一の風路3及び第二の風路4の風路高さと等しい高さ、たとえば2mmの高さに設計されており、第二の遮蔽リブ6bは第一の伝熱板1と第二の伝熱板2を交互に積層した際、上面が第二の伝熱板2に形成された第三の遮蔽リブ6cの裏面に当接するような高さ、たとえば4mmに設計されており、幅は第三の遮蔽リブ6cの半分の幅に設計されており、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの外側側面は、先端が伝熱面5に対して裏側に位置するまで、たとえば伝熱面5の裏面に対して1.7mmの位置まで折り返されており、3本の凸状スペーサ105が、第一の遮蔽リブ6a及び第二の遮蔽リブ6bと平行に所定の間隔を置いて形成されており、風路出入口の縁部分に形成されたカバー107は、第一の伝熱板1と第二の伝熱板2を交互に積層した際、隣接する伝熱板の第一の遮蔽リブ6aの外側側面を覆うことができるように、先端が第二の遮蔽リブ6b、第三の遮蔽リブ6cの外側側面と同位置である、伝熱面5に対して1.7mmの位置まで折り返されており、第一の遮蔽リブ6aの上面に凹入された第一の溝7は、風路出入口側から所定の距離を置いて、第二の遮蔽リブ6b、あるいは第三の遮蔽リブ6cに接する位置まで、また、第一の溝7の頂部が凹入されて第一の溝7の位置の風路高さが設計風路高さ未満とならないように、第一の遮蔽リブ6aと等しい、たとえば第一の遮蔽リブ6aの上面に対して2.2mm(風路高さ2mm + 厚さ0.2mm相当分)の位置まで、溝幅内寸がたとえば3.0mmに設計され、凹入されており、第二の溝8は、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第一の溝7と重合する位置に、端部が第一の遮蔽リブ6aと第二の遮蔽リブ6b、あるいは第三の遮蔽リブ6cと接するように、溝幅外寸が第一の溝7の溝幅内寸よりも大きくなるように、たとえば3.2mmに設計され、伝熱板の下面方向に凹入されている。
【0060】
第一の伝熱板1と第二の伝熱板2を交互に積層した際、図5に示すように、第一の風路3の出入口部分では、第二の伝熱板2に形成された第一の遮蔽リブ6aの上面と第一の伝熱板1の伝熱面5の下面が密接し、第二の伝熱板2に形成された第一の遮蔽リブ6aの外側側面と第一の伝熱板1に形成されたカバー107の内側側面が密接し、第二の伝熱板2の形成された第一の遮蔽リブ6aの上面に凹入された第一の溝7の内側に、第一の伝熱板1の伝熱面5に凹入形成された第二の溝8が密接するように押し込まれ、第一の溝7と第二の溝8とは締まり嵌めの関係となり、第一の風路3の出入口部分での第二の風路4の密封が行われる。第二の風路4の出入口部分においても同様の構造により密封が行われる。
【0061】
また、図6に示すように、第二の伝熱板2に形成された第三の遮蔽リブ6cの上面の半分に第一の伝熱板1の伝熱面5の一部が当接し、第三の遮蔽リブ6cの外側側面と第二の遮蔽リブ6bの外側側面の伝熱面よりも下側に位置するように折り返されている面の内側面が密接し、第二の遮蔽リブ6bの上面と第三の遮蔽リブ6cの上面の裏面とが密接し、第二の遮蔽リブ6bの外側側面と第三の遮蔽リブ6cの外側の折り返し部の内側面とが密接することにより、第一の風路3と第二の風路4の第二の遮蔽リブ6bと第三の遮蔽リブ6cの重合部での密封が行われる。また、一方の風路出入口部分において、他の一方の風路を密封する第一の遮蔽リブ6aは、上面に第一の溝7が形成されているために強度が向上しており、また風路出入口部分の伝熱面5についても、第二の溝8が形成されているため強度が向上し、第一の遮蔽リブ6a及び風路出入口部分の伝熱板の変形等による密封性の低下を抑制することができる。また、第一の伝熱板1と第二の伝熱板2は、積層時、第一の遮蔽リブ6a、第二の遮蔽リブ6b、第三の遮蔽リブ6c及び凸状スペーサ105により、風路高さを確保するように保持される。
【0062】
上記構成により、熱交換器は、接着剤等の伝熱板材料以外の二次材料が用いられることなく伝熱板の材料となるポリスチレン、単一材料のみで構成されるためにリサイクル可能であり、接着剤等を用いなくても、第一の風路3及び第二の風路4において、それぞれの風路の出入口部分以外での密封性が高く、また、伝熱板を構成するすべての要素を一体成形し、かつ接着剤等の二次材料を用いることなく形成されるため、製造コストの安価な熱交換器を得ることができる。
【0063】
なお、本実施例では、伝熱板の材料としてポリスチレンフィルムを用い、真空成形による一体成形としたが、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性樹脂フィルム、樹脂が混入された紙材などを用いてもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形しても、同様の作用効果を得ることができる。また、各部の寸法値及び個数は一例であり、特にその値に限定されることなく設計された場合でも、同様の作用効果を得ることができる。また、第二の溝8の溝幅外寸を第一の溝7の溝幅内寸よりも大きい寸法とし、第一の溝7と第二の溝8とが閉まり嵌めとなるように形成することが好ましいが、第一の溝7の溝幅内寸と等しい寸法とし、第一の溝7と第二の溝8が密接するように形成してもよい。
【0064】
(実施例2)
次に本発明の実施例2について、図7、8、9及び図10を参照しながら説明する。
【0065】
図7及び図9は本実施例に用いる熱交換器を構成する伝熱板の積層前の風路出入口部の概略断面図、図8は図7に対する積層時の風路入口部の概略断面図であり、図10は図9に対する積層時の風路出入口部分の概略断面図である。
【0066】
なお、実施例1と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0067】
本実施例の基本構成は、実施例1とほぼ同一であり、第一の溝7と第二の溝8のそれぞれの断面形状が異なるものである。
【0068】
図7において、第一の溝7と第二の溝8は、その断面形状が、開口部の幅が狭まった略円形の断面形状となるように凹入成形されており、第一の溝7の開口部の内寸法は、第二の溝8の開口部の外寸法よりも狭くなるように設計されており、また、第一の溝7の内面に第二の溝8の外面が密接するように設計されている。図8に示すように、第一の伝熱板1と第二の伝熱板2が積層された場合、第二の溝8の開口部の外寸法は、第一の溝7の開口部の内寸法よりも広いため、第一の溝7の開口部の縁が、第二の溝8の開口部を狭めるように密接し、第一の溝7の内面全体も第二の溝8の外面に密接することになる。第一の溝7と第二の溝8は開口部が狭まった形状なため、第一の溝7と第二の溝8とが勘合することとなり、積層後、隣接する伝熱板同士が離れることを抑制し、第一の遮蔽リブ6aの上面と第一の遮蔽リブ6aの上面と密接する伝熱板の伝熱面の下面との間の密封性が向上することになる。
【0069】
また、図9は第一の溝7と第二の溝8の形状を、開口部の幅が狭まった略台形の断面形状となるように凹入成形したものであり、第一の溝7の開口部の内寸法は、第二の溝8の開口部の外寸法よりも狭くなるように設計されており、また、第一の溝7の内面に第二の溝8の外面が密接するように設計されている。図10に示すように、第一の伝熱板1と第二の伝熱板2が積層された場合、第二の溝8の開口部の外寸法は、第一の溝7の開口部の内寸法よりも広いため、第一の溝7の開口部の縁が、第二の溝8の開口部を狭めるように密接し、第一の溝7の側面及び下面も第二の溝8の側面及び下面とそれぞれ密接することになる。第一の溝7と第二の溝8は開口部が狭まった形状なため、第一の溝7と第二の溝8とが勘合することとなり、積層後、隣接する伝熱板同士が離れることを抑制し、第一の遮蔽リブ6aの上面と第一の遮蔽リブ6aの上面と密接する伝熱板の伝熱面の下面との間の密封性が向上することになる。
【0070】
上記構成により、熱交換器は、接着剤等を用いなくても、第一の風路3及び第二の風路4において、一方の風路の出入口部分における他の一方の風路の密封性が高い熱交換器を得ることができる。
【0071】
なお、本実施例に用いた第一の溝7及び第二の溝8の断面形状に限らず、略ひし形形状等、第一の溝7及び第二の溝8はぞれぞれ開口部が狭まった形状であり、第一の溝7と第二の溝8が勘合し、第一の溝7の内面と第二の溝8の外面が密接し、開口部が締まり嵌めとなる形状であれば、同様の作用効果を得ることができる。
【0072】
(実施例3)
次に本発明の実施例3について、図11及び図12を参照しながら説明する。
【0073】
図11は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図12は伝熱板の積層時の概略斜視図である。
【0074】
なお、実施例1及び2と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0075】
図11において、第一の伝熱板1及び第二の伝熱板2に形成された第一の遮蔽リブ6aの上面には、複数のたとえば4つの第一の溝7a〜dが、風路出入口側から所定の距離を置いて、第二の遮蔽リブ6b、または第三の遮蔽リブ6cとの間に、伝熱面5の下面方向に断続的に凹入形成されており、風路出入口部分の伝熱面5にも、第一の溝7a〜dと同数の第二の溝8a〜dが、伝熱面の下面方向に凹入形成されており、図12に示すように、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第一の溝7a〜dの内面と第二の溝8a〜dの外面がそれぞれ密接するように重合し、また、第一の遮蔽リブ6aの上面と第一の遮蔽リブ6aの上面と密接する第一の伝熱板1及び第二の伝熱板2の伝熱面の下面が密接することにより、一方の風路の出入口部分での他方の風路を密封することになる。
【0076】
第一の伝熱板1及び第二の伝熱板2をポリスチレンフィルムの真空成形により一体形成する場合、第一の溝7a〜d及び第二の溝8a〜dを一連の溝として凹入成形する際、設計寸法及び成形条件によっては、溝部分のフィルムの肉厚が薄肉化することにより破れが発生し、穴があいた状態で成形され、積層後の密封性が低下することがあるが、上記のように第一の溝7a〜d及び第二の溝8a〜dを断続的に形成する構成とすることにより、第一の溝7a〜d及び第二の溝8a〜dの成形時の伝熱板の薄肉化を低減することができ、第一の風路3及び第二の風路4において、一方の風路の出入口部分における他の一方の風路の密封性が高い熱交換器を得ることができる。
【0077】
なお、本実施例では、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1と同様、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性フィルム、樹脂が混入された紙材などを用いた場合でもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができる。
【0078】
(実施例4)
次に本発明の実施例4について、図13、14、15、16、17、18及び図19を参照しながら説明する。
【0079】
図13は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図14はその第一の風路3の出入口面と第二の風路4の出入口面とが隣り合うコーナー部分の伝熱板の概略正面透視図、図15はそのコーナー部分の概略正面図、図16は伝熱板の積層時の概略斜視図、図17はその第一の風路3の出入口面と第二の風路4の出入口面とが隣り合うコーナー部分の概略上方透視図、図18はそのコーナー部分の概略正面透視図、図19はそのコーナー部分の概略正面図である。
【0080】
なお、実施例1、2及び3と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0081】
図13、図14、図17及び図18に示すように、第一の伝熱板1及び第二の伝熱板2に形成された第一の遮蔽リブ6aの上面には、第一の溝7が、第一の伝熱板1と第二の伝熱板2を積層した際に、それぞれの伝熱板に形成された第一の遮蔽リブ6aが交差するコーナー部分にまで延びるように凹入形成され、図13、図15及び図19に示すように、第一の伝熱板1及び第二の伝熱板2に形成された第一の遮蔽リブ6aの外側の折り返し面の風路出入口側には、伝熱板積層時に、下方に配置される伝熱板に形成された第一の遮蔽リブ6aの端面9を覆うように密接する交差部密閉部としてのコーナーカバー10aが形成されており、一方の第二の遮蔽リブ6b、または第三の遮蔽リブ6c側にも同様に、積層時に下方に配置される伝熱板に形成された第二の遮蔽リブ6bの端面11、あるいは第三の遮蔽リブ6cの端面12を覆うように密接する交差部密閉部としてのコーナーカバー10bが形成されている。
【0082】
第一の遮蔽リブ6aの上面に形成された第一の溝7は、図18に示すように、コーナー部において、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、第一の溝7の頂部が、下方に配置される伝熱板に形成された第一の遮蔽リブ6aの上面に当接するように、第一の遮蔽リブ6aの上面に対し、伝熱面5の裏面と同高さまで凹入されており、長手方向については、コーナー部において下方に配置される伝熱板に形成された第一の遮蔽リブ6aの半分の長さが当接する位置から、第一の伝熱板1においては第二の遮蔽リブ6bに接する位置まで、また、第二の伝熱板2においては、積層時に先端が第一の伝熱板1に形成された第二の遮蔽リブ6bの外面に当接する位置まで凹入されており、コーナーカバー10aは、積層時に下方に配置される伝熱板に形成された第一の遮蔽リブ6aの端面9を覆い、コーナーカバー10bは、積層時に下方に配置される伝熱板に形成された第二の遮蔽リブ6bの端面11、または第三の遮蔽リブ6cの端面12を覆うように、隣り合うカバー107及び第二の遮蔽リブ6b、あるいは第三の遮蔽リブ6cと連続し、先端が、伝熱面5に対して、隣り合うカバー107及び第二の遮蔽リブ6b、あるいは第三の遮蔽リブ6cの先端と同位置まで折り返し状に成形されている。
【0083】
上記のように形成された第一の伝熱板1と第二の伝熱板2を、図16に示すように交互に積層した場合、第一の風路3と第二の風路4が隣り合うコーナー部分の内部では、図17に示すように、第一の伝熱板1に形成された第一の遮蔽リブ6aの上面に凹入形成された第一の溝7の頂部は、その下方に配置される第二の伝熱板2に成形された第一の遮蔽リブ6aの上面に当接し、同様に、第二の伝熱板2に形成された第一の遮蔽リブ6aの上面に凹入された第一の溝7の頂部は、その下方に配置される第一の伝熱板1に形成された第一の遮蔽リブ6aの上面に当接することとなり、そのコーナー部分の外面は、図19に示すように、第一の伝熱板1に形成された第一の遮蔽リブ6aの端面9を、第二の伝熱板に形成された第一の遮蔽リブ6aの外側側面に形成されたカバーと連続するコーナーカバー10aが覆うように密接し、第一の伝熱板1に形成された第一の遮蔽リブ6aの側面は、その上方に配置される第二の伝熱板2に成形された第一の遮蔽リブ6aの側面及びカバー107に密接するように覆われており、同様に、第二の伝熱板2に形成された第一の遮蔽リブ6aの端面9を、第一の伝熱板1に形成された第一の遮蔽リブ6aの外側側面に形成されたカバー107と連続するコーナーカバー10aが覆うように密接し、第二の伝熱板2に形成された第一の遮蔽リブ6aの側面は、その上方に配置される第一の伝熱板1に成形された第一の遮蔽リブ6aの側面及びカバー107に密接するように覆われることになる。
【0084】
上記構成により、第一の風路3と第二の風路4とが隣り合うコーナー部分において、上方に配置される伝熱板に形成されたコーナーカバー10が下方に配置される伝熱板に形成された第一の遮蔽リブ6aの端面9を覆うように密接することにより、コーナー部分での一方の風路と他のもう一方の風路との密封を行い、積層方向に押圧負荷がかかった際、上方に配置される伝熱板に形成された第一の遮蔽リブ6aの上面に凹入された第一の溝7の頂部が、下方に配置される伝熱板に形成された第一の遮蔽リブ6aの上面に当接しているため、コーナー部の変形を抑制することとなり、コーナーカバー10と第一の遮蔽リブ6aの端面9との密接性及び第一の遮蔽リブ6aとカバー107との密接性が低下することによるコーナー部分での一方の風路と他のもう一方の風路との密封性の低下を防止できる熱交換器を得ることができる。
【0085】
(実施例5)
次に本発明の実施例5について、図20、21、22及び23を参照しながら説明する。
【0086】
図20は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図21はその風路出入口の概略断面図、図22は伝熱板の積層時の概略斜視図、図23は、その風路出入口部分の概略断面図である。
【0087】
なお、実施例1、2、3及び4と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0088】
図20及び図21に示すように、第一の伝熱板1及び第二の伝熱板2は、風路出入口部分に、凸状スペーサ105の延長線上に、第二の溝8よりも外側に第一の突起部として、凸状スペーサ105と同数の突起13a〜cが伝熱面5に対して中空凸状に、その他の部分と同様に、ポリスチレンフィルムの真空成形により、一体成形されている。図22及び図23に示すように、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、突起13a〜cは、その風路出入口側の側面が、上方に配置される伝熱板に形成された第一の遮蔽リブ6aの外側折り返し面の内側に密接する高さ、たとえば3.0mmに設計されている。
【0089】
上記構成により、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、第一の伝熱板1に形成された突起13の風路側の側面は、その第一の伝熱板1の上方に配置された第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し面の内面に密接し、同様に、第二の伝熱板2に形成された突起13の風路側の側面は、その第二の伝熱板2の上方に配置された第一の伝熱板1に形成された第一の遮蔽リブ6aの外側折り返し面の内面に密接するため、第一の伝熱板1及び第二の伝熱板2の伝熱面に対して水平方向への位置ずれが抑制され、位置ずれに起因する、第一の伝熱板1及び第二の伝熱板2の外周縁部における密封性の低下、すなわち、第一の遮蔽リブ6aの側面とカバー107との密封性、第一の遮蔽リブ6aの端面9とコーナーカバー10aとの密封性、第二の遮蔽リブ6bの側面と第三の遮蔽リブ6cの側面との密封性、コーナーカバー10bと第二の遮蔽リブ6bの端面11、あるいは第三の遮蔽リブ6cの端面12との密封性の低下を防止することができ、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0090】
なお、本実施例では、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1及び3と同様、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性フィルム、樹脂が混入された紙材などを用いた場合でもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができる。
【0091】
(実施例6)
次に本発明の実施例6について、図24及び図25を参照しながら説明する。
【0092】
図24は本実施例に用いる熱交換器を構成する伝熱板の積層前の風路出入口の概略断面図、図25は伝熱板の積層時の風路出入口部分の概略断面図である。
【0093】
なお、実施例1、2、3、4及び5と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0094】
図24に示すように、第一の伝熱板1の風路出入口には、第二の溝8よりも外側に突起13が伝熱面5に対して中空凸状に、その他の部分と同様に、ポリスチレンフィルムの真空成形により、一体成形されている。図25に示すように、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、突起13は、その風路出入口側の側面が、上方に配置される第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し面の内側に密接し、かつ、その上面が第一の遮蔽リブ6aの上面の裏面に密接するように、たとえば4.0mmに設計されており、第二の伝熱板2の風路出入口部分も同一形状に形成されている。
【0095】
上記構成により、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、第一の伝熱板1に形成された突起13の風路側の側面は、その第一の伝熱板1の上方に配置された第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し面の内面に密接するため、第一の伝熱板1及び第二の伝熱板2の伝熱面に対して水平方向への位置ずれが抑制され、位置ずれに起因する、第一の伝熱板1及び第二の伝熱板2の外周縁部における密封性の低下、すなわち、第一の遮蔽リブ6aの側面とカバー107との密封性、第一の遮蔽リブ6aの端面9とコーナーカバー10aとの密封性、第二の遮蔽リブ6bの側面と第三の遮蔽リブ6cの側面との密封性、コーナーカバー10bと第二の遮蔽リブ6bの端面11、あるいは第三の遮蔽リブ6cの端面12との密封性の低下を防止することができ、かつ、突起13の上面と第一の遮蔽リブ6aの上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、風路高さを確保すると同時に、伝熱板のたわみを抑制し、伝熱板のたわみによる第二の伝熱板2に形成された第一の遮蔽リブ6aの第一の溝7よりも風路出入口側の上面と第一の伝熱板1の伝熱面5の第二の溝8よりも風路出入口側の下面との密封性の低下を防止することができ、また、第二の伝熱板2に形成された突起13も同様の効果作用を有するため、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0096】
なお、本実施例では、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1、3及び5と同様、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性フィルム、樹脂が混入された紙材などを用いた場合でもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができる。
【0097】
(実施例7)
次に本発明の実施例7について、図26及び図27を参照しながら説明する。
【0098】
図26は本実施例に用いる熱交換器を構成する伝熱板の積層前の風路出入口の概略断面図、図27は伝熱板の積層時の風路出入口部分の概略断面図である。
【0099】
なお、実施例1、2、3、4、5及び6と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0100】
図26に示すように、第一の伝熱板1の風路出入口には、第二の溝8よりも外側に突起13が伝熱面5に対して中空凸状に、その他の部分と同様に、ポリスチレンフィルムの真空成形により、一体成形されている。図25に示すように、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、突起13は、その風路出入口側の側面が、上方に配置される第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し面の内側に密接し、また、その対向する側面は、第二の伝熱板2に形成された第一の遮蔽リブ6aの上面に凹入された第一の溝7の側面と密接し、さらに、その上面が第一の遮蔽リブ6aの上面の裏面に密接するように設計されており、第二の伝熱板2の風路出入口部分も同一形状に形成されている。
【0101】
上記構成により、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、第一の伝熱板1に形成された突起13の風路側の側面は、その第一の伝熱板1の上方に配置された第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し面の内面に密接し、対向する側面は、第一の遮蔽リブ6aの上面に凹入された第一の溝7の側面と密接するため、第一の伝熱板1及び第二の伝熱板2の伝熱面に対して水平方向への位置ずれの抑制度が向上され、位置ずれに起因する、第一の伝熱板1及び第二の伝熱板2の外周縁部における密封性の低下、すなわち、第一の遮蔽リブ6aの側面とカバー107との密封性、第一の遮蔽リブ6aの端面9とコーナーカバー10aとの密封性、第二の遮蔽リブ6bの側面と第三の遮蔽リブ6cの側面との密封性、コーナーカバー10bと第二の遮蔽リブ6bの端面11、あるいは第三の遮蔽リブ6cの端面12との密封性の低下の防止効果が向上し、さらに、突起13の上面と第一の遮蔽リブ6aの上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、風路高さを確保すると同時に、伝熱板のたわみを抑制し、伝熱板のたわみによる第二の伝熱板2に形成された第一の遮蔽リブ6aの第一の溝7よりも風路出入口側の上面と第一の伝熱板1の伝熱面5の第二の溝8よりも風路出入口側の下面との密封性の低下を防止することができ、また、第二の伝熱板2に形成された突起13も同様の効果作用を有するため、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0102】
なお、本実施例では、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1、3及び5と同様、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性フィルム、樹脂が混入された紙材などを用いた場合でもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができる。
【0103】
(実施例8)
次に本発明の実施例8について、図28、29及び30を参照しながら説明する。
【0104】
図28は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図29は伝熱板の積層時の概略斜視図、図30は、その風路出入口部分以外の遮蔽リブの概略断面図である。
【0105】
なお、実施例1、2、3、4、5、6及び7と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0106】
図28及び29に示すように、第二の伝熱板2は、その第二の伝熱板2の風路出入口以外の外周部に形成された第一の遮蔽リブ6a及び第三の遮蔽リブ6cの上面に、第一の溝7が連続して凹入形成されており、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第一の風路3及び第二の風路4のそれぞれの出入口部分において、第一の溝7の上面に第二の溝8が重合し、かつ、第一の溝7の側面及び、第一の遮蔽リブ6aの折り返し部の内面とその下方に配置される伝熱板に形成された突起13a〜cの側面が密接し、風路出入口が形成されることのない外周部においては、図30に示すように、第二の伝熱板2に形成された第三の遮蔽リブ6cの折り返し部の内面及び第三の遮蔽リブ6cの上面に凹入された第一の溝7の側面と、第一の伝熱板1に形成された第二の遮蔽リブ6bの側面が密接するように、第一の溝7は形成されている。
【0107】
上記構成において、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第一の伝熱板1に形成された第二の遮蔽リブ6bと第二の伝熱板2に形成された第三の遮蔽リブ6cとが重合する第一の風路3及び第二の風路4のそれぞれの出入口が形成されることのない外周部において、第二の伝熱板2に形成された第三の遮蔽リブ6cの折り返し部の内面及び第三の遮蔽リブ6cの上面に凹入された第一の溝7の側面と、第一の伝熱板1に形成された第二の遮蔽リブ6bの側面が密接するように重合するため、第一の伝熱板1と第二の伝熱板2の、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの対向する方向への位置ずれが抑制され、位置ずれに起因する第二の遮蔽リブ6bと第三の遮蔽リブ6cの折り返し部の重なりによる密封性の低下が防止され、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0108】
(実施例9)
次に本発明の実施例9について、図31、32及び33を参照しながら説明する。
【0109】
図31は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図32は伝熱板の積層時の概略斜視図、図33は、その風路出入口部分以外の概略断面図である。
【0110】
なお、実施例1、2、3、4、5、6、7及び8と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0111】
図31及び32に示すように、第一の伝熱板1は、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第二の伝熱板2に形成された第三の遮蔽リブ6cの上面の裏面と密接するように形成された第一の伝熱板1に形成された第二の遮蔽リブ6bと等しい高さの第二の突起部としての補助リブ14a〜cが、図33に示すように、第一の伝熱板1と第二の伝熱板2を交互に積層した際、補助リブ14a〜cの側面15a〜cが、第二の伝熱板2に形成された第三の遮蔽リブ6cの内面に密接するように、第二の遮蔽リブ6bが対向する方向に突出するように、第二の遮蔽リブ6bと一体に成形されている。
【0112】
上記構成において、第一の伝熱板1と第二の伝熱板2を交互に積層した際、第三の遮蔽リブ6cの下方には、第二の遮蔽リブ6b及び補助リブ14a〜cが配置されているため、積層方向に押圧負荷がかかった場合、第二の遮蔽リブ6bのみが配置されている場合よりも、強度が向上しているため、第二の遮蔽リブ6b及び、第三の遮蔽リブ6cの変形を抑制し、変形に起因する密封性の低下、すなわち、積層方向に押圧負荷がかかり、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの折り返し部の重なり部分が外側へ開くように変形し、密封性が低下することが防止され、または、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの外側から内側へ向かって負荷がかかった場合、第二の遮蔽リブ6bの上面と第三の遮蔽リブ6cの上面の裏面及び第一の伝熱板1の伝熱面5の下面と第三の遮蔽リブ6cの上面との密接面が、積層方向に開く変形により密封性が低下することが防止され、また、第三の遮蔽リブ6cの内側側面と遮蔽リブbの側面及び補助リブ14a〜cの側面15が密接しているため、伝熱板の第二の遮蔽リブ6b及び第三の遮蔽リブ6cの対向する方向への位置ずれを抑制され、位置ずれに起因する第二の遮蔽リブ6bと第三の遮蔽リブ6cの折り返し部の重なりによる密封性の低下が防止され、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0113】
なお、本実施例では補助リブ14を3個としたが、その個数は一例であり、その個数変化させても同様の作用効果を得ることができる。
【0114】
また、補助リブ14の形状を伝熱面に対して水平形状を略台形状としたが、その形状を略三角形状、あるいは四辺形状などとしても、同様の作用効果を得ることができる。
【0115】
(実施例10)
次に本発明の実施例10について、図34、35、36、37、38及び39を参照しながら説明する。
【0116】
図34は本実施例に用いる熱交換器を構成する伝熱板の積層前の概略分解斜視図、図35はその風路出入口部分の概略断面図、図36はその風路出入口部分以外の概略断面図、図37は伝熱板積層時の概略斜視図、図38はその風路出入口部分の概略断面図、図39はその風路出入口部分以外の概略断面図である。
【0117】
なお、実施例1、2、3、4、5、6、7、8及び9と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0118】
図34、35及び36に示すように、第一の伝熱板1及び第二の伝熱板2に形成された第一の遮蔽リブ6aの外側折り返し部、カバー107、コーナーカバー10、第一の伝熱板1に形成された第二の遮蔽リブ6bの外側折り返し部及び第二の伝熱板2に形成された第三の遮蔽リブ6cの外側折り返し部は、伝熱面5に対して垂直方向に折り返されていると同時に、第一の伝熱板1と第二の伝熱板2の伝熱面5に対して水平方向の寸法が等しく設計されている。
【0119】
上記構成において、図37に示すように第一の伝熱板1と第二の伝熱板2とを交互に積層する際、第一の風路3の風路出入口部分では、図38に示すように、第一の伝熱板1は、第一の伝熱板1に形成されたカバー107が、第二の伝熱板2に形成された第一の遮蔽リブ6aの折り返し部の外面に密接するように、カバー107の先端が外側に押し広げられるように積層され、また、第二の伝熱板2は、第二の伝熱板2に形成されたコーナーカバー10a及びコーナーカバー10bがそれぞれ第一の伝熱板1に形成された第一の遮蔽リブ6aの端面9及び第二の遮蔽リブ6bの端面の外面に密接するように、コーナーカバー10a及びコーナーカバー10bの先端が押し広げられながら積層され、同様に、第二の風路出入口部分も同様に積層される。また、第一の風路3及び第二の風路4の出入口部分が形成されることのない、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの積層状態は、図39に示すように、第一の伝熱板1は、第一の伝熱板1に形成された第二の遮蔽リブ6bの折り返し部の内面が、第二の伝熱板2に形成された第三の遮蔽リブ6cの折り返し部の外面に密接するように、第二の遮蔽リブ6bの折り返し部の先端が外側へ押し広げられるように積層され、第二の伝熱板は、第二の伝熱板2に形成された第三の遮蔽リブ6cの折り返し部の内面が、第一の伝熱板に形成された第二の遮蔽リブ6bの折り返し部の外面に密接するように、第三の遮蔽リブ6cの折り返し部の先端が外側へ押し広げられるように積層され、それぞれ外側へ押し広げられて積層された部分は、積層後、内側へ押圧して密接することとなり、カバー107と第一の遮蔽リブ6a、コーナーカバー10aと第一の遮蔽リブ6aの端面9、コーナーカバー10bと第二の遮蔽リブ6b、または第三の遮蔽リブ6c及び、第二の遮蔽リブ6bと第三の遮蔽リブ6cとの密封性が向上し、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0120】
(実施例11)
次に本発明の実施例11について、図40、41及び42を参照しながら説明する。
【0121】
図40は本実施例に用いる熱交換器を構成する伝熱板の積層時の概略斜視図、図41はその風路出入口部分の概略断面図、図42はその風路出入口部分以外の概略断面図である。
【0122】
なお、実施例1、2、3、4、5、6、7、8、9及び10と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0123】
図41に示すように、第一の風路3の風路出入口部分において、第一の伝熱板1は、カバー107、突起13及び第二の溝8が、また第二の伝熱板2は、第一の遮蔽リブ6a、第一の溝7及びコーナーカバー10が伝熱面5よりも肉厚が厚くなり、第二の風路4の出入口部分も同様であり、また、第一の風路3及び第二の風路4の出入口部分が形成されることのない第二の遮蔽リブ6b及び第三の遮蔽リブ6cの重合部分では、図42に示すように、第二の遮蔽リブ6b及び、第三の遮蔽リブ6cの肉厚が、伝熱面5の肉厚よりも厚くなるように、ポリスチレンフィルムの真空成形により一体成形されている。
【0124】
上記構成において、第一の伝熱板1及び第二の伝熱板2を交互に積層した際、第一の風路3及び第二の風路4の出入口部分を構成する第一の遮蔽リブ6a、第一の溝7、第二の溝8、突起13、カバー107及びコーナーカバー10が、伝熱面5よりも肉厚が厚くなるように設計されているため、出入口部分の強度が向上し、出入口部分の変形を抑制し、出入口部分の変形に起因する密封性の低下を防止することができ、また、第一の風路3及び第二の風路4の出入口部分が形成されることのない第二の遮蔽リブ6b及び第三の遮蔽リブ6cの重合部分では、同様に、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの肉厚が、伝熱面5の肉厚よりも厚くなるように設計されているため、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの強度が向上し、第二の遮蔽リブ6b及び、第三の遮蔽リブ6cの変形に起因する密封性の低下を防止することができ、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0125】
なお、本実施例では、凸状スペーサ105は中空凸状に形成されているため、第一の伝熱板1及び第二の伝熱板2を交互に積層し、第一の風路3及び第二の風路4を形成した際、凸状スペーサ105の内部も風路として作用し伝熱効果が得られるため、凸状スペーサ105の肉厚は、伝熱面5とほぼ等しい肉厚に設計したが、第一の伝熱板1と第二の伝熱板2の積層時の強度を向上するために、凸状スペーサ105の肉厚を、伝熱面5の肉厚よりも厚くなるように設計してもよい。また、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1、3、5及び7と同様、材料として、ポリエチレン等のその他の樹脂フィルム、アルミニウム等の薄圧金属板、あるいは伝熱性と透湿性を有する紙材、微多孔性樹脂フィルム、樹脂が混入された紙材などを用いた場合でもよく、また成形方法についても、ブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができる。
【0126】
(実施例12)
次に本発明の実施例12について、図43、44、45、46、47及び、48を参照しながら説明する。
【0127】
図43は本実施例に用いる熱交換器を構成する伝熱板の積層時の概略分解斜視図、図44はその風路出入口部分の概略断面図、図45はその風路出入口部分以外の概略断面図、図46は外周側面部を熱溶着後の熱交換器の概略斜視図、図47はその風路出入口部分の概略断面図、図48はその風路出入口部分以外の概略断面図である。
【0128】
なお、実施例1、2、3、4、5、6、7、8、9、10及び11と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。
【0129】
図43に示すように、第一の伝熱板1及び第二の伝熱板2が交互に積層されており、第一の風路3の出入口部分は、図44に示すように、第一の遮蔽リブ6aの折り返し部の先端及びカバー107の先端が外向きに開くようにカール状に形成されており、第二の風路4の出入口部分も同様に形成されており、また、第一の風路3及び第二の風路4の出入口部分が形成されることのない第二の遮蔽リブ6b及び第三の遮蔽リブ6cの重合部分でも、図45に示すように、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの外側折り返し部の先端が外向きに開くようにカール状にポリスチレンフィルムの真空成形により成形されている。
【0130】
上記構成において、図46に示すように、熱交換器の外周側面を、ヒータブロックによりヒーターブロックを熱交換器に押しつけるように熱溶着する際、第一の風路3及び第二の風路4の出入口部分では、第一の遮蔽リブ6aの折り返し部の先端及びカバー107の先端がヒーターブロックに当接し、第一の遮蔽リブ6aの折り返し部の先端は突起13に、カバー107の先端は第一の遮蔽リブ6aの側面に確実に押し当てられ熱溶着されることになり、また、第一の風路3及び第二の風路4の出入口部分が形成されることのない第二の遮蔽リブ6b及び第三の遮蔽リブ6cの重合部分では、第二の遮蔽リブ6b及び第三の遮蔽リブ6cの折り返し部の先端がヒーターブロックに当接し、第二の遮蔽リブ6bの折り返し部の先端が第三の遮蔽リブ6cの側面に、第三の遮蔽リブ6cの折り返し部の先端が第二の遮蔽リブ6bの側面に確実に押し当てられ熱溶着されることになり、熱交換器の外周側面の熱溶着が確実に行われ、同時に、熱溶着時に熱収縮により収縮しても、外側にカール状としているため、先端をカール状に形成していない場合よりも、熱溶着面を広く取ることができ、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0131】
なお、本実施例では熱交換器の外周側面の熱溶着方法として、ヒーターブロックを用いた熱溶着方法としたが、その他、ヒーターローラーを用いるなど熱交換器の外周側面を押し付けながら熱溶着を行う方法であれば、同様の作用効果を得ることができる。また、第一の伝熱板1及び第二の伝熱板2を、ポリスチレンフィルムの真空成形による一体成形品としたが、実施例1、3、5、7及び11と同様、材料として、ポリエチレン等のその他の樹脂フィルム、あるいは伝熱性と透湿性を有する紙材、微多孔性樹脂フィルム、樹脂が混入された紙材などを用い、成形方法としてブロー成形、プレス成形等の他の工法により伝熱板を一体成形した場合でも、同様の作用効果を得ることができ、また、材料としてアルミニウム等の薄圧金属板などを用い、成形方法をプレス成形等により伝熱板を一体成形し、側面部を押し付けずに溶接等により溶着する場合、伝熱板側面の先端を外側にカール状としているため、先端をカール状に形成していない場合よりも、熱溶着面を広く取ることができ、熱交換器の外周側面の密封が確実に行われ、第一の風路3及び第二の風路4の密封性の高い熱交換器を得ることができる。
【0132】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、伝熱板を構成するすべての要素を一体成形し、接着剤等を用いなくても、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上し、接着剤等の伝熱板材料以外の二次材料が用いられることなく伝熱板の材料のみで構成されるためにリサイクル可能であり、接着剤等を用いなくても、風路の密封性が高く、また、伝熱板を構成するすべての要素を一体成形し、かつ接着剤等の二次材料を用いることなく形成されるため、製造コストの安価な熱交換器を得ることができる。また、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面に密接するため、伝熱板の水平方向への位置ずれが抑制され、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下を防止することができる熱交換器を得ることができる。また、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面に密接するため、伝熱板の水平方向への位置ずれが抑制され、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下を防止することができると同時に、第一の突起部の上面と第一の凸条部の上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、伝熱板のたわみを抑制し、伝熱板のたわみによる伝熱板間の密封性の低下を防止できる熱交換器を得ることができる。また、下方に配置された伝熱板に形成された第一の突起部の側面が、上方に配置された伝熱板に形成された第一の凸条部の外側折り返し面の内面及び、第一の凸条部の上面に凹入された第一の凹入部の外側面と密接するため、伝熱板の水平方向への位置ずれの抑制効果が向上し、位置ずれに起因する、伝熱板間の外周縁部における密封性の低下の防止効果が向上すると同時に、第一の突起部の上面と第一の凸条部の上面の裏面とが密接するため、積層方向に押圧負荷がかかった場合、伝熱板のたわみを抑制し、伝熱板のたわみによる伝熱板間の密封性の低下を防止できる熱交換器を得ることができる。
【0133】
また、第一の凹入部と第二の凹入部とが勘合することにより、積層後、隣接する伝熱板同士が離れることを抑制し、隣接する伝熱板間の密封性が向上するため、接着剤等を用いなくても、一方の風路の出入口部分における他の一方の風路の密封性が高い熱交換器を得ることができる。
【0134】
また、第一の凹入部及び第二の凹入部を断続的に形成する構成とすることにより、第一の凹入部及び第二の凹入部の成形時に過剰な薄肉化により伝熱板が破れることを防止し、伝熱板の破れによる密封性の低下を防止できる熱交換器を得ることができる。
【0135】
また、積層方向に押圧負荷がかかった際、第一の風路と第二の風路とが隣り合う、第一の伝熱板に形成された第一の凸条部と第二の伝熱板に形成された第一の凸条部とが交差する部分の変形を抑制し、変形による密接性の低下を防止することのできる熱交換器を得ることができる。
【0136】
また、上方に配置される伝熱板に形成された交差部密閉部が下方に配置される伝熱板に形成された第一の凸条部の端面を覆うように密接することにより、第一の風路と第二の風路とが隣り合う、第一の伝熱板に形成された第一の凸条部と第二の伝熱板に形成された第一の凸条部とが交差する部分における一方の風路と他のもう一方の風路との密封性が高い熱交換器を得ることができる。
【0140】
また、第一の風路及び第二の風路のそれぞれの出入口が形成されることのない外周部において、第二の伝熱板に形成された第三の凸条部の折り返し部の内面及び第三の凸条部の上面に凹入された第一の凹入部の側面と、第一の伝熱板に形成された第二の凸条部の側面が密接するように重合することにより、伝熱板の第二の凸条部及び第三の凸条部の対向する方向への位置ずれが抑制され、位置ずれに起因する第二の凸条部と第三の凸条部の折り返し部の重なりによる密封性の低下が防止できる熱交換器を得ることができる。
【0141】
また、第一の風路及び第二の風路のそれぞれの出入口が形成されることのない外周部において、第一の伝熱板に形成された第三の凸条部の内側側面と第二の伝熱板に形成された第一の凸条部の外側側面が密接し、さらに第二の伝熱板の風路出入口が形成されることのない外周部に形成された第一の凸条部の上面には、第一の凹条部が凹入成形されていないために、第一の凸条部の上面と第一の伝熱板の伝熱面の裏面との接触面積が増大し、風路の出入口部分が形成されることのない外周部での密封性が高い熱交換器を得ることができる。
【0142】
また、第二の突起部の上面が、隣接する第一の凸条部の上面の裏面に当接、あるいは密接することにより、積層方向に押圧負荷がかかった場合、あるいは、熱交換器の外周側から内側へ向かって負荷がかかった場合、風路の出入口部分が形成されることのない外周部での第一の凸条部及び第三の凸条部の変形を抑制し、変形に起因する密封性の低下を防止すると同時に、第三の凸条部の側面及び第二の突起部の側面が第一の凸条部の内側側面と密接することにより、伝熱板の積層後の位置ずれを抑制し、位置ずれに起因する密封性の低下を防止することができる熱交換器を得ることができる。
【0143】
また、伝熱板の外周側面において、それぞれ外側へ押し広げられて積層された部分は、積層後、内側へ押圧されて密接することとなり、外周側面部の密封性の高い熱交換器を得ることができる。
【0144】
また、伝熱板の外周部に形成された風路の出入口部分以外を密封する部位の肉厚を厚くし、強度を向上させることにより、熱交換器に外力が加わった際に、伝熱板の外周部に形成された風路の出入口部分以外を密封する部位が変形することを抑制し、変形に起因する密封性の低下を防止することができる熱交換器を得ることができる。
【0145】
また、熱交換器の外周部におけるそれぞれの伝熱板の密接面を溶着することにより、外周側面部の密封性が向上され、風路の出入口部分以外での密封性の高い熱交換器を得ることができる。
【0146】
また、伝熱板の縁部先端が外側へすそ広がり状をなしているため、重なり合う伝熱板の外側に位置する伝熱板の縁部の先端を、内側に位置する伝熱板の外周側面に押しつけながら溶着することができ、外周側面の溶着性が向上し、外周側面部の密封性が高い熱交換器を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の熱交換器の伝熱板積層前の概略分解斜視図
【図2】同伝熱板積層前の風路出入口部の概略断面図
【図3】同伝熱板積層前の側面部の概略断面図
【図4】同伝熱板の積層時の概略斜視図
【図5】同伝熱板積層時の風路出入口部分の概略断面図
【図6】同伝熱板積層時の側面部の概略断面図
【図7】本発明の実施例2の熱交換器の伝熱板積層前の風路出入口部の概略断面図
【図8】同伝熱板積層時の風路入口部の概略断面図
【図9】本発明の実施例2の熱交換器の伝熱板積層前の風路出入口部の概略断面図
【図10】同伝熱板積層時の風路入口部の概略断面図
【図11】本発明の実施例3の熱交換器の伝熱板積層前の概略分解斜視図
【図12】同伝熱板積層時の概略斜視図
【図13】本発明の実施例4の熱交換器の伝熱板積層前の概略分解斜視図
【図14】同伝熱板積層前のコーナー部分の伝熱板の概略正面透視図
【図15】同伝熱板積層前のコーナー部分の概略正面図
【図16】同伝熱板の積層時の概略斜視図
【図17】同伝熱板積層時のコーナー部分の概略上方透視図
【図18】同伝熱板積層時のコーナー部分の概略正面透視図
【図19】同伝熱板積層時のコーナー部分の概略正面図
【図20】本発明の実施例5の熱交換器の伝熱板積層前の概略分解斜視図
【図21】同伝熱板積層前の風路出入口の概略断面図
【図22】同伝熱板積層時の概略斜視図
【図23】同伝熱板積層時の風路出入口部分の概略断面図
【図24】本発明の実施例6の熱交換器の伝熱板積層前の風路出入口の概略断面図
【図25】同伝熱板積層時の風路出入口部分の概略断面図
【図26】本発明の実施例7の熱交換器の伝熱板積層前の風路出入口の概略断面図
【図27】同伝熱板積層時の風路出入口部分の概略断面図
【図28】本発明の実施例8の熱交換器の伝熱板積層前の概略分解斜視図
【図29】同伝熱板積層時の概略斜視図
【図30】同伝熱板積層時の風路出入口部分以外の遮蔽リブの概略断面図
【図31】本発明の実施例9の熱交換器の伝熱板積層前の概略分解斜視図
【図32】同伝熱板積層時の概略斜視図
【図33】同伝熱板積層時の風路出入口部分以外の概略断面図
【図34】本発明の実施例10の熱交換器の伝熱板積層前の概略分解斜視図
【図35】同伝熱板積層前の風路出入口部分の概略断面図
【図36】同伝熱板積層前の風路出入口部分以外の概略断面図
【図37】同伝熱板積層時の概略斜視図
【図38】同伝熱板積層時の風路出入口部分の概略断面図
【図39】同伝熱板積層時の風路出入口部分以外の概略断面図
【図40】本発明の実施例11の熱交換器の伝熱板積層時の概略斜視図
【図41】同伝熱板積層時の風路出入口部分の概略断面図
【図42】同伝熱板積層時の風路出入口部分以外の概略断面図
【図43】本発明の実施例12の熱交換器の伝熱板積層時の概略分解斜視図
【図44】同伝熱板積層時の風路出入口部分の概略断面図
【図45】同伝熱板積層時の風路出入口部分以外の概略断面図
【図46】同外周側面部を熱溶着後の概略斜視図
【図47】同外周側面部を熱溶着後の風路出入口部分の概略断面図
【図48】同外周側面部を熱溶着後の風路出入口部分以外の概略断面図
【図49】従来の熱交換器の伝熱板の分解状態を示す図
【図50】同伝熱板積層時の風路出入口の断面拡大図
【符号の説明】
1 第一の伝熱板
2 第二の伝熱板
3 第一の風路
4 第二の風路
5 伝熱面
6 遮蔽リブ
6a 第一の遮蔽リブ
6b 第二の遮蔽リブ
6c 第三の遮蔽リブ
7 第一の溝
7a〜d 第一の溝
8 第二の溝
8a〜d 第二の溝
9 第一の遮蔽リブの端面
10 コーナーカバー
10a、10bコーナーカバー
11 第二の遮蔽リブの端面
12 第三の遮蔽リブの端面
13 突起
13a〜c 突起
14 補助リブ
14a〜c 補助リブ
15 補助リブの側面
15a〜c 補助リブの側面
105 凸条スペーサ
107 カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger that is used in a heat exchange ventilator or other air conditioning apparatus and that alternately stacks a plurality of heat transfer plates to alternately form a first air path and a second air path. .
[0002]
[Prior art]
Conventionally, this type of heat exchanger is known as described in JP-A-8-178777.
[0003]
Hereinafter, the heat exchanger will be described with reference to FIGS.
[0004]
As shown in the figure, a plate-like liner (heat transfer plate) 101 includes a first protruding rib 102, a second protruding rib 103, a longitudinal groove rib 104, a protruding spacer 105, and a transverse groove rib 106. The cover 107 and the extended contact portion 108 are integrally molded. The heat exchanger is formed by alternately laminating the liners (heat transfer plates) 101 by 90 °, and the heat exchanger is configured to stack the liners (heat transfer plates) 101. The upper surface of the first ridge rib 102 and the lower surface of the adjacent liner (heat transfer plate) 101 are bonded, or the upper surface of the first ridge rib 102, the second ridge rib 103, and the transverse Adhesive is applied to the tops of the concave ribs 106 and the convex spacers 107, the lower surface of the adjacent liner (heat transfer plate) 101 and the portion where each element abuts are bonded, and the longitudinal ribs 104 and By laminating the second protruding ribs 103 so as to be in contact with each other, portions other than the inlet / outlet portion of the air passage formed between the adjacent liners (heat transfer plates) 101 are sealed.
[0005]
[Problems to be solved by the invention]
In such a conventional heat exchanger, when the liner (heat transfer plate) is laminated, the end face of the liner (heat transfer plate) is bonded with an adhesive to improve the sealing performance. However, as a heat exchanger, However, since multiple materials such as liner (heat transfer plate) and adhesive are used, it is necessary to separate the materials when recycling, and there is a problem that recycling is difficult. There is a demand for improved recyclability by using a single material for the exchanger.
[0006]
In addition, there is a problem that the sealing performance between the liners (heat transfer plates) is lowered unless the adjacent liners (heat transfer plates) are bonded to each other. A highly structured structure is required.
[0007]
Also, when laminating a large number of liners (heat transfer plates), it is necessary to apply the adhesive to each liner (heat transfer plate) while applying the adhesive, so the liner (heat transfer plate) can be applied without applying the adhesive. ) To reduce man-hours and reduce manufacturing costs.
[0008]
The present invention solves such a conventional problem, and is highly recyclable by using a single material for the heat exchanger, and also has high sealing performance without using an adhesive, and has a low manufacturing cost. The purpose is to provide an exchange.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the heat exchanger of the present invention includes a first heat transfer plate and a second heat transfer plate, a heat transfer surface, the first heat transfer plate, and the second heat transfer plate. The outer surface of the first air passage and the second air passage are formed in a hollow shape in a convex shape with respect to the heat transfer surface so as to leave the entrance and exit portions of the second air passage, and has an outer side surface formed to be folded back. The first ridges, the first ridges recessed in the upper surface of the first ridges, the second ridges overlapping the first ridges, and the first ridges In order to cover the outer side surface of the ridge portion, it is in close contact with the outer side surface of the first ridge portion, and is folded back in the direction opposite to the convex direction of the first ridge portion with respect to the heat transfer surface. The first folded heat transfer plate and the second heat transfer plate are integrally formed so as to include the formed folded portions and the second ridges that maintain the intervals between the alternately stacked heat transfer plates. The first The first heat transfer plate disposed above when the first heat transfer plate and the second heat transfer plate are alternately stacked on the inlet and outlet portions of the air passage and the second air passage, or the A first for closely contacting the inner side surface of the first ridge formed on the second heat transfer plate and suppressing the positional deviation after the first heat transfer plate and the second heat transfer plate are stacked. When at least one protrusion is formed and the first heat transfer plate and the second heat transfer plate are alternately laminated, the first heat transfer plate and the second heat transfer plate The provided second groove portion is provided at a position where it overlaps with the first groove portion provided on the second heat transfer plate and the first heat transfer plate, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. It is characterized by being pushed in so that the provided 2nd concave-line part may closely_contact | adhere.
[0010]
According to the present invention, all the elements constituting the heat transfer plate are integrally molded, and even if no adhesive is used, the adjacent heat transfer plates are suppressed from being separated from each other after lamination. It is possible to recycle because it is composed of only the material of the heat transfer plate without using secondary materials other than the heat transfer plate material such as adhesive, and without using adhesive etc. However, the air path has high sealing performance, and all the elements that make up the heat transfer plate are integrally molded and formed without the use of secondary materials such as adhesives. A vessel is obtained. And according to this invention, the side surface of the 1st projection part formed in the heat exchanger plate arrange | positioned below is the outer folding surface of the 1st convex part formed in the heat exchanger plate arrange | positioned upwards The heat exchanger is capable of preventing the deterioration of the sealing performance at the outer peripheral edge portion between the heat transfer plates caused by the position shift due to the positional displacement in the horizontal direction being suppressed due to the close contact with the inner surface of the heat transfer plate. can get. According to another aspect, the first heat transfer plate and the second heat transfer plate are disposed above when the first heat transfer plate and the second heat transfer plate are alternately stacked. The first heat transfer plate, the side surface of which is in close contact with the inner side surface of the first protrusion formed on the one heat transfer plate, or the second heat transfer plate, and the upper side, or the At least one or more first protrusions are formed in contact with or in close contact with the back surface of the upper surface of the first ridge formed on the second heat transfer plate, and the first heat transfer plate and the second heat transfer plate When the heat transfer plates are alternately stacked, the second concave portion provided on the first heat transfer plate and the second heat transfer plate is the second heat transfer plate and the first heat transfer plate. Provided at a position where it overlaps with the first concave portion provided on the heat transfer plate, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. It is characterized by being pushed in so that the provided 2nd concave-line part may closely_contact | adhere. And according to this invention, after lamination | stacking, it suppresses that adjacent heat exchanger plates separate, the sealing performance between adjacent heat exchanger plates improves, and the 1st formed in the heat exchanger plate arrange | positioned below Since the side surface of the protruding portion is in close contact with the inner surface of the outer folded surface of the first ridge formed on the heat transfer plate disposed above, the displacement of the heat transfer plate in the horizontal direction is suppressed, It is possible to prevent a decrease in sealing performance at the outer peripheral edge between the heat transfer plates due to misalignment, and at the same time, the upper surface of the first protrusion and the rear surface of the upper surface of the first protrusion are in close contact with each other. Therefore, when a pressing load is applied in the stacking direction, it is possible to obtain a heat exchanger capable of suppressing the deflection of the heat transfer plates and preventing the deterioration of the sealing performance between the heat transfer plates due to the deflection of the heat transfer plates. According to another aspect, the first heat transfer plate and the second heat transfer plate are disposed above when the first heat transfer plate and the second heat transfer plate are alternately stacked. The first heat transfer plate, the side surface of which is in close contact with the inner side surface of the first protrusion formed on the one heat transfer plate, or the second heat transfer plate, and the upper side, or the Abutting or closely contacting the back surface of the upper surface of the first ridge formed on the second heat transfer plate, and further, a side surface facing the side surface closely contacting the inner side surface of the first ridge portion, At least one or more first protrusions that contact the side surfaces of the first heat transfer plate disposed above or the first recess formed on the second heat transfer plate are formed, When the first heat transfer plate and the second heat transfer plate are alternately laminated, the second concave strip portion provided on the first heat transfer plate and the second heat transfer plate is Provided second heat transfer plate and the position of polymerizing with the first concave portion provided on the first heat transfer plate, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. It is characterized by being pushed in so that the provided 2nd concave-line part may closely_contact | adhere. And according to this invention, after lamination | stacking, it suppresses that adjacent heat exchanger plates separate, the sealing performance between adjacent heat exchanger plates improves, and the 1st formed in the heat exchanger plate arrange | positioned below The side surfaces of the protrusions of the first recesses are recessed into the inner surface of the outer folded surface of the first protrusions and the upper surface of the first protrusions formed on the heat transfer plate disposed above. Since it is in close contact with the outer surface of the inlet, the effect of suppressing the displacement of the heat transfer plate in the horizontal direction is improved, and the effect of preventing the deterioration of the sealing performance at the outer peripheral edge between the heat transfer plates due to the displacement is improved. At the same time, the top surface of the first protrusion and the back surface of the top surface of the first protrusion are in close contact with each other, so that when a pressing load is applied in the stacking direction, the deflection of the heat transfer plate is suppressed. A heat exchanger that can prevent deterioration of the sealing performance between the heat transfer plates due to deflection is obtained.
[0011]
According to another means, the cross-sectional shape of the first concave portion recessed into the upper surface of the first convex portion is such that the maximum width of the first concave portion is the opening of the first concave portion. The cross-sectional shape of the second concave portion that overlaps with the first concave portion is such that the maximum width of the second concave portion is the first concave portion. Wider than the width of the opening of the second groove, the width of the opening of the second groove is narrower than the maximum width of the second groove, and the opening of the first groove Than width Narrow It is characterized by having a large shape.
[0012]
And according to the present invention, the first recessed portion and the second recessed portion are fitted to each other, so that it is possible to prevent the adjacent heat transfer plates from separating from each other after lamination, and the sealing performance between the adjacent heat transfer plates. Therefore, a heat exchanger with high sealing performance of the other air passage at the entrance / exit portion of one air passage can be obtained without using an adhesive or the like.
[0013]
The other means is that the first concave portion recessed into the upper surface of the first convex portion is intermittently recessed, and the second concave portion is the first heat transfer plate. And when the 2nd heat exchanger plate is laminated | stacked alternately, it is recessed intermittently so that it may superpose | polymerize with said 1st recessed stripe part to be interrupted.
[0014]
According to the present invention, the first recessed portion and the second recessed portion are intermittently formed, so that the first recessed portion and the second recessed portion are transmitted due to excessive thinning when formed. It is possible to obtain a heat exchanger capable of preventing the heat plate from being broken and preventing the deterioration of the sealing performance due to the heat transfer plate from being broken.
[0015]
Further, the other means is that the first ridge is formed on the first heat transfer plate when the first heat transfer plate and the second heat transfer plate are alternately laminated. And the top of the first ridge and the top of the first ridge are recessed to a position where the first ridge formed on the second heat transfer plate intersects It is formed in the height which abuts.
[0016]
And according to the present invention, when a pressing load is applied in the stacking direction, the first ridge portion formed on the first heat transfer plate is adjacent to the first air passage and the second air passage; It is possible to obtain a heat exchanger capable of suppressing the deformation of the portion where the first ridge portion formed on the second heat transfer plate intersects and preventing the deterioration of the closeness due to the deformation.
[0017]
The other means is that the first heat transfer plate and the second heat transfer plate are formed by alternately stacking the first heat transfer plate and the second heat transfer plate. It has an intersection sealing part which improves the sealing performance in the position where the 1st protruding line part formed in the above and the 1st protruding line part formed in the 2nd above-mentioned heat exchanger plate cross It is.
[0018]
And according to this invention, it closely_contact | adheres so that the cross | intersection sealing part formed in the heat exchanger plate arrange | positioned upward may cover the end surface of the 1st protruding item | line part formed in the heat exchanger plate arrange | positioned below. Accordingly, the first ridges formed on the first heat transfer plate and the first ridges formed on the second heat transfer plate are adjacent to each other. A heat exchanger having a high sealing property between one air passage and the other air passage in a portion where the strip intersects is obtained.
[0025]
The other means is that the first heat transfer plate is formed on the side where the first air passage of the second heat transfer plate and the inlet / outlet portion of the second air passage are not formed. A third ridge having a narrower width than the first ridge, which is in close contact with or in contact with the inner side surface of the ridge, the back surface of the upper surface of the first ridge, and the side of the first recess. The portion is a hollow ridge on the side where the first air passage and the second air passage entrance and exit portions are not formed continuously with the first ridge portion, the direction opposite to the convex direction It is characterized by having an outer side surface folded back.
[0026]
And according to this invention, in the outer peripheral part in which each entrance / exit of a 1st air path and a 2nd air path is not formed, it is the 3rd protruding item | line part formed in the 2nd heat exchanger plate. The side surface of the first recessed portion recessed into the inner surface of the folded portion and the upper surface of the third protruding portion is in close contact with the side surface of the second protruding portion formed on the first heat transfer plate. By superimposing, the positional deviation in the opposing direction of the second convex part and the third convex part of the heat transfer plate is suppressed, and the second convex part and the third convex part due to the positional deviation are suppressed. A heat exchanger capable of preventing deterioration in sealing performance due to overlapping of the folded portions of the strips is obtained.
[0027]
According to another means, the second heat transfer plate is formed on a side where the first air passage and the inlet / outlet portion of the second air passage are not formed on the outer peripheral portion of the second heat transfer plate. And the first heat transfer plate has a shape in which the first groove portion is not recessedly formed on the upper surface of the first protrusion portion, and the first heat transfer plate includes the first heat transfer plate and the second heat transfer plate. When the heat plates were alternately stacked, the outer side surface was in close contact with the inner side surface of the first ridge formed on the second heat transfer plate, and the upper surface was formed on the second heat transfer plate. The third ridge is hollow on the side where the first air passage and the second air passage are not formed so as to be in close contact with the back surface of the upper surface of the first ridge. The ridge is formed so as to have an outer side surface folded in a direction opposite to the convex direction.
[0028]
And according to this invention, in the outer peripheral part in which each entrance / exit of a 1st air path and a 2nd air path is not formed, it is the 3rd protruding item | line part formed in the 1st heat exchanger plate. The inner side surface and the outer side surface of the first ridge portion formed on the second heat transfer plate are in close contact with each other, and further, the air passage entrance / exit of the second heat transfer plate is not formed on the outer peripheral portion. On the upper surface of the first ridge portion, since the first ridge portion is not recessedly molded, the upper surface of the first ridge portion and the back surface of the heat transfer surface of the first heat transfer plate A heat exchanger having a high sealing property at the outer peripheral portion in which the contact area is increased and no air inlet / outlet portion is formed is obtained.
[0029]
The other means is that when the first heat transfer plate and the second heat transfer plate are alternately laminated, the upper surface is a back surface of the upper surface of the first ridge portion formed on the second heat transfer plate; At least one or more second protrusions that are in contact with each other and whose side surfaces are in intimate contact with the inner side surfaces of the first protrusions are integrated with the third protrusions formed on the first heat transfer plate. It is characterized by being formed.
[0030]
And according to the present invention, when the upper surface of the second protrusion is in contact with or in close contact with the back surface of the upper surface of the adjacent first ridge, a pressing load is applied in the stacking direction, or When a load is applied inward from the outer peripheral side of the heat exchanger, the deformation of the first and third ridges at the outer periphery where the airway entrance / exit part is not formed is suppressed. And, at the same time, preventing the deterioration of the sealing performance due to deformation, and at the same time, the side surface of the third ridge portion and the side surface of the second projection portion are in close contact with the inner side surface of the first ridge portion. It is possible to obtain a heat exchanger that can suppress the positional deviation after stacking and prevent the deterioration of the sealing performance due to the positional deviation.
[0031]
The other means is the outer side surface of the first ridge portion, the folded portion, the intersection sealing portion and the outer side surface of the third ridge portion formed on the first heat transfer plate and the second heat transfer plate. An edge of the heat transfer plate is formed in a folded shape so as to be perpendicular to the heat transfer surface, and the first heat transfer plate and the second heat transfer surface with respect to the heat transfer surface It is characterized in that the horizontal dimension of the plate is formed in the same shape.
[0032]
According to the present invention, on the outer peripheral side surface of the heat transfer plate, the portions that are spread outward and stacked are pressed and intimately contacted after stacking, and the outer peripheral side surface is highly sealed. An exchanger is obtained.
[0033]
The other means is that the first heat transfer plate and the second heat transfer plate are the first ridge, the second ridge, the third ridge, the first ridge, The thickness of at least one element of the second concave strip, the first projection, the second projection, the folded portion, and the intersection sealing portion is formed to be thicker than the thickness of the heat transfer surface. It is characterized by being.
[0034]
And according to the present invention, when an external force is applied to the heat exchanger by increasing the thickness and increasing the strength of the portion that seals the portion other than the entrance / exit portion of the air passage formed on the outer peripheral portion of the heat transfer plate In addition, it is possible to obtain a heat exchanger that suppresses deformation of a portion that seals other than the inlet / outlet portion of the air passage formed on the outer peripheral portion of the heat transfer plate, and can prevent deterioration in sealing performance due to deformation. .
[0035]
Another means is characterized in that the outer peripheral side surface of the heat exchanger is welded.
[0036]
And according to this invention, the sealing performance of an outer peripheral side part is improved by welding the close_contact | adherence surface of each heat exchanger plate in the outer peripheral part of a heat exchanger, and the sealing performance other than the entrance / exit part of an air path is high. A heat exchanger is obtained.
[0037]
The other means is the outer side surface of the first ridge portion, the folded portion, the intersection sealing portion and the outer side surface of the third ridge portion formed on the first heat transfer plate and the second heat transfer plate. The end of the edge of the heat transfer plate is formed so as to have an outwardly spreading shape, and the heat exchange is performed after alternately laminating the first heat transfer plate and the second heat transfer plate. The outer peripheral side surface of the vessel is welded.
[0038]
According to the present invention, since the edge of the edge of the heat transfer plate spreads outward, the edge of the edge of the heat transfer plate located outside the overlapping heat transfer plate is placed inside. The heat exchanger can be welded while being pressed against the outer peripheral side surface of the hot plate, the weldability of the outer peripheral side surface is improved, and a heat exchanger with high sealing performance of the outer peripheral side surface portion is obtained.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the first air path and the second heat transfer plate are formed by alternately laminating the first heat transfer plate and the second heat transfer plate made of a material having heat transfer and moisture permeability, or having only heat transfer. In the heat exchanger in which the air passages are alternately formed, the first heat transfer plate and the second heat transfer plate are formed by a fluid flowing through the first air passage and a fluid flowing through the second air passage. So that the first air passage and the entrance and exit portions of the second air passage are left on the heat transfer surface that performs heat exchange between the first heat transfer plate and the outer periphery of the second heat transfer plate. The first air passage and the second air passage first defining the second air passage having an outer side surface formed so as to be folded in a direction opposite to the convex direction. And the first heat transfer plate and the first heat transfer plate other than the first air passage and the second air passage at the same time as improving the strength of the first protrusion. In order to seal between the second heat transfer plate, a first groove portion recessed in the upper surface of the first protrusion portion, the first heat transfer plate and the second heat transfer plate. When the heat plates are alternately stacked, the first heat transfer plate is sealed at the same time as sealing the portions other than the first air passage and the entrance and exit portions of the second air passage by overlapping with the first concave portions. And the second groove portion recessed in the heat transfer surface of the first air passage and the second air passage entrance portion of the second air passage for improving the strength of the entrance portion of the second heat transfer plate, and By closely contacting the outer side surface of the first ridge portion so as to cover the outer side surface of the first ridge portion on the outer peripheral edge of the first heat transfer plate and the second heat transfer plate The first air passage and the second air passage are sealed except for the entrance and exit portions, and are formed so as to be folded back in the direction opposite to the convex direction of the first ridge portion with respect to the heat transfer surface. And when the first heat transfer plate and the second heat transfer plate are alternately stacked, the second ridge portion that holds the interval between the alternately stacked heat transfer plates, The first heat transfer plate and the second heat transfer plate are formed at the inlet and outlet portions of the first air passage and the second air passage, respectively. The first heat transfer plate disposed above when the heat transfer plates are alternately stacked, or in close contact with the inner side surface of the first ridge formed on the second heat transfer plate, At least one or more first protrusions for suppressing the positional deviation after the first heat transfer plate and the second heat transfer plate are stacked are formed, and the first heat transfer plate and the second heat transfer plate are formed. When the heat transfer plates are alternately stacked, the second concave portion provided on the first heat transfer plate and the second heat transfer plate is the second heat transfer plate and the first heat transfer plate. On hot plate Provided at a position where it overlaps with the provided first concave portion, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. The second concave portion provided is pushed in close contact, and after stacking, the adjacent heat transfer plates are prevented from separating from each other, the sealing performance between the adjacent heat transfer plates is improved, When the first heat transfer plate and the second heat transfer plate are alternately stacked, the first ridge portion formed on the adjacent first heat transfer plate and the second heat transfer plate. of The first concave ridge formed in the surface and the second concave ridge, the outer dimension of the second concave part being equal to the inner dimension of the first concave part, or , By making the dimensions so large as to provide an interference fit, polymerization is performed in close contact with each other, and the surface of the upper surface of the first protrusion is adjacent to the surface where the first recess is not recessed. Close to the lower surface of the heat transfer surface of the first heat transfer plate and the second heat transfer plate, and formed on the outer peripheral portion of the first heat transfer plate and the second heat transfer plate The first ridges so that the inner surface of the folded portion covered the outer side surface of the first ridges formed on the adjacent first heat transfer plate and the second heat transfer plate. The first air path and the second air formed by the first heat transfer plate and the second heat transfer plate by being in close contact with the outer side surface of the portion In addition, the first heat transfer plate and the second heat transfer plate have a function of sealing other than the entrance / exit portion, and the first protrusion and the inner side surface of the first protrusion are in close contact with each other. It has the effect of suppressing the position shift after stacking of the hot plates and preventing the deterioration of the sealing performance due to the position shift. The first heat transfer plate and the second heat transfer plate are arranged above when the first heat transfer plate and the second heat transfer plate are alternately stacked. The first heat transfer plate or the second heat transfer plate, whose side surface is in close contact with the inner side surface of the first protruding strip portion formed on the plate or the second heat transfer plate and is disposed above. By restraining the positional deviation at the time of lamination of the first heat transfer plate and the second heat transfer plate by contacting or closely contacting the back surface of the upper surface of the first ridge portion formed on the heat plate. At the same time, when pressed in the stacking direction, the opening heights of the entrance and exit portions of the first air passage and the second air passage are maintained, and the upper surface of the first ridge and the first heat transfer plate And at least one first protrusion for improving the sealing performance with the lower surface of the heat transfer surface of the inlet / outlet portion of the second heat transfer plate, and the first heat transfer plate When the second heat transfer plate is alternately laminated, the second concave portion provided on the first heat transfer plate and the second heat transfer plate is the second heat transfer plate and the second heat transfer plate. Provided at a position where it overlaps with the first concave portion provided on the first heat transfer plate, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. The second concave portion provided is pushed in close contact, and after stacking, the adjacent heat transfer plates are prevented from separating from each other, the sealing performance between the adjacent heat transfer plates is improved, By closely contacting the inner side surface of the first protrusion and the first protrusion, the positional deviation after the lamination of the first heat transfer plate and the second heat transfer plate is suppressed, The deterioration of the sealing performance due to misalignment is prevented, and when pressed in the stacking direction, the upper surface of the first protrusion is in contact with or in close contact with the back surface of the upper surface of the first protrusion. Therefore, the sealing performance between the upper surface of the first protrusion and the lower surface of the heat transfer surface of the inlet / outlet portion of the first heat transfer plate and the second heat transfer plate is maintained, and the first It has the effect | action of preventing the fall of the sealing performance resulting from the deformation | transformation by the press load of a heat-transfer plate of said, and said 2nd heat-transfer plate. The first heat transfer plate and the second heat transfer plate are arranged above when the first heat transfer plate and the second heat transfer plate are alternately stacked. The first heat transfer plate or the second heat transfer plate, whose side surface is in close contact with the inner side surface of the first protruding strip portion formed on the plate or the second heat transfer plate and is disposed above. A side surface that is in contact with or in close contact with the back surface of the upper surface of the first ridge formed on the hot plate and that faces the side surface that is in close contact with the inner side surface of the first ridge is disposed above. Of the first heat transfer plate and the second heat transfer plate, the first heat transfer plate and the second heat transfer plate While restraining misalignment at the time of stacking, when pressed in the stacking direction, the opening height of the first air passage and the entrance and exit portions of the second air passage is maintained, and the first ridge At least one first protrusion for improving the sealing performance between the upper surface of the first heat transfer plate and the lower surface of the heat transfer surface of the inlet / outlet portion of the second heat transfer plate, When the first heat transfer plate and the second heat transfer plate are alternately stacked, the second concave portion provided on the first heat transfer plate and the second heat transfer plate is the first heat transfer plate. Two heat transfer plates and the first heat transfer plate provided at the position where it overlaps with the first concave portion, The cross-sectional shape of the second groove part that overlaps with the first groove part is such that the maximum width of the second groove part is wider than the width of the opening of the first groove part, The width of the opening of the second groove is narrower than the maximum width of the second groove, and is narrower than the width of the opening of the first groove, The first heat transfer plate and the second heat transfer plate are alternately stacked, and then the first heat transfer plate and the second heat transfer plate are prevented from separating from each other. The second groove portion provided on the first heat transfer plate inside the first groove portion provided on the second heat transfer plate adjacent to one side of the one heat transfer plate. Is pushed into close contact with the second heat transfer plate adjacent to the other side of the first heat transfer plate inside the first concave portion provided on the first heat transfer plate. The provided second concave portion is pressed so as to be in close contact, and all elements constituting the heat transfer plate are integrally molded, and without using an adhesive or the like, the adjacent transfer Suppressing separation of the heat plates, improving the sealing performance between the adjacent heat transfer plates, the side surfaces of the first protrusions are in close contact with the inner side surfaces of the first ridges, The side surface of the first concave strip portion formed on the first heat transfer plate and the second heat transfer plate, the side surfaces facing the side surface in close contact with the inner side surface of the first convex strip portion are adjacent to each other. The contact between the first heat transfer plate and the second heat transfer plate improves the suppression of misalignment after the lamination, and the effect of preventing deterioration in sealing performance due to misalignment is improved. When pressed in the laminating direction, the upper surface of the first protrusion is in contact with or in close contact with the back surface of the upper surface of the first protrusion. The first heat transfer plate and the lower surface of the heat transfer surface of the inlet / outlet portion of the second heat transfer plate, and press the first heat transfer plate and the second heat transfer plate It has the effect of preventing a decrease in sealing performance caused by deformation due to a load.
[0040]
Further, the cross-sectional shape of the first groove portion recessed into the upper surface of the first protrusion portion is such that the maximum width of the first groove portion is larger than the width of the opening portion of the first groove portion. Is also wide, and the cross-sectional shape of the second groove that overlaps with the first groove is such that the maximum width of the second groove is the opening of the first groove. Wider than the width, the width of the opening of the second groove is narrower than the maximum width of the second groove, and than the width of the opening of the first groove Narrow When the first heat transfer plate and the second heat transfer plate are alternately stacked, the first heat transfer plate and the second heat transfer plate are formed adjacent to each other. Further, the second groove portion is fitted on the upper side of the first groove portion, and the width of the opening portion of the second groove portion is set to the width of the opening portion of the first groove portion. Since it is wide, the inside of the opening of the first groove is closely in contact with the outside of the opening of the second groove, and the maximum width of the second groove is an opening. Since it has a shape wider than the part, it has the effect of improving the sealing performance between the first concave part and the second concave part.
[0041]
Moreover, the 1st groove part recessed in the upper surface of the 1st protrusion part is intermittently recessed, and a 2nd groove part is a 1st heat exchanger plate and a 2nd groove part. When the heat transfer plates are alternately laminated, the first heat transfer plate and the second heat transfer plate are intermittently recessed so as to overlap with the intermittent first recess. When the thickness of the first groove and the second groove is reduced when the first groove and the second groove are integrally formed, By forming the concave ridge portion and the second concave ridge portion intermittently, the thinning at the time of molding the first concave ridge portion and the second concave ridge portion is reduced, and excessive thinning is achieved. Therefore, the heat transfer plate is prevented from being broken, and the sealing performance of the first concave stripe portion and the second concave stripe portion is improved.
[0042]
Moreover, when the first concave strip portion is alternately laminated with the first heat transfer plate and the second heat transfer plate, the first convex strip portion formed on the first heat transfer plate, The first protrusion formed on the second heat transfer plate is recessed to a position where it intersects, and the top of the first protrusion and the upper surface of the first protrusion are in contact with each other. The first heat transfer plate and the second heat transfer are formed so that the top surface of the first concave strip portion and the upper surface of the first convex strip portion are in contact with each other. At the position where the first ridges formed on the first heat transfer plate and the first ridges formed on the second heat transfer plate intersect, the plates are alternately laminated. When a pressing load is applied in the stacking direction, the first ridges formed on the first heat transfer plate and the first ridges formed on the second heat transfer plate are Pressing each heat transfer plate at the intersecting position Suppressing deformation in the load direction, it has the effect of preventing deterioration of the sealing property due to deformation.
[0043]
The first heat transfer plate and the second heat transfer plate were formed on the first heat transfer plate when the first heat transfer plate and the second heat transfer plate were alternately laminated. Provided in the first heat transfer plate and the second heat transfer plate that are adjacent to each other at a position where the first protrusion formed on the second heat transfer plate intersects the first protrusion. The first protrusion formed on the first heat transfer plate and the first heat transfer plate formed on the first heat transfer plate by being in close contact with the end surface of the first protrusion formed on the first heat transfer plate. The intersecting portion sealing portion for improving the sealing performance at the position where the protruding portion intersects is continuous with the first protruding portion on the same surface as the outer side surface of the first protruding portion, and heat transfer. A position that is formed continuously with the folded portion that is shaped so as to be folded in the direction opposite to the convex direction of the first convex portion with respect to the surface, and where the first convex portion intersects In the first heat transfer plate and the second heat transfer plate that are adjacent to each other, the end surface of the first ridge portion and the inner surface of the intersecting portion sealing portion are in close contact with each other. It has the effect | action of improving the sealing performance in the position where the one protruding item | line part cross | intersects.
[0047]
In addition, when the first heat transfer plate and the second heat transfer plate are alternately stacked, the planar shapes of the first heat transfer plate and the second heat transfer plate are the same in any heat transfer plate. In the heat exchanger constituted by a heat transfer plate having a shape where sides of the first air passage and the second air passage are not formed, the first heat transfer plate and the second heat transfer plate When the heat plates are alternately stacked, the first ridges formed on the side where the first air passage and the second air passage entrance portion of the second heat transfer plate are not formed. The first air passage and the second air passage are in close contact with or in contact with the inner side surface of the portion, the back surface of the upper surface of the first ridge portion, and the side surface of the first concave ridge portion. A third ridge having a width narrower than the first ridge that seals a side where no portion is formed is continuous with the first ridge. The outer side of the outer peripheral part of the first heat transfer plate that is folded back in the direction opposite to the convex direction on the hollow ridge on the side where the entrance and exit portions of the first air path and the second air path are not formed The third ridge is formed on the outer peripheral part of the second heat transfer plate, and the first air passage and the entrance / exit portion of the second air passage are formed on the third ridge. By closely contacting or abutting the inner side surface of the first ridge portion and the back side of the upper surface of the first ridge portion and the side surface of the first ridge portion formed on the side that is not formed In addition, the outer peripheral portion where the first air passage and the second air passage are not formed is sealed, and at the same time, when a pressing load is applied in the stacking direction, the first heat transfer plate is formed. The upper surface of the third ridge portion and the back surface of the upper surface of the first ridge portion formed on the second heat transfer plate Or by close contact, it is possible to suppress deformation of the heat transfer plate on the outer peripheral portion where the entrance and exit portions of the first air passage and the second air passage are not formed, and to deform the heat transfer plate. It has the effect of preventing the resulting deterioration in sealing performance.
[0048]
In addition, when the first heat transfer plate and the second heat transfer plate are alternately stacked, the planar shapes of the first heat transfer plate and the second heat transfer plate are the same in any heat transfer plate. In the heat exchanger constituted by the heat transfer plate having a shape in which the entrance and exit of the first air passage and the second air passage are not formed, the second heat transfer plate is the second heat transfer plate. On the upper surface of the first ridge portion formed on the side where the first air passage and the entrance / exit portion of the second air passage in the outer peripheral portion of the heat transfer plate are not formed, the first air passage and In order to improve the hermeticity at the side where the entrance / exit part of the second air passage is not formed, the first recess is a shape in which the recess is not formed, and the first heat transfer When the first heat transfer plate and the second heat transfer plate are alternately stacked, the outer side surface of the plate is formed on the second heat transfer plate. The first air passage and the second air passage entrance and exit are formed so that the top surface is in close contact with the back surface of the top surface of the first protrusion formed on the second heat transfer plate. The second heat transfer plate is formed such that, on the side that is not formed, the third protruding portion has an outer side surface that is folded back in a direction opposite to the protruding direction into the hollow protruding item. In close contact with the outer side surface of the first ridge portion formed on the inner side surface of the third ridge portion formed on the first heat transfer plate, on the upper surface of the first ridge portion Since the first concave strip portion is not recessed and molded, the upper surface of the first convex strip portion formed on the second heat transfer plate and the heat transfer surface of the first heat transfer plate The contact area with the lower surface increases, and has the effect of improving the sealing performance at the outer peripheral portion where the entrance and exit portions of the first air passage and the second air passage are not formed.
[0049]
Further, when the first heat transfer plate and the second heat transfer plate are alternately laminated, the upper surface comes into contact with the back surface of the upper surface of the first ridge formed on the second heat transfer plate, and The second side for improving the strength of the side where the first air passage and the second air passage entrance and exit portions are not formed by the side surface being in close contact with the inner side surface of the first ridge. At least one or more protrusions are formed integrally with the third ridge formed on the first heat transfer plate, and the first heat transfer plate and the second heat transfer plate are formed. When the heating plate is laminated, when the upper surface of the second protrusion is in contact with or in close contact with the back surface of the upper surface of the adjacent first ridge, a pressing load is applied in the lamination direction. Alternatively, when a load is applied inward from the outer peripheral side of the heat exchanger, the entrance and exit portions of the first air passage and the second air passage are Suppressing the deformation of the heat transfer plate at the side where it is not formed, preventing the deterioration of the sealing performance due to the deformation of the heat transfer plate, and at the same time, the side surface of the third protrusion and the second protrusion Due to the side surface of the portion being in close contact with the side inner surface of the first ridge portion, the displacement of the first heat transfer plate and the second heat transfer plate after lamination is suppressed, resulting in the displacement. It has the effect of preventing a decrease in sealing performance.
[0050]
Moreover, the heat transfer which consists of the outer side surface of the 1st protruding item | line part formed in the 1st heat transfer plate and the 2nd heat transfer plate, the folding | returning part, the cross | intersection sealed part, and the outer side surface of the 3rd protruding item | line part. The edge of the plate is formed in a folded shape so as to be perpendicular to the heat transfer surface, and the horizontal direction of the first heat transfer plate and the second heat transfer plate with respect to the heat transfer surface The inner surface of one edge of any of the first and second heat transfer plates is in intimate contact with the outer surface of the edge of the adjacent heat transfer plate. Because the horizontal dimension is equal to the heat transfer plate, the inner edge of the heat transfer plate is in close contact with the outer surface of the edge of the adjacent heat transfer plate while being spread out. Thus, the outer peripheral surface of the heat exchanger other than the entrances and exits of the first and second air passages is sealed.
[0051]
Further, in order to improve the strength of the outer peripheral portion of the heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate, the first heat transfer plate and the first heat transfer plate The second heat transfer plate includes a first ridge, a second ridge, a third ridge, a first ridge, a second ridge, a first protrusion, and a second ridge. The thickness of at least one element of the protruding portion, the folded portion, and the intersection sealing portion is formed to be thicker than the thickness of the heat transfer surface, and the first heat transfer plate and the second heat transfer plate The outer peripheral part of said 1st heat exchanger plate and said 2nd heat exchanger plate for sealing except the entrance-and-exit part of the 1st air path formed by this heat exchanger plate and the 2nd air path is comprised. When the external force is applied to the heat exchanger by increasing the thickness of the part and improving the strength, the first heat transfer plate and the first heat transfer plate are formed by the first heat transfer plate. It is possible to suppress the deformation of the portion constituting the outer peripheral portion of the first heat transfer plate and the second heat transfer plate for sealing the passages and portions other than the entrance / exit portion of the second air passage. It has the effect of preventing the resulting deterioration in sealing performance.
[0052]
Moreover, the sealing performance of the outer peripheral side surfaces other than the first air passage and the second air passage entrance / exit of the heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate is improved. In order to make it, the outer peripheral side of the heat exchanger is welded, and by welding the close contact surfaces of the first heat transfer plate and the second heat transfer plate in the outer peripheral portion of the heat exchanger The airtightness of the first air passage and the second air passage formed by the first heat transfer plate and the second heat transfer plate is improved except for the entrance and exit portions of the second air passage.
[0053]
The first heat transfer plate and the second heat transfer plate of the heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate are formed on the first heat transfer plate and the second heat transfer plate. The tip of the edge of the heat transfer plate consisting of the outer side surface of the ridge portion, the folded portion, the intersection sealing portion and the outer side surface of the third ridge portion is formed so as to have a shape that spreads outward. After alternately laminating the first heat transfer plate and the second heat transfer plate, the outer peripheral side surface of the heat exchanger is welded, and when the outer peripheral side surface of the heat exchanger is heat welded, Since the edge tips of each heat transfer plate are spread outward, the tip of the edge of the heat transfer plate located outside the overlapping heat transfer plates is connected to the outer periphery of the heat transfer plate located inside Can be welded while pressing against the side surface, the weldability of the outer peripheral side surface is improved, and the first heat transfer plate and the second heat transfer plate Sealability other than the entrance portion of the first air passage and the second air passage formed Ri has the effect of can be improved.
[0054]
Embodiments of the present invention will be described below with reference to the drawings.
[0055]
【Example】
Example 1
Embodiment 1 of the present invention will be described below with reference to FIGS. 1, 2, 3, 4, 5 and FIG.
[0056]
FIG. 1 is a schematic exploded perspective view of a heat exchanger used in this embodiment, FIG. 2 is a schematic cross-sectional view of an air inlet / outlet portion thereof, FIG. 3 is a schematic cross-sectional view of a side portion thereof, and FIG. FIG. 5 is a schematic cross-sectional view of the air passage entrance / exit portion, and FIG. 6 is a schematic cross-sectional view of the side surface portion thereof.
[0057]
1 and 6, the heat exchanger configured by alternately laminating the first heat transfer plate 1 and the second heat transfer plate 2 has a first air path above and below each heat transfer plate. 3 and the second air passage 4 are configured, and the fluid flowing through the first air passage 3 and the second air passage 4 performs heat exchange via the respective heat transfer plates, and the entrance and exit of each air passage It is a counter flow type that flows in the direction in which they cross each other in the vicinity and flows in the direction in which they face each other in the central part. Actually, a large number of first heat transfer plates 1 and second heat transfer plates 2 are alternately stacked, but three heat transfer plates are shown for simplicity.
[0058]
In FIGS. 1, 2 and 3, the first heat transfer plate 1 having a hexagonal shape in plan view is made of a thin polystyrene film having a thickness of, for example, 0.2 mm, and heat exchange is performed on the fluid flowing through the upper and lower surfaces. A hollow convex having an outer side surface with respect to the first heat transfer plate 1 in the upper surface direction of the first heat transfer plate 1 on the outer peripheral portion of the pair of sides facing the hot surface 5 and the first heat transfer plate. The first shielding rib 6a as the first ridge formed in a shape and the outer peripheral portion of the pair of sides facing the first heat transfer plate other than the first shielding rib 6a formed The first shielding rib 6a is continuous and, like the first shielding rib 6a, in the direction of the top surface of the first heat transfer plate 1, in a hollow convex shape having an outer side surface with respect to the first heat transfer plate 1. The third protrusion is formed to have a narrower width than the first shielding rib 6a and a shape higher than the first shielding rib 6a. The top part of the second shielding rib 6b and the top part of the first shielding rib 6a that are recessed in the direction of the bottom surface of the first heat transfer plate 1 are continuous as arc-shaped first concave strips. A pair of opposite sides of the first heat transfer plate except for the first groove 7 and the first shielding rib 6a and the second shielding rib 6b, which are the entrances and exits of the first air passage 3. A second groove 8 that is continuous as a second groove formed in the lower surface of the first heat transfer plate 1 inside a predetermined distance from the outer periphery of the first heat transfer plate 1, and the first air passage 3. A cover 107 as a folded portion formed in a folded shape in the direction of the lower surface of the first heat transfer plate 1 at the edge portion of the outer peripheral portion of the pair of opposite sides of the first heat transfer plate 1 serving as the entrance and exit of The 2nd protruding item | line part formed in the upper surface direction of the 1st heat exchanger plate 1 at predetermined intervals in parallel with the 1st shielding rib 6a and the 2nd shielding rib 6b The convex spacer 105 is integrally formed by vacuum forming of a polystyrene film, and the second heat transfer plate 2 has a shape of the second shielding rib 6b in the first heat transfer plate 1. The shape is the same as that of the first heat transfer plate 1 except that the third shielding rib 6c having the same width and height as the first shielding rib 6a is formed.
[0059]
The first shielding rib 6a, the third shielding rib 6c, and the convex spacer 105 are designed to have a height equal to the air path height of the first air path 3 and the second air path 4, for example, 2 mm. The second shielding rib 6b is a third shielding rib whose upper surface is formed on the second heat transfer plate 2 when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated. The height is designed to be in contact with the back surface of 6c, for example, 4 mm, the width is designed to be half the width of the third shielding rib 6c, and the second shielding rib 6b and the third shielding rib 6c are designed. The outer side surface is folded back to a position of 1.7 mm with respect to the back surface of the heat transfer surface 5, for example, until the tip is located behind the heat transfer surface 5, and the three convex spacers 105 are It is formed at a predetermined interval in parallel with the first shielding rib 6a and the second shielding rib 6b, and enters and exits the air path. When the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated, the cover 107 formed on the edge portion of the cover covers the outer side surface of the first shielding rib 6a of the adjacent heat transfer plate. The tip is folded back to a position of 1.7 mm with respect to the heat transfer surface 5, which is the same position as the outer side surface of the second shielding rib 6b and the third shielding rib 6c. The first groove 7 recessed in the upper surface of the shielding rib 6a is located at a predetermined distance from the air inlet / outlet side to a position in contact with the second shielding rib 6b or the third shielding rib 6c, or The top of the first groove 7 is recessed, and the air passage height at the position of the first groove 7 is equal to the first shielding rib 6a so as not to be less than the design air passage height. Groove width inside dimension up to a position of 2.2 mm (air path height 2 mm + thickness 0.2 mm equivalent) with respect to the upper surface of the shielding rib 6a Is designed to be, for example, 3.0 mm and is recessed, and the second groove 8 is formed when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated with the first groove 7. The outer dimension of the groove width is larger than the inner dimension of the groove width of the first groove 7 so that the end portion is in contact with the first shielding rib 6a and the second shielding rib 6b or the third shielding rib 6c at the overlapping position. For example, it is designed to be 3.2 mm so as to be larger, and is recessed in the lower surface direction of the heat transfer plate.
[0060]
When the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, as shown in FIG. 5, the first heat transfer plate 2 is formed on the second heat transfer plate 2 at the entrance / exit portion. The upper surface of the first shielding rib 6a and the lower surface of the heat transfer surface 5 of the first heat transfer plate 1 are in close contact with each other, and the outer side surface of the first shield rib 6a formed on the second heat transfer plate 2 and the first The inner side surface of the cover 107 formed on the one heat transfer plate 1 is in close contact, and the inner side of the first groove 7 recessed in the upper surface of the first shielding rib 6a on which the second heat transfer plate 2 is formed. The second groove 8 recessed and formed in the heat transfer surface 5 of the first heat transfer plate 1 is pushed into close contact, and the first groove 7 and the second groove 8 are in an interference fit relationship. Thus, the second air passage 4 is sealed at the entrance / exit portion of the first air passage 3. The entrance / exit portion of the second air passage 4 is also sealed with the same structure.
[0061]
In addition, as shown in FIG. 6, a part of the heat transfer surface 5 of the first heat transfer plate 1 is in contact with half of the upper surface of the third shielding rib 6 c formed on the second heat transfer plate 2, The outer side surface of the third shielding rib 6c and the inner side surface of the surface folded back so as to be positioned below the heat transfer surface of the outer side surface of the second shielding rib 6b are in close contact with each other, and the second shielding rib 6b. And the back surface of the upper surface of the third shielding rib 6c are in close contact with each other, and the outer side surface of the second shielding rib 6b and the inner side surface of the folded portion outside the third shielding rib 6c are in close contact with each other. Sealing is performed at the overlapping portion of the second shielding rib 6b and the third shielding rib 6c of the first air passage 3 and the second air passage 4. In addition, the first shielding rib 6a that seals the other air passage at one air passage entrance / exit portion has improved strength because the first groove 7 is formed on the upper surface, and the wind Since the second groove 8 is also formed on the heat transfer surface 5 of the passage entrance / exit portion, the strength is improved, and the sealing performance is deteriorated due to deformation of the first shielding rib 6a and the heat transfer plate at the air passage entrance / exit portion. Can be suppressed. In addition, the first heat transfer plate 1 and the second heat transfer plate 2 are arranged so that the first shield rib 6a, the second shield rib 6b, the third shield rib 6c, and the convex spacer 105 are It is held so as to secure the road height.
[0062]
With the above configuration, the heat exchanger is recyclable because it consists of only a single material, polystyrene, which is the material of the heat transfer plate, without using secondary materials other than the heat transfer plate material such as adhesive. Even without the use of an adhesive or the like, the first air passage 3 and the second air passage 4 have high sealing performance at portions other than the entrance and exit portions of the respective air passages, and all the heat transfer plates are configured. Since the elements are integrally formed and formed without using a secondary material such as an adhesive, a heat exchanger with a low manufacturing cost can be obtained.
[0063]
In this example, polystyrene film was used as the material for the heat transfer plate, and it was integrally formed by vacuum forming. However, as the material, other resin films such as polyethylene, thin-pressure metal plates such as aluminum, or heat transfer Paper material with moisture permeability, microporous resin film, paper material mixed with resin may be used, and the heat transfer plate is integrally formed by other methods such as blow molding and press molding. Even in this case, similar effects can be obtained. In addition, the dimensional values and the number of each part are only examples, and the same operational effects can be obtained even when designed without being limited to those values. The outer dimension of the second groove 8 is larger than the inner dimension of the first groove 7 so that the first groove 7 and the second groove 8 are closed and fitted. However, it may be formed to have a dimension equal to the inner dimension of the first groove 7 so that the first groove 7 and the second groove 8 are in close contact with each other.
[0064]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIGS.
[0065]
7 and 9 are schematic cross-sectional views of the air passage inlet / outlet portion before lamination of the heat transfer plates constituting the heat exchanger used in this embodiment, and FIG. 8 is a schematic cross-sectional view of the air passage inlet portion at the time of lamination with respect to FIG. FIG. 10 is a schematic cross-sectional view of the air passage entrance portion at the time of stacking with respect to FIG.
[0066]
In addition, the same part as Example 1 shall have the same number, shall have the same effect, detailed description is abbreviate | omitted.
[0067]
The basic configuration of the present embodiment is almost the same as that of the first embodiment, and the first groove 7 and the second groove 8 have different cross-sectional shapes.
[0068]
In FIG. 7, the first groove 7 and the second groove 8 are recessed and formed so that the cross-sectional shape thereof is a substantially circular cross-sectional shape with a narrow width of the opening. The inner dimension of the opening is designed to be narrower than the outer dimension of the opening of the second groove 8, and the outer surface of the second groove 8 is in close contact with the inner surface of the first groove 7. Designed to be As shown in FIG. 8, when the first heat transfer plate 1 and the second heat transfer plate 2 are laminated, the outer dimension of the opening of the second groove 8 is that of the opening of the first groove 7. Since it is wider than the inner dimension, the edge of the opening of the first groove 7 is in close contact with the opening of the second groove 8, and the entire inner surface of the first groove 7 is also the outer surface of the second groove 8. Will be close to. Since the opening of the first groove 7 and the second groove 8 is narrow, the first groove 7 and the second groove 8 are fitted together, and the adjacent heat transfer plates are separated from each other after lamination. This suppresses this and improves the sealing performance between the upper surface of the first shielding rib 6a and the lower surface of the heat transfer surface of the heat transfer plate that is in close contact with the upper surface of the first shielding rib 6a.
[0069]
FIG. 9 shows the shape of the first groove 7 and the second groove 8 indented so as to have a substantially trapezoidal cross-sectional shape with a narrow width of the opening. The inner dimension of the opening is designed to be narrower than the outer dimension of the opening of the second groove 8, and the outer surface of the second groove 8 is in close contact with the inner surface of the first groove 7. Designed to. As shown in FIG. 10, when the first heat transfer plate 1 and the second heat transfer plate 2 are laminated, the outer dimension of the opening of the second groove 8 is that of the opening of the first groove 7. Since it is wider than the inner dimension, the edge of the opening of the first groove 7 is in close contact so as to narrow the opening of the second groove 8, and the side surface and the lower surface of the first groove 7 are also of the second groove 8. It will be in close contact with the side and bottom surfaces. Since the opening of the first groove 7 and the second groove 8 is narrow, the first groove 7 and the second groove 8 are fitted together, and the adjacent heat transfer plates are separated from each other after lamination. This suppresses this and improves the sealing performance between the upper surface of the first shielding rib 6a and the lower surface of the heat transfer surface of the heat transfer plate that is in close contact with the upper surface of the first shielding rib 6a.
[0070]
With the above configuration, the heat exchanger can seal the other air passage at the inlet / outlet portion of one air passage in the first air passage 3 and the second air passage 4 without using an adhesive or the like. A high heat exchanger can be obtained.
[0071]
The first groove 7 and the second groove 8 are not limited to the cross-sectional shapes of the first groove 7 and the second groove 8 used in the present embodiment, but each of the first groove 7 and the second groove 8 has an opening. If the first groove 7 and the second groove 8 are fitted, the inner surface of the first groove 7 and the outer surface of the second groove 8 are in close contact, and the opening is an interference fit. If this is the case, similar effects can be obtained.
[0072]
(Example 3)
Next, Embodiment 3 of the present invention will be described with reference to FIGS.
[0073]
FIG. 11 is a schematic exploded perspective view before the heat transfer plates constituting the heat exchanger used in this embodiment are stacked, and FIG. 12 is a schematic perspective view when the heat transfer plates are stacked.
[0074]
In addition, the same part as Example 1 and 2 shall have the same number, shall have the same effect, and detailed description is abbreviate | omitted.
[0075]
In FIG. 11, a plurality of, for example, four first grooves 7a to 7d are provided on the upper surface of the first shielding rib 6a formed on the first heat transfer plate 1 and the second heat transfer plate 2, respectively. A predetermined distance from the entrance / exit side is formed between the second shielding rib 6b or the third shielding rib 6c and intermittently recessed in the lower surface direction of the heat transfer surface 5, and the air passage entrance / exit The same number of second grooves 8a to 8d as the first grooves 7a to 7d are also recessed in the lower surface direction of the heat transfer surface, as shown in FIG. When the one heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated, the inner surfaces of the first grooves 7a to 7d and the outer surfaces of the second grooves 8a to 8d are superposed, respectively, When the lower surfaces of the heat transfer surfaces of the first heat transfer plate 1 and the second heat transfer plate 2 are in close contact with the upper surface of the first shield rib 6a and the upper surface of the first shield rib 6a, It will seal the other air duct at the entry and exit portions of the air passage.
[0076]
When the first heat transfer plate 1 and the second heat transfer plate 2 are integrally formed by vacuum forming of a polystyrene film, the first groove 7a-d and the second groove 8a-d are formed as a series of grooves and are recessed. In doing so, depending on the design dimensions and molding conditions, the film thickness of the groove part is reduced, resulting in tearing and molding with holes, which may reduce the sealing performance after lamination, By forming the first grooves 7a to d and the second grooves 8a to d intermittently as described above, the first grooves 7a to d and the second grooves 8a to 8d are molded. A heat exchanger that can reduce the thinning of the heat transfer plate, and in the first air passage 3 and the second air passage 4, the other one air passage in the inlet / outlet portion of one air passage has high sealing performance. Can be obtained.
[0077]
In the present embodiment, the first heat transfer plate 1 and the second heat transfer plate 2 are integrally formed by vacuum forming of a polystyrene film. However, as in the case of the first embodiment, other materials such as polyethylene are used. Resin film, thin metal plate such as aluminum, paper material having heat and moisture permeability, microporous film, paper material mixed with resin, etc. may be used. Similar effects can be obtained even when the heat transfer plate is integrally formed by other methods such as molding and press molding.
[0078]
Example 4
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 13, 14, 15, 16, 17, 18, and FIG.
[0079]
FIG. 13 is a schematic exploded perspective view before lamination of the heat transfer plates constituting the heat exchanger used in this embodiment, and FIG. 14 is an inlet / outlet surface of the first air passage 3 and an inlet / outlet surface of the second air passage 4. 15 is a schematic front perspective view of a heat transfer plate at an adjacent corner portion, FIG. 15 is a schematic front view of the corner portion, FIG. 16 is a schematic perspective view when the heat transfer plates are stacked, and FIG. FIG. 18 is a schematic front perspective view of the corner portion, and FIG. 19 is a schematic front view of the corner portion.
[0080]
The same parts as those in Examples 1, 2, and 3 have the same numbers and have the same functions and effects, and detailed description thereof is omitted.
[0081]
As shown in FIGS. 13, 14, 17, and 18, a first groove is formed on the upper surface of the first shielding rib 6 a formed on the first heat transfer plate 1 and the second heat transfer plate 2. 7, when the first heat transfer plate 1 and the second heat transfer plate 2 are laminated, the concave portions are extended so as to extend to the corner portions where the first shielding ribs 6 a formed on the respective heat transfer plates intersect. 13, 15, and 19, the air path of the folded surface outside the first shielding rib 6 a formed on the first heat transfer plate 1 and the second heat transfer plate 2, as shown in FIGS. 13, 15, and 19. On the entrance / exit side, a corner cover 10a is formed as an intersecting portion sealing portion so as to cover the end face 9 of the first shielding rib 6a formed on the heat transfer plate disposed below when the heat transfer plates are stacked. In the same manner, the heat transfer plate is disposed below one of the second shielding ribs 6b or the third shielding rib 6c. Second shielding end face 11 of the rib 6b or the third corner cover 10b as intersection closure to closely cover the end face 12 of the shielding rib 6c, which are formed are formed.
[0082]
As shown in FIG. 18, the first groove 7 formed on the upper surface of the first shielding rib 6a is formed by alternately laminating the first heat transfer plate 1 and the second heat transfer plate 2 at the corner. At this time, heat transfer is performed on the upper surface of the first shielding rib 6a so that the top portion of the first groove 7 is in contact with the upper surface of the first shielding rib 6a formed on the heat transfer plate disposed below. It is recessed to the same height as the back surface of the surface 5, and in the longitudinal direction, from the position where half the length of the first shielding rib 6 a formed on the heat transfer plate disposed below in the corner portion abuts. The first heat transfer plate 1 is in contact with the second shielding rib 6b, and the second heat transfer plate 2 has a tip formed on the first heat transfer plate 1 during lamination. The corner cover 10a is placed downward when stacked, until it is in contact with the outer surface of the shielding rib 6b. The end face 9 of the first shielding rib 6a formed on the heat transfer plate is covered, and the corner cover 10b is formed on the end face 11 of the second shielding rib 6b formed on the heat transfer plate disposed below when laminated, or Adjacent to the adjacent cover 107 and the second shielding rib 6b or the third shielding rib 6c so as to cover the end face 12 of the third shielding rib 6c, the tip is adjacent to the heat transfer surface 5. The cover 107 and the second shielding rib 6b or the third shielding rib 6c are formed in a folded shape up to the same position as the tip.
[0083]
When the first heat transfer plate 1 and the second heat transfer plate 2 formed as described above are alternately stacked as shown in FIG. 16, the first air passage 3 and the second air passage 4 are Inside the adjacent corner portions, as shown in FIG. 17, the top of the first groove 7 recessed in the upper surface of the first shielding rib 6 a formed in the first heat transfer plate 1 is The upper surface of the first shielding rib 6a formed on the second heat transfer plate 2 is in contact with the upper surface of the first shielding rib 6a formed on the second heat transfer plate 2 disposed below. The top portion of the first groove 7 recessed in contact with the upper surface of the first shielding rib 6a formed on the first heat transfer plate 1 disposed below the first groove 7 and the outer surface of the corner portion. 19, the end face 9 of the first shielding rib 6a formed on the first heat transfer plate 1 is replaced with the first shielding rib 6a formed on the second heat transfer plate. The side cover of the first shielding rib 6a formed on the first heat transfer plate 1 is in close contact with the cover formed on the outer side surface so as to cover the corner cover 10a continuous with the cover. The first shielding rib 6a formed on the heat transfer plate 2 is covered so as to be in close contact with the side surface and the cover 107. Similarly, the first shielding rib 6a formed on the second heat transfer plate 2 The end face 9 is brought into close contact with the cover 107 formed on the outer side surface of the first shielding rib 6a formed on the first heat transfer plate 1 so as to cover the corner cover 10a, and the second heat transfer plate 2 is covered. The side surface of the first shielding rib 6 a formed on the first heat transfer plate 1 is disposed so as to be in close contact with the side surface of the first shielding rib 6 a formed on the first heat transfer plate 1 and the cover 107. become.
[0084]
By the said structure, in the corner part where the 1st air path 3 and the 2nd air path 4 adjoin, the corner cover 10 formed in the heat exchanger plate arrange | positioned upward is used as the heat exchanger plate arrange | positioned below. By closely contacting the end face 9 of the formed first shielding rib 6a, one air passage at the corner portion and the other air passage are sealed, and a pressing load is applied in the stacking direction. The top portion of the first groove 7 recessed in the upper surface of the first shielding rib 6a formed on the heat transfer plate disposed on the upper side is formed on the heat transfer plate disposed on the lower side. Since it is in contact with the upper surface of one shielding rib 6a, the deformation of the corner portion is suppressed, the closeness between the corner cover 10 and the end surface 9 of the first shielding rib 6a, and the first shielding rib 6a and the cover. One of the corners due to a decrease in close contact with 107 It is possible to obtain a heat exchanger capable of preventing deterioration of the sealing property between the road and the other of the other air passage.
[0085]
(Example 5)
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
[0086]
FIG. 20 is a schematic exploded perspective view of the heat exchanger used in this embodiment before stacking the heat transfer plates, FIG. 21 is a schematic cross-sectional view of the air passage entrance, and FIG. 22 is a schematic perspective view when the heat transfer plates are stacked. FIG. 23 and FIG. 23 are schematic sectional views of the airway entrance / exit part.
[0087]
The same parts as those in Examples 1, 2, 3 and 4 have the same numbers and have the same functions and effects, and will not be described in detail.
[0088]
As shown in FIGS. 20 and 21, the first heat transfer plate 1 and the second heat transfer plate 2 are outside the second groove 8 on the extension line of the convex spacer 105 at the air passage entrance / exit portion. As the first protrusions, the same number of protrusions 13 a to 13 c as the convex spacer 105 are formed in a hollow convex shape with respect to the heat transfer surface 5 and are integrally formed by vacuum forming of a polystyrene film in the same manner as the other parts. Yes. As shown in FIGS. 22 and 23, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated, the protrusions 13a to 13c are arranged so that the side surface on the air passage side is on the upper side. It is designed to be close to the inside of the outer folded surface of the first shielding rib 6a formed on the heat transfer plate, for example, 3.0 mm.
[0089]
With the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the side surface of the projection 13 formed on the first heat transfer plate 1 on the air path side is the first heat transfer plate 1 and the second heat transfer plate 2. It is in close contact with the inner surface of the outer folded surface of the first shielding rib 6a formed on the second heat transfer plate 2 arranged above the heat transfer plate 1, and similarly formed on the second heat transfer plate 2. The side surface of the projection 13 on the air passage side is in close contact with the inner surface of the outer folded surface of the first shielding rib 6 a formed on the first heat transfer plate 1 disposed above the second heat transfer plate 2. Therefore, the first heat transfer plate 1 and the second heat transfer plate 1 and the second heat transfer plate 2 are prevented from being displaced in the horizontal direction with respect to the heat transfer surfaces of the first heat transfer plate 1 and the second heat transfer plate 2. Decrease in the sealing performance at the outer peripheral edge of the heat transfer plate 2, that is, the sealing performance between the side surface of the first shielding rib 6a and the cover 107, the end surface 9 of the first shielding rib 6a and the core -Sealing property with the cover 10a, sealing property between the side surface of the second shielding rib 6b and the side surface of the third shielding rib 6c, the end surface 11 of the corner cover 10b and the second shielding rib 6b, or the third shielding rib 6c. Decrease in sealing performance with the end face 12 can be prevented, and a heat exchanger with high sealing performance of the first air passage 3 and the second air passage 4 can be obtained.
[0090]
In the present embodiment, the first heat transfer plate 1 and the second heat transfer plate 2 are integrally formed by vacuum forming of a polystyrene film, but as in Examples 1 and 3, the material is polyethylene or the like. Other resin films, thin metal plates such as aluminum, paper materials having heat and moisture permeability, microporous films, paper materials mixed with resin, etc. may be used, and the molding method may also be used. Even when the heat transfer plate is integrally formed by other methods such as blow molding or press molding, the same effect can be obtained.
[0091]
(Example 6)
Next, a sixth embodiment of the present invention will be described with reference to FIGS.
[0092]
FIG. 24 is a schematic cross-sectional view of the air passage inlet / outlet before lamination of the heat transfer plates constituting the heat exchanger used in this embodiment, and FIG. 25 is a schematic cross-sectional view of the air passage inlet / outlet portion when the heat transfer plates are laminated.
[0093]
The same parts as those in Examples 1, 2, 3, 4 and 5 have the same numbers and have the same operational effects, and detailed description thereof will be omitted.
[0094]
As shown in FIG. 24, at the air passage entrance / exit of the first heat transfer plate 1, the projection 13 is formed in a hollow convex shape with respect to the heat transfer surface 5 on the outer side of the second groove 8, and is the same as the other portions. Moreover, it is integrally formed by vacuum forming of a polystyrene film. As shown in FIG. 25, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the protrusion 13 has a second side whose side on the air passage entrance side is disposed upward. For example, the thickness is set to 4.0 mm so as to be in close contact with the inside of the outer folded surface of the first shielding rib 6a formed on the heat transfer plate 2 and the upper surface thereof in close contact with the back surface of the upper surface of the first shielding rib 6a. The air passage entrance / exit portion of the second heat transfer plate 2 is also formed in the same shape.
[0095]
With the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the side surface of the projection 13 formed on the first heat transfer plate 1 on the air path side is the first heat transfer plate 1 and the second heat transfer plate 2. In order to closely contact the inner surface of the outer folded surface of the first shielding rib 6 a formed on the second heat transfer plate 2 disposed above the heat transfer plate 1, the first heat transfer plate 1 and the second heat transfer plate 1. Misalignment in the horizontal direction with respect to the heat transfer surface of the heat plate 2 is suppressed, and deterioration in sealing performance at the outer peripheral edge portions of the first heat transfer plate 1 and the second heat transfer plate 2 due to the position shift. That is, the sealing property between the side surface of the first shielding rib 6a and the cover 107, the sealing property between the end surface 9 of the first shielding rib 6a and the corner cover 10a, the side surface of the second shielding rib 6b and the third shielding. Sealability with the side surface of the rib 6c, the end surface 11 of the corner cover 10b and the second shielding rib 6b, or the end of the third shielding rib 6c 12 and the upper surface of the protrusion 13 and the back surface of the upper surface of the first shielding rib 6a are in close contact with each other. At the same time, the deflection of the heat transfer plate is suppressed and the air inlet / outlet side of the first groove 7 of the first shielding rib 6a formed in the second heat transfer plate 2 due to the deflection of the heat transfer plate The lowering of the sealing property between the upper surface of the first heat transfer plate 1 and the lower surface of the heat transfer surface 5 of the first heat transfer plate 1 on the air channel entrance / exit side than the second groove 8 can be prevented, and the second heat transfer plate can be prevented. Since the projection 13 formed on 2 has the same effect and action, it is possible to obtain a heat exchanger with high sealing performance of the first air passage 3 and the second air passage 4.
[0096]
In the present example, the first heat transfer plate 1 and the second heat transfer plate 2 were integrally formed by vacuum forming of a polystyrene film, but as in Examples 1, 3 and 5, Other resin films such as polyethylene, thin-pressure metal plates such as aluminum, or paper materials having heat and moisture permeability, microporous films, paper materials mixed with resin, etc. may be used. The same effect can be obtained even when the heat transfer plate is integrally formed by other methods such as blow molding and press molding.
[0097]
(Example 7)
Next, Embodiment 7 of the present invention will be described with reference to FIGS.
[0098]
FIG. 26 is a schematic cross-sectional view of the air passage inlet / outlet before stacking of the heat transfer plates constituting the heat exchanger used in the present embodiment, and FIG. 27 is a schematic cross-sectional view of the air passage inlet / outlet portion when the heat transfer plates are stacked.
[0099]
In addition, the same part as Example 1, 2, 3, 4, 5 and 6 shall have the same number, shall have the same effect, and detailed description is abbreviate | omitted.
[0100]
As shown in FIG. 26, at the air passage entrance / exit of the first heat transfer plate 1, the protrusion 13 is formed in a hollow convex shape with respect to the heat transfer surface 5 on the outer side of the second groove 8, and is the same as other portions. Moreover, it is integrally formed by vacuum forming of a polystyrene film. As shown in FIG. 25, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the protrusion 13 has a second side whose side on the air passage entrance side is disposed upward. The first shielding rib 6a formed on the heat transfer plate 2 is in close contact with the inside of the outer folded surface, and the opposite side surface of the first shielding rib 6a formed on the second heat transfer plate 2 It is designed to be in close contact with the side surface of the first groove 7 recessed in the upper surface, and further, the upper surface is in close contact with the back surface of the upper surface of the first shielding rib 6a. The airway entrance / exit part is also formed in the same shape.
[0101]
With the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the side surface of the projection 13 formed on the first heat transfer plate 1 on the air path side is the first heat transfer plate 1 and the second heat transfer plate 2. The side surface that is in close contact with the inner surface of the outer folded surface of the first shield rib 6a formed on the second heat transfer plate 2 disposed above the heat transfer plate 1 is the upper surface of the first shield rib 6a. In order to be in close contact with the side surface of the first groove 7 recessed in the groove, the degree of suppression of displacement in the horizontal direction with respect to the heat transfer surfaces of the first heat transfer plate 1 and the second heat transfer plate 2 is improved. Of the first heat transfer plate 1 and the second heat transfer plate 2 due to the positional deviation, that is, the sealing performance between the side surface of the first shielding rib 6a and the cover 107. , Sealing between the end face 9 of the first shielding rib 6a and the corner cover 10a, sealing between the side face of the second shielding rib 6b and the side face of the third shielding rib 6c Further, the effect of preventing the sealing performance from being deteriorated between the corner cover 10b and the end surface 11 of the second shielding rib 6b or the end surface 12 of the third shielding rib 6c is improved, and the upper surface of the protrusion 13 and the first shielding rib are further improved. Since the back surface of the upper surface of 6a is in close contact, when a pressing load is applied in the laminating direction, the air path height is secured, and at the same time, the heat transfer plate is restrained from being bent, and the second heat transfer due to the heat transfer plate is bent The upper surface of the first shielding rib 6 a formed on the plate 2 is closer to the air channel inlet / outlet side than the first groove 7 and the air channel inlet / outlet than the second groove 8 of the heat transfer surface 5 of the first heat transfer plate 1. The lowering of the sealing performance with the lower surface of the side can be prevented, and the projection 13 formed on the second heat transfer plate 2 has the same effect, so that the first air passage 3 and the second air passage 3 A heat exchanger with high airtightness of the air passage 4 can be obtained.
[0102]
In the present example, the first heat transfer plate 1 and the second heat transfer plate 2 were integrally formed by vacuum forming of a polystyrene film, but as in Examples 1, 3 and 5, Other resin films such as polyethylene, thin-pressure metal plates such as aluminum, or paper materials having heat and moisture permeability, microporous films, paper materials mixed with resin, etc. may be used. The same effect can be obtained even when the heat transfer plate is integrally formed by other methods such as blow molding and press molding.
[0103]
(Example 8)
Next, an eighth embodiment of the present invention will be described with reference to FIGS.
[0104]
FIG. 28 is a schematic exploded perspective view of the heat exchanger used in this embodiment before stacking the heat transfer plates, FIG. 29 is a schematic perspective view when the heat transfer plates are stacked, and FIG. It is a schematic sectional drawing of the shielding rib.
[0105]
The same parts as those in Examples 1, 2, 3, 4, 5, 6, and 7 are given the same numbers and have the same functions and effects, and detailed description thereof is omitted.
[0106]
As shown in FIGS. 28 and 29, the second heat transfer plate 2 includes a first shielding rib 6 a and a third shielding rib formed on the outer peripheral portion of the second heat transfer plate 2 other than the air inlet / outlet. On the upper surface of 6c, the first groove 7 is continuously recessed and formed, and when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the first air path 3 and In each entrance / exit portion of the second air passage 4, the second groove 8 is superposed on the upper surface of the first groove 7, and the side surface of the first groove 7 and the folded portion of the first shielding rib 6a are overlapped. As shown in FIG. 30, the inner surface of the heat exchanger plate and the side surfaces of the protrusions 13 a to 13 c formed on the heat transfer plate disposed below the inner surface are in close contact with each other, as shown in FIG. 30. The inner surface of the folded portion of the third shielding rib 6c formed on the heat transfer plate 2 and the side surface of the first groove 7 recessed in the upper surface of the third shielding rib 6c; Of such side surfaces of the second shield rib 6b formed on the heat transfer plate 1 are in close contact, the first groove 7 is formed.
[0107]
In the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the second shielding rib 6b and the second heat transfer plate formed on the first heat transfer plate 1 The second heat transfer plate 2 is formed at the outer peripheral portion where the respective inlets / outlets of the first air passage 3 and the second air passage 4 where the third shielding ribs 6c formed on the second air passage 4 are formed are not formed. The side surface of the first groove 7 recessed in the inner surface of the folded portion of the third shielding rib 6c and the upper surface of the third shielding rib 6c formed on the first heat transfer plate 1 are formed. Since the polymerization is performed so that the side surfaces of the second shielding ribs 6b are in close contact with each other, the second shielding rib 6b and the third shielding rib 6c of the first heat transfer plate 1 and the second heat transfer plate 2 face each other. The displacement of the second shielding rib 6b and the third shielding rib 6c caused by the displacement is prevented from deteriorating in the sealing performance. Is, it is possible to obtain a first air passage 3 and the second sealing highly heat exchanger air passage 4.
[0108]
Example 9
Next, a ninth embodiment of the present invention will be described with reference to FIGS.
[0109]
FIG. 31 is a schematic exploded perspective view of the heat exchanger used in this embodiment before stacking the heat transfer plates, FIG. 32 is a schematic perspective view when the heat transfer plates are stacked, and FIG. FIG.
[0110]
In addition, the same part as Example 1, 2, 3, 4, 5, 6, 7 and 8 shall have the same number, shall have the same effect, and detailed description is abbreviate | omitted.
[0111]
As shown in FIGS. 31 and 32, the first heat transfer plate 1 is formed on the second heat transfer plate 2 when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated. Auxiliary ribs as second protrusions having the same height as the second shielding ribs 6b formed on the first heat transfer plate 1 formed so as to be in close contact with the back surface of the upper surface of the third shielding ribs 6c. As shown in FIG. 33, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately laminated, the side surfaces 15a to 15c of the auxiliary ribs 14a to 14c The second shielding rib 6b is formed integrally with the second shielding rib 6b so that the second shielding rib 6b protrudes in the opposite direction so as to be in close contact with the inner surface of the third shielding rib 6c formed on the hot plate 2. .
[0112]
In the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, the second shielding rib 6b and the auxiliary ribs 14a to 14c are provided below the third shielding rib 6c. Since it is disposed, when a pressing load is applied in the stacking direction, the strength is improved as compared with the case where only the second shielding rib 6b is disposed, so the second shielding rib 6b and the third The deformation of the shielding rib 6c is suppressed, the sealing performance is lowered due to the deformation, that is, a pressing load is applied in the stacking direction, and the overlapping portion of the folded portions of the second shielding rib 6b and the third shielding rib 6c is outside. When the second shielding rib 6b and the third shielding rib 6c are loaded from the outside to the inside, the second shielding rib is prevented. The upper surface of 6b and the back surface of the upper surface of the third shielding rib 6c; The tight contact surface between the lower surface of the heat transfer surface 5 of the one heat transfer plate 1 and the upper surface of the third shielding rib 6c is prevented from being deteriorated by deformation that opens in the stacking direction. Since the inner side surface of the rib 6c, the side surface of the shielding rib b, and the side surface 15 of the auxiliary ribs 14a to 14c are in intimate contact, the second shielding rib 6b and the third shielding rib 6c of the heat transfer plate face each other. The positional deviation is suppressed, and the deterioration of the sealing performance due to the overlap of the folded portions of the second shielding rib 6b and the third shielding rib 6c due to the positional deviation is prevented, and the first air path 3 and the second air path 4 can be obtained.
[0113]
In the present embodiment, the number of the auxiliary ribs 14 is three, but the number is only an example, and the same effect can be obtained even if the number is changed.
[0114]
Further, although the auxiliary rib 14 has a substantially trapezoidal horizontal shape with respect to the heat transfer surface, the same effect can be obtained even if the shape is a substantially triangular shape or a quadrilateral shape.
[0115]
(Example 10)
Next, a tenth embodiment of the present invention will be described with reference to FIGS. 34, 35, 36, 37, 38 and 39. FIG.
[0116]
FIG. 34 is a schematic exploded perspective view before lamination of the heat transfer plates constituting the heat exchanger used in this embodiment, FIG. 35 is a schematic cross-sectional view of the air passage inlet / outlet portion, and FIG. 36 is an outline other than the air passage inlet / outlet portion. 37 is a schematic perspective view when the heat transfer plates are laminated, FIG. 38 is a schematic cross-sectional view of the air passage entrance / exit portion, and FIG. 39 is a schematic cross-sectional view other than the air passage entrance / exit portion.
[0117]
In addition, the same part as Example 1, 2, 3, 4, 5, 6, 7, 8 and 9 shall have the same number, shall have the same effect, and detailed description is abbreviate | omitted.
[0118]
As shown in FIGS. 34, 35 and 36, the outer folded portion of the first shielding rib 6a formed on the first heat transfer plate 1 and the second heat transfer plate 2, the cover 107, the corner cover 10, the first The outer folded portion of the second shielding rib 6 b formed on the heat transfer plate 1 and the outer folded portion of the third shielding rib 6 c formed on the second heat transfer plate 2 are in contact with the heat transfer surface 5. At the same time as being folded in the vertical direction, the horizontal dimension is designed to be equal to the heat transfer surfaces 5 of the first heat transfer plate 1 and the second heat transfer plate 2.
[0119]
In the above configuration, when the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked as shown in FIG. 37, the air flow path inlet / outlet portion of the first air flow path 3 is shown in FIG. 38. As described above, the first heat transfer plate 1 has the cover 107 formed on the first heat transfer plate 1 on the outer surface of the folded portion of the first shielding rib 6 a formed on the second heat transfer plate 2. The cover 107 is laminated so that the front end of the cover 107 is pushed outward, and the second heat transfer plate 2 includes a corner cover 10 a and a corner cover 10 b formed on the second heat transfer plate 2. The tips of the corner cover 10a and the corner cover 10b are spread so as to be in close contact with the end surfaces 9 of the first shielding ribs 6a and the end surfaces of the second shielding ribs 6b formed on the first heat transfer plate 1, respectively. Is laminated, and the second airway entrance / exit is also laminated It is. Moreover, the lamination | stacking state of the 2nd shielding rib 6b and the 3rd shielding rib 6c in which the entrance / exit part of the 1st air path 3 and the 2nd air path 4 is not formed is as shown in FIG. In the first heat transfer plate 1, the inner surface of the folded portion of the second shielding rib 6 b formed on the first heat transfer plate 1 is the third shielding rib formed on the second heat transfer plate 2. The second heat transfer plate is stacked on the second heat transfer plate 2 so that the tip of the turn-up portion of the second shielding rib 6b is pushed outward so as to be in close contact with the outer surface of the turn-up portion of 6c. The third shield rib 6c is formed so that the inner surface of the folded portion of the third shield rib 6c is in close contact with the outer surface of the folded portion of the second shield rib 6b formed on the first heat transfer plate. Lamination is done so that the tip of the folded part is pushed outward. The cover 107 and the first shielding rib 6a, the corner cover 10a and the end face 9 of the first shielding rib 6a, the corner cover 10b and the second shielding rib 6b, or the third The sealing rib 6c and the sealing performance of the second shielding rib 6b and the third shielding rib 6c are improved, and a heat exchanger having high sealing performance of the first air passage 3 and the second air passage 4 is obtained. Can do.
[0120]
(Example 11)
Next, an eleventh embodiment of the present invention will be described with reference to FIGS.
[0121]
FIG. 40 is a schematic perspective view when the heat transfer plates constituting the heat exchanger used in this embodiment are stacked, FIG. 41 is a schematic cross-sectional view of the air passage entrance portion, and FIG. 42 is a schematic cross-section other than the air passage entrance portion. FIG.
[0122]
In addition, the same part as Example 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 shall have the same number, shall have the same effect, and detailed description is abbreviate | omitted.
[0123]
As shown in FIG. 41, in the air passage entrance / exit portion of the first air passage 3, the first heat transfer plate 1 includes the cover 107, the protrusion 13, and the second groove 8, and the second heat transfer plate 2. The first shielding rib 6a, the first groove 7 and the corner cover 10 are thicker than the heat transfer surface 5, and the entrance / exit portion of the second air passage 4 is also the same. In the overlapping portion of the second shielding rib 6b and the third shielding rib 6c where the entrance and exit portions of the air passage 3 and the second air passage 4 are not formed, as shown in FIG. The thickness of 6b and the 3rd shielding rib 6c is integrally molded by the vacuum forming of the polystyrene film so that it may become thicker than the thickness of the heat-transfer surface 5. FIG.
[0124]
1st shielding rib which comprises the entrance-and-exit part of the 1st air path 3 and the 2nd air path 4 when the 1st heat exchanger plate 1 and the 2nd heat exchanger plate 2 are laminated | stacked alternately in the said structure. 6a, the first groove 7, the second groove 8, the protrusion 13, the cover 107 and the corner cover 10 are designed to be thicker than the heat transfer surface 5, so that the strength of the entrance / exit portion is improved. In addition, it is possible to suppress deformation of the entrance / exit part, to prevent deterioration of the sealing performance due to deformation of the entrance / exit part, and to form the entrance / exit part of the first air path 3 and the second air path 4. Similarly, in the overlapping portion of the second shielding rib 6b and the third shielding rib 6c, the thickness of the second shielding rib 6b and the third shielding rib 6c is larger than the thickness of the heat transfer surface 5. The strength of the second shielding rib 6b and the third shielding rib 6c is improved. Further, it is possible to prevent deterioration of the sealing performance due to the deformation of the second shielding rib 6b and the third shielding rib 6c, and heat with high sealing performance of the first air passage 3 and the second air passage 4. An exchanger can be obtained.
[0125]
In this embodiment, since the convex spacer 105 is formed in a hollow convex shape, the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, and the first air path 3 and When the second air passage 4 is formed, the inside of the convex spacer 105 also acts as an air passage and a heat transfer effect is obtained, so that the thickness of the convex spacer 105 is substantially equal to the thickness of the heat transfer surface 5. Although designed, in order to improve the strength at the time of laminating the first heat transfer plate 1 and the second heat transfer plate 2, the thickness of the convex spacer 105 becomes thicker than the thickness of the heat transfer surface 5. You may design as follows. In addition, the first heat transfer plate 1 and the second heat transfer plate 2 are integrally formed by vacuum forming of a polystyrene film. As in Examples 1, 3, 5, and 7, the material is polyethylene or the like. Other resin films, thin metal plates such as aluminum, paper materials having heat and moisture permeability, microporous resin films, paper materials mixed with resin, etc. may be used, and the molding method may also be used. Even when the heat transfer plate is integrally formed by other methods such as blow molding or press molding, the same effect can be obtained.
[0126]
(Example 12)
Next, a twelfth embodiment of the present invention will be described with reference to FIGS. 43, 44, 45, 46, 47 and 48. FIG.
[0127]
43 is a schematic exploded perspective view when the heat transfer plates constituting the heat exchanger used in this embodiment are stacked, FIG. 44 is a schematic cross-sectional view of the air passage entrance and exit, and FIG. 45 is an outline other than the air passage entrance and exit. FIG. 46 is a schematic perspective view of the heat exchanger after heat-sealing the outer peripheral side surface portion, FIG. 47 is a schematic cross-sectional view of the air passage entrance portion, and FIG. 48 is a schematic cross-sectional view other than the air passage entrance portion. .
[0128]
In addition, the same part as Example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 shall have the same number, and shall have the same effect, and detailed description is abbreviate | omitted.
[0129]
As shown in FIG. 43, the first heat transfer plate 1 and the second heat transfer plate 2 are alternately stacked, and the entrance / exit portion of the first air passage 3 is the first heat transfer plate 1 as shown in FIG. The front end of the folded portion of the shielding rib 6a and the front end of the cover 107 are formed in a curl shape so as to open outward, and the entrance / exit portion of the second air passage 4 is also formed in the same manner. As shown in FIG. 45, the second shielding rib 6b and the third shielding rib 6c overlapped portions where the entrance and exit portions of the air passage 3 and the second air passage 4 are not formed are also used. The ribs 6b and the third shielding ribs 6c are formed in a curled shape by vacuum forming of a polystyrene film so that the ends of the outer folded portions open outward.
[0130]
In the above configuration, as shown in FIG. 46, when the outer peripheral side surface of the heat exchanger is heat-welded so that the heater block is pressed against the heat exchanger by the heater block, the first air passage 3 and the second air passage 4 are used. At the entrance / exit portion, the tip of the folded portion of the first shielding rib 6a and the tip of the cover 107 are in contact with the heater block, the tip of the folded portion of the first shielding rib 6a is on the protrusion 13, and the tip of the cover 107 is The second shield that is surely pressed against the side surface of the one shielding rib 6a and thermally welded, and that does not form the entrance and exit portions of the first air passage 3 and the second air passage 4. In the overlapping portion of the rib 6b and the third shielding rib 6c, the tips of the folded portions of the second shielding rib 6b and the third shielding rib 6c abut on the heater block, and the tips of the folded portions of the second shielding rib 6b. Is the third shield The tip of the folded portion of the third shielding rib 6c is reliably pressed against the side surface of the second shielding rib 6b and thermally welded to the side surface of the heat exchanger 6c. Even if it shrinks due to thermal shrinkage at the time of heat welding, it has a curled shape on the outside, so that the heat welding surface can be taken wider than when the tip is not curled, A heat exchanger with high sealing performance of the first air passage 3 and the second air passage 4 can be obtained.
[0131]
In this embodiment, the heat welding method using the heater block is used as the heat welding method for the outer peripheral side surface of the heat exchanger. However, the heat welding is performed while pressing the outer peripheral side surface of the heat exchanger such as using a heater roller. If it is a method, the same effect can be acquired. In addition, the first heat transfer plate 1 and the second heat transfer plate 2 are integrally formed by vacuum forming of a polystyrene film, but as in Examples 1, 3, 5, 7, and 11, the material is polyethylene. Other resin films such as heat transferable and moisture-permeable paper material, microporous resin film, paper material mixed with resin, etc., and other methods such as blow molding and press molding are used as the molding method. Even when the hot plate is integrally molded, the same effect can be obtained. Also, a thin pressure metal plate such as aluminum is used as a material, and the heat transfer plate is integrally molded by press molding or the like. When welding by welding or the like without pressing the part, because the tip of the side surface of the heat transfer plate is curled outward, the heat welding surface can be taken wider than when the tip is not curled, Heat exchanger Sealing the outer peripheral side is reliably performed, it is possible to obtain a first air passage 3 and the second sealing highly heat exchanger air passage 4.
[0132]
【Effect of the invention】
As is clear from the above embodiments, according to the present invention. All the elements that make up the heat transfer plate are integrally molded, and even without using an adhesive or the like, after lamination, the heat transfer plates adjacent to each other are prevented from separating, and the sealability between adjacent heat transfer plates is Improve, Since it is composed of only the heat transfer plate material without using secondary materials other than the heat transfer plate material such as adhesives, it can be recycled, and even without using adhesives, etc. In addition, since all the elements constituting the heat transfer plate are integrally formed and formed without using a secondary material such as an adhesive, a heat exchanger with a low manufacturing cost can be obtained. Moreover, the side surface of the 1st projection part formed in the heat exchanger plate arrange | positioned below closely_contact | adheres to the inner surface of the outer side folding surface of the 1st convex part formed in the heat exchanger plate arrange | positioned upwards Therefore, it is possible to obtain a heat exchanger in which the horizontal displacement of the heat transfer plate is suppressed, and the deterioration of the sealing performance at the outer peripheral edge between the heat transfer plates due to the positional displacement can be prevented. Moreover, the side surface of the 1st projection part formed in the heat exchanger plate arrange | positioned below closely_contact | adheres to the inner surface of the outer side folding surface of the 1st convex part formed in the heat exchanger plate arrange | positioned upwards Therefore, the displacement of the heat transfer plate in the horizontal direction is suppressed, and deterioration of the sealing performance at the outer peripheral edge between the heat transfer plates due to the displacement can be prevented, and at the same time, the first protrusion Since the upper surface and the back surface of the upper surface of the first ridge are in close contact with each other, when a pressing load is applied in the stacking direction, the heat transfer plate is restrained from being bent and the heat transfer plate is bent to seal the heat transfer plate. The heat exchanger which can prevent the fall of can be obtained. In addition, the side surface of the first protrusion formed on the heat transfer plate disposed below is the inner surface of the outer folded surface of the first protrusion formed on the heat transfer plate disposed above, and the first Because it is in close contact with the outer surface of the first recessed portion recessed in the upper surface of the one ridge, the effect of suppressing the displacement of the heat transfer plate in the horizontal direction is improved, and heat transfer caused by the displacement The effect of preventing deterioration in sealing performance at the outer peripheral edge between the plates is improved, and at the same time, the top surface of the first protrusion and the back surface of the top surface of the first protrusion are in close contact with each other. In this case, it is possible to obtain a heat exchanger that suppresses the deflection of the heat transfer plates and prevents the deterioration of the sealing performance between the heat transfer plates due to the deflection of the heat transfer plates.
[0133]
Further, by fitting the first recessed portion and the second recessed portion, it is possible to suppress separation between adjacent heat transfer plates after lamination, and the sealing performance between adjacent heat transfer plates is improved. Even without using an adhesive or the like, it is possible to obtain a heat exchanger in which the sealing performance of the other air passage at the entrance / exit portion of the one air passage is high.
[0134]
In addition, the heat transfer plate is torn due to excessive thinning when forming the first recessed portion and the second recessed portion by forming the first recessed portion and the second recessed portion intermittently. It is possible to obtain a heat exchanger that can prevent the deterioration of the sealing performance due to the breakage of the heat transfer plate.
[0135]
In addition, when a pressing load is applied in the stacking direction, the first ridge and the second heat transfer formed on the first heat transfer plate are adjacent to the first air path and the second air path. The heat exchanger which can suppress the deformation | transformation of the part which the 1st protruding item | line part formed in the board crosses, and can prevent the fall of the close_contact | adherence by a deformation | transformation can be obtained.
[0136]
In addition, the cross-section sealing portion formed on the heat transfer plate disposed above is in close contact with the end surface of the first ridge formed on the heat transfer plate disposed below, thereby The first ridges formed on the first heat transfer plate and the first ridges formed on the second heat transfer plate intersect with each other. Thus, it is possible to obtain a heat exchanger having high sealing performance between one air passage and the other air passage in the portion to be performed.
[0140]
Moreover, in the outer peripheral part where the respective inlets and outlets of the first air passage and the second air passage are not formed, the inner surface of the folded portion of the third ridge portion formed on the second heat transfer plate, and By polymerizing so that the side surface of the first recessed portion recessed into the upper surface of the third protruding portion and the side surface of the second protruding portion formed on the first heat transfer plate are in close contact with each other, Position shift in the opposing direction of the second ridge and the third ridge of the heat transfer plate is suppressed, and the folded portion of the second ridge and the third ridge resulting from the position shift Thus, it is possible to obtain a heat exchanger that can prevent a decrease in hermeticity due to overlapping of the two.
[0141]
Moreover, in the outer peripheral part in which each entrance / exit of a 1st air path and a 2nd air path is not formed, the inner side surface and 2nd of a 3rd protruding item | line part formed in the 1st heat exchanger plate The first ridge formed on the outer peripheral portion where the outer side surface of the first ridge formed on the heat transfer plate of the second heat transfer plate is in close contact and the air passage entrance of the second heat transfer plate is not formed. Since the first concave strip portion is not recessedly formed on the upper surface of the portion, the contact area between the upper surface of the first convex strip portion and the back surface of the heat transfer surface of the first heat transfer plate increases. In addition, a heat exchanger having high sealing performance at the outer peripheral portion where no air inlet / outlet portion is formed can be obtained.
[0142]
In addition, when the upper surface of the second protrusion is in contact with or in close contact with the back surface of the upper surface of the adjacent first protrusion, a pressing load is applied in the stacking direction, or the outer periphery of the heat exchanger When a load is applied from the side to the inside, the deformation of the first ridge and the third ridge at the outer periphery where the entrance portion of the air passage is not formed is suppressed, resulting from the deformation. The position after the lamination of the heat transfer plates is prevented by preventing the deterioration of the sealing performance and at the same time the side surface of the third ridge and the side surface of the second protrusion are in close contact with the inner side surface of the first ridge. It is possible to obtain a heat exchanger that can suppress the shift and prevent the deterioration of the sealing performance due to the position shift.
[0143]
In addition, on the outer peripheral side surface of the heat transfer plate, the portions that are spread outward and stacked are pressed and intimately bonded after stacking to obtain a heat exchanger with high sealing performance on the outer peripheral side surface portion. Can do.
[0144]
In addition, when an external force is applied to the heat exchanger by increasing the thickness of the part that seals the part other than the entrance / exit part of the air passage formed on the outer peripheral part of the heat transfer plate and improving the strength, the heat transfer plate The heat exchanger which can suppress that the site | part which seals other than the entrance / exit part of the air path formed in the outer peripheral part of this deform | transforms, and can prevent the sealing performance fall resulting from a deformation | transformation can be obtained.
[0145]
Further, by welding the close contact surfaces of the respective heat transfer plates in the outer peripheral portion of the heat exchanger, the sealing performance of the outer peripheral side surface portion is improved, and a heat exchanger having a high sealing performance other than the inlet / outlet portion of the air passage is obtained. be able to.
[0146]
In addition, since the end of the edge of the heat transfer plate spreads outward, the end of the edge of the heat transfer plate located outside the overlapping heat transfer plate is connected to the outer peripheral side surface of the heat transfer plate located inside It is possible to obtain a heat exchanger in which the weldability of the outer peripheral side surface is improved and the outer peripheral side surface portion is highly sealed.
[Brief description of the drawings]
FIG. 1 is a schematic exploded perspective view of a heat exchanger according to a first embodiment of the present invention before a heat transfer plate is laminated.
FIG. 2 is a schematic cross-sectional view of the airway entrance / exit before the heat transfer plate is laminated
FIG. 3 is a schematic cross-sectional view of a side surface before the heat transfer plate is laminated.
FIG. 4 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 5 is a schematic cross-sectional view of the air passage entrance when the heat transfer plates are stacked
FIG. 6 is a schematic cross-sectional view of a side surface when the heat transfer plates are stacked.
FIG. 7 is a schematic cross-sectional view of an air passage inlet / outlet portion of a heat exchanger according to a second embodiment of the present invention before heat transfer plate lamination.
FIG. 8 is a schematic cross-sectional view of the air passage inlet when the heat transfer plates are stacked.
FIG. 9 is a schematic cross-sectional view of the air passage entrance / exit before the heat transfer plate is laminated in the heat exchanger according to the second embodiment of the present invention.
FIG. 10 is a schematic cross-sectional view of the air passage inlet when the heat transfer plates are stacked.
FIG. 11 is a schematic exploded perspective view of a heat exchanger according to a third embodiment of the present invention before heat transfer plate lamination.
FIG. 12 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 13 is a schematic exploded perspective view of a heat exchanger according to a fourth embodiment of the present invention before heat transfer plate lamination.
FIG. 14 is a schematic front perspective view of the heat transfer plate at the corner before the heat transfer plate is laminated.
FIG. 15 is a schematic front view of a corner portion before the heat transfer plate is laminated.
FIG. 16 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 17 is a schematic top perspective view of a corner portion when the heat transfer plates are stacked.
FIG. 18 is a schematic front perspective view of a corner portion when the heat transfer plates are stacked.
FIG. 19 is a schematic front view of a corner portion when the heat transfer plates are stacked.
FIG. 20 is a schematic exploded perspective view of the heat exchanger according to the fifth embodiment of the present invention before the heat transfer plate is laminated.
FIG. 21 is a schematic cross-sectional view of the air passage entrance before the heat transfer plate is laminated.
FIG. 22 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 23 is a schematic cross-sectional view of the air passage entrance when the heat transfer plates are stacked.
FIG. 24 is a schematic cross-sectional view of the air passage entrance before heat transfer plate lamination of the heat exchanger according to the sixth embodiment of the present invention.
FIG. 25 is a schematic cross-sectional view of the airway entrance and exit when the heat transfer plates are stacked.
FIG. 26 is a schematic cross-sectional view of the air passage entrance before heat transfer plate lamination of the heat exchanger according to the seventh embodiment of the present invention.
FIG. 27 is a schematic cross-sectional view of the air passage entrance when the heat transfer plates are stacked.
FIG. 28 is a schematic exploded perspective view of the heat exchanger according to the eighth embodiment of the present invention before the heat transfer plate is laminated.
FIG. 29 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 30 is a schematic cross-sectional view of a shielding rib other than the air passage entrance and exit when the heat transfer plates are stacked.
FIG. 31 is a schematic exploded perspective view of the heat exchanger according to the ninth embodiment of the present invention before the heat transfer plate is laminated.
FIG. 32 is a schematic perspective view when the heat transfer plates are stacked.
FIG. 33 is a schematic cross-sectional view of a portion other than the air passage entrance and exit when the heat transfer plates are stacked.
FIG. 34 is a schematic exploded perspective view of the heat exchanger according to the tenth embodiment of the present invention before heat transfer plate lamination.
FIG. 35 is a schematic cross-sectional view of the air passage entrance before the heat transfer plate is laminated.
FIG. 36 is a schematic cross-sectional view of a portion other than the airway entrance / exit before the heat transfer plate is laminated.
FIG. 37 is a schematic perspective view when the heat transfer plates are laminated.
FIG. 38 is a schematic cross-sectional view of the air inlet / outlet portion when the heat transfer plates are stacked.
FIG. 39 is a schematic cross-sectional view of the heat transfer plate other than the airway entrance / exit when stacked.
FIG. 40 is a schematic perspective view of the heat exchanger according to the eleventh embodiment of the present invention when the heat transfer plates are stacked.
FIG. 41 is a schematic cross-sectional view of the airway entrance and exit when the heat transfer plates are stacked
FIG. 42 is a schematic cross-sectional view of a portion other than the air passage entrance and exit when the heat transfer plates are stacked.
FIG. 43 is a schematic exploded perspective view of the heat exchanger according to the twelfth embodiment of the present invention when the heat transfer plates are stacked.
FIG. 44 is a schematic cross-sectional view of the airway entrance / exit when the heat transfer plates are stacked
FIG. 45 is a schematic cross-sectional view other than the airway entrance and exit when the heat transfer plates are stacked.
FIG. 46 is a schematic perspective view of the outer peripheral side surface after heat welding.
FIG. 47 is a schematic cross-sectional view of the air inlet / outlet portion after heat-welding the outer peripheral side surface portion.
FIG. 48 is a schematic cross-sectional view of the outer peripheral side surface portion other than the air passage entrance portion after heat welding
FIG. 49 is a diagram showing an exploded state of a heat transfer plate of a conventional heat exchanger
FIG. 50 is an enlarged cross-sectional view of the air passage entrance when the heat transfer plates are stacked.
[Explanation of symbols]
1 First heat transfer plate
2 Second heat transfer plate
3 First airway
4 Second air passage
5 Heat transfer surface
6 Shielding rib
6a First shielding rib
6b Second shielding rib
6c 3rd shielding rib
7 First groove
7a-d first groove
8 Second groove
8a-d second groove
9 End face of the first shielding rib
10 Corner cover
10a, 10b corner cover
11 End face of second shielding rib
12 End face of third shielding rib
13 Protrusion
13a-c protrusion
14 Auxiliary ribs
14a-c Auxiliary rib
15 Side of auxiliary rib
15a-c Side surface of auxiliary rib
105 Convex spacer
107 cover

Claims (14)

伝熱性及び透湿性を有する、または、伝熱性のみを有する材質からなる第一の伝熱板及び第二の伝熱板を交互に積層して第一の風路及び第二の風路を交互に形成する熱交換器において、前記第一の伝熱板及び前記第二の伝熱板は、前記第一の風路を流れる流体と前記第二の風路を流れる流体との間の熱交換を行う伝熱面と、前記第一の伝熱板及び前記第二の伝熱板の外周部に、前記第一の風路及び前記第二の風路の出入口部分を残すように前記伝熱面に対して中空凸条に形成され、凸方向とは反対方向に折り返すように形成された外側側面を有する前記第一の風路及び前記第二の風路画定用の第一の凸条部と、前記第一の凸条部の強度を向上させると同時に前記第一の風路及び前記第二の風路の出入口以外での前記第一の伝熱板及び前記第二の伝熱板との間を密封するために前記第一の凸条部の上面に凹入された第一の凹条部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の凹条部と重合することにより前記第一の風路及び前記第二の風路の出入口部分以外を密封すると同時に、前記第一の伝熱板及び前記第二の伝熱板の出入口部分の強度を向上させる前記第一の風路及び前記第二の風路の出入口部分の伝熱面に凹入された第二の凹条部と、前記第一の伝熱板及び前記第二の伝熱板の外周縁部に、前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接することにより、前記第一の風路及び前記第二の風路の出入口部分以外を密封する、前記伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように形成された折り返し部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層する際、交互に積層されたそれぞれの伝熱板の間隔を保持する第二の凸条部とを備えるように一体成形され、第一の伝熱板及び第二の伝熱板は、第一の風路及び第二の風路の出入口部分に、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際に上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に密接し、前記第一の伝熱板及び前記第二の伝熱板の積層後の位置ずれを抑制するための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれることを特徴とする熱交換器。The first air path and the second air path are alternately laminated by alternately laminating the first heat transfer plate and the second heat transfer plate made of a material having heat transfer property and moisture permeability or having only heat transfer property. In the heat exchanger to be formed, the first heat transfer plate and the second heat transfer plate exchange heat between the fluid flowing through the first air passage and the fluid flowing through the second air passage. The heat transfer surface and the heat transfer so as to leave the inlet and outlet portions of the first air path and the second air path on the outer periphery of the first heat transfer plate and the second heat transfer plate. The first ridge for defining the first air passage and the second air passage having the outer side surface formed in a hollow ridge with respect to the surface and folded back in a direction opposite to the convex direction. And at the same time improving the strength of the first ridge portion, the first heat transfer plate and the second at a place other than the entrance and exit of the first air passage and the second air passage In order to seal between the heat transfer plates, the first concave portions recessed in the upper surface of the first convex portions, the first heat transfer plates, and the second heat transfer plates are alternately arranged. When laminating, the first air passage and the second air passage are sealed at the same time by sealing with the first concave portion, except for the entrance and exit portions of the first air passage and the second air passage. A second groove portion recessed in a heat transfer surface of the first air passage and the second air passage portion for improving the strength of the inlet / outlet portion of the heat transfer plate, and the first heat transfer plate. By contacting the outer side surface of the first ridge portion with the outer peripheral edge of the heat plate and the second heat transfer plate so as to cover the outer side surface of the first ridge portion, the first A fold formed so as to be folded back in a direction opposite to the convex direction of the first ridge portion with respect to the heat transfer surface, which seals the air passages other than the air passage and the entrance portion of the second air passage. And when the first heat transfer plate and the second heat transfer plate are alternately stacked, a second ridge portion is provided to maintain the interval between the alternately stacked heat transfer plates. The first heat transfer plate and the second heat transfer plate are formed at the entrance and exit portions of the first air passage and the second air passage, respectively. The first heat transfer plate disposed above when the heat plates are alternately stacked, or in close contact with the inner side surface of the first ridge formed on the second heat transfer plate, At least one or more first protrusions are formed to suppress the positional deviation after stacking the heat transfer plate and the second heat transfer plate, and the first heat transfer plate and the second heat transfer plate are formed. When the plates are alternately stacked, the second concave portions provided on the first heat transfer plate and the second heat transfer plate are the second heat transfer plate and the first heat transfer plate. Provided in The cross-sectional shape of the second groove portion that is provided at a position where it overlaps with the first groove portion and overlaps with the first groove portion is such that the maximum width of the second groove portion is the first width. Wider than the width of the opening of the first groove, the width of the opening of the second groove is narrower than the maximum width of the second groove, and the first groove After the first heat transfer plate and the second heat transfer plate are alternately stacked, the adjacent first heat transfer plate and the second heat transfer are narrower than the width of the opening of the part. In order to suppress separation of the plates, the first heat transfer is provided on the inner side of the first recess provided on the second heat transfer plate adjacent to one side of the first heat transfer plate. The second concave portion provided on the heat plate is pushed into close contact, and the first heat transfer plate is placed inside the first concave portion provided on the first heat transfer plate. The second adjacent to the other side Heat exchanger, characterized in that the second concave portion provided on the hot plate is pushed so closely. 伝熱性及び透湿性を有する、または、伝熱性のみを有する材質からなる第一の伝熱板及び第二の伝熱板を交互に積層して第一の風路及び第二の風路を交互に形成する熱交換器において、前記第一の伝熱板及び前記第二の伝熱板は、前記第一の風路を流れる流体と前記第二の風路を流れる流体との間の熱交換を行う伝熱面と、前記第一の伝熱板及び前記第二の伝熱板の外周部に、前記第一の風路及び前記第二の風路の出入口部分を残すように前記伝熱面に対して中空凸条に形成され、凸方向とは反対方向に折り返すように形成された外側側面を有する前記第一の風路及び前記第二の風路画定用の第一の凸条部と、前記第一の凸条部の強度を向上させると同時に前記第一の風路及び前記第二の風路の出入口以外での前記第一の伝熱板及び前記第二の伝熱板との間を密封するために前記第一の凸条部の上面に凹入された第一の凹条部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の凹条部と重合することにより前記第一の風路及び前記第二の風路の出入口部分以外を密封すると同時に、前記第一の伝熱板及び前記第二の伝熱板の出入口部分の強度を向上させる前記第一の風路及び前記第二の風路の出入口部分の伝熱面に凹入された第二の凹条部と、前記第一の伝熱板及び前記第二の伝熱板の外周縁部に、前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接することにより、前記第一の風路及び前記第二の風路の出入口部分以外を密封する、前記伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように形成された折り返し部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層する際、交互に積層されたそれぞれの伝熱板の間隔を保持する第二の凸条部とを備えるように一体成形され、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の上面の裏面に当接あるいは密接することにより、前記第一の伝熱板及び前記第二の伝熱板の積層時の位置ずれを抑制すると同時に、積層方向に押圧された場合に、第一の風路及び第二の風路の出入口部の開口高さを保持し、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を向上させるための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれることを特徴とする熱交換器。The first air path and the second air path are alternately laminated by alternately laminating the first heat transfer plate and the second heat transfer plate made of a material having heat transfer property and moisture permeability or having only heat transfer property. In the heat exchanger to be formed, the first heat transfer plate and the second heat transfer plate exchange heat between the fluid flowing through the first air passage and the fluid flowing through the second air passage. The heat transfer surface and the heat transfer so as to leave the inlet and outlet portions of the first air path and the second air path on the outer periphery of the first heat transfer plate and the second heat transfer plate. The first ridge for defining the first air passage and the second air passage having the outer side surface formed in a hollow ridge with respect to the surface and folded back in a direction opposite to the convex direction. And at the same time improving the strength of the first ridge portion, the first heat transfer plate and the second at a place other than the entrance and exit of the first air passage and the second air passage In order to seal between the heat transfer plates, the first concave portions recessed in the upper surface of the first convex portions, the first heat transfer plates, and the second heat transfer plates are alternately arranged. When laminating, the first air passage and the second air passage are sealed at the same time by sealing with the first concave portion, except for the entrance and exit portions of the first air passage and the second air passage. A second groove portion recessed in a heat transfer surface of the first air passage and the second air passage portion for improving the strength of the inlet / outlet portion of the heat transfer plate, and the first heat transfer plate. By contacting the outer side surface of the first ridge portion with the outer peripheral edge of the heat plate and the second heat transfer plate so as to cover the outer side surface of the first ridge portion, the first A fold formed so as to be folded back in a direction opposite to the convex direction of the first ridge portion with respect to the heat transfer surface, which seals the air passages other than the air passage and the entrance portion of the second air passage. And when the first heat transfer plate and the second heat transfer plate are alternately stacked, a second ridge portion is provided to maintain the interval between the alternately stacked heat transfer plates. The first heat transfer plate and the second heat transfer plate are arranged above when the first heat transfer plate and the second heat transfer plate are alternately laminated. The first heat transfer plate, the side surface of which is in close contact with the inner side surface of the first protrusion formed on the one heat transfer plate, or the second heat transfer plate, and the upper side, or the Misalignment during stacking of the first heat transfer plate and the second heat transfer plate by contacting or closely contacting the back surface of the upper surface of the first ridge formed on the second heat transfer plate At the same time, when pressed in the stacking direction, the opening height of the first air passage and the entrance and exit portions of the second air passage are maintained, and the upper surface of the first ridge and the first At least one first protrusion for improving the sealing performance between the heat transfer plate and the lower surface of the heat transfer surface of the inlet / outlet portion of the second heat transfer plate is formed, and the first heat transfer plate is formed. When the plate and the second heat transfer plate are alternately laminated, the second concave portion provided on the first heat transfer plate and the second heat transfer plate is the second heat transfer plate. And the cross-sectional shape of the second groove portion that is provided at a position where it overlaps with the first groove portion provided on the first heat transfer plate and overlaps with the first groove portion, The maximum width of the second groove portion is wider than the width of the opening portion of the first groove portion, and the width of the opening portion of the second groove portion is the maximum width of the second groove portion. Narrower than the width of the opening of the first recess, and the first heat transfer plate and the second heat transfer plate are alternately stacked and then adjacent to each other. One heat transfer plate and the first So that the heat transfer plates of the first heat transfer plate are separated from each other, the second heat transfer plate adjacent to the one side of the first heat transfer plate is disposed inside the first concave strip portion. The second concave portion provided on one heat transfer plate is pressed into close contact, and the first conductive portion is placed inside the first concave portion provided on the first heat transfer plate. A heat exchanger, wherein the second concave strip provided on the second heat transfer plate adjacent to the other side of the heat plate is pushed into close contact. 伝熱性及び透湿性を有する、または、伝熱性のみを有する材質からなる第一の伝熱板及び第二の伝熱板を交互に積層して第一の風路及び第二の風路を交互に形成する熱交換器において、前記第一の伝熱板及び前記第二の伝熱板は、前記第一の風路を流れる流体と前記第二の風路を流れる流体との間の熱交換を行う伝熱面と、前記第一の伝熱板及び前記第二の伝熱板の外周部に、前記第一の風路及び前記第二の風路の出入口部分を残すように前記伝熱面に対して中空凸条に形成され、凸方向とは反対方向に折り返すように形成された外側側面を有する前記第一の風路及び前記第二の風路画定用の第一の凸条部と、前記第一の凸条部の強度を向上させると同時に前記第一の風路及び前記第二の風路の出入口以外での前記第一の伝熱板及び前記第二の伝熱板との間を密封するために前記第一の凸条部の上面に凹入された第一の凹条部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の凹条部と重合することにより前記第一の風路及び前記第二の風路の出入口部分以外を密封すると同時に、前記第一の伝熱板及び前記第二の伝熱板の出入口部分の強度を向上させる前記第一の風路及び前記第二の風路の出入口部分の伝熱面に凹入された第二の凹条部と、前記第一の伝熱板及び前記第二の伝熱板の外周縁部に、前記第一の凸条部の外側側面を覆うように、前記第一の凸条部の外側側面と密接することにより、前記第一の風路及び前記第二の風路の出入口部分以外を密封する、前記伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように形成された折り返し部と、前記第一の伝熱板及び前記第二の伝熱板を交互に積層する際、交互に積層されたそれぞれの伝熱板の間隔を保持する第二の凸条部とを備えるように一体成形され、第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凸条部の内側側面に側面が密接し、かつ、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に当接あるいは密接し、さらに、前記第一の凸条部の内側側面に密接する側面と対向する側面が、上方に配置される前記第一の伝熱板、または前記第二の伝熱板に形成された第一の凹条部の側面とも当接することにより、前記第一の伝熱板及び第二の伝熱板の積層時の位置ずれを抑制すると同時に、積層方向に押圧された場合に、第一の風路及び第二の風路の出入口部の開口高さを保持し、前記第一の凸条部の上面と前記第一の伝熱板及び前記第二の伝熱板の出入口部分の伝熱面の下面との密封性を向上させるための第一の突起部が少なくとも1つ以上形成され、前記第一の伝熱板と前記第二の伝熱板を交互に積層した際、前記第一の伝熱板および前記第二の伝熱板に設けられた前記第二の凹条部は前記第二の伝熱板および前記第一の伝熱板に設けられた前記第一の凹条部と重合する位置に設けられ、前記第一の凹条部と重合する第二の凹条部の断面形状は、前記第二の凹条部の最大幅が、前記第一の凹条部の開口部の幅よりも広く、前記第二の凹条部の開口部の幅が、前記第二の凹条部の最大幅よりも狭く、かつ、前記第一の凹条部の開口部の幅よりも狭い形状であり、前記第一の伝熱板と前記第二の伝熱板を交互に積層後、隣接する前記第一の伝熱板と前記第二の伝熱板同士が離れることを抑制するように、前記第一の伝熱板の一方側に隣接する前記第二の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれ、前記第一の伝熱板に設けられた前記第一の凹条部の内側に前記第一の伝熱板の他方側に隣接する前記第二の伝熱板に設けられた前記第二の凹条部が密接するように押し込まれる熱交換器。The first air path and the second air path are alternately laminated by alternately laminating the first heat transfer plate and the second heat transfer plate made of a material having heat transfer property and moisture permeability or having only heat transfer property. In the heat exchanger to be formed, the first heat transfer plate and the second heat transfer plate exchange heat between the fluid flowing through the first air passage and the fluid flowing through the second air passage. The heat transfer surface and the heat transfer so as to leave the inlet and outlet portions of the first air path and the second air path on the outer periphery of the first heat transfer plate and the second heat transfer plate. The first ridge for defining the first air passage and the second air passage having the outer side surface formed in a hollow ridge with respect to the surface and folded back in a direction opposite to the convex direction. And at the same time improving the strength of the first ridge portion, the first heat transfer plate and the second at a place other than the entrance and exit of the first air passage and the second air passage In order to seal between the heat transfer plates, the first concave portions recessed in the upper surface of the first convex portions, the first heat transfer plates, and the second heat transfer plates are alternately arranged. When laminating, the first air passage and the second air passage are sealed at the same time by sealing with the first concave portion, except for the entrance and exit portions of the first air passage and the second air passage. A second groove portion recessed in a heat transfer surface of the first air passage and the second air passage portion for improving the strength of the inlet / outlet portion of the heat transfer plate, and the first heat transfer plate. By contacting the outer side surface of the first ridge portion with the outer peripheral edge of the heat plate and the second heat transfer plate so as to cover the outer side surface of the first ridge portion, the first A fold formed so as to be folded back in a direction opposite to the convex direction of the first ridge portion with respect to the heat transfer surface, which seals the air passages other than the air passage and the entrance portion of the second air passage. And when the first heat transfer plate and the second heat transfer plate are alternately stacked, a second ridge portion is provided to maintain the interval between the alternately stacked heat transfer plates. The first heat transfer plate and the second heat transfer plate are arranged above when the first heat transfer plate and the second heat transfer plate are alternately laminated. The first heat transfer plate, the side surface of which is in close contact with the inner side surface of the first protrusion formed on the one heat transfer plate, or the second heat transfer plate, and the upper side, or the Abutting or closely contacting the back surface of the upper surface of the first ridge formed on the second heat transfer plate, and further, a side surface facing the side surface closely contacting the inner side surface of the first ridge portion, The first heat transfer plate and the first heat transfer plate and the first heat transfer plate and the second heat transfer plate are also in contact with the side surface of the first concave strip formed on the second heat transfer plate. When the second heat transfer plate is restrained from being displaced at the same time and pressed in the laminating direction, the opening heights of the entrance and exit portions of the first air passage and the second air passage are maintained, There is at least one first protrusion for improving the sealing performance between the upper surface of the first protrusion and the lower surface of the heat transfer surface of the inlet / outlet portion of the first heat transfer plate and the second heat transfer plate. When the first heat transfer plate and the second heat transfer plate are alternately stacked, the second heat transfer plate and the second heat transfer plate are provided on the second heat transfer plate. A concave portion is provided at a position where it overlaps with the first concave portion provided on the second heat transfer plate and the first heat transfer plate, and is overlapped with the first concave portion. The cross-sectional shape of the second groove portion is such that the maximum width of the second groove portion is wider than the width of the opening portion of the first groove portion, and the width of the opening portion of the second groove portion is The second Narrower than the maximum width of the ridges, and the first a narrower shape than the width of the opening of the concave portion, after alternately stacking the first of the second heat transfer plate and the heat transfer plate The second heat transfer plate adjacent to one side of the first heat transfer plate is provided so as to prevent the adjacent first heat transfer plate and the second heat transfer plate from separating from each other. The second recess provided on the first heat transfer plate is pushed into the inside of the first recess provided to be in close contact with the first heat transfer plate. A heat exchanger that is pushed into the first concave strip portion so that the second concave strip portion provided on the second heat transfer plate adjacent to the other side of the first heat transfer plate is in close contact with the first concave strip portion. . 第一の凸条部の上面に凹入された第一の凹条部の断面形状は、前記第一の凹条部の最大幅が前記第一の凹条部の開口部の幅よりも広い形状であることを特徴とする請求項1から3いずれかに記載の熱交換器。The cross-sectional shape of the first concave portion recessed into the upper surface of the first convex portion is such that the maximum width of the first concave portion is wider than the width of the opening of the first concave portion. a heat exchanger according to claim 1, 3 or, characterized in that a shape. 第一の凸条部の上面に凹入された第一の凹条部は、断続的に凹入されており、第二の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、断続する前記第一の凹条部と重合するように断続的に凹入されていることを特徴とする請求項1から4いずれかに記載の熱交換器。  The first groove part recessed in the upper surface of the first protrusion part is intermittently recessed, and the second groove part includes the first heat transfer plate and the second heat transfer member. 5. The heat exchanger according to claim 1, wherein when the plates are alternately laminated, the heat exchanger is intermittently recessed so as to overlap with the intermittent first recess. 第一の凹条部は、第一の伝熱板及び第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された前記第一の凸条部と、前記第二の伝熱板に形成された前記第一の凸条部が交差する位置まで凹入されており、前記第一の凹条部の頂部と前記第一の凸条部の上面が当接する高さに形成されていることを特徴とする請求項1から5いずれかに記載の熱交換器。  The first concave strip portion, when the first heat transfer plate and the second heat transfer plate are alternately stacked, the first convex strip portion formed on the first heat transfer plate, and the first A height at which the top of the first ridge and the top of the first ridge are in contact with each other. The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger is formed in a length. 第一の伝熱板及び第二の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第一の伝熱板に形成された第一の凸条部と前記第二の伝熱板に形成された前記第一の凸条部が交差する位置において、隣接する前記第一の伝熱板及び前記第二の伝熱板に設けられた前記第一の凸条部の端面と密接することにより前記第一の伝熱板に形成された前記第一の凸条部と前記第二の伝熱板に形成された前記第一の凸条部が交差する位置における密封性を向上させる交差部密閉部が、前記第一の凸条部の外側側面と同一面上に前記第一の凸条部と連続して、かつ、伝熱面に対して前記第一の凸条部の凸方向とは逆方向に折り返すように成形された折り返し部と連続して形成されていることを特徴とする請求項1から6いずれかに記載の熱交換器。  The first heat transfer plate and the second heat transfer plate are formed on the first heat transfer plate when the first heat transfer plate and the second heat transfer plate are alternately stacked. Of the first heat transfer plate and the second heat transfer plate adjacent to each other at a position where the first protrusion formed on the second heat transfer plate intersects with the first heat transfer plate. The first ridge formed on the first ridge and the second heat transfer plate formed on the first heat transfer plate by being in close contact with the end surface of the first ridge. An intersection sealing part that improves the sealing performance at the position where the parts intersect is continuous with the first ridge on the same surface as the outer side surface of the first ridge, and on the heat transfer surface. On the other hand, it forms continuously with the folding | returning part shape | molded so that it may fold in the reverse direction with respect to the convex direction of said 1st protruding item | line part. Heat exchanger. 第一の伝熱板及び第二の伝熱板の平面形状が、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、いずれの伝熱板においても第一の風路及び第二の風路の出入口が形成されることのない辺を有する形状である伝熱板により構成される熱交換器において、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、前記第二の伝熱板の前記第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された前記第一の凸条部の内側側面及び前記第一の凸条部の上面の裏面及び前記第一の凹条部の側面に密接、あるいは当接することにより、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺を密封する前記第一の凸条部よりも狭い幅の第三の凸条部が、前記第一の凸条部と連続して前記第一の伝熱板の外周部で前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺に中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたことを特徴とする請求項1から7いずれかに記載の熱交換器。  When the planar shape of the first heat transfer plate and the second heat transfer plate is obtained by alternately stacking the first heat transfer plate and the second heat transfer plate, the first heat transfer plate In the heat exchanger composed of a heat transfer plate having a side having no side where the air passage and the second air passage are formed, the first heat transfer plate and the second heat transfer plate Of the first ridges formed on the side where the first and second air passages of the second heat transfer plate are not formed. By contacting or abutting the inner side surface and the back surface of the upper surface of the first ridge portion and the side surface of the first recess portion, the entrance and exit portions of the first air passage and the second air passage are A third ridge having a narrower width than the first ridge that seals a side that is not formed is continuously connected to the first ridge. A hollow ridge on the side where the first air passage and the second air passage entrance portion of the second air passage are not formed at the outer peripheral portion of the hot plate has an outer side surface folded back in the direction opposite to the convex direction. The heat exchanger according to any one of claims 1 to 7, wherein the heat exchanger is formed as described above. 第一の伝熱板及び第二の伝熱板の平面形状が、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、いずれの伝熱板においても第一の風路及び第二の風路の出入口が形成されることのない辺を有する形状である伝熱板により構成される熱交換器において、前記第二の伝熱板は、前記第二の伝熱板の外周部の第一の風路及び第二の風路の出入口部分が形成されることのない辺に形成された第一の凸条部の上面に、前記第一の風路及び前記第二の風路の出入口部分が形成されることのない辺での密封性を向上させるために、第一の凹条部が凹入形成されていない形状であり、前記第一の伝熱板は、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した際、外側側面が前記第二の伝熱板に形成された前記第一の凸条部の内側側面に密接し、上面が前記第二の伝熱板に形成された前記第一の凸条部の上面の裏面に密接するように、前記第一の風路及び前記第二の風路の出入口が形成されることのない辺に、第三の凸条部が中空凸条に、凸方向とは反対方向に折り返された外側側面を有するように形成されたことを特徴とする請求項1から8いずれかに記載の熱交換器。  When the planar shape of the first heat transfer plate and the second heat transfer plate is obtained by alternately stacking the first heat transfer plate and the second heat transfer plate, the first heat transfer plate In the heat exchanger constituted by the heat transfer plate having a shape having sides where the air passage and the second air passage are not formed, the second heat transfer plate is the second heat transfer plate. On the upper surface of the first ridge formed on the side where the first and second air passages of the outer peripheral portion of the plate are not formed, the first air passage and the first air passage In order to improve the sealing performance at the side where the inlet / outlet part of the second air passage is not formed, the first concave portion is a shape in which the concave portion is not formed, and the first heat transfer plate is When the first heat transfer plate and the second heat transfer plate are alternately stacked, the outer side surface is in close contact with the inner side surface of the first ridge portion formed on the second heat transfer plate. The first air passage and the second air passage are formed so that the upper surface is in close contact with the back surface of the upper surface of the first protrusion formed on the second heat transfer plate. 9. The structure according to claim 1, wherein the third ridge is formed on the hollow side so as to have a hollow ridge having an outer side surface folded in a direction opposite to the convex direction. The described heat exchanger. 第一の伝熱板及び第二の伝熱板を交互に積層した際、上面が前記第二の伝熱板に形成された第一の凸条部の上面の裏面と当接し、また側面が前記第一の凸条部の内側側面と密接することにより、第一の風路及び第二の風路の出入口部分が形成されることのない辺の強度を向上させるための第二の突起部が、少なくとも一つ以上、前記第一の伝熱板に形成された第三の凸条部と一体に形成されていることを特徴とする請求項9記載の熱交換器。  When alternately laminating the first heat transfer plate and the second heat transfer plate, the upper surface is in contact with the back surface of the upper surface of the first ridge formed on the second heat transfer plate, and the side surface is A second protrusion for improving the strength of the side where the first and second air passages are not formed by being in close contact with the inner side surface of the first ridge. 10. The heat exchanger according to claim 9, wherein at least one or more are integrally formed with a third protruding portion formed on the first heat transfer plate. 第一の伝熱板及び第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部が伝熱面に対して垂直をなすように折り返し状に形成され、また、前記伝熱面に対して、前記第一の伝熱板及び前記第二の伝熱板の水平方向の寸法が等しい形状に形成されていることを特徴とする請求項1から10いずれかに記載の熱交換器。  A heat transfer plate comprising an outer side surface of the first ridge portion formed on the first heat transfer plate and the second heat transfer plate, a folded portion, an intersection sealing portion, and an outer side surface of the third ridge portion. The edge is formed in a folded shape so as to be perpendicular to the heat transfer surface, and the horizontal dimensions of the first heat transfer plate and the second heat transfer plate with respect to the heat transfer surface The heat exchanger according to any one of claims 1 to 10, wherein the heat exchangers are formed in an equal shape. 第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の外周部の強度を向上させるために、前記第一の伝熱板及び、前記第二の伝熱板は、第一の凸条部、第二の凸条部、第三の凸条部、第一の凹条部、第二の凹条部、第一の突起部、第二の突起部、折り返し部及び交差部密閉部のうちの少なくとも一つの要素の肉厚が伝熱面の肉厚よりも厚く形成されていることを特徴とする請求項1から11いずれかに記載の熱交換器。   In order to improve the strength of the outer periphery of the heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate, the first heat transfer plate and the second heat transfer plate The heat transfer plate includes a first ridge, a second ridge, a third ridge, a first ridge, a second ridge, a first protrusion, and a second protrusion. The heat exchange according to any one of claims 1 to 11, wherein the thickness of at least one of the first part, the folded part, and the intersection sealed part is formed to be thicker than the thickness of the heat transfer surface. vessel. 第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の第一の風路及び第二の風路出入口以外の外周側面の密封性を向上させるために、前記熱交換器の外周側面を溶着したことを特徴とする請求項1から12いずれかに記載の熱交換器。   In order to improve the sealing performance of the outer peripheral side surfaces other than the first air path and the second air path entrance / exit of the heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate The heat exchanger according to any one of claims 1 to 12, wherein an outer peripheral side surface of the heat exchanger is welded. 第一の伝熱板及び第二の伝熱板を交互に積層することにより構成される熱交換器の前記第一の伝熱板及び前記第二の伝熱板に形成された第一の凸条部の外側側面、折り返し部、交差部密閉部及び第三の凸条部の外側側面からなる伝熱板の縁部の先端を、外側へすそ広がりの形状を有するように形成し、前記第一の伝熱板及び前記第二の伝熱板を交互に積層した後、前記熱交換器の外周側面を溶着したことを特徴とする請求項1から13いずれかに記載の熱交換器。   A first protrusion formed on the first heat transfer plate and the second heat transfer plate of a heat exchanger configured by alternately laminating the first heat transfer plate and the second heat transfer plate. The tip of the edge of the heat transfer plate consisting of the outer side surface of the strip portion, the folded portion, the intersection sealing portion and the outer side surface of the third convex strip portion is formed so as to have an outwardly spreading shape, The heat exchanger according to any one of claims 1 to 13, wherein an outer peripheral side surface of the heat exchanger is welded after alternately laminating one heat transfer plate and the second heat transfer plate.
JP2001087015A 2001-03-26 2001-03-26 Heat exchanger Expired - Fee Related JP4889869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087015A JP4889869B2 (en) 2001-03-26 2001-03-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087015A JP4889869B2 (en) 2001-03-26 2001-03-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2002286391A JP2002286391A (en) 2002-10-03
JP4889869B2 true JP4889869B2 (en) 2012-03-07

Family

ID=18942311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087015A Expired - Fee Related JP4889869B2 (en) 2001-03-26 2001-03-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4889869B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303393C (en) * 2003-10-31 2007-03-07 上海齐耀动力技术有限公司 Core of heat exchanger in shaped plate pterate type
US7866379B2 (en) 2004-07-16 2011-01-11 Panasonic Corporation Heat exchanger
JP2006029692A (en) * 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Heat exchanger
SE528275C2 (en) * 2005-02-15 2006-10-10 Alfa Laval Corp Ab Heat transfer plate with control means and heat exchanger comprising such plates
JP2006329499A (en) * 2005-05-25 2006-12-07 Matsushita Electric Ind Co Ltd Heat exchanger
JP4848718B2 (en) * 2005-09-29 2011-12-28 パナソニック株式会社 Heat exchanger
JP4855088B2 (en) * 2006-02-02 2012-01-18 株式会社ティラド Heat exchanger
KR100917518B1 (en) * 2007-01-15 2009-09-16 파나소닉 주식회사 Heat exchanger
JP5236224B2 (en) * 2007-07-26 2013-07-17 株式会社豊田中央研究所 Multi-layer flow element
JP4565417B2 (en) * 2007-12-18 2010-10-20 株式会社アースクリーン東北 Indirect vaporization cooling system
JP6425897B2 (en) * 2014-02-18 2018-11-21 日新製鋼株式会社 Plate type heat exchanger and method of manufacturing the same
CN106500532B (en) * 2016-11-24 2019-03-08 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of spiral microchannel heat exchanger
NL2018175B1 (en) * 2017-01-16 2018-07-26 Recair Holding B V Recuperator
CN110439788A (en) * 2019-08-21 2019-11-12 宁波戴维医疗器械股份有限公司 A kind of medical-grade compressor
KR102298463B1 (en) * 2020-07-13 2021-09-07 (주)가온테크 Method of manufacturing counter flow total heat exchanger through vacuum forming process
KR102223355B1 (en) * 2020-07-13 2021-03-05 (주)가온테크 Counter flow total heat exchanger device using polymer sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548421B2 (en) * 1990-03-28 1996-10-30 松下電器産業株式会社 Total heat exchange element
JP3215406B2 (en) * 1990-03-30 2001-10-09 松下精工株式会社 Heat exchanger
JP3345081B2 (en) * 1993-03-26 2002-11-18 株式会社日阪製作所 Plate heat exchanger
JPH07234087A (en) * 1994-02-24 1995-09-05 Daikin Ind Ltd Heat exchanging element
JPH0842988A (en) * 1994-05-24 1996-02-16 Daikin Ind Ltd Heat exchanging element
JPH08110076A (en) * 1994-10-11 1996-04-30 Matsushita Seiko Co Ltd Heat exchanging element
JPH08178576A (en) * 1994-12-26 1996-07-12 Daikin Ind Ltd Heat exchanger element
JP3414012B2 (en) * 1994-12-26 2003-06-09 ダイキン工業株式会社 Heat exchange element
JPH08178578A (en) * 1994-12-26 1996-07-12 Daikin Ind Ltd Heat exchanger element and its manufacture
JP3023546B2 (en) * 1996-12-04 2000-03-21 ゴールド工業株式会社 Heat exchanger elements

Also Published As

Publication number Publication date
JP2002286391A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4889869B2 (en) Heat exchanger
EP0829692B1 (en) Heat exchanger and method of manufacturing a heat exchanging member of a heat exchanger
ES2340028T3 (en) HEAT CHANGER
KR101483837B1 (en) Plate heat exchanger plate and plate heat exchanger
WO2006008823A1 (en) Heat exchanger
JP2011508705A (en) Injection molded composite structure and tool for forming the structure
JPH0834426A (en) Container made of thick paper
US20070180667A1 (en) Teardrop sealant layer for profile and spacer areas for improved sealing and guiding
EP2963375B1 (en) Plate-type heat exchanger
JP4279021B2 (en) Heat exchanger
JP3414012B2 (en) Heat exchange element
KR20010015811A (en) Heat exchanger
US6443357B1 (en) Packaging case and packaging material therefor
JPH0842988A (en) Heat exchanging element
JP4466156B2 (en) Heat exchanger
JP2003130571A (en) Stacked heat exchanger
JPH11230688A (en) Heat exchanging element
JPS6032800B2 (en) Heat exchanger
JPH072242U (en) Easy-open bag
JP3624282B2 (en) Laminate heat exchanger
TW476726B (en) Packaging bags with zippers and inner plaits and its manufacture
JPH034839B2 (en)
US6374904B1 (en) Heat exchanger and channel member therefor
JP2002372391A (en) Heat exchanger element and its manufacturing method
JPH07294177A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4889869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees