JP2008248490A - Active damper for building structure - Google Patents

Active damper for building structure Download PDF

Info

Publication number
JP2008248490A
JP2008248490A JP2007087948A JP2007087948A JP2008248490A JP 2008248490 A JP2008248490 A JP 2008248490A JP 2007087948 A JP2007087948 A JP 2007087948A JP 2007087948 A JP2007087948 A JP 2007087948A JP 2008248490 A JP2008248490 A JP 2008248490A
Authority
JP
Japan
Prior art keywords
vibration
building structure
mounting member
frequency
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087948A
Other languages
Japanese (ja)
Inventor
Hideki Oshima
英揮 大嶋
Masaaki Hamada
真彰 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2007087948A priority Critical patent/JP2008248490A/en
Publication of JP2008248490A publication Critical patent/JP2008248490A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structurally-new active damper for a building structure, which can obtain an excellent active vibration control effect by efficiently exerting an exciting force, generated by an electromagnetic excitation means, on a mass member in a specific direction to be subjected to vibration control, and which can avoid a malfunction such as damage on the electromagnetic excitation means, caused by the vibrational displacement of the mass member in a direction except the specific direction. <P>SOLUTION: A plurality of rubber mounts 18, in which the spring characteristics of an elastic rubber body 26 of a main body in the groove direction of elongation of a second mounting member 24 wholly formed like a groove are set smaller than spring characteristics in a direction orthogonal to the groove direction, are mounted on the mass member 16 in a state in which the second mounting members 24 are aligned with one another in the same direction. The exciting force, which is generated by the electromagnetic excitation means 14, is exerted on the mass member 16 in the groove direction of the elongation of the second mounting member 24. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、住宅などの建築構造物に対する副振動系を構成して主振動系たる建築構造物における振動を抑える建築構造物用の制振装置に係り、特に、マス部材に水平方向の加振力を及ぼすことによって、能動的な制振効果を得るようにした建築構造物用の能動型制振装置に関するものである。   The present invention relates to a vibration damping device for a building structure that constitutes a secondary vibration system for a building structure such as a house and suppresses vibration in the building structure that is a main vibration system, and in particular, is applied to a mass member in a horizontal direction. The present invention relates to an active vibration damping device for a building structure that can obtain an active vibration damping effect by applying force.

一般住宅や事務所等の建築構造物では、交通振動等の外力が加振力として作用することによって水平方向の振動が発生する場合がある。特に、近年では、一般住宅等でも、木造や軽量鉄骨構造等によって二階建てや三階建てが多くなってきており、それらの住宅等では、構造上、二階や三階の振動が大きくなり易いために、交通振動による微振動が、例えば就寝時や就業時における不快振動や不快騒音等の原因として問題となってきている。   In building structures such as ordinary houses and offices, horizontal vibrations may occur due to external forces such as traffic vibrations acting as excitation forces. In particular, in recent years, ordinary houses, etc., are becoming more or less two-story and three-story buildings due to wooden structures and lightweight steel structures, etc., and because of these structures, vibrations on the second and third floors tend to be large. In addition, slight vibration due to traffic vibration has become a problem as a cause of unpleasant vibration, unpleasant noise at the time of sleeping or working, for example.

ところで、建築構造物用の制振装置の一種である能動型の制振装置としては、特許文献1(特開平2−300478号公報)や特許文献2(特開平9−41714号公報)等において、建築構造物に対してリニアベアリング等の摺動機構を介して相対移動可能に支持せしめた付加マス部材を、電動モータで駆動せしめられるボールねじ機構等によって相対変位せしめる構造のものが提案されている。   By the way, as an active type damping device which is a kind of damping device for a building structure, in Patent Document 1 (Japanese Patent Laid-Open No. 2-300478), Patent Document 2 (Japanese Patent Laid-Open No. 9-41714), and the like. A structure has been proposed in which an additional mass member supported by a sliding mechanism such as a linear bearing with respect to a building structure is relatively displaced by a ball screw mechanism or the like driven by an electric motor. Yes.

しかしながら、これら従来の建築構造物用の制振装置は、もともと高層建築物における地震時の揺れ低減の目的で開発されたものであり、非常に大掛かりで一般住宅や事務所などの小型の建築構造物用には適わなかった。特に、高層建築物における地震時の制振など、作動頻度が少ない場合はそれ程大きな問題とならないが、交通振動の制振など、略常時作動させると、摺動機構やボールねじ機構の疲労や摩耗が非常に大きな問題となり易いという問題もある。   However, these conventional vibration control devices for building structures were originally developed for the purpose of reducing vibration during earthquakes in high-rise buildings, and are very large-scale and small building structures such as ordinary houses and offices. It was not suitable for use. In particular, if the frequency of operation is low, such as vibration control during earthquakes in high-rise buildings, it will not be a big problem, but if it is operated almost constantly, such as vibration control of traffic vibration, fatigue and wear of the sliding mechanism and ball screw mechanism will occur. There is also a problem that is likely to become a very big problem.

そこで、本出願人は、先に、特許文献3(特許第3752926号公報)において、一般住宅等の小型建築物に適合した能動型制振装置として、建築構造物に弾性支持せしめたマス部材に対して電磁式アクチュエータ等の加振手段で水平方向の加振力を及ぼす構造の建築構造物用の能動型制振装置を提案した。   Therefore, the applicant previously described in Patent Document 3 (Patent No. 375926) as an active vibration control device suitable for a small building such as a general house as a mass member elastically supported by a building structure. On the other hand, an active vibration control device for building structures with a structure in which a horizontal excitation force is applied by a vibration means such as an electromagnetic actuator was proposed.

この先願に係る能動型制振装置においては、マス部材をゴムマウントで支持させたことによって、マス部材の加振変位時の抵抗が小さくなると共に、装置の構造を簡単にすることが可能となる。また、マス部材を加振する加振手段として、電磁式アクチュエータ等の電磁式加振手段を採用したことにより、位相や振幅等の加振制御が容易になると共に、装置の小型化を図ることが可能となる。加えて、加振手段が建築構造物によって支持されていることから、加振手段の配設状態の安定化が図られて、マス部材に加振力を安定して及ぼすことが可能となる。   In the active vibration damping device according to the prior application, by supporting the mass member with the rubber mount, the resistance at the time of the vibration displacement of the mass member is reduced, and the structure of the device can be simplified. . In addition, by adopting electromagnetic excitation means such as an electromagnetic actuator as the excitation means for exciting the mass member, it is easy to control the excitation of the phase, amplitude, etc., and to reduce the size of the apparatus. Is possible. In addition, since the vibration means is supported by the building structure, the arrangement state of the vibration means can be stabilized, and the vibration force can be stably applied to the mass member.

しかしながら、本発明者が更なる実験と検討を重ねたところ、特許文献3に記載の建築構造物用の能動型制振装置においても、未だ改良の余地があることが判った。   However, when the inventor repeated further experiments and examinations, it was found that there is still room for improvement in the active vibration damping device for building structures described in Patent Document 3.

すなわち、建築構造物には、特定の方向だけでなく他の方向にも振動が発生し、また、建築構造物に発生する振動の方向は、交通振動等の外部からの加振力が作用する方向等に応じて、更に複数の方向に発生した振動が連成すること等によって、変化する場合があることから、上述の特許文献3に記載されている建築構造物用の能動型制振装置のように、ゴムマウントでマス部材を建築構造物に対して弾性支持せしめた構造では、マス部材が複数の方向に振動変位し易くなる。   That is, the building structure is vibrated not only in a specific direction but also in other directions, and the direction of the vibration generated in the building structure is influenced by an external excitation force such as traffic vibration. Depending on the direction and the like, the vibration generated in a plurality of directions may change due to coupling, etc., so the active vibration damping device for a building structure described in Patent Document 3 described above As described above, in the structure in which the mass member is elastically supported by the rubber mount with respect to the building structure, the mass member is easily displaced in a plurality of directions.

それ故、特許文献3に記載されている建築構造物用の能動型制振装置のように、加振手段として電磁式アクチュエータが採用されている場合には、マス部材が加振手段の加振方向と異なる方向に振動すると、以下のような問題がある。即ち、加振手段として電磁式アクチュエータを採用する場合、その出力軸と固定ハウジングの間に形成された磁気ギャップに駆動力が発生するようになっていることから、出力軸や固定ハウジングに対して軸直角方向の成分をもった外力が及ぼされると、例えば、出力軸が固定ハウジングに対して抉られる等して干渉し、電磁式アクチュエータに損傷等の不具合が発生するおそれがある。また、電磁式アクチュエータの耐久性の低下も懸念される。   Therefore, in the case where an electromagnetic actuator is employed as the vibration means as in the active vibration control device for building structures described in Patent Document 3, the mass member is vibrated by the vibration means. When vibrating in a direction different from the direction, there are the following problems. That is, when an electromagnetic actuator is used as the vibration means, a driving force is generated in a magnetic gap formed between the output shaft and the fixed housing. When an external force having a component perpendicular to the axis is exerted, for example, the output shaft may be interfered by being squeezed against the fixed housing, which may cause problems such as damage to the electromagnetic actuator. In addition, there is a concern about a decrease in durability of the electromagnetic actuator.

なお、このような問題に対処するために、例えば特許文献1,2に記載のように、マス部材の変位方向を一方向に制限するリニアベアリング等を採用することも考えられる。しかし、そのようなリニアベアリングはマス部材の変位に際して異音を発生し易く、また、マス部材の変位に対して大きな摩擦等の抵抗力を生じてエネルギー効率の低下が避けられない。それ故、そのようなリニアベアリング等の機械的なガイド機構の採用は、一般住宅等の小型建築物用の制振装置において現実的ではないのである。   In order to deal with such a problem, it is conceivable to employ a linear bearing or the like that limits the displacement direction of the mass member in one direction as described in Patent Documents 1 and 2, for example. However, such a linear bearing is liable to generate abnormal noise when the mass member is displaced, and a resistance force such as a large friction is generated against the displacement of the mass member, so that a reduction in energy efficiency is inevitable. Therefore, the adoption of such a mechanical guide mechanism such as a linear bearing is not practical in a vibration control device for a small building such as a general house.

特開平2−300478号公報JP-A-2-3000047 特開平9−41714号公報JP 9-41714 A 特許第3752926号公報Japanese Patent No. 3752926

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、制振すべき特定方向において電磁式加振手段による加振力を効率的にマス部材に及ぼして優れた能動的制振効果を得ることが出来ると共に、かかる特定方向以外の方向へのマス部材の振動変位に起因する電磁式加振手段の損傷等の不具合を回避することが出来る、新規な構造の建築構造物用の能動型制振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is to efficiently apply the excitation force by the electromagnetic excitation means in a specific direction to be controlled. It is possible to obtain an excellent active damping effect on the mass member, and avoid problems such as damage to the electromagnetic excitation means due to the vibration displacement of the mass member in a direction other than the specific direction. An object of the present invention is to provide an active vibration damping device for a building structure having a novel structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

本発明は、建築構造物に対してマス部材が複数のゴムマウントで弾性支持されることにより動的吸振器が構成されるようになっていると共に、建築構造物において制振すべき振動方向となる水平方向の加振力をマス部材に及ぼす加振手段が設けられた建築構造物用の能動型制振装置において、マス部材と建築構造物の一方に取り付けられる第一の取付部材とそれらマス部材と建築構造物の他方に取り付けられる第二の取付部材とが上下方向で離隔して対向配置せしめられ、それら第一の取付部材と第二の取付部材の対向面間に本体ゴム弾性体が配設されて第一の取付部材と第二の取付部材が弾性連結されている一方、第二の取付部材において第一の取付部材に対する対向方向に直交する水平方向に広がる底壁部とかかる底壁部の幅方向両端部から第一の取付部材側に向かって延び出す一対の縦壁部とが設けられて、第二の取付部材が全体として溝形状とされていると共に、第一の取付部材と第二の取付部材における底壁部との鉛直方向の対向面間と、第一の取付部材と第二の取付部材における一対の縦壁部との水平方向の両側での対向面間とが、それぞれ、本体ゴム弾性体で連結されており、更に、第一の取付部材と第二の取付部材における底壁部との鉛直方向の対向面間を水平方向に広がる横板部と、かかる横板部の幅方向両端部から第一の取付部材側に向かって延び出して第一の取付部材と第二の取付部材における一対の縦壁部との水平方向の両側での対向面間に広がる一対の縦板部とからなる全体として溝形状の中間拘束板が設けられて、第一の取付部材と第二の取付部材との対向面間で中間拘束板が本体ゴム弾性体に固着せしめられた構造をもってゴムマウントが構成されており、かかるゴムマウントの複数が、それぞれにおいて溝形状とされた第二の取付部材が同じ方向に揃えられてマス部材に対して装着されている一方、加振手段として電磁式加振手段を採用し、かかる電磁式加振手段を建築構造物に支持せしめる支持部材を設けると共に、ゴムマウントにおいて溝形状とされた第二の取付部材が延びる溝方向で、電磁式加振手段による加振力がマス部材に及ぼされるようになっていることを、特徴とする。   In the present invention, a dynamic vibration absorber is configured by elastically supporting a mass member with a plurality of rubber mounts on a building structure, and a vibration direction to be damped in the building structure In an active vibration damping device for a building structure provided with a vibration means for applying a horizontal vibration force to the mass member, a first attachment member attached to one of the mass member and the building structure, and the mass A member and a second attachment member attached to the other of the building structure are arranged opposite to each other in the vertical direction, and a main rubber elastic body is disposed between the opposing surfaces of the first attachment member and the second attachment member. While the first mounting member and the second mounting member are elastically connected to each other, the bottom wall portion extending in the horizontal direction perpendicular to the opposing direction to the first mounting member in the second mounting member and the bottom Both ends of the wall in the width direction And a pair of vertical wall portions extending toward the first mounting member side, the second mounting member has a groove shape as a whole, and the first mounting member and the second mounting member Between the opposing surfaces in the vertical direction with the bottom wall portion and the opposing surfaces on both sides in the horizontal direction between the pair of vertical wall portions in the first mounting member and the second mounting member, respectively. A horizontal plate portion that extends in the horizontal direction between the vertical facing surfaces of the first mounting member and the bottom wall portion of the second mounting member, and both width direction ends of the horizontal plate portion. A pair of vertical plate portions extending from the first portion toward the first mounting member side and extending between opposing surfaces on both sides in the horizontal direction of the first mounting member and the pair of vertical wall portions in the second mounting member; A groove-shaped intermediate restraint plate is provided as a whole, and the first mounting member and the second mounting member A rubber mount is configured with a structure in which an intermediate restraint plate is fixed to the main rubber elastic body between the opposing surfaces, and a plurality of such rubber mounts each have a groove-shaped second mounting member in the same direction. While being arranged and mounted on the mass member, electromagnetic vibration means are employed as the vibration means, and a support member for supporting the electromagnetic vibration means on the building structure is provided, and a groove is provided in the rubber mount. It is characterized in that the exciting force by the electromagnetic exciting means is exerted on the mass member in the groove direction in which the second mounting member having the shape extends.

このような本発明に従う構造とされた建築構造物用の能動型制振装置においては、複数のゴムマウントのそれぞれが、第一の取付部材と全体として溝形状とされた第二の取付部材が本体ゴム弾性体で弾性連結された構造とされていると共に、第一の取付部材と第二の取付部材の対向面間において、全体として溝形状とされた中間拘束板が本体ゴム弾性体に固着されており、その状態で、中間拘束板における横壁部が、第一の取付部材と第二の取付部材における底壁部との鉛直方向の対向面間を水平方向に広がると共に、中間拘束板における一対の縦板部が、第一の取付部材と第二の取付部材における一対の縦壁部との水平方向の両側での対向面間に広がっていることから、本体ゴム弾性体における第二の取付部材が延びる溝方向でのばね剛性を、第一の取付部材と第二の取付部材における底壁部との対向方向(鉛直方向)や、第二の取付部材における一対の縦壁部の対向方向(水平方向)でのばね剛性よりも十分に小さくすることが可能となる。   In the active vibration damping device for a building structure having such a structure according to the present invention, each of the plurality of rubber mounts includes a first mounting member and a second mounting member having a groove shape as a whole. It is structured to be elastically connected by the main rubber elastic body, and an intermediate constraining plate having a groove shape as a whole is fixed to the main rubber elastic body between the opposing surfaces of the first mounting member and the second mounting member. In this state, the lateral wall portion of the intermediate restraint plate spreads horizontally between the vertical facing surfaces of the first attachment member and the bottom wall portion of the second attachment member, and in the intermediate restraint plate. Since the pair of vertical plate portions extends between the opposing surfaces on both sides in the horizontal direction of the pair of vertical wall portions of the first mounting member and the second mounting member, Spring stiffness in the direction of the groove in which the mounting member extends More than the spring rigidity in the opposing direction (vertical direction) of the bottom wall portion of the first mounting member and the second mounting member and in the opposing direction (horizontal direction) of the pair of vertical wall portions of the second mounting member It becomes possible to make it sufficiently small.

そこにおいて、本発明では、複数のゴムマウントのそれぞれが、全体として溝形状とされた第二の取付部材が同じ方向に揃えられた状態で、マス部材に装着されていると共に、第二の取付部材が延びる溝方向で、電磁式加振手段による加振力がマス部材に及ぼされるようになっていることから、第二の取付部材が延びる溝方向と制振すべき振動の方向を一致させることにより、電磁式加振手段による加振力を効率的にマス部材に及ぼして、優れた制振効果を得ることが可能になる。   Accordingly, in the present invention, each of the plurality of rubber mounts is mounted on the mass member with the second mounting member having a groove shape as a whole aligned in the same direction, and the second mounting Since the excitation force by the electromagnetic excitation means is applied to the mass member in the groove direction in which the member extends, the groove direction in which the second mounting member extends matches the direction of vibration to be damped. As a result, it is possible to efficiently exert the excitation force by the electromagnetic excitation means on the mass member and obtain an excellent vibration damping effect.

また、制振すべき振動の方向(第二の取付部材が延びる溝方向)以外の方向では、本体ゴム弾性体のばね剛性が十分に大きくされて、マス部材の振動変位が抑制されるようになっていることから、制振すべき振動の方向(第二の取付部材が延びる溝方向)以外の方向へのマス部材の振動変位に起因する電磁式加振手段の損傷等の不具合を回避することが可能となる。   Further, in directions other than the direction of vibration to be damped (the groove direction in which the second mounting member extends), the spring rigidity of the main rubber elastic body is sufficiently increased so that the vibration displacement of the mass member is suppressed. Therefore, problems such as damage to the electromagnetic excitation means due to vibration displacement of the mass member in directions other than the direction of vibration to be damped (the groove direction in which the second mounting member extends) are avoided. It becomes possible.

加えて、本発明では、電磁式加振手段を建築構造物に支持せしめる支持部材が設けられていることから、電磁式加振手段の配設状態の安定化を図ることが可能となる。これにより、電磁式加振手段による加振力をマス部材に対して安定して作用せしめることが可能となる。   In addition, in the present invention, since the support member for supporting the electromagnetic vibration means on the building structure is provided, it is possible to stabilize the arrangement state of the electromagnetic vibration means. As a result, the excitation force by the electromagnetic excitation means can be stably applied to the mass member.

なお、本発明では、本体ゴム弾性体において、第二の取付部材が延びる溝方向に貫通するすぐり部が形成されていても良い。これにより、第二の取付部材が延びる溝方向での本体ゴム弾性体のばね剛性を小さくしつつ、第二の取付部材が延びる溝方向に対する直交方向、具体的には、第一の取付部材と第二の取付部材における底壁部との対向方向(鉛直方向)や、第二の取付部材における一対の縦壁部の対向方向(水平方向)での本体ゴム弾性体のばね剛性を調節することが可能となる。   In the present invention, in the main rubber elastic body, a straight portion penetrating in the groove direction in which the second attachment member extends may be formed. Thereby, while reducing the spring rigidity of the main rubber elastic body in the groove direction in which the second attachment member extends, the direction orthogonal to the groove direction in which the second attachment member extends, specifically, the first attachment member Adjusting the spring rigidity of the main rubber elastic body in the opposing direction (vertical direction) to the bottom wall portion of the second mounting member and in the opposing direction (horizontal direction) of the pair of vertical wall portions in the second mounting member Is possible.

また、本発明では、第二の取付部材と中間拘束板の少なくとも一方において、本体ゴム弾性体内に突出する拘束突部が形成されていても良い。これにより、第二の取付部材が延びる溝方向での本体ゴム弾性体のばね剛性を小さくしつつ、第二の取付部材が延びる溝方向に対する直交方向、具体的には、第一の取付部材と第二の取付部材における底壁部との対向方向(鉛直方向)や、第二の取付部材における一対の縦壁部の対向方向(水平方向)での本体ゴム弾性体のばね剛性を大きく設定することが可能となる。   Moreover, in this invention, the restraint protrusion which protrudes in a main body rubber elastic body may be formed in at least one of a 2nd attachment member and an intermediate restraint board. Thereby, while reducing the spring rigidity of the main rubber elastic body in the groove direction in which the second attachment member extends, the direction orthogonal to the groove direction in which the second attachment member extends, specifically, the first attachment member The spring rigidity of the main rubber elastic body is set to be large in the facing direction (vertical direction) of the second mounting member to the bottom wall portion and in the facing direction (horizontal direction) of the pair of vertical wall portions of the second mounting member. It becomes possible.

更にまた、本発明では、電磁式加振手段によりマス部材に及ぼされる加振力の反力が支持部材を介して建築構造物に及ぼされるようになっていると共に、建築構造物において制振すべき振動周波数に対して動的吸振器の固有振動数が低周波数側に外して設定されており、電磁式加振手段によってマス部材に及ぼされる加振力の周波数を制御することで、動的吸振器の固有振動数よりも高周波数域で且つ建築構造物において制振すべき振動周波数に相当する周波数の加振力をマス部材に及ぼすように電磁式加振手段を作動制御する加振制御手段が設けられていることが望ましい。これにより、制振すべき振動の周波数が変化した場合にも、周波数の変化に追従して、安定した制振効果を得ることが可能となる。   Furthermore, in the present invention, the reaction force of the excitation force exerted on the mass member by the electromagnetic excitation means is applied to the building structure via the support member, and the vibration is suppressed in the building structure. The natural frequency of the dynamic vibration absorber is set to the low frequency side with respect to the power frequency, and the frequency of the exciting force exerted on the mass member is controlled by the electromagnetic vibration means. Excitation control that controls the electromagnetic excitation means to exert an excitation force on the mass member at a frequency that is higher than the natural frequency of the absorber and that corresponds to the vibration frequency to be controlled in the building structure. Desirably means are provided. Thereby, even when the frequency of the vibration to be damped changes, it is possible to follow the change in the frequency and obtain a stable damping effect.

また、本発明では、加振制御手段において、電磁式加振手段によりマス部材に及ぼされる加振力の周波数fが、動的吸振器の固有振動数f0 に対して、f0 +0.5Hz以上で且つf0 ×2Hz以下に設定されるようになっていることが望ましい。これにより、建築構造物において制振対象となる振動の周波数の変化に際しても、より安定した加振力(即ち、能動的制振効果)をより効率的に建築構造物に対して作用せしめることが可能となる。なお、建築構造物において問題となる振動は、建築構造物や支持基板等の構造等によって相違するが、一般に、10Hz以下の比較的低い周波数域に生ぜしめられる。 In the present invention, in the vibration control means, the frequency f of the vibration force exerted on the mass member by the electromagnetic vibration means is f 0 +0.5 Hz with respect to the natural frequency f 0 of the dynamic vibration absorber. It is desirable that the frequency is set to f 0 × 2 Hz or less. As a result, even when the frequency of the vibration to be damped in the building structure is changed, a more stable excitation force (that is, active damping effect) can be more efficiently applied to the building structure. It becomes possible. In addition, although the vibration which becomes a problem in a building structure changes with structures, such as a building structure and a support substrate, generally, it is produced in a comparatively low frequency range of 10 Hz or less.

更にまた、本発明では、建築構造物の振動を検出する振動検出手段と、かかる振動検出手段で検出された建築構造物の振動に対応した参照信号に基づいて電磁式加振手段の作動制御信号を生成する制御信号生成手段とを、含んで加振制御手段が構成されていることが望ましい。これにより、建築構造物において問題となる振動の周波数の変化等に対して速やかに対応することが可能となる。   Furthermore, in the present invention, the vibration detection means for detecting the vibration of the building structure, and the operation control signal of the electromagnetic excitation means based on the reference signal corresponding to the vibration of the building structure detected by the vibration detection means. It is desirable that the vibration control means includes a control signal generation means for generating. As a result, it is possible to quickly cope with a change in the frequency of vibration, which is a problem in a building structure.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1及び図2には、本発明における一実施形態の建築構造物用の能動型制振装置としての一般住宅用の能動型制振装置10の全体概略構成が示されている。かかる能動型制振装置10は、それ自体が図示しない建築構造物(主振動系)に対する副振動系を構成する動的吸振器12と、かかる動的吸振器12に水平方向の加振力を及ぼす電磁式加振手段(加振手段)としての電磁加振器14を含んで構成されている。そして、電磁加振器14によって、建築構造物において制振すべき振動に対応した加振力を副振動系(動的吸振器12)に及ぼすことにより、全体として、建築構造物における振動を相殺的乃至は干渉的に抑制するようになっている。   First, FIG. 1 and FIG. 2 show an overall schematic configuration of an active vibration damping device 10 for a general house as an active vibration damping device for a building structure according to an embodiment of the present invention. Such an active vibration damping device 10 itself includes a dynamic vibration absorber 12 that constitutes a secondary vibration system for a building structure (main vibration system) (not shown), and a horizontal vibration force applied to the dynamic vibration absorber 12. An electromagnetic exciter 14 as an electromagnetic exciting means (exciting means) is provided. Then, by applying an excitation force corresponding to the vibration to be damped in the building structure to the sub-vibration system (dynamic vibration absorber 12) by the electromagnetic exciter 14, the vibration in the building structure is canceled as a whole. It is designed to suppress interference or interference.

より詳細には、動的吸振器12は、建築構造物としての一般住宅の構造材に対して、マス部材16が複数(本実施形態では、四つ)のゴムマウント18で弾性支持されることによって構成されている。   More specifically, in the dynamic vibration absorber 12, the mass member 16 is elastically supported by a plurality of (four in the present embodiment) rubber mounts 18 with respect to the structure material of a general house as a building structure. It is constituted by.

このマス部材16は、鉄系金属等の高比重材で形成されており、本実施形態では、全体として矩形ブロック形状を呈している。そこにおいて、本実施形態では、矩形平板形状の金属マスプレート20を、適当な枚数だけ重ね合わせて、図示しないボルトやリベット、溶接等で一体的に固定することによってマス部材16が構成されている。これにより、本実施形態のマス部材16においては、重ね合わせる金属マスプレート20の数や板厚を調節することで、制振対象となる建築構造物のマスの大きさに容易に対応することが可能となっている。なお、有効な制振効果を得るためには、マス部材16の質量を制振対象である建築構造物の質量に対して5%程度に設定することが望ましいが、それ以下であっても制振効果は期待できる。   The mass member 16 is formed of a high specific gravity material such as iron-based metal, and has a rectangular block shape as a whole in the present embodiment. Accordingly, in the present embodiment, the mass member 16 is configured by superimposing an appropriate number of rectangular plate-shaped metal mass plates 20 and integrally fixing them with bolts, rivets, welding, or the like (not shown). . Thereby, in the mass member 16 of this embodiment, it can respond easily to the magnitude | size of the mass of the building structure used as a damping | damping object by adjusting the number and plate | board thickness of the metal mass plate 20 to overlap. It is possible. In order to obtain an effective damping effect, it is desirable to set the mass of the mass member 16 to about 5% with respect to the mass of the building structure to be damped. The vibration effect can be expected.

また、ゴムマウント18は、図3及び図4に示されているように、第一の取付部材としての第一の取付金具22と第二の取付部材としての第二の取付金具24が本体ゴム弾性体26で弾性連結された構造とされている。   Further, as shown in FIGS. 3 and 4, the rubber mount 18 includes a first mounting bracket 22 as a first mounting member and a second mounting bracket 24 as a second mounting member. The elastic body 26 is elastically connected.

より詳細には、第一の取付金具22は、全体として逆向きの円錐台ブロック形状とされており、その大径側外周面には、全周に亘って径方向外方に突出する円環突部28が設けられていると共に、その上面には、上方に向かって突出する固定ボルト30が設けられている。そして、この固定ボルト30がマス部材16に設けられたボルト穴(図示せず)に螺着されることによって、第一の取付金具22がマス部材16に取り付けられるようになっている。   More specifically, the first mounting bracket 22 has a truncated conical block shape as a whole, and a large-diameter outer peripheral surface has a ring projecting radially outward over the entire circumference. A protrusion 28 is provided, and a fixing bolt 30 protruding upward is provided on the upper surface thereof. The fixing bolt 30 is screwed into a bolt hole (not shown) provided in the mass member 16, so that the first mounting bracket 22 is attached to the mass member 16.

一方、第二の取付金具24は、平板形状を呈する底壁部32の幅方向両端において、それぞれ、板厚方向一方の側に突出する縦壁部34,34が設けられた構造とされており、全体として溝形状を呈している。なお、本実施形態では、各縦壁部34と底壁部32の為す角度が、何れも、略90度とされているが、各縦壁部34と底壁部32の為す角度は90度に設定される必要はない。そして、第二の取付金具24は、剛性の高い金属等の平板で構成されて、マス部材16よりも一回り大きな矩形平面形状を有するベースプレート36に載置されて、溶接或いは図示しないボルトやリベット又は適当な固定ブラケット等の公知の固着手段によってベースプレート36に固定されるようになっている。   On the other hand, the second mounting bracket 24 has a structure in which vertical wall portions 34, 34 projecting to one side in the plate thickness direction are provided at both ends in the width direction of the bottom wall portion 32 having a flat plate shape. As a whole, it has a groove shape. In the present embodiment, the angle between each vertical wall portion 34 and the bottom wall portion 32 is approximately 90 degrees, but the angle between each vertical wall portion 34 and the bottom wall portion 32 is 90 degrees. Need not be set to The second mounting bracket 24 is made of a flat plate made of a highly rigid metal or the like, and is placed on a base plate 36 having a rectangular plane shape that is slightly larger than the mass member 16, and is welded or a bolt or rivet (not shown). Alternatively, it is fixed to the base plate 36 by a known fixing means such as an appropriate fixing bracket.

このような構造とされた第二の取付金具24の開口方向上方に離隔して、第一の取付金具22が対向配置されるようになっており、特に本実施形態では、第一の取付金具22の中心軸上に第二の取付金具24の底壁部32の中心が位置するようにして、第一の取付金具22と第二の取付金具24が配置されるようになっている。また、このように配置された第一の取付金具22と第二の取付金具24の間には、全体として矩形ブロック形状を呈する本体ゴム弾性体26が介装されている。   The first mounting bracket 22 is arranged so as to face the first mounting bracket 22 so as to be spaced apart upward in the opening direction of the second mounting bracket 24 having such a structure. In particular, in the present embodiment, the first mounting bracket The first mounting bracket 22 and the second mounting bracket 24 are arranged such that the center of the bottom wall portion 32 of the second mounting bracket 24 is positioned on the center axis of the second mounting bracket 24. A main rubber elastic body 26 having a rectangular block shape as a whole is interposed between the first mounting bracket 22 and the second mounting bracket 24 arranged in this manner.

そして、第一の取付金具22が、本体ゴム弾性体26の上面から差し込まれた状態で、大径側端面を除く略全面が本体ゴム弾性体26に加硫接着されている一方、第二の取付金具24が、本体ゴム弾性体26に対して下方から被せられた状態で、各縦壁部34の内面が本体ゴム弾性体26の幅方向の側面に加硫接着されていると共に、底壁部32の上面が本体ゴム弾性体26の下面に加硫接着されている。これにより、第一の取付金具22と第二の取付金具24における底壁部32との鉛直方向の対向面間と、第一の取付金具22と第二の取付金具24における一対の縦壁部34,34との水平方向両側での対向面間とが、それぞれ、本体ゴム弾性体26で連結されている。   In the state where the first mounting bracket 22 is inserted from the upper surface of the main rubber elastic body 26, substantially the entire surface except the large-diameter side end surface is vulcanized and bonded to the main rubber elastic body 26, while the second The inner surface of each vertical wall portion 34 is vulcanized and bonded to the side surface in the width direction of the main rubber elastic body 26 in a state where the mounting bracket 24 is put on the main rubber elastic body 26 from below, and the bottom wall The upper surface of the portion 32 is vulcanized and bonded to the lower surface of the main rubber elastic body 26. Thereby, between the opposing surface of the perpendicular direction of the bottom wall part 32 in the 1st mounting bracket 22 and the 2nd mounting bracket 24, and a pair of vertical wall part in the 1st mounting bracket 22 and the 2nd mounting bracket 24 The opposing rubber surfaces 34 and 34 on both sides in the horizontal direction are connected by a main rubber elastic body 26, respectively.

また、第一の取付金具22と第二の取付金具24の対向面間には、中間拘束板38,40が配されて、本体ゴム弾性体26に固着されている。特に本実施形態では、第一の取付金具22と第二の取付金具24の対向面間において、二つの中間拘束板38,40が配されて、本体ゴム弾性体26に固着されている。   Further, between the opposing surfaces of the first mounting bracket 22 and the second mounting bracket 24, intermediate restraint plates 38 and 40 are disposed and fixed to the main rubber elastic body 26. In particular, in the present embodiment, two intermediate restraint plates 38 and 40 are disposed between the opposing surfaces of the first mounting bracket 22 and the second mounting bracket 24 and are fixed to the main rubber elastic body 26.

これら二つの中間拘束板38,40は、何れも、矩形平板形状を呈する横板部42,44の幅方向両端において、それぞれ、板厚方向一方の側に突出する縦板部46,46,48,48が設けられた構造とされており、全体として溝形状を呈している。   These two intermediate restraint plates 38, 40 are both vertical plate portions 46, 46, 48 protruding to one side in the plate thickness direction at both ends in the width direction of the horizontal plate portions 42, 44 having a rectangular flat plate shape. , 48 are provided and have a groove shape as a whole.

そこにおいて、本実施形態では、一方の中間拘束板38は、その溝方向(一方の中間拘束板38が延びる方向)に対する直交方向での断面形状が、第二の取付金具24における溝方向(第二の取付金具24が延びる方向)に対する直交方向での断面形状よりも一回り小さくされている一方、他方の中間拘束板40は、その溝方向(他方の中間拘束板40が延びる方向)に対する直交方向での断面形状が、一方の中間拘束板38における溝方向(一方の中間拘束板38が延びる方向)に対する直交方向での断面形状よりも一回り小さくされている。   Therefore, in the present embodiment, one of the intermediate restraint plates 38 has a cross-sectional shape in a direction orthogonal to the groove direction (the direction in which the one intermediate restraint plate 38 extends) in the groove direction (first in the second mounting bracket 24). The other intermediate restraint plate 40 is perpendicular to the groove direction (the direction in which the other intermediate restraint plate 40 extends). The cross-sectional shape in the direction is made slightly smaller than the cross-sectional shape in the direction orthogonal to the groove direction (the direction in which one intermediate constraining plate 38 extends) in one intermediate constraining plate 38.

そして、一方の中間拘束板38は、その横板部42の中心が第二の取付金具24における底壁部32の中心と一致せしめられた状態で、且つ、その上端が第二の取付金具24の上端と同じ高さに位置せしめられた状態で、第二の取付金具24内に収容配置されている。また、他方の中間拘束板40は、その横板部44の中心が第二の取付金具24における底壁部32の中心や一方の中間拘束板38における横板部42の中心と一致せしめられた状態で、且つ、その上端が第二の取付金具24や一方の中間拘束板38の上端と同じ高さに位置せしめられた状態で、一方の中間拘束板38内に収容配置されている。更にまた、このように配された他方の中間拘束板40内に第一の取付金具22が収容位置せしめられるようになっている。そして、この状態で、二つの中間拘束板38,40は、それぞれ、本体ゴム弾性体26に固着されている。   One intermediate restraint plate 38 is in a state where the center of the horizontal plate portion 42 is aligned with the center of the bottom wall portion 32 of the second mounting bracket 24, and the upper end thereof is the second mounting bracket 24. The second mounting bracket 24 is housed and disposed in a state where it is positioned at the same height as the upper end of the second mounting bracket 24. The center of the horizontal plate portion 44 of the other intermediate restraint plate 40 is aligned with the center of the bottom wall portion 32 of the second mounting bracket 24 and the center of the horizontal plate portion 42 of the one intermediate restraint plate 38. In this state, the upper end thereof is accommodated and disposed in one intermediate restraint plate 38 with the upper end thereof being positioned at the same height as the upper ends of the second mounting bracket 24 and one intermediate restraint plate 38. Furthermore, the first mounting bracket 22 is accommodated in the other intermediate restraint plate 40 arranged in this manner. In this state, the two intermediate restraint plates 38 and 40 are fixed to the main rubber elastic body 26, respectively.

これにより、各中間拘束板38,40の横板部42,44が、第一の取付金具22と第二の取付金具24における底壁部32との鉛直方向の対向面間を水平方向に広がるようになっている一方、各中間拘束板38,40の一対の縦板部46,46,48,48が、第一の取付金具22側に向かって延び出して、第一の取付金具22と第二の取付金具24における一対の縦壁部34,34との水平方向両側での対向面間に広がるようになっている。   As a result, the horizontal plate portions 42 and 44 of the intermediate restraint plates 38 and 40 spread horizontally between the vertical facing surfaces of the first mounting bracket 22 and the bottom wall portion 32 of the second mounting bracket 24. On the other hand, a pair of vertical plate portions 46, 46, 48, 48 of the intermediate restraint plates 38, 40 extend toward the first mounting bracket 22, and The second mounting bracket 24 extends between opposing surfaces on both sides in the horizontal direction with the pair of vertical wall portions 34, 34.

その結果、本体ゴム弾性体26のばね剛性は、第二の取付金具24の溝方向よりも、第一の取付金具22と第二の取付金具24における底壁部32との対向方向(装着状態で鉛直方向となる図3の上下方向)や第二の取付金具24における一対の縦壁部34の対向方向(装着状態で水平方向となる図3の左右方向)のほうが、大きく設定されているのである。   As a result, the spring rigidity of the main rubber elastic body 26 is greater than the groove direction of the second mounting bracket 24 in the direction in which the first mounting bracket 22 and the bottom wall portion 32 of the second mounting bracket 24 face each other (mounted state). The vertical direction in FIG. 3 which is the vertical direction) and the opposing direction of the pair of vertical wall portions 34 in the second mounting bracket 24 (the horizontal direction in FIG. 3 which is the horizontal direction in the mounted state) are set larger. It is.

そして、このような構造とされたゴムマウント18の複数が協働することにより、一つのマス部材16がベースプレート36上で略水平に且つ弾性的に支持されている。そこにおいて、各ゴムマウント18は、第二の取付金具24の溝方向がマス部材16の長手方向(図1及び図2中の左右方向)に一致するように揃えられた状態で、マス部材16をベースプレート36上で弾性支持している。なお本実施形態のマス部材16は、その四隅近くに配設された4個のゴムマウント18によって、ベースプレート36上で弾性支持されている。   A plurality of rubber mounts 18 having such a structure cooperate to support one mass member 16 on the base plate 36 in a substantially horizontal and elastic manner. In this case, each of the rubber mounts 18 is aligned in such a manner that the groove direction of the second mounting bracket 24 is aligned with the longitudinal direction of the mass member 16 (the left-right direction in FIGS. 1 and 2). Is elastically supported on the base plate 36. The mass member 16 of the present embodiment is elastically supported on the base plate 36 by four rubber mounts 18 disposed near the four corners.

また、ベースプレート36の端縁部(図1,2中の右側端縁部)には、上方に向かって突出する支持部材としての支持壁50が固設されている。この支持壁50は、マス部材16における長手方向(図1及び図2中の左右方向)一端側の外周面に対して水平方向で離隔して対向位置せしめられている。そして、これら支持壁50とマス部材16の対向部位において、電磁加振器14が装着されている。   In addition, a support wall 50 as a support member that protrudes upward is fixed to the end edge portion (the right end edge portion in FIGS. 1 and 2) of the base plate 36. The support wall 50 is opposed to the outer peripheral surface on one end side in the longitudinal direction (the left-right direction in FIGS. 1 and 2) of the mass member 16 in the horizontal direction. The electromagnetic exciter 14 is mounted at the facing portion between the support wall 50 and the mass member 16.

かかる電磁加振器14は、図5に示されているように、同一中心軸上で軸方向に相互に対向位置して配設された、大径円形ブロック形状の基台部材52と小径円形ブロック形状の出力部材54が円環ブロック形状の連結ゴム56で弾性的に連結された構造を有している。   As shown in FIG. 5, the electromagnetic exciter 14 includes a large-diameter circular block-shaped base member 52 and a small-diameter circular shape that are disposed on the same central axis so as to face each other in the axial direction. The block-shaped output member 54 is elastically connected by an annular block-shaped connecting rubber 56.

そこにおいて、基台部材52は、鉄等の強磁性材で形成されており、中心軸上を貫通するガイド孔58が形成されている。そして、このガイド孔58に対して、出力部材54から中心軸上に突設されたガイドロッド60が、摺動可能に挿通されている。   Here, the base member 52 is formed of a ferromagnetic material such as iron, and a guide hole 58 penetrating the central axis is formed. A guide rod 60 projecting from the output member 54 on the central axis is slidably inserted into the guide hole 58.

また、基台部材52には、出力部材54側端面に開口する環状凹溝62が形成されており、この環状凹溝62の周壁面に永久磁石63が固設されることによって、環状凹溝62に磁気ギャップが形成されている。そして、この環状凹溝62には、伝動部材64によって出力部材54に固定されたコイル66が、開口側から差し入れられて、軸方向に変位可能に配設されている。   The base member 52 is formed with an annular groove 62 that opens on the end face on the output member 54 side, and a permanent magnet 63 is fixed on the peripheral wall surface of the annular groove 62, whereby the annular groove is formed. A magnetic gap is formed at 62. A coil 66 fixed to the output member 54 by the transmission member 64 is inserted into the annular groove 62 from the opening side and is disposed so as to be displaceable in the axial direction.

かくの如き構造とされた電磁加振器14は、コイル66に通電することで、基台部材52に対して出力部材54を軸方向に変位駆動させることが出来るようになっており、コイル66へ通電する脈流や交流の大きさや周波数を調節することで、発生する駆動力の大きさや周波数を制御することが出来るようになっている。   The electromagnetic exciter 14 having such a structure can drive the output member 54 in the axial direction relative to the base member 52 by energizing the coil 66. The magnitude and frequency of the generated driving force can be controlled by adjusting the magnitude and frequency of the pulsating current and the alternating current that are supplied to the motor.

そして、この電磁加振器14は、支持壁50に貫設された装着孔68に対して基台部材52が圧入等で固定される一方、マス部材16に対して出力部材54が固定用ボルトで固定されることによって、駆動軸方向(中心軸方向)をマス部材16の長手方向と平行な水平方向に向けて装着されており、かかる装着状態下、電磁加振器14のコイル66に通電することによって、支持壁50に対してマス部材16を水平方向で駆動変位せしめる加振力が生ぜしめられるようになっている。   In the electromagnetic exciter 14, the base member 52 is fixed to the mounting hole 68 penetrating the support wall 50 by press fitting or the like, while the output member 54 is fixed to the mass member 16. Is fixed so that the drive shaft direction (center axis direction) is oriented in the horizontal direction parallel to the longitudinal direction of the mass member 16, and the coil 66 of the electromagnetic exciter 14 is energized in such a mounted state. By doing so, an exciting force for driving and displacing the mass member 16 in the horizontal direction with respect to the support wall 50 is generated.

而して、上述の如き構造とされた能動型制振装置10は、そのベースプレート36が、一般住宅等の小型建築構造物の構造材に対して図示しないボルト等で固定されることによって、ベースプレート36が水平状態となるようにして、且つ、電磁加振器14の駆動軸の方向(図1,2の左右方向)やゴムマウント18における第二の取付金具24が延びる溝方向が建築構造物において制振すべき振動の方向となるように取り付けられる。特に、一般住宅等では、水平方向の振動が大きくなる最上階の押し入れや屋根裏等に設置することが望ましく、それによって、制振効果をより効果的に得ることが出来る。   Thus, the active vibration damping device 10 having the above-described structure has the base plate 36 fixed to a structural material of a small building structure such as a general house with a bolt or the like (not shown). 36 is in a horizontal state, and the direction of the drive shaft of the electromagnetic exciter 14 (the left-right direction in FIGS. 1 and 2) and the groove direction in which the second mounting bracket 24 in the rubber mount 18 extends are the building structure. Are attached so as to be in the direction of vibration to be controlled. In particular, in a general house or the like, it is desirable to install it in the top floor or attic of the top floor where the vibration in the horizontal direction becomes large, so that the damping effect can be obtained more effectively.

そこにおいて、本実施形態の能動型制振装置10においては、本体ゴム弾性体26における第二の取付金具24の溝方向のばね剛性が、第一の取付金具22と第二の取付金具24における底壁部32との対向方向(装着状態で鉛直方向となる図3の上下方向)や、第二の取付金具24における一対の縦壁部34の対向方向(装着状態で水平方向となる図3の左右方向)よりも十分に小さく設定されていると共に、かかる本体ゴム弾性体26のばね剛性が十分に小さくされた第二の取付金具24の溝方向が制振すべき振動の方向と一致していることから、電磁加振器14による加振力を効率的にマス部材16に及ぼして、優れた制振効果を得ることが可能になる。   Therefore, in the active vibration damping device 10 of the present embodiment, the spring rigidity in the groove direction of the second mounting bracket 24 in the main rubber elastic body 26 is the same in the first mounting bracket 22 and the second mounting bracket 24. The direction facing the bottom wall portion 32 (vertical direction in FIG. 3 which is the vertical direction in the mounted state) and the direction facing the pair of vertical wall portions 34 in the second mounting bracket 24 (FIG. 3 which is the horizontal direction in the mounted state). And the groove direction of the second mounting bracket 24 in which the spring rigidity of the main rubber elastic body 26 is sufficiently small coincides with the direction of vibration to be damped. Therefore, it is possible to efficiently exert the exciting force by the electromagnetic vibrator 14 on the mass member 16 and obtain an excellent vibration damping effect.

また、制振すべき振動の方向(第二の取付金具24が延びる溝方向)以外の方向では、本体ゴム弾性体26のばね剛性が十分に大きくされて、マス部材16の振動変位が抑制されるようになっていることから、制振すべき振動の方向(第二の取付金具24が延びる溝方向)以外の方向へのマス部材16の振動変位に起因する電磁加振器14の損傷等の不具合(例えば、ガイドロッド60がガイド孔58に対して抉られることに起因する損傷等の不具合)を回避することが可能となる。   In directions other than the direction of vibration to be damped (the groove direction in which the second mounting bracket 24 extends), the spring rigidity of the main rubber elastic body 26 is sufficiently increased, and the vibration displacement of the mass member 16 is suppressed. Therefore, the electromagnetic exciter 14 is damaged due to the vibration displacement of the mass member 16 in a direction other than the direction of the vibration to be damped (the groove direction in which the second mounting bracket 24 extends). (For example, a failure such as damage caused by the guide rod 60 being squeezed against the guide hole 58) can be avoided.

更にまた、電磁加振器14が支持壁50を介して建築構造物に支持されていることから、電磁加振器14の配設状態の安定化を図ることが可能となる。これにより、電磁加振器14による加振力をマス部材16に対して安定して作用せしめることが可能となる。   Furthermore, since the electromagnetic exciter 14 is supported by the building structure via the support wall 50, the arrangement state of the electromagnetic exciter 14 can be stabilized. As a result, it is possible to stably apply the excitation force of the electromagnetic vibrator 14 to the mass member 16.

また、上述の如く、能動型制振装置10が装着された状態下において、図5に概要が示されているように、電磁加振器14の加振制御手段としての制御装置72が設けられている。この制御装置72は、振動検出手段としての振動センサ74を含んで構成されている。かかる振動センサ74は、例えば加速度センサが採用され、建築構造物の構造躯体(例えば、能動型制振装置10のベースプレート36等でも良い)に取り付けられることにより、建築構造物において制振すべき振動を電気信号として検出するようになっている。   Further, as described above, with the active vibration damping device 10 mounted, a control device 72 is provided as a vibration control means of the electromagnetic vibration device 14 as schematically shown in FIG. ing. The control device 72 includes a vibration sensor 74 as vibration detection means. As the vibration sensor 74, for example, an acceleration sensor is employed, and the vibration sensor 74 is attached to a structural frame of the building structure (for example, the base plate 36 of the active vibration damping device 10 or the like), whereby vibration to be damped in the building structure. Is detected as an electrical signal.

そして、この振動センサ74で検出された電気信号を参照信号として、能動型制振装置10の電磁加振器14の作動制御信号を生成して、コイル66への駆動電力を制御する制御信号生成手段70を含んで、制御装置72が構成されている。なお、制御信号生成手段70は、例えば、CPU等の演算装置を含んで構成された制御回路等で構成される。   Then, using the electric signal detected by the vibration sensor 74 as a reference signal, an operation control signal for the electromagnetic exciter 14 of the active vibration damping device 10 is generated, and a control signal for controlling the drive power to the coil 66 is generated. A control device 72 is configured including the means 70. The control signal generation means 70 is configured by a control circuit configured to include an arithmetic device such as a CPU, for example.

そこにおいて、参照信号に基づくコイル66への駆動電力の制御信号の生成は、例えば、適応制御等の公知の手法によって、制振すべき振動に対応してリアルタイムで加振力の周波数や位相を制御すること等によって実現可能である。この技術は、例えば自動車用の能動型防振装置の制御装置として良く知られている。簡単に例示すると、制振すべき建築構造物の振動状態を検出した振動センサ74の検出信号に基づいて、その振動に対して有効な制振効果を発揮し得るように、検出信号に対応した駆動電流を電磁加振器14のコイル66に出力するものであって、例えば、実験等に基づいて予め設定されたデータにより、検出信号の大きさに対応した大きさの駆動電流を、検出信号に対して所定の位相差で給電することによりフィードフォワード的に制御するものや、或いは、検出信号に含まれる建築構造物の振動値を可及的に零にするように駆動電流の大きさ等をフィードバック制御するもの等が採用可能である。また、換言すれば、本実施形態においては、制御装置72が振動センサ74と制御信号生成手段70とを含んで構成されており、振動センサ74により検知された建築構造物の制振すべき振動の周波数に基づいて、制御信号生成手段70により電磁加振器14の作動制御信号が生成されることによって、マス部材16に及ぼされる加振力の周波数が制御されるようになっている。   The generation of the drive power control signal to the coil 66 based on the reference signal is performed by, for example, adjusting the frequency and phase of the excitation force in real time corresponding to the vibration to be controlled by a known method such as adaptive control. It can be realized by controlling it. This technique is well known as a control device for an active vibration isolator for automobiles, for example. For example, based on the detection signal of the vibration sensor 74 that detects the vibration state of the building structure to be damped, the detection signal is supported so that an effective damping effect can be exerted against the vibration. A drive current is output to the coil 66 of the electromagnetic exciter 14, and for example, a drive current having a magnitude corresponding to the magnitude of the detection signal is obtained from a preset data based on an experiment or the like. The feed current is controlled by supplying power with a predetermined phase difference, or the magnitude of the drive current so as to make the vibration value of the building structure included in the detection signal as zero as possible. It is possible to adopt a device that feedback-controls the above. In other words, in the present embodiment, the control device 72 includes the vibration sensor 74 and the control signal generation means 70, and the vibration to be damped of the building structure detected by the vibration sensor 74. Based on this frequency, the control signal generation means 70 generates an operation control signal for the electromagnetic exciter 14, whereby the frequency of the excitation force exerted on the mass member 16 is controlled.

ここにおいて、上述の能動型制振装置10にあっては、マス部材16の全体質量やゴムマウント18のばね特性を調節することによって、動的吸振器12における水平方向の固有振動数(共振周波数):f0 が、建築構造物において制振を目的とする周波数領域よりも低周波数となるように設定されている。 Here, in the above-described active vibration damping device 10, the horizontal natural frequency (resonance frequency) of the dynamic vibration absorber 12 is adjusted by adjusting the overall mass of the mass member 16 and the spring characteristics of the rubber mount 18. ): F 0 is set to be lower than the frequency region intended for vibration suppression in the building structure.

具体的には、建築構造物において制振を目的とする周波数のうちで主となるものとして、建築構造物における制振すべき振動方向の固有振動数(共振周波数)をfとしたときに、下記の式(1)を満足するように設定されている。
式(1): f0 +0.5(Hz)≦f(Hz)≦f0 ×2(Hz)
Specifically, as the main frequency among the frequencies intended for damping in the building structure, when the natural frequency (resonance frequency) of the vibration direction to be damped in the building structure is f, It is set so as to satisfy the following formula (1).
Formula (1): f 0 +0.5 (Hz) ≦ f (Hz) ≦ f 0 × 2 (Hz)

これにより、建築構造物の制振すべき振動周波数が変化した場合でも、能動型制振装置10の動的吸振器12における固有振動数よりも高い周波数域に制振すべき振動が存在するように設定される。その結果、建築構造物において制振すべき振動周波数で加振力が動的吸振器12に及ぼされるように電磁加振器14が制御されるに際して、制振すべき建築構造物の振動と動的吸振器12の振動との位相差の著しい変化(反転など)が回避され得るのであり、それによって、電磁加振器14の加振制御、延いては、動的吸振器12の加振変位の安定性が向上されることとなる。従って、動的吸振器12のマス部材16に加振力を及ぼすことで建築対象物に作用する能動的な制振効果が、安定して発揮され得ることとなるのである。   Thereby, even when the vibration frequency to be damped of the building structure is changed, the vibration to be damped is present in a frequency range higher than the natural frequency in the dynamic vibration absorber 12 of the active vibration damping device 10. Set to As a result, when the electromagnetic exciter 14 is controlled so that the exciting force is exerted on the dynamic vibration absorber 12 at the vibration frequency to be damped in the building structure, the vibration and motion of the building structure to be damped. A significant change (inversion, etc.) in the phase difference from the vibration of the dynamic vibration absorber 12 can be avoided, whereby the vibration control of the electromagnetic vibration device 14 and, hence, the vibration displacement of the dynamic vibration absorber 12 can be avoided. This will improve the stability. Therefore, the active vibration damping effect which acts on the building object by exerting an excitation force on the mass member 16 of the dynamic vibration absorber 12 can be stably exhibited.

すなわち、従来の一般の能動型制振装置では、「動的吸振器の共振周波数を、建築構造物において制振すべき振動周波数に一致するようにチューニングする」ことを基本思想としている。これにより、制振すべき振動周波数域では、動的吸振器におけるマス−バネ系の共振作用を利用して、小さな加振力を動的吸振器に作用させるだけで、大きな加振力を建築構造物に及ぼして優れた制振効果を得ることが可能となる。   That is, the basic concept of the conventional general active vibration control device is to “tune the resonance frequency of the dynamic vibration absorber so as to match the vibration frequency to be damped in the building structure”. As a result, in the vibration frequency range to be damped, a large excitation force can be built simply by applying a small excitation force to the dynamic absorber using the resonance action of the mass-spring system in the dynamic absorber. It is possible to obtain an excellent vibration control effect on the structure.

ところが、このような従来構造の能動型制振装置では、建築構造物において制振すべき振動周波数が変化した場合、制振効果が著しく低下したり、加振制御が不安定となってしまうという問題があった。そして、かかる問題に対して、本発明者が鋭意研究したところ、位相の急激な変化が影響しているのであろうとの知見を得るに至った。   However, in such a conventional active vibration damping device, when the vibration frequency to be damped in the building structure is changed, the vibration damping effect is remarkably lowered or the vibration control becomes unstable. There was a problem. And when this inventor earnestly researched with respect to such a problem, it came to the knowledge that the sudden change of a phase might have influenced.

具体的には、動的吸振器等のマス−バネ系からなる振動系では、その固有振動数(共振周波数)の付近において入力振動との位相反転のポイントが存在していることは良く知られている。建築構造物自体、固有振動数を有しており、建築構造物において問題となる振動がこの固有振動数に相当する周波数域であることは容易に想像できる。しかし、建築構造物において制振すべき振動の周波数は、現実には、振動源となる付近を走行する自動車の重量や種類、速度等の相違に応じて、数Hz以下の小さな領域であるが変化することを、本発明者が確認した。このような制振すべき振動の周波数に変化があった場合には、実際の建築構造物における振動状態を検出して得られた信号を参照信号とすることで動的吸振器に対して及ぼす加振力を能動制御する能動型制振装置において、振動周波数の変化に追従して加振力が変更制御されることとなる。   Specifically, it is well known that in a vibration system consisting of a mass-spring system such as a dynamic vibration absorber, there is a point of phase reversal with the input vibration in the vicinity of its natural frequency (resonance frequency). ing. The building structure itself has a natural frequency, and it can be easily imagined that the vibration in question in the building structure is in a frequency range corresponding to this natural frequency. However, the frequency of vibration to be damped in a building structure is actually a small region of several Hz or less depending on the difference in the weight, type, speed, etc. of the automobile traveling near the vibration source. The inventor confirmed that it changed. When there is a change in the frequency of the vibration to be damped, the signal obtained by detecting the vibration state in the actual building structure is used as a reference signal, which is applied to the dynamic vibration absorber. In the active vibration damping device that actively controls the excitation force, the excitation force is changed and controlled following the change of the vibration frequency.

しかしながら、上述の如く、もともと固有振動数域にチューニングされた動的吸振器では、僅かに周波数が変化しただけでも位相が大きく変化してしまうことから、加振器の位相制御が非常に難しくなる。そのような理由から、建築構造物において制振すべき振動の周波数が変化した場合には、安定した加振制御、延いては、動的吸振器の加振に基づいて建築構造物に及ぼされる相殺的な加振力が十分に得られ難くなって、目的とする制振効果が安定して発揮され難くなるのであろうと推定される。   However, as described above, in a dynamic vibration absorber that is originally tuned to the natural frequency range, even if the frequency changes slightly, the phase changes greatly, so that the phase control of the vibrator becomes very difficult. . For this reason, when the frequency of vibration to be damped in the building structure is changed, it is exerted on the building structure based on stable vibration control, and hence vibration of a dynamic vibration absorber. It is presumed that it becomes difficult to sufficiently obtain an offset excitation force, and it is difficult to stably exhibit the target vibration damping effect.

それに加えて、動的吸振器の固有振動数を建築構造物において制振すべき振動周波数(建築構造物の固有振動数)に合致させるチューニングを施した従来構造の能動型制振装置では、もともと動的吸振器の共振作用を利用して、加振手段によって及ぼされる小さな加振力を大きな加振力に増幅して、建築構造物に相対的加振力を及ぼすことにより、目的とする制振効果を得ることを目的としているが故に、建築構造物において制振すべき振動周波数が動的吸振器の固有振動数から外れてしまった状態では、動的吸振器の共振作用に基づく加振力の増幅効果が大幅に低下してしまうことが避けられない。そのために、建築構造物に対して有効な制振作用を発揮する程に大きな相対的加振力を及ぼすことが出来なくなってしまうことも、前述の如き従来構造の能動型制振装置における制振効果の低下や不安定さの原因の一つであると考えられる。   In addition, active vibration dampers with conventional structures that have been tuned to match the natural frequency of the dynamic vibration absorber to the vibration frequency to be damped in the building structure (the natural frequency of the building structure) By utilizing the resonance action of the dynamic vibration absorber, the small excitation force exerted by the excitation means is amplified to a large excitation force, and the relative excitation force is applied to the building structure. Because the objective is to obtain a vibration effect, when the vibration frequency to be damped in the building structure deviates from the natural frequency of the dynamic vibration absorber, excitation based on the resonance action of the dynamic vibration absorber It is inevitable that the power amplification effect is greatly reduced. For this reason, it is impossible to exert a large relative excitation force to the extent that an effective damping action is exerted on the building structure. This is considered to be one of the causes of inefficiency and instability.

ここにおいて、本実施形態の能動型制振装置10では、「建築構造物において制振すべき振動の周波数に対して動的吸振器12の固有振動数を低周波数側に外して設定した構成」を採用すると共に「動的吸振器12の固有振動数よりも高周波数域で且つ建築構造物において制振すべき振動の周波数に相当する周波数の加振力をマス部材16に及ぼすように加振手段(電磁加振器14)を作動制御する加振制御手段(制御装置72)」を設けたことにより、たとえ建築構造物において制振すべき振動の周波数が変化した場合にも、位相の大きな変化が回避される。それ故、建築構造物において制振すべき振動の周波数の変化に追従して、加振手段(電磁加振器14)から動的吸振器12に及ぼす加振力を安定して作動制御することが出来る。しかも、もともと固有振動数を外れた位置で動的吸振器12を利用していることから、建築構造物において制振すべき振動周波数が変化した場合にも、制振効果の大幅な落ち込みが問題となるようなこともない。   Here, in the active vibration damping device 10 of the present embodiment, “a configuration in which the natural frequency of the dynamic vibration absorber 12 is set to the low frequency side with respect to the frequency of vibration to be damped in the building structure”. And “exciting the mass member 16 so that an excitation force having a frequency higher than the natural frequency of the dynamic vibration absorber 12 and corresponding to the frequency of vibration to be damped in the building structure is exerted on the mass member 16. By providing the vibration control means (control device 72) for controlling the operation of the means (electromagnetic exciter 14) ", even if the frequency of vibration to be controlled in the building structure changes, the phase is large. Change is avoided. Therefore, following the change of the frequency of vibration to be damped in the building structure, the vibration force exerted on the dynamic vibration absorber 12 from the vibration means (electromagnetic vibration device 14) is stably controlled. I can do it. Moreover, since the dynamic vibration absorber 12 is originally used at a position outside the natural frequency, even if the vibration frequency to be damped in the building structure is changed, there is a problem that a significant drop in the vibration damping effect occurs. There is no such thing as.

加えて、本実施形態の能動型制振装置10では、「加振手段(電磁加振器14)を建築構造物に支持せしめる支持部材(支持壁50)」を設けて、「加振手段(電磁加振器14)によってマス部材16に及ぼされる加振力の反力が支持部材(支持壁50)を介して建築構造物に及ぼされる」構成を採用したことにより、上述の如く固有振動数を外れた位置で動的吸振器12を利用していることで共振倍率の効果を得難い構成であるにも拘わらず、加振手段(電磁加振器14)による加振力を建築構造物に対して効率的に作用せしめて優れた制振効果を得ることが可能となるのである。   In addition, in the active vibration damping device 10 of the present embodiment, a “support member (support wall 50) for supporting the vibration means (electromagnetic vibrator 14) on the building structure” is provided, and “vibration means ( By adopting the configuration in which the reaction force of the excitation force exerted on the mass member 16 by the electromagnetic vibrator 14) is exerted on the building structure via the support member (support wall 50), the natural frequency as described above is obtained. In spite of the configuration in which it is difficult to obtain the effect of the resonance magnification by using the dynamic vibration absorber 12 at a position outside the position, the vibration force by the vibration means (electromagnetic vibration device 14) is applied to the building structure. On the other hand, it is possible to obtain an excellent vibration control effect by acting efficiently.

もう少し詳しく説明すると、本実施形態の能動型制振装置10においては、マス部材16がゴムマウント18を介して建築構造物に弾性支持されることにより、弾性支持されたマス部材16によって建築構造物に対する副振動系として作用する一つの振動系(動的吸振器12)が構成される。また、この一つの振動系には、加振手段(電磁加振器14)による加振力が及ぼされることとなるが、この加振手段(電磁加振器14)による加振力は、建築構造物に対して固定的に設けられた支持部材(支持壁50)と、建築構造物に対して弾性支持されたマス部材16との間に、作用せしめられる。これにより、支持部材(支持壁50)には、動的吸振器12のマス部材16に及ぼされる加振力の反力が及ぼされることとなる。ここにおいて、かかるマス部材16は、ゴムマウント18により、建築構造物に対して弾性支持されていることから、このゴムマウント18(本体ゴム弾性体26)の弾性変形に伴う位相差に起因して、加振手段(電磁加振器14)によってマス部材16に及ぼされる加振力と支持部材(支持壁50)に及ぼされる反力のとの間に位相差が発生する。しかも、特徴的な事実として、この位相差は、マス部材16によって構成された動的吸振器12における固有振動数を超えた周波数域では、略同位相となり、相加的に建築構造物に対する相殺的加振力として作用せしめられるということであり、加えて、マス部材16によって構成された動的吸振器12(副振動系)の共振周波数を超えた周波数域では、確かに加振手段(電磁加振器14)から動的吸振器12を通じて建築構造物に伝達される加振力のレベルが低下するものの、それと反対に、加振手段(電磁加振器14)から支持部材(支持壁50)を通じて建築構造物に伝達される(マス部材16の加振反力としての)加振力のレベルが増大するということである。それ故、前述の如く、建築構造物において制振すべき振動周波数に比して低い固有振動数を設定した動的吸振器12を採用した構成と組み合わせて支持部材(支持壁50)を採用してなる本実施形態の能動型制振装置10においては、たとえ動的吸振器12の共振現象に基づく大きな加振力を利用することが難しくても、加振手段(電磁加振器14)によって及ぼされる加振力を制振対象たる建築構造物に対して効率的に且つ安定したレベルで伝達作用せしめることが出来るのであり、その結果、建築構造物において目的とする能動的乃至は相殺的な制振効果を有効に且つ安定して得ることが可能となるのである。   More specifically, in the active vibration damping device 10 of the present embodiment, the mass member 16 is elastically supported by the building structure via the rubber mount 18, so that the building structure is elastically supported by the mass member 16. One vibration system (dynamic vibration absorber 12) that acts as a sub-vibration system is constructed. In addition, an excitation force from the vibration means (electromagnetic vibrator 14) is exerted on this single vibration system. The vibration force from the vibration means (electromagnetic vibrator 14) It is made to act between the support member (support wall 50) fixedly provided with respect to the structure and the mass member 16 elastically supported with respect to the building structure. As a result, the reaction force of the excitation force exerted on the mass member 16 of the dynamic vibration absorber 12 is exerted on the support member (support wall 50). Here, since the mass member 16 is elastically supported by the rubber mount 18 with respect to the building structure, the mass member 16 is caused by the phase difference accompanying the elastic deformation of the rubber mount 18 (main rubber elastic body 26). A phase difference is generated between the excitation force applied to the mass member 16 by the excitation means (electromagnetic vibrator 14) and the reaction force applied to the support member (support wall 50). Moreover, as a characteristic fact, this phase difference is substantially the same in the frequency range exceeding the natural frequency in the dynamic vibration absorber 12 constituted by the mass member 16, and is additively offset against the building structure. In addition, in the frequency range exceeding the resonance frequency of the dynamic vibration absorber 12 (secondary vibration system) constituted by the mass member 16, the vibration means (electromagnetic) On the contrary, the level of the excitation force transmitted from the vibration exciter 14) to the building structure through the dynamic vibration absorber 12 decreases, but on the contrary, from the vibration means (electromagnetic vibration exciter 14) to the support member (support wall 50). ) Increases the level of the excitation force (as the excitation reaction force of the mass member 16) transmitted to the building structure. Therefore, as described above, the support member (support wall 50) is used in combination with the configuration using the dynamic vibration absorber 12 in which the natural frequency is set lower than the vibration frequency to be damped in the building structure. In the active vibration damping device 10 according to the present embodiment, even if it is difficult to use a large vibration force based on the resonance phenomenon of the dynamic vibration absorber 12, the vibration damping means (electromagnetic vibration device 14) is used. It is possible to transmit the applied excitation force to the building structure to be controlled at an efficient and stable level. As a result, the desired active or counterbalance is achieved in the building structure. It is possible to obtain the vibration control effect effectively and stably.

要するに、本実施形態では、「建築構造物において制振すべき振動周波数に対して動的吸振器12の固有振動数を低周波数側に外して設定した」動的吸振器12に係る構成と、「加振手段(電磁加振器14)を建築構造物に支持せしめる支持部材(支持壁50)を設けた」支持部材(支持壁50)に係る構成とを、互いに組み合わせて採用したことにより、建築構造物に対して優れた制振効果を発揮し得るに十分な大きさの相殺的な加振力を、安定して且つ効率的に発揮することを可能と為し得、その結果、振動周波数が変化した場合でも優れた制振効果を安定して奏せしめ得る新規な構造の能動型制振装置10を実現せしめ得たのである。   In short, in the present embodiment, the configuration related to the dynamic vibration absorber 12 "the natural frequency of the dynamic vibration absorber 12 is set to the low frequency side with respect to the vibration frequency to be damped in the building structure", By adopting a configuration related to the support member (support wall 50), which is provided with a support member (support wall 50) for supporting the vibration means (electromagnetic vibrator 14) on the building structure, in combination with each other, It is possible to stably and efficiently exert a counteracting excitation force large enough to exhibit an excellent vibration damping effect on a building structure, and as a result, vibration Thus, the active vibration damping device 10 having a novel structure capable of stably exhibiting an excellent vibration damping effect even when the frequency changes can be realized.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的記載によって、何等、限定的に解釈されるものでない。   As mentioned above, although one Embodiment of this invention was described in full detail, this is an illustration to the last, Comprising: This invention is not interpreted limited at all by the specific description in this Embodiment.

例えば、ゴムマウントには、図6に示されているように、本体ゴム弾性体26において、第二の取付金具24の溝方向に貫通するすぐり部76が形成されていても良い。これにより、第二の取付金具24が延びる溝方向での本体ゴム弾性体26のばね剛性を小さくしつつ、第二の取付金具24が延びる溝方向に対する直交方向、具体的には、第一の取付金具22と第二の取付金具24における底壁部32との対向方向(鉛直方向)や、第二の取付金具24における一対の縦壁部34,34の対向方向(水平方向)での本体ゴム弾性体26のばね剛性を調節することが可能となる。   For example, as shown in FIG. 6, the rubber mount may be formed with a straight portion 76 that penetrates in the groove direction of the second mounting bracket 24 in the main rubber elastic body 26. Thereby, while reducing the spring rigidity of the main rubber elastic body 26 in the groove direction in which the second mounting bracket 24 extends, the direction orthogonal to the groove direction in which the second mounting bracket 24 extends, specifically, the first The main body in the facing direction (vertical direction) of the bottom wall portion 32 of the mounting bracket 22 and the second mounting bracket 24 or in the facing direction (horizontal direction) of the pair of vertical wall portions 34, 34 in the second mounting bracket 24. The spring rigidity of the rubber elastic body 26 can be adjusted.

そこにおいて、すぐり部76が形成される位置は、図6に示されているように、第二の取付金具24と一方の中間拘束板38との対向面間における角部や、一方の中間拘束板38と他方の中間拘束板40との対向面間における角部が望ましく、それによって、上述の如き本体ゴム弾性体26のばね剛性の調節を有利に実現することが可能となる。要するに、第一及び第二の取付金具22,24や中間拘束板38,40の相互間における鉛直方向の対向面間に介在せしめられた本体ゴム弾性体26によって、マス部材16の支持剛性が発揮される。また、第一及び第二の取付金具22,24や中間拘束板38,40の相互間における水平方向の対向面間に介在せしめられた本体ゴム弾性体26によって、電磁加振器14による加振力作用方向に直交する水平方向において大きなばね剛性が発揮される。   In this case, the position where the straight portion 76 is formed is, as shown in FIG. 6, the corner between the opposing surfaces of the second mounting bracket 24 and one intermediate restraint plate 38, or one intermediate restraint. A corner portion between the opposing surfaces of the plate 38 and the other intermediate restraint plate 40 is desirable, so that the adjustment of the spring rigidity of the main rubber elastic body 26 as described above can be advantageously realized. In short, the support rigidity of the mass member 16 is exhibited by the main rubber elastic body 26 interposed between the opposing surfaces in the vertical direction between the first and second mounting brackets 22 and 24 and the intermediate restraint plates 38 and 40. Is done. Further, the electromagnetic exciter 14 vibrates by the main rubber elastic body 26 interposed between the horizontal opposing surfaces of the first and second mounting brackets 22 and 24 and the intermediate restraint plates 38 and 40. A large spring rigidity is exhibited in the horizontal direction perpendicular to the direction of force application.

そして、それら鉛直方向の支持剛性や加振力作用方向に直交する水平方向のばね剛性を確保しつつ、すぐり部76の形成によって、電磁加振器14による加振力作用方向でのばね剛性を相対的に低減させることが可能となって、制振が要求される振動方向におけるばね定数ひいては動的吸振器12の固有振動数のチューニング自由度が大きく確保され得るのである。   Then, while ensuring the vertical support rigidity and the horizontal spring rigidity orthogonal to the direction of the excitation force, the spring stiffness in the direction of the excitation force applied by the electromagnetic exciter 14 is increased by forming the straight portion 76. It is possible to reduce the relative frequency, and a large degree of freedom in tuning the spring constant in the vibration direction in which vibration suppression is required and thus the natural frequency of the dynamic vibration absorber 12 can be secured.

なお、ゴムマウントにおける鉛直方向や、加振力作用方向に直交する水平方向のばね特性を調節するために、第一及び第二の取付金具22,24や中間拘束板38,40の相互間における鉛直方向の対向面間や、第一及び第二の取付金具22,24や中間拘束板38,40の相互間における水平方向の対向面間にも、必要に応じて、本体ゴム弾性体26において第二の取付金具24が延びる溝方向に貫通し、或いは貫通しない態様の肉抜部やすぐり部が形成され得る。   In addition, in order to adjust the spring characteristics in the vertical direction in the rubber mount and in the horizontal direction perpendicular to the direction in which the excitation force acts, the first and second mounting brackets 22 and 24 and the intermediate restraint plates 38 and 40 are mutually connected. In the main rubber elastic body 26 as necessary, between the opposing surfaces in the vertical direction and between the opposing surfaces in the horizontal direction between the first and second mounting brackets 22 and 24 and the intermediate restraint plates 38 and 40 as well. A thinned portion or a straight portion that penetrates in the groove direction in which the second mounting bracket 24 extends or does not penetrate can be formed.

また、ゴムマウントには、図7に示されているように、第二の取付金具24と中間拘束板38の両方において、或いはそれらの何れか一方において、本体ゴム弾性体26内に突出する拘束突部78を形成することも可能である。このような拘束突部78を、第一及び第二の取付金具22,24や中間拘束板38,40の相互間において、互いの対向方向に突出形成することにより、ゴムマウントにおけるばね特性のチューニング自由度の更なる向上が図られ得る。   Further, as shown in FIG. 7, the rubber mount includes a restraint that protrudes into the main rubber elastic body 26 in both the second mounting bracket 24 and the intermediate restraining plate 38, or any one of them. The protrusion 78 can also be formed. Tuning of spring characteristics in the rubber mount is achieved by forming such restraining protrusions 78 in the opposing direction between the first and second mounting brackets 22 and 24 and the intermediate restraining plates 38 and 40. The degree of freedom can be further improved.

すなわち、かかる拘束突部78は、薄肉の板形状をもって、第二の取付金具24が延びる溝方向(図7中の紙面に垂直な方向)と平行に直線的に延びるようにして、第二の取付金具24や中間拘束板38に固設されている。これにより、中間拘束板38が延びる方向(図7において紙面に垂直な方向)では、本体ゴム弾性体26に惹起される弾性変形が拘束突部78に対して剪断方向となることから、本体ゴム弾性体26のばね剛性を小さく維持される。一方、中間拘束板38の面に直交する方向(図7において左右方向や上下方向)では、本体ゴム弾性体26に惹起される弾性変形が拘束突部78によって圧縮/引張力として一層大きく作用せしめられて、一層大きなばね剛性が発揮されるのである。   That is, the restraining protrusion 78 has a thin plate shape and extends linearly in parallel with the groove direction (direction perpendicular to the paper surface in FIG. 7) in which the second mounting bracket 24 extends. The mounting bracket 24 and the intermediate restraint plate 38 are fixed. Thereby, in the direction in which the intermediate constraining plate 38 extends (the direction perpendicular to the paper surface in FIG. 7), the elastic deformation caused by the main rubber elastic body 26 becomes the shearing direction with respect to the constraining protrusion 78. The spring rigidity of the elastic body 26 is kept small. On the other hand, in the direction orthogonal to the surface of the intermediate restraint plate 38 (left and right direction and up and down direction in FIG. 7), the elastic deformation caused by the main rubber elastic body 26 causes the restraint projection 78 to act more as compression / tensile force. As a result, even greater spring stiffness is exhibited.

特に、第二の取付金具24が延びる溝方向に対する直交方向、具体的には、第一の取付金具22と第二の取付金具24における底壁部32との対向方向(鉛直方向)や、第二の取付金具24における一対の縦壁部34,34の対向方向(水平方向)での本体ゴム弾性体26のばね剛性を大きく設定することが可能となる。   In particular, the direction perpendicular to the groove direction in which the second mounting bracket 24 extends, specifically, the opposing direction (vertical direction) between the first mounting bracket 22 and the bottom wall portion 32 of the second mounting bracket 24, The spring rigidity of the main rubber elastic body 26 in the opposing direction (horizontal direction) of the pair of vertical wall portions 34, 34 in the second mounting bracket 24 can be set large.

そこにおいて、特に図7に示されたゴムマウントでは、中間拘束板38と第二の取付金具24との対向面間において、それらの鉛直方向の対向面間では幅方向で交互に突出するようにして、また水平方向の対向面間では上下方向で交互に突出するようにして、中間拘束板38と第二の取付金具24とにおける拘束突部78がそれぞれ突出形成されていることから、それら中間拘束板38と第二の取付金具24との両方の拘束突部78,78の相互作用により、鉛直方向や加振力作用方向に直交する水平方向でのばね剛性が一層効率的に増大されるようになっている。   In particular, in the rubber mount shown in FIG. 7, between the opposing surfaces of the intermediate restraint plate 38 and the second mounting bracket 24, the vertical opposing surfaces protrude alternately in the width direction. In addition, since the constraining protrusions 78 on the intermediate constraining plate 38 and the second mounting bracket 24 are formed so as to protrude alternately in the vertical direction between the opposing surfaces in the horizontal direction, Due to the interaction of the restraining projections 78 and 78 of both the restraining plate 38 and the second mounting bracket 24, the spring stiffness in the vertical direction and the horizontal direction perpendicular to the direction of the applied force is more efficiently increased. It is like that.

なお、第二の取付金具24の底壁部32と中間拘束板38の横板部42との対向面間だけに、その少なくとも一方から他方に向かって突出する拘束突部78を形成することも可能である。或いはまた、第二の取付金具24の縦壁部34と中間拘束板38の縦板部46との対向面間だけに、その少なくとも一方から他方に向かって突出する拘束突部78を形成することも可能である。また、中間拘束板40と中間拘束板38との対向面間や、中間拘束板40と第一の取付金具22との対向面間においても、同様に、それらの適当な箇所において、少なくとも一方から他方に向かって突出する拘束突部を形成しても良い。   It is also possible to form a constraining protrusion 78 that protrudes from at least one side toward the other only between the opposed surfaces of the bottom wall portion 32 of the second mounting bracket 24 and the lateral plate portion 42 of the intermediate constraining plate 38. Is possible. Alternatively, a constraining protrusion 78 that protrudes from at least one side toward the other is formed only between the opposing surfaces of the vertical wall portion 34 of the second mounting bracket 24 and the vertical plate portion 46 of the intermediate constraining plate 38. Is also possible. Similarly, between the opposed surfaces of the intermediate restraint plate 40 and the intermediate restraint plate 38 and between the opposed surfaces of the intermediate restraint plate 40 and the first mounting bracket 22, similarly, at least at one of those appropriate positions. You may form the restraint protrusion which protrudes toward the other.

なお、理解を容易にするために、図6及び図7では、前記実施形態と同様な構造とされた部材及び部位について、前記実施形態と同一の符号を付してある。   In order to facilitate understanding, in FIGS. 6 and 7, the same reference numerals as those in the above embodiment are given to members and parts having the same structure as in the above embodiment.

また、中間拘束板は、一つであっても良いし、三つ以上であっても良い。更に、第一の取付金具22と中間拘束板40の対向面間距離や、第二の取付金具24と中間拘束板38の対向面間距離、中間拘束板38,40の対向面間距離は、適宜に調節可能であり、それらを同一に設定する必要もない。また、それら各部材間の対向面間距離を、鉛直方向での対向面間距離と水平方向での対向面間距離を相互に異ならせて設定することも可能である。   Further, the number of intermediate restraint plates may be one, or three or more. Furthermore, the distance between the facing surfaces of the first mounting bracket 22 and the intermediate restraining plate 40, the distance between the facing surfaces of the second mounting bracket 24 and the intermediate restraining plate 38, and the distance between the facing surfaces of the intermediate restraining plates 38 and 40 are: They can be adjusted as appropriate, and they need not be set identically. It is also possible to set the distance between the opposing surfaces between these members by making the distance between the opposing surfaces in the vertical direction different from the distance between the opposing surfaces in the horizontal direction.

また、第一の取付金具22も、中間拘束板38,40や第二の取付金具24と同様に、水平面とその両側の縦面とをもって、加振力作用方向(図4中の上下方向)に延びる形状をもって形成しても良く、それにより、第一の取付金具22と中間拘束板40との鉛直方向や加振力作用方向に直交する水平方向での対向面積を一層有利に確保することが可能となる。   The first mounting bracket 22 also has a horizontal surface and vertical surfaces on both sides thereof in the same manner as the intermediate restraint plates 38 and 40 and the second mounting bracket 24, and the direction in which the excitation force acts (the vertical direction in FIG. 4). May be formed with a shape extending in a straight line, thereby further advantageously ensuring the opposing area of the first mounting bracket 22 and the intermediate restraining plate 40 in the vertical direction and in the horizontal direction orthogonal to the direction of action of the excitation force. Is possible.

更にまた、前記実施形態では、中間拘束板38,40の縦板部46,48が、本体ゴム弾性体26の上端面まで達していたが、それら縦板部46,48の上端面が本体ゴム弾性体26の上端面まで達せずに埋設状態とされていても良い。   Furthermore, in the above embodiment, the vertical plate portions 46 and 48 of the intermediate restraint plates 38 and 40 reach the upper end surface of the main rubber elastic body 26, but the upper end surfaces of these vertical plate portions 46 and 48 are the main rubber. The elastic body 26 may be embedded without reaching the upper end surface.

さらに、本体ゴム弾性体26における加振力作用方向の両側部分である、中間拘束板38,40の縦板部46,48への固着部分を傾斜形状としたり、中間拘束板38,40の縦板部46,48自体を上方に向かって拡開する傾斜形状としたりすることも可能であり、それによって、マス部材16に対する支持ばね剛性を大きく設定することが出来ると共に、マス部材16の質量作用時における本体ゴム弾性体26の引張応力を軽減して耐久性の向上を図ることも可能となる。   Furthermore, the fixed portions to the vertical plate portions 46 and 48 of the intermediate restraint plates 38 and 40, which are both side portions of the main rubber elastic body 26 in the direction of the excitation force, are inclined, or the intermediate restraint plates 38 and 40 are vertically It is also possible to make the plate portions 46, 48 themselves have an inclined shape that expands upward, whereby the stiffness of the support spring for the mass member 16 can be set large, and the mass action of the mass member 16 can be increased. It is also possible to improve the durability by reducing the tensile stress of the main rubber elastic body 26 at the time.

また、前記実施形態の図面では、各部材の形状が簡略的に表示されていたが、例えば中間拘束板38,40や第一及び第二の取付金具22,24の各角部には、適当なアールが付されて、成形加工性の向上と本体ゴム弾性体26における応力集中軽減が図られる。また、本体ゴム弾性体26の各金具への接着表面には、適当なアール(フィレットアール)が付されて接着耐久性の向上や亀裂防止などが図られ得る。   Moreover, in the drawings of the above-described embodiment, the shape of each member is simply displayed. However, for example, each corner portion of the intermediate restraint plates 38 and 40 and the first and second mounting brackets 22 and 24 is appropriately displayed. Therefore, the processability can be improved and the stress concentration in the main rubber elastic body 26 can be reduced. Further, the surface of the main rubber elastic body 26 bonded to each metal fitting can be provided with an appropriate round (fillet round) to improve adhesion durability and prevent cracking.

更にまた、前記実施形態において、本体ゴム弾性体26のうち、第二の取付金具24と一方の中間拘束板38の対向面間に位置せしめられる部分と、一方の中間拘束板38と他方の中間拘束板40の対向面間に位置せしめられる部分と、他方の中間拘束板40と第一の取付金具22の対向面間に位置せしめられる部分とを、互いに異なる組成からなるゴム材料で形成するようにしても良い。これにより、例えば鉛直方向のばね特性と水平方向のばね特性とを、より大きな自由度をもって異ならせることも可能となる。   Furthermore, in the above-described embodiment, the portion of the main rubber elastic body 26 that is positioned between the opposing surfaces of the second mounting bracket 24 and the one intermediate restraint plate 38, and the intermediate restraint plate 38 and the other intermediate portion. The portion positioned between the opposing surfaces of the restraining plate 40 and the portion positioned between the opposing surfaces of the other intermediate restraining plate 40 and the first mounting bracket 22 are formed of rubber materials having different compositions. Anyway. As a result, for example, the vertical spring characteristic and the horizontal spring characteristic can be made different with a greater degree of freedom.

加えて、本発明は、一階建てや二階建て以上の一般住宅の他、集合住宅や事務所、倉庫、ビル、タワー等、各種の小形乃至大形の建築構造物用の能動型制振装置として、何れも適用可能であることは、言うまでもない。   In addition, the present invention is an active vibration control device for various small to large building structures such as one-story and two-story general houses as well as apartment houses, offices, warehouses, buildings and towers. Needless to say, both are applicable.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

本発明の一実施形態としての能動型制振装置を示す正面図。1 is a front view showing an active vibration damping device as one embodiment of the present invention. 同能動型制振装置の平面図。The top view of the active vibration damping device. 図1に示された能動型制振装置を構成するゴムマウントの縦断面図であって、図4のIII−III方向の断面図。It is a longitudinal cross-sectional view of the rubber mount which comprises the active vibration damping device shown by FIG. 1, Comprising: Sectional drawing of the III-III direction of FIG. 同ゴムマウントの平面図。The top view of the rubber mount. 図1に示された能動型制振装置を構成する電磁加振器の装着状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the mounting state of the electromagnetic vibrator which comprises the active vibration damping device shown by FIG. 本発明において採用可能なゴムマウントの別の態様を示す縦断面図。The longitudinal cross-sectional view which shows another aspect of the rubber mount employable in this invention. 本発明において採用可能なゴムマウントの更に別の態様を示す縦断面図。The longitudinal cross-sectional view which shows another aspect of the rubber mount employable in this invention.

符号の説明Explanation of symbols

10:能動型制振装置,12:動的吸振器,14:電磁加振器,16:マス部材,18:ゴムマウント,22:第一の取付金具,24:第二の取付金具,26:本体ゴム弾性体,32:底壁部,34:縦壁部,38:中間拘束板,40:中間拘束板,42:横板部,44:横板部,46:縦板部,48:縦板部,50:支持壁 10: Active vibration damping device, 12: Dynamic vibration absorber, 14: Electromagnetic vibration exciter, 16: Mass member, 18: Rubber mount, 22: First mounting bracket, 24: Second mounting bracket, 26: Rubber elastic body, 32: bottom wall, 34: vertical wall, 38: intermediate restraint plate, 40: intermediate restraint plate, 42: horizontal plate, 44: horizontal plate, 46: vertical plate, 48: vertical Plate part, 50: Support wall

Claims (6)

建築構造物に対してマス部材が複数のゴムマウントで弾性支持されることにより動的吸振器が構成されるようになっていると共に、該建築構造物において制振すべき振動方向となる水平方向の加振力を該マス部材に及ぼす加振手段が設けられた建築構造物用の能動型制振装置において、
前記マス部材と前記建築構造物の一方に取り付けられる第一の取付部材とそれらマス部材と建築構造物の他方に取り付けられる第二の取付部材とが上下方向で離隔して対向配置せしめられ、それら第一の取付部材と第二の取付部材の対向面間に本体ゴム弾性体が配設されて該第一の取付部材と該第二の取付部材が弾性連結されている一方、該第二の取付部材において該第一の取付部材に対する対向方向に直交する水平方向に広がる底壁部と該底壁部の幅方向両端部から該第一の取付部材側に向かって延び出す一対の縦壁部とが設けられて、該第二の取付部材が全体として溝形状とされていると共に、該第一の取付部材と該第二の取付部材における該底壁部との鉛直方向の対向面間と、該第一の取付部材と該第二の取付部材における該一対の縦壁部との水平方向の両側での対向面間とが、それぞれ、該本体ゴム弾性体で連結されており、更に、該第一の取付部材と該第二の取付部材における該底壁部との鉛直方向の対向面間を水平方向に広がる横板部と、該横板部の幅方向両端部から該第一の取付部材側に向かって延び出して該第一の取付部材と該第二の取付部材における該一対の縦壁部との水平方向の両側での対向面間に広がる一対の縦板部とからなる全体として溝形状の中間拘束板が設けられて、該第一の取付部材と該第二の取付部材との対向面間で該中間拘束板が該本体ゴム弾性体に固着せしめられた構造をもって前記ゴムマウントが構成されており、
該ゴムマウントの複数が、それぞれにおいて溝形状とされた該第二の取付部材が同じ方向に揃えられて該マス部材に対して装着されている一方、
前記加振手段として電磁式加振手段を採用し、該電磁式加振手段を前記建築構造物に支持せしめる支持部材を設けると共に、
該ゴムマウントにおいて溝形状とされた該第二の取付部材が延びる溝方向で、該電磁式加振手段による加振力が該マス部材に及ぼされるようになっていることを特徴とする建築構造物用の能動型制振装置。
A dynamic vibration absorber is configured by elastically supporting mass members with a plurality of rubber mounts on a building structure, and a horizontal direction that is a vibration direction to be damped in the building structure In an active vibration damping device for a building structure provided with a vibration means for applying the vibration force of the mass member to the mass member,
A first mounting member attached to one of the mass member and the building structure, and a second mounting member attached to the other of the mass member and the building structure are arranged opposite to each other in the vertical direction. While the main rubber elastic body is disposed between the opposing surfaces of the first mounting member and the second mounting member, the first mounting member and the second mounting member are elastically connected, while the second mounting member A bottom wall portion extending in a horizontal direction perpendicular to the direction facing the first mounting member in the mounting member, and a pair of vertical wall portions extending from both ends in the width direction of the bottom wall portion toward the first mounting member side And the second mounting member is formed into a groove shape as a whole, and between the vertical facing surfaces of the first mounting member and the bottom wall portion of the second mounting member, The pair of longitudinal portions of the first mounting member and the second mounting member. Between the opposing surfaces on the both sides in the horizontal direction with the main body are respectively connected by the main rubber elastic body, and further, between the first mounting member and the bottom wall portion of the second mounting member A horizontal plate portion that spreads horizontally between opposing surfaces in the vertical direction, and extends from both ends in the width direction of the horizontal plate portion toward the first attachment member side, and the first attachment member and the second attachment member An intermediate constraining plate having a groove shape as a whole, comprising a pair of vertical plate portions extending between opposing surfaces on both sides in the horizontal direction of the pair of vertical wall portions in the mounting member, is provided, and the first mounting member The rubber mount has a structure in which the intermediate restraint plate is fixed to the main rubber elastic body between the opposing surfaces of the second mounting member,
While the plurality of rubber mounts are attached to the mass member with the second mounting members each having a groove shape aligned in the same direction,
Adopting an electromagnetic excitation means as the excitation means, providing a support member for supporting the electromagnetic excitation means on the building structure,
A building structure characterized in that an excitation force by the electromagnetic excitation means is exerted on the mass member in a groove direction in which the second mounting member having a groove shape in the rubber mount extends. Active vibration control device for objects.
前記本体ゴム弾性体において、前記第二の取付部材が延びる溝方向に貫通するすぐり部が形成されている請求項1に記載の建築構造物用の能動型制振装置。   The active vibration damping device for a building structure according to claim 1, wherein the main rubber elastic body is formed with a straight portion penetrating in a groove direction in which the second mounting member extends. 前記第二の取付部材と前記中間拘束板の少なくとも一方において、前記本体ゴム弾性体内に突出する拘束突部が形成されている請求項1又は2に記載の建築構造物用の能動型制振装置。   The active vibration damping device for a building structure according to claim 1 or 2, wherein at least one of the second mounting member and the intermediate restraining plate is formed with a restraining protrusion protruding into the main rubber elastic body. . 前記電磁式加振手段により前記マス部材に及ぼされる加振力の反力が前記支持部材を介して前記建築構造物に及ぼされるようになっていると共に、該建築構造物において制振すべき振動周波数に対して前記動的吸振器の固有振動数が低周波数側に外して設定されており、
該電磁式加振手段によって該マス部材に及ぼされる加振力の周波数を制御することで、該動的吸振器の固有振動数よりも高周波数域で且つ該建築構造物において制振すべき振動周波数に相当する周波数の加振力を該マス部材に及ぼすように該電磁式加振手段を作動制御する加振制御手段が設けられている請求項1乃至3の何れか1項に記載の建築構造物用の能動型制振装置。
The reaction force of the excitation force exerted on the mass member by the electromagnetic excitation means is applied to the building structure via the support member, and vibration to be damped in the building structure The natural frequency of the dynamic vibration absorber is set to the low frequency side with respect to the frequency,
By controlling the frequency of the excitation force exerted on the mass member by the electromagnetic excitation means, the vibration to be damped in the building structure in a higher frequency range than the natural frequency of the dynamic vibration absorber The building according to any one of claims 1 to 3, further comprising an excitation control means for controlling the operation of the electromagnetic excitation means so that an excitation force having a frequency corresponding to a frequency is exerted on the mass member. Active vibration control device for structures.
前記加振制御手段において、前記電磁式加振手段により前記マス部材に及ぼされる加振力の周波数fが、前記動的吸振器の固有振動数f0 に対して、f0 +0.5Hz以上で且つf0 ×2Hz以下に設定されるようになっている請求項4に記載の建築構造物用の能動型制振装置。 In the excitation control means, the frequency f of the excitation force exerted on the mass member by the electromagnetic excitation means is at least f 0 +0.5 Hz with respect to the natural frequency f 0 of the dynamic vibration absorber. The active vibration damping device for a building structure according to claim 4, wherein the active vibration damping device is set to f 0 × 2 Hz or less. 前記建築構造物の振動を検出する振動検出手段と、該振動検出手段で検出された該建築構造物の振動に対応した参照信号に基づいて前記電磁式加振手段の作動制御信号を生成する制御信号生成手段とを、
含んで前記加振制御手段が構成されている請求項4又は5に記載の建築構造物用の能動型制振装置。
Vibration detection means for detecting vibration of the building structure, and control for generating an operation control signal for the electromagnetic excitation means based on a reference signal corresponding to the vibration of the building structure detected by the vibration detection means Signal generating means,
The active vibration damping device for a building structure according to claim 4 or 5, wherein the vibration control means is included.
JP2007087948A 2007-03-29 2007-03-29 Active damper for building structure Pending JP2008248490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087948A JP2008248490A (en) 2007-03-29 2007-03-29 Active damper for building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087948A JP2008248490A (en) 2007-03-29 2007-03-29 Active damper for building structure

Publications (1)

Publication Number Publication Date
JP2008248490A true JP2008248490A (en) 2008-10-16

Family

ID=39973757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087948A Pending JP2008248490A (en) 2007-03-29 2007-03-29 Active damper for building structure

Country Status (1)

Country Link
JP (1) JP2008248490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088767A (en) * 2016-06-28 2016-11-09 杜桂菊 Assembled transformer room
CN111719725A (en) * 2020-05-18 2020-09-29 长江大学 Building vibration suppression and energy recovery device based on electromagnetic damping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088767A (en) * 2016-06-28 2016-11-09 杜桂菊 Assembled transformer room
CN111719725A (en) * 2020-05-18 2020-09-29 长江大学 Building vibration suppression and energy recovery device based on electromagnetic damping

Similar Documents

Publication Publication Date Title
US6874748B2 (en) Active floor vibration control system
JP5027037B2 (en) Vibration control device
JP5001810B2 (en) Variable stiffness spring, damping device, and structure
US20170008736A1 (en) Active vibration damper for a linear propulsion system of a ropeless elevator
JP2011172352A (en) Oscillating power generation system
JP6676500B2 (en) Dynamic damper and ceiling
JP5697876B2 (en) Power generator
JP2008168980A (en) Vertical vibration suppression device for elevator car
JP4914744B2 (en) Active vibration control device for building structure and active vibration control method for building structure
JP2008248629A (en) Active damper for building structure
JP6416037B2 (en) Elevator
JP2008248490A (en) Active damper for building structure
JP2011105435A (en) Elevator vibration damping system
JP2009166961A (en) Elevator vibration damping device
WO2013133189A1 (en) Vibration suppression device for vehicle
JP3807169B2 (en) Active dynamic vibration absorbers for building structures
KR101266831B1 (en) Tuned Mass Damper Using Metal Plate Spring and Vibration Isolation Base Using the Tuned Mass Damper
JP2019116933A (en) Active vibration control device and vibration control structure thereof
JP6387241B2 (en) Vibration control device
JP2008190617A (en) Active damping device
JP2002081492A (en) Vibration damping device
JP4304825B2 (en) Vibration control system
JP2005246404A (en) Vibration reducing apparatus
WO2022210846A1 (en) Structural body, vibrating device, and sensory acoustic apparatus
JP2013245765A (en) Mass damper type vibration control device