WO2022210846A1 - Structural body, vibrating device, and sensory acoustic apparatus - Google Patents

Structural body, vibrating device, and sensory acoustic apparatus Download PDF

Info

Publication number
WO2022210846A1
WO2022210846A1 PCT/JP2022/015850 JP2022015850W WO2022210846A1 WO 2022210846 A1 WO2022210846 A1 WO 2022210846A1 JP 2022015850 W JP2022015850 W JP 2022015850W WO 2022210846 A1 WO2022210846 A1 WO 2022210846A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating
vibration
support
housing
frequency
Prior art date
Application number
PCT/JP2022/015850
Other languages
French (fr)
Japanese (ja)
Inventor
海 須藤
Original Assignee
NatureArchitects株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NatureArchitects株式会社 filed Critical NatureArchitects株式会社
Priority to US18/284,160 priority Critical patent/US20240165669A1/en
Priority to EP22781057.9A priority patent/EP4316677A1/en
Publication of WO2022210846A1 publication Critical patent/WO2022210846A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/005Moveable platforms, e.g. vibrating or oscillating platforms for standing, sitting, laying or leaning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • A61H23/0218Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with alternating magnetic fields producing a translating or oscillating movement
    • A61H23/0236Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with alternating magnetic fields producing a translating or oscillating movement using sonic waves, e.g. using loudspeakers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0142Beds
    • A61H2201/0146Mattresses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy

Definitions

  • the present disclosure relates to structures, vibration devices, and body-sensory acoustic devices.
  • a bodily sensation device equipped with a vibration device has been known for some time. Vibrating devices are driven, for example, by electromagnets that convert electrical signals into mechanical vibrations. By driving the vibrating device while the vibrating device is in direct or indirect contact with the user's body, the user can feel the sound produced by the vibration of the vibrating device.
  • a body-sensory acoustic device configured by embedding a vibrating device inside a chair or a cushion is known (see Patent Document 1).
  • Such somatosensory devices may be used to enhance immersion in video and audio content.
  • the user sits or leans against the somatosensory device to view the content.
  • the user can enjoy a high sense of immersion by experiencing the sound generated by the vibration from the sensory audio device in addition to the image and sound of the content.
  • Vibration devices used in bodily-sensory devices are required to generate vibrations of a strength necessary to allow the user to experience sound, and to have rigidity (that is, load resistance) against the load caused by the user's weight and the like. Desired.
  • rigidity that is, load resistance
  • the support portion that supports the vibrating portion of the vibrating device is configured to have high rigidity, the load resistance of the vibrating device is improved, but the amplitude of the vibration of the vibrating portion is limited, making it difficult to increase the vibration strength.
  • vibration devices used in body-sensory acoustic devices for example, to increase the intensity of vibration at a certain frequency and to reduce the intensity of vibration at a different frequency.
  • a sensory acoustic device equipped with a plurality of vibrating devices
  • mutual interference between the vibrating devices may impair the sensory acoustic quality.
  • the vibration generated by the vibrating device may propagate to the outside and interfere with (resonate with or cancel out) the vibration of another vibrating device.
  • a structure includes a vibrating section that holds a vibrating body, a housing that at least partially accommodates the vibrating section, and a support section that connects the vibrating section and the housing to support the vibrating section. and the support portion has a dynamic rigidity that amplifies or attenuates transmission of at least a predetermined frequency of vibration generated in at least one direction by the vibrating portion holding the vibrating body, and the vibrating body and the system including the structure and the vibrating body vibrates as the vibration frequency in at least one direction increases.
  • the support section has dynamic stiffness that amplifies the transmission of vibration of at least a predetermined frequency, a predetermined Further comprising a dynamic stiffness that develops a vibration mode excited such that the transmissibility of vibration at a frequency is greater than 1, and at least a dynamic stiffness that attenuates the transmission of vibration at a given frequency. It further has a dynamic stiffness that develops an excited vibration mode such that the vibration transmissibility is less than one.
  • FIG. 1 shows a system including a structure of a first embodiment of the invention
  • FIG. FIG. 2 is a diagram showing another example of FIG. 1
  • 2 is a diagram showing a vibration model in the system of FIG. 1
  • FIG. 4 is a graph showing the frequency characteristics of the vibration transmissibility of the model of FIG. 3
  • 3 shows an analysis model of the static stiffness of the support portion of the structure of the first embodiment of the present invention
  • FIG. 1 is a perspective view of a structure of an example of the first embodiment of the present invention, viewed obliquely from above on the front side
  • 1 is a plan view showing a structure of one example of the first embodiment of the present invention with its upper flange portion cut away;
  • FIG. 8 is a perspective view of the structure with the flange portion shown in FIG. 7 being cut, viewed from a direction different from that of FIG. 6 ;
  • FIG. 3 is a perspective view showing a state in which a vibrating body is accommodated in a vibrating portion of the structural body of one example of the first embodiment of the present invention;
  • 1 is a perspective view showing an example of a structure having anisotropy with respect to stiffness;
  • FIG. It is the figure which looked at arrangement
  • FIG. 10 is a diagram showing vibration directions of a plurality of vibrating devices in a sensory acoustic device according to a second embodiment of the present invention;
  • the inventor of the present invention designed and analyzed various structures, and as a result, isolated the vibration mode in the vibration direction in which the vibration strength is desired to be increased or weakened from the vibration modes in the other directions. While amplifying or damping the vibration of the vibration source in the vibration direction, the structure according to the present invention is based on the idea of solving the above trade-off by providing rigidity that can support the assumed load. I devised a body and its design method.
  • the concept of the present invention is to provide a structure with rigidity capable of supporting an assumed load while amplifying the vibration of the vibrating body in the direction in which the vibration intensity is desired to be increased or decreased.
  • the present invention is capable of amplifying or attenuating the vibration of a vibration source by softening only the dynamic stiffness in the direction in which it is desired to increase or decrease the vibration strength, and to support the assumed load.
  • a structure with the necessary static stiffness is provided.
  • T direction upward
  • B direction downward
  • F direction forward
  • R direction backward
  • SL direction leftward
  • SR direction rightward directions
  • rotation refers to rotation in one direction (clockwise or counterclockwise) as well as in both directions (clockwise and counterclockwise). can also mean an alternating rotation of .
  • the structure of the first embodiment includes a vibration section, a housing, and a support section.
  • the vibrating section holds the vibrating body.
  • the housing at least partially houses the vibrating section.
  • the support section supports the vibrating section by connecting the vibrating section and the housing. The vibrating portion holding the vibrating body vibrates in at least one direction.
  • the support portion of the structure of the first embodiment is configured to have dynamic rigidity that amplifies vibration at least at a predetermined frequency among the vibrations generated by the vibrating portion holding the vibrating body.
  • the supporting portion is configured to have at least the static rigidity necessary to support the vibrating portion holding the vibrating body.
  • the support part secures sufficient rigidity (static rigidity) to stabilize the position and orientation of the vibrating part holding the vibrating body against the assumed load, and also the vibration generated by the vibrating part.
  • the vibration intensity can be increased for at least a predetermined frequency of the vibration.
  • dynamic stiffness means stiffness represented by the relationship between dynamic force or dynamic moment and resulting dynamic displacement
  • static stiffness means static force or static It means the stiffness represented by the relationship between the static moment and the resulting static displacement/deformation.
  • FIG. 1 shows a system including the structure of the first embodiment.
  • FIG. 2 is a diagram showing another example of FIG.
  • the supporting part SPT of the first embodiment supports the vibrating part OS by connecting the vibrating part OS holding the vibrating body and the housing HS.
  • the vibrating part OS vibrates at a vibration frequency f.
  • the vibrating part OS holding the vibrating body is depicted as if it vibrates due to linear reciprocating motion (hereinafter referred to as “linear reciprocating vibration”).
  • linear reciprocating vibration can be oscillated in any direction.
  • the vibration unit OS may vibrate by rotational motion (hereinafter referred to as “rotational vibration”) as shown in FIG. (hereinafter referred to as “swing vibration”).
  • the vibration of the vibrating section OS may be any combination of the above vibration modes.
  • FIG. 3 is a diagram showing a vibration model in the system of FIG.
  • FIG. 4 is a graph showing frequency characteristics of the vibration transmissibility of the model of FIG.
  • the support part SPT is configured to have a dynamic rigidity that amplifies the vibration at least at the vibration frequency f among the vibrations generated by the vibrating part OS while holding the vibrating body. 3 as a vibration transfer characteristic from the vibrating unit OS to the housing HS. It is determined by the dynamic stiffness kd of the support portion SPT with respect to the vibration direction of the portion OS.
  • the ratio F/F0 of the excitation force F transmitted to the housing HS to the excitation force F0 generated by the vibrating part OS while holding the vibrating body is defined as the vibration transmission ratio.
  • the model in FIG. 3 exhibits frequency characteristics in which the vibration transmissibility gradually decreases after an excited vibration mode in which the vibration transmissibility increases as the frequency increases.
  • the vibration transmissibility of the model in FIG. 3 increases as the frequency becomes higher in the range below fu, and reaches a maximum at fu. where fu is the natural frequency of the model in FIG.
  • the vibration transmissibility of the model in FIG. 3 gradually decreases in the frequency range equal to or higher than the natural frequency fu, and crosses zero at ⁇ 2fu. That is, in the model of FIG. 3, the vibration transmissibility is greater than 1 in the range of frequencies less than ⁇ 2fu, that is, the vibration strength can be amplified.
  • the natural frequency of the model in Fig. 3 is determined by the mass m and the dynamic stiffness kd.
  • the vibration transmissibility in the frequency range increases compared to the vibration transmissibility in the frequency characteristics of the system of the natural frequency fu indicated by the solid line in FIG. Since the mass m is a constant, the natural frequency fu can be lowered by reducing the dynamic stiffness kd. Therefore, from the viewpoint of improving the vibration transmissibility in the low-frequency range, it is preferable that the dynamic stiffness kd of the supporting portion SPT in the vibration direction of the vibrating portion OS holding the vibrating body is as small as possible.
  • the support part SPT of the present embodiment is designed to generate vibration at least at a predetermined vibration frequency f, among the frequency components of vibration generated by the vibration part OS holding the vibrating body.
  • the dynamic stiffness kd is determined so as to have a natural frequency fu at which the transmissibility is greater than one.
  • a system including the supporting portion SPT and the vibrating portion OS having such a dynamic stiffness kd develops an excited vibration mode in which the vibration transmissibility is greater than 1 at the vibration frequency f.
  • the support member SPT changes the natural frequency fu of the system including the support member SPT and vibration member OS to the vibration frequency f , and preferably matched to the vibration frequency f.
  • the degree of the natural frequency fu of the system including the supporting portion SPT and the vibrating portion OS holding the vibrating body and how to determine the magnitude of the dynamic stiffness kd for that purpose depend on the vibration intensity. It can be appropriately determined according to how much amplification effect is desired at a predetermined vibration frequency f to be increased, that is, how high the vibration transmissibility is desired at the predetermined vibration frequency f.
  • the dynamic stiffness kd of the support portion SPT can be derived, for example, by the following procedure.
  • One end of the supporting portion SPT is connected to the housing HS, and the other end of the supporting portion SPT is connected to a weight having the same mass m as the vibrating portion OS holding the vibrating body.
  • a natural vibration analysis is performed on the system of (1) to identify at least one set of natural frequencies and natural vibration modes.
  • the support portion is provided with dynamic rigidity capable of exhibiting a vibration amplifying effect at a predetermined vibration frequency f at which the vibration intensity of the vibrating portion is to be increased, and the vibration direction of the vibrating portion is By increasing the amount of displacement (amplitude) of the supporting portion at , it is possible to increase the vibration intensity of the vibrating portion.
  • the vibrating portion is supported in a suspended state with respect to the housing by the supporting portion, transmission of vibration by the vibrating portion to the housing is suppressed, and furthermore, the vibration is suppressed. is suppressed from propagating outside the structure.
  • FIG. 5 shows an analysis model of the static stiffness of the supporting portion of the structure of the first embodiment.
  • the support part SPT is configured to have static rigidity necessary to support the vibrating part OS while holding the vibrating body. Specifically, as shown in FIG. 5, the support part SPT has a static rigidity ks necessary to support the vibrating part OS against the design load Fl applied to the vibrating part OS.
  • Supporting the vibrating part OS can mean, for example, stabilizing the position and orientation of the vibrating part OS even when the design load Fl is applied. Stabilizing the position and orientation can mean suppressing the displacement (including rotational displacement) due to the application of the design load Fl within an allowable range.
  • the design load Fl is various loads assumed in the operating environment of the system including the vibrating portion OS and the supporting portion SPT holding the vibrating body.
  • the design load Fl can include at least one of the following. Gravity (for example, the weight of the vibrating unit OS holding the vibrating body and the weight of the user acting on the vibrating unit OS) ⁇ inertial force
  • the static stiffness ks required to support the vibrating portion OS against the design load Fl is, for example, the amount of displacement of the support portion SPT when the magnitude of the design load Fl is assumed to be the maximum value in the model of FIG. can be defined as the static stiffness that is within the design tolerance.
  • the supporting portion SPT supports the vibrating portion OS by giving the supporting portion SPT the static rigidity ks necessary to support the vibrating portion OS in a state where the vibrating body is held against the design load Fl. configured to provide the static strength required for Specifically, when the magnitude of the design load Fl is assumed to be the assumed maximum value in the model of FIG. 5, the continuous distribution of the stress over the support portion SPT is obtained by analysis. Then, the maximum value of the stress distribution (that is, the maximum value of the stress assumed to be locally generated in the support portion SPT due to the design load Fl) is equal to or less than the allowable stress of the material constituting the support portion SPT. Determine SPT shape, location, material, or a combination thereof. Accordingly, even if the assumed maximum design load Fl is applied to the vibrating part OS, the supporting part SPT can stabilize the position and orientation of the vibrating part OS without being damaged.
  • FIG. 6 is a perspective view of the structure of one example of the first embodiment, viewed obliquely from above on the front side.
  • FIG. 7 is a plan view showing the structure of one example of the first embodiment with its upper flange portion cut away. 8 is a perspective view of the structure shown in FIG. 7 with the flange portion cut away, viewed from a direction different from that in FIG. 6.
  • FIG. 9 is a perspective view showing a state in which a vibrating body is housed in a vibrating portion of the structure of one example of the first embodiment.
  • FIG. 10 is a perspective view showing an example of a structure having anisotropy in stiffness.
  • the supporting part allows the vibrating part to be displaced along the first axis due to the vibration, while the vibrating part It is required to support the vibrating part so that it is not displaced in a direction different from the first axis due to gravity or vibration acting on itself or the vibrating body. Therefore, in such a structure, the dynamic rigidity in the vibration direction of the vibrating body is low enough to amplify the transmission of vibration, and the static rigidity is high enough to support the vibrating part in a stable position and orientation. High is desired.
  • the structure 100 of this embodiment is based on the above idea.
  • the supporting portion of the structure 100 supports the vibrating portion while holding the vibrating portion 140 (see FIG. 9) that vibrates in the vertical (TB) direction along the first axis. It is explained below.
  • the displaceable direction of the vibrating portion 110 and the vibrating direction of the vibrating body held by the vibrating portion 110 are not limited thereto.
  • the structure 100 includes a vibrating section 110 holding a vibrating body 140, a housing 120 housing the vibrating section 110, and a state in which the vibrating section 110 is suspended within the housing 120. It has two supporting parts 130SL and 130SR for supporting. The two support portions 130SL and 130SR are arranged differently, but have the same configuration. Therefore, items common to each supporting portion will be described using the reference numeral "130".
  • the plane including the front-rear (FR) axis and the left-right (SR-SL) axis substantially coincides with the horizontal plane
  • the up-down (TB) axis direction substantially coincides with the vertical direction.
  • the vibrating portion 110 has a hollow, substantially cylindrical shape with a bottom portion 110b and an upper opening in the drawing, and a vibrating body 140 is accommodated in the hollow portion of the cylindrical interior as shown in FIG. .
  • the vibrating body 140 is fixed to the bottom portion 110b by screwing through a screw hole formed in the bottom portion 110b, for example.
  • the inner diameter of the vibrating portion 110 is preferably substantially the same as the outer diameter of the substantially cylindrical vibrating body 140 housed therein. The vibrating portion 110 holding the vibrating body 140 inside in this way can be displaced integrally with the vibrating body 140 .
  • the vibrating body 140 is, for example, a linear motor such as a voice coil motor, and the vibrating body 140 held by the vibrating portion 110 linearly reciprocates along the illustrated vertical (TB) axis.
  • the vibrating portion 110 linearly reciprocates along the vertical (TB) axis in the drawing in accordance with the vibration generated by the vibrating body 140 .
  • Openings 110a are formed at two opposing locations on the side surface of the vibrating portion 110 . These openings 110a allow an operator to reach for attaching or detaching the vibrating body 140 in the vibrating part 110, and also dissipate the heat generated by the vibrating body 140 when the vibrating body 140 is driven. It has a role of dissipating heat to the outside of the vibrating section 110 .
  • the housing 120 is configured in a substantially cylindrical shape with at least an upper opening in the drawing, and the whole or at least part of the vibrating section 110 is accommodated in a cylindrical hollow portion around the central axis of the housing 120 .
  • the housing 120 accommodates the vibrating section 110 so as to surround the vibrating section 110 entirely.
  • Openings 120a are formed at two opposing locations on the side surface of the housing 120 and at positions overlapping the respective openings 110a formed on the side surface of the vibrating unit 110 housed inside. These openings 120a are also accessible to the operator for attaching or detaching the vibrating body 140 to or from the vibrating part 110, and heat generated by the vibrating body 140 when the vibrating body 140 is driven can be dissipated. It has a role of dissipating heat to the outside of the housing 120 .
  • a flange portion 120b is formed around the opening in the upper portion of the housing 120 in the figure. In this example, as an example, the flange portion 120b has a shape extending in the horizontal direction of the housing 120 in the drawing. The flange portion 120b plays a role of supporting the load when the user sits or leans on the illustrated upper portion of the housing 120 .
  • a mounting flange portion 120c having screw holes is formed around the outer periphery of the lower portion of the housing 120 in the figure.
  • mounting flange portions 120c are formed at two locations on the front side and rear side of the housing 120 in the figure.
  • the structure 100 can be fixed to the object (not shown) to which the structure 100 is to be attached by, for example, screwing through the screw holes of the mounting flange portion 120c.
  • cutouts 120d and 120e are formed in the upper and lower regions of the left and right side surfaces of the housing 120, respectively. These notch portions 120d and 120e allow a support member 132 fixed to the side surface of the vibrating portion 110 among the support portions 130 described later to extend outside the housing 120 through the side wall of the housing 120. and prevent the support 132 from contacting the sidewalls of the housing 120 when the support 132 is displaced.
  • the support portion 130 supports the vibrating portion 110 in a suspended state within the housing 120 so that the vibrating portion 110 linearly reciprocates along the first axis (vertical (TB) direction in the illustrated example).
  • the vibrating section 110 is concentric with the central axis of the housing 120 in the inner space of the housing 120, and a gap is generated between the outer peripheral surface of the vibrating section 110 and the inner peripheral surface of the housing 120.
  • the vibration unit 110 is set at a height such that the bottom surface of the vibration unit 110 does not come into contact with the bottom surface of the housing 120 or the object to which the structure 100 is attached even when the vibration unit 110 is displaced by the maximum amount of displacement that is assumed when vibrating in the vertical direction. position.
  • the vibrating section 110 is supported by the supporting section 130 at such an arrangement position.
  • a support 132SLA as a first support and a support 131SLA as a second support whose one end (first end) is fixed to the housing 120 and the lower side of the structure 100 shown in the figure vibrate.
  • a support 132SLB as a first support having one end (first end) fixed to the portion 110 and a second support having one end (first end) fixed to the housing 120 It includes a support 131SLB as a body and a connecting portion 133SL to which the other ends (second ends) of the supports 131SLA, 132SLA, 131SLB and 132SLB are fixed.
  • Support 131SLA and support 132SLA on the upper side in the figure constitute a first set
  • support 131SLB and support 132SLB on the lower side in the figure constitute a second set
  • the other end portions of the first set of supports 131SLA and 132SLA are fixed to the connection portion 133SL near the illustrated upper end portion of the connection portion 133SL
  • the other ends of the second set of supports 131SLB and 132SLB are fixed.
  • the end portion is fixed to the connecting portion 133SL in the vicinity of the illustrated lower end portion of the connecting portion 133SL. Therefore, the first set of supports 131SLA and 132SLA and the second set of supports 131SLB and 132SLB are spaced apart from each other along the vertical (TB) axial direction in the figure.
  • support 132SLA one end of which is fixed to vibrating section 110 is illustrated left and right (SL-SR).
  • the length in the direction is longer than the length in the same direction of the 131SLA, one end of which is fixed to the housing 120 .
  • the length in the left-right (SL-SR) direction of the supporting body 132SLB attached is longer than the length in the same direction of 131SLB, one end of which is fixed to the housing 120 .
  • the supporting section 130SL configured in this manner allows the relative position of the vibrating section 110 with respect to the housing 120 to be displaced along the vertical (TB) axis by elastic deformation of the respective supporting bodies 131SLA, 132SLA, 131SLB, and 132SLB. Supports the vibrating section 110 .
  • the other support portion 130SR also has the same configuration as the support portion 130SL.
  • These two support parts 130SL and 130SR are arranged so as to face each other symmetrically about the central axis of the structure 100 (which is also the concentric central axis of the vibrating part 110 and the housing 120).
  • FIGS. 6 to 9 show a state in which the vibrating section 110 is positioned at a neutral position with respect to the housing 120 when no vibrating force is acting on the vibrating section 110 .
  • an excitation force acting upward in the figure (T direction) acts on the vibrating part 110, and when the vibrating part 110 is displaced upward in the figure with respect to the housing 120, the support fixed to the vibrating part 110 is displaced.
  • One end of the body 132SLA and the support 132SLB is also displaced upward in the figure accordingly.
  • the support 132SLA and the support 132SLB have one end fixed to the vibrating portion 110 and the other end fixed to the connecting portion 133SL as restraint ends. It is displaced upward in the figure while being bent and deformed within the elastic deformation region so that the end portion fixed to 110 faces the upper side in the figure.
  • the connecting portion 133SL to which the other ends of the support 132SLA and the support 132SLB are fixed is also somewhat displaced upward in the drawing.
  • the supporting body 131SLB also has one end fixed to the connecting part 133SL and one end fixed to the housing 120 as restraint ends, and the end fixed to the connecting part 133SL is illustrated. It is displaced upward in the figure while being bent and deformed in the elastic deformation region so as to face upward.
  • each part of the part 133SL is displaced or deformed in the direction opposite to the above. Although description is omitted, each part of the other support part 130SR also operates in the same manner as each part of the support part 130SL.
  • the vibrating portion 110 supported by the supporting portions 130SL and 130SR linearly vibrates reciprocatingly in the vertical (TB) direction in the figure by the vibrating force of the vibrating body 140 as described above.
  • the support section 130 is vibrated with respect to the housing 120 by elastic deformation of the illustrated upper and lower supports 132SLA and 132SLB as first supports and the illustrated upper and lower supports 131SLA and 131SLB as second supports. support the vibrating portion 110 so as to be displaceable along the first axis (vertical (TB) axis direction in the drawing).
  • the weight of the vibrating body 140 makes the vibrating part 110 slightly larger than when the vibrating body 140 is not housed in the vibrating part 110. Displaced downward in the drawing. Furthermore, when the vibrating body 140 is accommodated in the vibrating section 110 , the illustrated upper portion of the vibrating body 140 slightly protrudes outside the housing 120 from the upper surface of the flange portion 120 b of the upper portion of the housing 120 . Therefore, when the user sits or leans against the illustrated upper portion of the housing 120, the illustrated upper surface of the vibrating body 140 vibrates until it reaches substantially the same height as the upper surface of the upper flange portion 120b of the housing 120.
  • the portion 110 is further pushed downward in the drawing, and the vibrating portion 110 is held by the support portions 130SL and 130SR with that position as the neutral position. At this time, the load of the user's body is supported by the flange portion 120b of the housing 120, and the upper upper surface of the vibrating body 140 pushed down together with the vibrating portion 110 comes into contact with the user's body.
  • the support portion 130 is configured to generate at least a predetermined vibration frequency among the linear reciprocating vibrations generated along the vertical (TB) axis by the vibrating portion 110 holding the vibrating body 140, in other words, the predetermined vibration. It is configured to have a dynamic stiffness that amplifies vibrations in a frequency band that includes frequencies.
  • the dynamic rigidity of the support section 130 is a load that is assumed to be applied to the support section 130 via the vibration section 110 (for example, a load due to the weight of the vibration section 110 holding the vibration body 140 or a load applied to the structure 100). It can be determined in consideration of the load acting on the vibrating section 110 from the body of the user sitting or leaning.
  • the vibrating section 110 can generate vibrations of different frequencies according to the speed of the linear reciprocating vibration generated by the vibrating body 140 .
  • the support portion 130 makes it possible to amplify vibration in a frequency band including a predetermined frequency for which higher vibration intensity is desired to be achieved.
  • the support portion 130 is configured to have static rigidity necessary to support the vibrating portion 110 . That is, the support portion 130 ensures sufficient rigidity (static rigidity) to stabilize the position and orientation of the vibrating portion 110 against an assumed load, and at least the linear reciprocating vibration generated by the vibrating portion 110 A high vibration intensity can be realized with respect to the predetermined vibration frequency.
  • the support portion 130 resists the force applied along the vibration direction of the vibrating portion 110 holding the vibrating body 140 (that is, the force applied along the vertical (TB) axis). It is designed to have low dynamic stiffness and static stiffness against the design load.
  • the support part 130 can satisfy both the constraint on dynamic stiffness and the constraint on static stiffness by including, for example, a structure having anisotropy in terms of stiffness.
  • the support portion 130 has a rigidity against a force applied along a direction different from the rigidity against a force applied along the vibration direction of the vibrating portion 110 holding the vibrating body 140 . is configured to be high.
  • Stiffness against force applied along another direction is, for example, all or at least one of the following: ⁇ Stiffness against moment around vertical (TB) axis ⁇ Stiffness against force applied along front-back (FR) axis ⁇ Stiffness against moment around front-back (FR) axis ⁇ Side-left (SL-SR) Stiffness against force applied along the axis / Stiffness against moment around the left-right (SL-SR) axis
  • the beam BM shown in FIG. 10 is an example of a structure having anisotropy in terms of rigidity, and corresponds to each support 131SLA, 132SLA, 131SLB, 132SLB in this embodiment.
  • the beam BM is such that the dimension a in the vibration direction (that is, the vertical (TB) axis) of the vibrating portion 110 holding the vibrating body 140 is equal to the dimension b of the front-rear (FR) axis and the lateral axis (SL- SR) is small compared to the axis dimension l.
  • the stiffness when a force is applied along the vertical (TB) axis to the right end (SR end) of the beam BM while the left end (SL end) of the beam BM is fixed is K b1 ⁇ Ea 3 b/l 3 expressed.
  • E Young's modulus.
  • the stiffness is K b2 ⁇ Eab 3 /l 3 is. That is, K b2 /K b1 ⁇ b 2 /a 2 .
  • the vertical (TB) axis By making the dimension a of the vertical (TB) axis smaller than the dimension b of the front-rear (FR) axis and the dimension l of the lateral axis (SL-SR axis), the vertical (TB) ) the stiffness for forces applied along the axis can be lower than the stiffness for forces applied along other directions.
  • Structures with undulating shapes in the vertical (TB) direction also have a stiffness to forces applied along the vertical (TB) axis that is equal to the stiffness to forces applied along the other directions. low compared to
  • each support for example, the support 131SLA, the support 131SLB, the support 132SLA, and the support 132SLB
  • the support section 130 is moved in the direction along the first axis (that is, the vertical (TB) direction) is smaller than the dimension in the direction perpendicular to the first axis (the front-rear (FR) direction or the left-right (SL-SR) direction).
  • the dynamic stiffness in the direction along the first axis of can be reduced.
  • the supports 131 and 132 of each support 130 are configured to have the above-described rigidity characteristics, and the two supports 130SL and 130SR are the central axes of the structure 100 (the vibrating section 110 and the housing). ), which is also the concentric center axis of the body 120), the vibrating section 110 can be displaced in the vertical (TB) direction in the drawing with respect to the housing 120. is supported by the support portion 130 so as not to be substantially displaced in other directions.
  • each of the supports 131SLA, 132SLA, 131SLB, and 132SLB of the support section 130 has a relatively low dynamic rigidity in the vertical (TB) direction of the drawing as described above.
  • the load due to the weight of the vibrating section 110 supporting the vibrating body 140, and the vibration when the vibrating section 110 supporting the vibrating body 140 as described above is pushed downward (B) in the figure by the user's body. It has static stiffness capable of supporting at least the loads applied to the portion 110 .
  • the connecting portion (for example, connecting portion 133SL) included in the support portion 130 is separated from the housing 120 in a direction orthogonal to the vibration direction (that is, the vertical (TB) direction) of the vibrating portion 110 holding the vibrating body 140.
  • TB vertical
  • each support (for example, support 131SLA, support 131SLB, support 132SLA, and support 132SLB) included in the support section 130 looks like a housing when viewed from above (T direction). It extends radially outward from the outer peripheral surface of 120 .
  • the vertical (TB) relative to the dimension along the vertical (TB) axis of each support increases. Since the dimension ratio in the direction perpendicular to the axis (left-right (SL-SR) direction) increases, the dynamic rigidity of the support portion 130 in the vibration direction (up-down (TB) direction in the figure) can be made lower.
  • the dimensions of each part, including the length of each support are determined in consideration of the size of the structure 100 and the weight of the vibrating body 140, etc. can be appropriately set so that the can be amplified.
  • the support portion 130 When the vibrating section 110 holding the vibrating body 140 is in a non-vibrating state, no vibrating force is applied to the support section 130 .
  • the support portion 130 is subjected to the above-described load (for example, the weight of the vibrating portion 110 holding the vibrating body 140, or the weight of the structure 100).
  • a load acting on the vibrating section 110 by the body of the user sitting or leaning can be applied.
  • the supporting portion 130 has static rigidity such that the amount of displacement of the supporting portion 130 is within a design allowable range with respect to the direction in which the design load is applied. Therefore, when the vibrating portion 110 is in the non-vibrating state, the deformation of each support of the support portion 130 remains within the allowable range, and the support portion 130 is in the neutral position after being displaced by the application of the load. To position.
  • the supporting part 130 is also subjected to a load along the upward direction in the drawing (T direction). A vibration force is applied.
  • the vibrating portion 110 holding the vibrating body 140 is displaced downward in the drawing (direction B)
  • an excitation force along the downward direction in the drawing is also applied to the supporting portion 130 .
  • the support part 130 has a dynamic rigidity that amplifies at least the vibration of the predetermined frequency among the linear reciprocating vibrations in the vertical (TB) direction in the figure generated by the vibrating part 110 holding the vibrating body 140. It is configured. As a result, at least at the predetermined vibration frequency of the vibrating portion 110, the vibration intensity of the linear reciprocating vibration of the vibrating portion 110 in the vertical (TB) direction in the drawing can be increased.
  • the vibrating device configured by the structure 100 of the present embodiment in which the vibrating body 140 is held by the vibrating part 110, the upper surface of the vibrating body 140 is in contact with the user's body.
  • the vibrating body 140 is linearly reciprocated in the vertical (TB) direction in the figure, the vibrating part 110 holding it starts reciprocating linear vibration in the same direction, and eventually the vibration frequency reaches the predetermined frequency.
  • the to-and-fro linear vibration in the -B) direction is amplified.
  • the upper upper surface of the vibrating body 140 held by the vibrating section 110 is displaced in the (T) direction in the drawing, the upper upper surface of the vibrating body 140 contacts the user's body more strongly. In the frequency domain, the acoustic effect of the vibrating device can be felt more strongly. At this time, the user will feel the vibration of the body in addition to the sound and image of the audio/visual content (movie, music live video, etc.) being viewed, so that the user can get a stronger sense of immersion in the content. can be done.
  • the vibrating section 110 is supported in a suspended state by the support section 130 so as not to contact the inner wall surface, bottom surface, or the like of the housing 120.
  • This suspended state is maintained even while the vibrating portion 110 reciprocating linearly vibrates in the vertical (TB) direction of the drawing.
  • the vibration caused by the vibrating section 110 is separated from the housing 120 .
  • the vibrating section 110 linearly vibrates back and forth in the illustrated vertical (TB) direction the vibrating section 110 and the vibrating body 140 held by it may come into contact with the inner wall surface, the bottom surface, or the like of the housing 120.
  • vibration transmitted from the housing 120 to the outside thereof can be suppressed.
  • the vibration from one vibrating device is transmitted to another vibrating device and interferes with the vibration of the other vibrating device. It can be suppressed, and the user can perceive the vibration by the individual vibrating device with higher resolution.
  • the vibrating device including the structure 100 and the vibrating body 140 of the present embodiment can displace the vibrating part 110 supported by the supporting part 130 in the reciprocating linear vibration direction of the vibrating part 140 held by the vibrating part 110 .
  • direction coincides with the vertical (TB) direction in the drawing, and the vibrating portion 110 is not substantially displaced in other directions. Therefore, most of the vibrational energy of the vibrating body 140 is used to linearly vibrate the vibrating portion 110 back and forth in the vertical (TB) direction in the drawing.
  • the vibrating section 110 is linearly reciprocated in the vertical (TB) direction of the drawing, the vibrating section 110 sequentially generates secondary, tertiary, .
  • the vibrating portion 110 may vibrate in directions other than the illustrated vertical (TB) direction.
  • the vibrating section 110 is configured so that there is substantially no displacement in directions other than the illustrated vertical (TB) direction. 110 can be suppressed from being displaced in the vibration direction. Therefore, even if the vibrating section 110 vibrates in a certain vibration mode in a direction other than the illustrated vertical (TB) direction, the outer peripheral surface of the vibrating section 110 may contact the inner peripheral surface of the housing 120, for example. can be prevented.
  • the support member 131SLA of the support portion 130 in order to increase the vibration intensity of the reciprocating linear vibration of the vibrating portion 110 in the vertical (TB) direction of the drawing at a lower frequency, the support member 131SLA of the support portion 130, The shape and dimensions of each support are designed so that the dynamic stiffness kd in the vertical (TB) direction of the drawing by the entirety of 132SLA, 131SLB, and 132SLB is lower.
  • the natural frequency fu of the vibration of the system composed of the vibrating portion 110 holding the vibrating body 140 and the supporting portion 130 in the vertical (TB) direction in the drawing shifts to a lower frequency region, It becomes possible to increase the vibration intensity in the frequency domain.
  • the illustrated vertical (T-) direction of the vibrating section 110 when increasing the vibration intensity of the reciprocating linear vibration in the illustrated vertical (TB) direction of the vibrating section 110 at a higher frequency, the illustrated vertical (T- The shape and dimensions of each support are designed so that the dynamic stiffness kd in the B) direction is higher. As a result, the natural frequency fu of the vibration in the vertical (TB) direction in the drawing of the system composed of the vibrating portion 110 holding the vibrating body 140 and the support portion 130 shifts to a higher frequency region, It becomes possible to increase the vibration intensity in the frequency domain.
  • the structure 100 of this embodiment includes the support portion 130 .
  • the supporting section 130 performs vibration of at least a predetermined vibration frequency (vibration in a frequency band including the predetermined vibration frequency).
  • the predetermined vibration frequency is, for example, a frequency at which it is desired to amplify the vibration of the vibrating section 110 to obtain a higher vibration strength.
  • the support section 130 is configured to have static rigidity necessary to support the vibrating section 110 against an assumed load in the direction in which the designed external force is applied.
  • the vibrating portion 110 is supported so that the position and orientation of the vibrating portion 110 are stabilized against the load within the assumed range at the time of design, and at least the linear reciprocating vibration generated by the vibrating portion 110
  • the vibration of the predetermined frequency can be amplified.
  • this structure 100 it is possible to satisfy the load resistance and vibration strength required of a vibrating device.
  • the direction in which the vibrating section 110 can be displaced (vibrated) matches the vibrating direction of the vibrating body 140 held by the vibrating section 110, and the vibrating section 110 is positioned relative to the housing 120. Since it is internally supported by the support portion 130 in a suspended state, it is possible to suppress the occurrence of vibration in the direction of vibration by the vibrating portion 110 and vibration in a direction different from that, and such vibration can be suppressed. can be suppressed from propagating to the outside of the structure 100 .
  • the vibrating section 110 holding the vibrating body 140 generates a linear reciprocating vibration along a vertical (TB) axis in the figure, which substantially coincides with the vertical direction.
  • TB vertical
  • the weight of vibrating section 110 holding 140, the excitation force (inertial force) thereof, and the load from the user's body are applied to vibrating section 110 .
  • the support portion 130 is configured to have dynamic rigidity that amplifies at least the vibration of the vibration portion 110 at the predetermined vibration frequency in the vertical (TB) direction, which is the vibration direction of the vibration portion 110.
  • the static rigidity required to support the vibrating portion 110 is provided.
  • the vibration direction of the vibrating portion 110 supported by the support portion 130 and the direction in which the design external force is applied to the support portion 130 are not limited to this. Moreover, the vibration direction of the vibrating portion 110 supported by the support portion 130 is not limited to one direction.
  • the support portion 130 may be configured to have a dynamic stiffness that amplifies vibration at a predetermined vibration frequency in each vibration direction.
  • the structure 100 includes two supporting portions 130SL and 130SR arranged symmetrically to face each other with respect to its central axis. is not limited to this, and may be configured to include any number of support portions 130, for example, three or more. At this time, it is preferable that the support portions 130 are arranged at regular intervals around the central axis of the structure 100 . Note that even when the structure 100 includes only one support portion 130, the vibrating body 140 and the vibrating portion 110 come into contact with the inner surface of the housing 120 when the vibrating portion 110 holding the vibrating body 140 vibrates.
  • the structure 100 may be configured with only one support 130 under certain conditions where there is no need to do so.
  • FIG. 11 is a top view of the arrangement of a plurality of vibrating devices in the sensory acoustic apparatus of the second embodiment.
  • FIG. 12 is a diagram showing vibration directions of a plurality of vibrating devices in a sensory acoustic device according to the second embodiment.
  • the sensory acoustic device 1000 includes a housing 1100 .
  • Housing 1100 may be, for example, a cushion, chair, sofa, bed, mattress, etc., or a portion thereof.
  • a plurality of vibration devices 1200 are arranged in a matrix along a horizontal plane. Note that the arrangement of the plurality of vibrating devices 1200 inside the housing 1100 is not limited to a matrix, and may be arranged in any other arrangement such as an array.
  • the vibrating device 1200 is configured by incorporating the vibrating body 140 into the vibrating section 110 of the structure 100 of the example of the first embodiment.
  • the plurality of vibration devices 1200 form a vibration transmission surface 1200S for transmitting vibrations to the body of the user of the sensory acoustic device 1000.
  • this vibration transmitting surface 1200S is formed by the upper upper surface of the vibrating body 140 held by the vibrating portion 110 of each vibrating device 1200.
  • the vibration transmitting surface 1200S is not limited to a plane, and may be a curved surface, a combination of a plurality of planes, a combination of a plurality of curved surfaces, or a combination of N (N ⁇ 1) planes and M (M ⁇ 1) curved surfaces. good.
  • the sensory acoustic device 1000 provides a user with a sound sensation by stimulating the user's body with vibrations of a plurality of vibration devices 1200 via a vibration transmission surface 1200S.
  • a plurality of vibrating devices 1200 may be configured to be individually controllable in at least one of amplitude, frequency, or phase of vibration by a controller (not shown). By controlling the operation of each of the plurality of vibration devices 1200 with a controller, for example, the vibration intensity distribution of the plurality of vibration devices 1200 can be changed according to the scene of the audio/visual content that the user is viewing. .
  • the vibration intensity of a part of the vibration devices 1200 among the plurality of vibration devices 1200 is increased so that the user can feel the movement of the waves, and the vibration intensity is increased. Including things like moving areas.
  • Each vibrating device 1200 is configured such that the vibrating portion holding the vibrating body linearly reciprocates along the normal to the position of the vibrating device 1200 on the vibration transmission surface 1200S.
  • the vibration transmission surface 1200S is substantially parallel to the horizontal plane, and the vibration device 1200 vibrates substantially vertically.
  • the vibrating device 1200 is supported in a state in which the vibrating portion is suspended from the housing by the supporting portion, for example, as described with reference to FIGS. 6 to 9 in the example of the first embodiment. Further, when the vibrating direction of the vibrating body held by the vibrating portion and the displaceable direction of the vibrating portion supported by the supporting portion are configured to match, the vibrating device 1200 generates Vibration is suppressed from being transmitted to housing 1100 , so that the vibration can be prevented from interfering (resonating or canceling) with vibration generated in other vibration device 1200 via housing 1100 . As a result, the user can clearly feel the vibration generated by each vibrating device 1200 without being affected by the vibrations of other vibrating devices 1200 . In other words, according to the sensory acoustic device 1000 of the present embodiment, it is possible to provide the user with a high-resolution acoustic sensory experience.
  • the sensory acoustic device 1000 of the second embodiment includes a plurality of vibrating devices 1200 .
  • Each vibrating device 1200 is configured, for example, by incorporating a vibrating body into the structure 100 of each example of the first embodiment. Accordingly, it is possible to provide the sensory acoustic device 1000 having excellent load resistance and vibration strength. In other words, the sensory acoustic device 1000 can withstand the load of the user's body weight and provide the user with a high-resolution acoustic sensory experience.
  • the sensory acoustic device 1000 may be configured with the vibration device shown in the example of the first embodiment.
  • the vibration mode in the vibration direction in which the vibration intensity is to be increased is isolated from the vibration modes in other directions, and while the vibration of the vibration source is amplified in the vibration direction, the assumed load is supported.
  • the third embodiment relates to providing a structure or the like capable of imparting rigidity capable of reducing the vibration intensity
  • the vibration mode of the vibration direction in which the vibration intensity is desired to be weakened is changed to other directions.
  • a structure, etc. which can be isolated from the vibration mode of the vibration source, and can have rigidity capable of supporting an assumed load while attenuating the vibration of the vibration source in the vibration direction.
  • FIG. 3 is a diagram showing a vibration model in the system of FIG. 1
  • FIG. 4 is a graph showing the frequency characteristics of the vibration transmissibility of the model of FIG.
  • the support part SPT in this embodiment is configured to have a dynamic rigidity that damps vibration at least at the vibration frequency f among the vibrations generated by the vibrating part OS holding the vibrating body. 3 as a vibration transfer characteristic from the vibrating unit OS to the housing HS. It is determined by the dynamic stiffness kd of the support portion SPT with respect to the vibration direction of the portion OS.
  • the ratio F/F0 of the excitation force F transmitted to the housing HS to the excitation force F0 generated by the vibrating section OS holding the vibrating body is the vibration transmissibility.
  • the model in FIG. 3 exhibits frequency characteristics in which the vibration transmissibility gradually decreases after an excited vibration mode in which the vibration transmissibility increases as the frequency increases.
  • the vibration transmissibility of the model in FIG. 3 increases as the frequency becomes higher in the range below fu, and reaches a maximum at fu. where fu is the natural frequency of the model in FIG.
  • the vibration transmissibility of the model in FIG. 3 gradually decreases in the frequency range equal to or higher than the natural frequency fu, and crosses zero at ⁇ 2fu.
  • the model of FIG. 3 has a vibration transmissibility of less than 1 in the range where the frequency exceeds ⁇ 2fu, that is, the vibration damping effect can be exhibited.
  • the natural frequency of the model in Fig. 3 is determined by the mass m and the dynamic stiffness kd. As the dynamic stiffness kd is decreased to lower the natural frequency, the frequency range (anti-vibration range) in which vibration damping (vibration transmissibility ⁇ 1) can be expanded. As can be seen from FIG. 4, the vibration damping region' in the frequency characteristics of the system with the natural frequency fu' smaller than fu (the graph indicated by the dotted line in FIG. 4) is indicated by the solid line in FIG. It expands compared to the vibration isolation region in the frequency characteristics of the system with the natural frequency fu. Since the mass m is a constant, the natural frequency fu can be lowered by reducing the dynamic stiffness kd. Therefore, from the viewpoint of the vibration damping effect, it is preferable that the dynamic stiffness kd of the structure STR in the vibration direction of the vibrating body OS is as small as possible.
  • the support part SPT of the present embodiment is designed to generate vibration at least at a predetermined vibration frequency f, among the frequency components of vibration generated by the vibration part OS holding the vibrating body.
  • the dynamic stiffness kd is determined so as to have a natural frequency fu at which the transmissibility is less than one.
  • a system including the support portion SPT and the vibrating portion OS having such a dynamic stiffness kd develops an excited vibration mode in which the vibration transmissibility is less than 1 at the vibration frequency f.
  • the support member SPT changes the natural frequency fu of the system including the support member SPT and vibration member OS to the vibration frequency f is configured to have a dynamic stiffness kd that is less than 1/ ⁇ 2 times .
  • the static rigidity of the structure of the present embodiment is the same as the static rigidity described with reference to FIG. 5 in the first embodiment, so detailed description is omitted here.
  • the structure in this embodiment can also have the same configuration as the structure 100 shown in the example of the first embodiment.
  • the supporting portion in the structure of the example of the first embodiment is configured to have a dynamic stiffness that amplifies the transmission of at least a predetermined frequency of vibrations generated in at least one direction.
  • the supporting portion in the structure of the present embodiment is configured to have a dynamic stiffness that damps the transmission of at least a predetermined frequency of vibrations generated in at least one direction.
  • the support portion 130 (130SR, 130SL) in the structure 100 is at least the linear reciprocating vibration generated along the vertical (TB) axis by the vibrating portion 110 holding the vibrating body 140. Vibration at a predetermined vibration frequency, in other words, it is configured to have dynamic stiffness for damping vibration in a frequency band including the predetermined vibration frequency, and the frequency varies according to the speed of the linear reciprocating vibration generated by the vibrating body 140. vibration in a frequency band including a predetermined frequency to be damped.
  • the support portion 130 has static rigidity necessary to support the vibrating portion 110 .
  • each support portion in the structure of the above embodiment are determined in consideration of the size of the structure and the weight of the vibrating body. It can be appropriately set so that the vibration of the vibrating portion that vibrates at the vibration frequency can be damped.
  • the vibration mode in the vibration direction whose vibration strength is desired to be weakened is isolated from the vibration modes in the other directions, and the vibration of the vibration source is attenuated in the vibration direction while the vibration of the vibration source is attenuated. It is possible to provide a structure capable of being rigid enough to support a heavy load.
  • the supporting part is made of a homogeneous material
  • an example is shown in which the anisotropy of the rigidity of the supporting part is realized by the shape of the supporting part.
  • a support made of a homogeneous material has the advantage that it is generally manufacturable.
  • the anisotropy with respect to the stiffness of the support can also be achieved by the composition of the material of the support (for example, a combination of different materials).
  • Two or more of the supporting part, the vibrating part, and the housing may be parts of different objects (warehouses).
  • Two or more of the support section, vibrating section, and housing may be integrally formed. As a result, the number of parts constituting the structure can be reduced, and the manufacturability of the structure can be improved.
  • the connecting portion connects a plurality of sets each including the first support and the second support.
  • multiple sets may not be connected to each other.
  • Constituent supports 131SLB and 132SLB are connected to each other via a connecting portion 133SL, but instead of this, the supports 131SLA and 132SLA constituting the first set are connected to each other, and the second set is constructed.
  • the supporting bodies 131SLB and 132SLB are connected to each other, the first set of supporting bodies 131SLA and 132SLA and the second set of supporting bodies 131SLB and 132SLB may not be connected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Therapy (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

A structural body 100 according to an embodiment of the present disclosure is provided with a vibrating portion 110 holding a vibrating body, a housing 120 at least partially accommodating the vibrating portion 110, and supporting portions 130SR, 130SL which link the vibrating portion 110 and the housing 120 and support the vibrating portion 110, wherein the supporting portions 130SR, 130SL are configured to have dynamic rigidity that amplifies or attenuates transmission of vibrations having at least a predetermined frequency, among vibrations generated in at least one direction by the vibrating portion 110 while holding the vibrating body, and have static rigidity necessary to support the vibrating portion 110 while holding the vibrating body. A system including the structural body 100 and the vibrating body has a characteristic that, after an excited vibration mode in which a vibration transmission rate increases as a vibration frequency of the vibrations in at least one direction increases has been manifested, the vibration transmission rate gradually decreases. The supporting portions 130SR, 130SL have a rigidity that causes an excited vibration mode to be manifested in such a way that the vibration transmission rate at a prescribed frequency is greater than or less than 1.

Description

構造体、振動デバイス及び体感音響装置Structural bodies, vibration devices and bodily sensations
 本開示は、構造体、振動デバイス及び体感音響装置に関する。 The present disclosure relates to structures, vibration devices, and body-sensory acoustic devices.
 従来から、振動デバイスを備えた体感音響装置が知られている。振動デバイスは、例えば電気信号を機械的な振動に変換する電磁石によって駆動される。振動デバイスがユーザの身体に直接または間接的に接触させた状態で振動デバイスを駆動することにより、ユーザは振動デバイスの振動によって生じる音響を体感することができる。 A bodily sensation device equipped with a vibration device has been known for some time. Vibrating devices are driven, for example, by electromagnets that convert electrical signals into mechanical vibrations. By driving the vibrating device while the vibrating device is in direct or indirect contact with the user's body, the user can feel the sound produced by the vibration of the vibrating device.
 椅子またはクッションの内部に振動デバイスを埋め込むことで構成される体感音響装置が知られている(特許文献1参照)。かかる体感音響装置は、映像及び音からなるコンテンツに対する没入感を強化するために用いられることがある。ユーザは、体感音響装置に座り、またはもたれかかった状態でコンテンツを視聴する。ユーザは、コンテンツの映像および音に加えて、体感音響装置から振動によって生じる音響を体感することで、高い没入感を味わうことができる。 A body-sensory acoustic device configured by embedding a vibrating device inside a chair or a cushion is known (see Patent Document 1). Such somatosensory devices may be used to enhance immersion in video and audio content. The user sits or leans against the somatosensory device to view the content. The user can enjoy a high sense of immersion by experiencing the sound generated by the vibration from the sensory audio device in addition to the image and sound of the content.
特開2003-274468号公報JP-A-2003-274468
 体感音響装置に用いられる振動デバイスには、ユーザに音響を体感させるために必要な強度の振動を発生させることと、ユーザの体重等による荷重に対する剛性(つまり、耐荷重性)を備えることとが求められる。しかしながら、これら2つの要件にはトレードオフが存在する。一般に、振動デバイスの振動部を支持する支持部を高剛性に構成すると、振動デバイスの耐荷重性が向上する一方で振動部の振動の振幅が制限されるため振動強度を高めることが困難となる。また、体感音響装置に用いられる振動デバイスには、例えば、ある周波数の振動の強度を高めたい一方で、それとは異なる周波数の振動の強度は弱めたいというニーズもある。 Vibration devices used in bodily-sensory devices are required to generate vibrations of a strength necessary to allow the user to experience sound, and to have rigidity (that is, load resistance) against the load caused by the user's weight and the like. Desired. However, there is a trade-off between these two requirements. In general, if the support portion that supports the vibrating portion of the vibrating device is configured to have high rigidity, the load resistance of the vibrating device is improved, but the amplitude of the vibration of the vibrating portion is limited, making it difficult to increase the vibration strength. . In addition, there is also a demand for vibration devices used in body-sensory acoustic devices, for example, to increase the intensity of vibration at a certain frequency and to reduce the intensity of vibration at a different frequency.
 また、複数の振動デバイスを備える体感音響装置では、振動デバイス間の相互干渉が体感音響の品質を損なうことがある。具体的には、振動デバイスで生じた振動が外部に伝播し、他の振動デバイスの振動と干渉する(共振する、または打ち消し合う)ことがある。 In addition, in a sensory acoustic device equipped with a plurality of vibrating devices, mutual interference between the vibrating devices may impair the sensory acoustic quality. Specifically, the vibration generated by the vibrating device may propagate to the outside and interfere with (resonate with or cancel out) the vibration of another vibrating device.
 本開示の一態様に係る構造体は、振動体を保持する振動部と、振動部を少なくとも部分的に収容する筐体と、振動部と筐体とを連結して振動部を支持する支持部とを具備し、支持部は、振動体を保持した状態の振動部が少なくとも1つの方向に発生させる振動のうち少なくとも所定の周波数の振動の伝達を増幅又は減衰させる動剛性を備え、かつ振動体を保持した状態の振動部を支持するために必要な静剛性を備えるように構成されており、構造体及び振動体を含む系は、少なくとも1つの方向における振動の振動周波数が高くなるにつれて、振動伝達率が高くなる励起された振動モードが発現した後に振動伝達率が漸減する特性を有し、支持部は、少なくとも所定の周波数の振動の伝達を増幅させる動剛性を備える場合には、所定の周波数における振動伝達率が1よりも大きくなるように励起された振動モードを発現させる動剛性をさらに備え、少なくとも所定の周波数の振動の伝達を減衰させる動剛性を備える場合には、所定の周波数における振動伝達率が1よりも小さくなるように励起された振動モードを発現させる動剛性をさらに備えている。 A structure according to an aspect of the present disclosure includes a vibrating section that holds a vibrating body, a housing that at least partially accommodates the vibrating section, and a support section that connects the vibrating section and the housing to support the vibrating section. and the support portion has a dynamic rigidity that amplifies or attenuates transmission of at least a predetermined frequency of vibration generated in at least one direction by the vibrating portion holding the vibrating body, and the vibrating body and the system including the structure and the vibrating body vibrates as the vibration frequency in at least one direction increases. When an excited vibration mode with a high transmissibility is generated and then the vibration transmissibility gradually decreases, and the support section has dynamic stiffness that amplifies the transmission of vibration of at least a predetermined frequency, a predetermined Further comprising a dynamic stiffness that develops a vibration mode excited such that the transmissibility of vibration at a frequency is greater than 1, and at least a dynamic stiffness that attenuates the transmission of vibration at a given frequency. It further has a dynamic stiffness that develops an excited vibration mode such that the vibration transmissibility is less than one.
本発明の第1の実施形態の構造体を含む系を示す図である。1 shows a system including a structure of a first embodiment of the invention; FIG. 図1の別の例を示す図である。FIG. 2 is a diagram showing another example of FIG. 1; 図1の系における振動モデルを示す図である。2 is a diagram showing a vibration model in the system of FIG. 1; FIG. 図3のモデルの振動伝達率の周波数特性を示すグラフである。4 is a graph showing the frequency characteristics of the vibration transmissibility of the model of FIG. 3; 本発明の第1の実施形態の構造体の支持部の静剛性の解析モデルを示す。3 shows an analysis model of the static stiffness of the support portion of the structure of the first embodiment of the present invention; 本発明の第1の実施形態の一実施例の構造体を正面側の斜め上から見た斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a structure of an example of the first embodiment of the present invention, viewed obliquely from above on the front side; 本発明の第1の実施形態の一実施例の構造体を、その上部のフランジ部を切断した状態で示す平面図である。1 is a plan view showing a structure of one example of the first embodiment of the present invention with its upper flange portion cut away; FIG. 図7に示したフランジ部を切断した状態の構造体を図6とは異なる方向から見た斜視図である。FIG. 8 is a perspective view of the structure with the flange portion shown in FIG. 7 being cut, viewed from a direction different from that of FIG. 6 ; 本発明の第1の実施形態の一実施例の構造体の振動部に振動体を収容した状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which a vibrating body is accommodated in a vibrating portion of the structural body of one example of the first embodiment of the present invention; 剛性に関する異方性を有する構造の一例を示す斜視図である。1 is a perspective view showing an example of a structure having anisotropy with respect to stiffness; FIG. 本発明の第2の実施形態の体感音響装置における複数の振動デバイスの配置を上方から見た図である。It is the figure which looked at arrangement|positioning of several vibration devices in the sensory-sensory apparatus of the 2nd Embodiment of this invention from the upper direction. 本発明の第2の実施形態の体感音響装置における複数の振動デバイスの振動方向を示す図である。FIG. 10 is a diagram showing vibration directions of a plurality of vibrating devices in a sensory acoustic device according to a second embodiment of the present invention;
<本発明のコンセプト>
 最初に、本発明のコンセプトについて説明する。
<Concept of the present invention>
First, the concept of the present invention will be explained.
 上述したように、従来技術には、支持可能な荷重(耐荷重性)を高めて静的性能をアップさせると動的性能がダウンして達成可能な振動強度が低下し、これとは逆に、達成可能な振動強度を高めるために動的性能をアップさせると静的性能がダウンして支持可能な荷重が低下するトレードオフの関係が存在する。これに対し、本発明の発明者は、種々の構造体の設計と解析を行った結果、振動強度を高めたい又は弱めたい振動方向の振動モードをその他の方向の振動モードから孤立化させ、その振動方向においては振動源の振動を増幅又は減衰させつつも、想定される荷重を支持することが可能な剛性を持たせることで上記トレードオフを解決するという着想を得て、本発明に係る構造体及びその設計方法を考案した。 As described above, in the prior art, if the static performance is increased by increasing the load that can be supported (load resistance), the dynamic performance is decreased and the achievable vibration strength is decreased. There is a trade-off between increasing dynamic performance to increase the achievable vibration strength and decreasing static performance and supporting loads. On the other hand, the inventor of the present invention designed and analyzed various structures, and as a result, isolated the vibration mode in the vibration direction in which the vibration strength is desired to be increased or weakened from the vibration modes in the other directions. While amplifying or damping the vibration of the vibration source in the vibration direction, the structure according to the present invention is based on the idea of solving the above trade-off by providing rigidity that can support the assumed load. I devised a body and its design method.
 このように、本発明のコンセプトは、振動強度を高めたい又は弱めたい方向に振動体の振動を増幅させつつも、想定される荷重を支持することが可能な剛性を構造体に付与することである。本発明は、一例として、振動強度を高めたい又は弱めたい方向の動的な剛性のみを柔軟にすることにより振動源の振動を増幅又は減衰可能であって、かつ想定される荷重を支えるために必要な静的な剛性を有する構造体を提供する。 As described above, the concept of the present invention is to provide a structure with rigidity capable of supporting an assumed load while amplifying the vibration of the vibrating body in the direction in which the vibration intensity is desired to be increased or decreased. be. As an example, the present invention is capable of amplifying or attenuating the vibration of a vibration source by softening only the dynamic stiffness in the direction in which it is desired to increase or decrease the vibration strength, and to support the assumed load. Provide a structure with the necessary static stiffness.
<本発明の実施形態>
 以下、本発明の一実施形態について、図面に基づいて詳細に説明する。なお、実施形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。
<Embodiment of the present invention>
An embodiment of the present invention will be described in detail below with reference to the drawings. In the drawings for describing the embodiments, in principle, the same constituent elements are denoted by the same reference numerals, and repeated description thereof will be omitted.
 以降の説明において、所定の姿勢にある構造体を基準として、上方(T方向)、下方(B方向)、前方(F方向)、後方(R方向)、左方向(SL方向)、および右方向(SR方向)を定義する。 In the following description, based on a structure in a predetermined posture, upward (T direction), downward (B direction), forward (F direction), backward (R direction), leftward (SL direction), and rightward directions (SR direction).
 本明細書の以降の説明及び添付する特許請求の範囲の記載において、回転とは、一方向(時計回り、または反時計回り)の回転のみならず、双方向(時計回りおよび反時計回り)への交互な回転をも意味し得る。 In the description hereinafter and in the appended claims, rotation refers to rotation in one direction (clockwise or counterclockwise) as well as in both directions (clockwise and counterclockwise). can also mean an alternating rotation of .
(1)第1の実施形態
 第1の実施形態について説明する。第1の実施形態の構造体は、振動部と、筐体と、支持部とを備える。振動部は、振動体を保持する。筐体は、振動部を少なくとも部分的に収容する。支持部は、振動部と筐体とを連結して振動部を支持する。振動体を保持した状態の振動部は、少なくとも1つの方向に振動する。
(1) First Embodiment A first embodiment will be described. The structure of the first embodiment includes a vibration section, a housing, and a support section. The vibrating section holds the vibrating body. The housing at least partially houses the vibrating section. The support section supports the vibrating section by connecting the vibrating section and the housing. The vibrating portion holding the vibrating body vibrates in at least one direction.
 第1の実施形態の構造体の支持部は、振動体を保持した状態の振動部が発生させる振動のうち少なくとも所定の周波数において振動を増幅させる動剛性を備えるように構成される。同時に、この支持部は、少なくとも振動体を保持した状態の振動部を支持するために必要な静剛性を備えるように構成される。つまり、この支持部は、想定される荷重に抗して振動体を保持した状態の振動部の位置姿勢を安定させるのに十分な剛性(静剛性)を確保するとともに、当該振動部が発生させる振動のうち少なくとも所定の周波数に対して振動強度を高めることができる。 The support portion of the structure of the first embodiment is configured to have dynamic rigidity that amplifies vibration at least at a predetermined frequency among the vibrations generated by the vibrating portion holding the vibrating body. At the same time, the supporting portion is configured to have at least the static rigidity necessary to support the vibrating portion holding the vibrating body. In other words, the support part secures sufficient rigidity (static rigidity) to stabilize the position and orientation of the vibrating part holding the vibrating body against the assumed load, and also the vibration generated by the vibrating part. The vibration intensity can be increased for at least a predetermined frequency of the vibration.
 一例として、「動剛性」は、動的な力又は動的なモーメントと、それによる動的な変位との関係で表される剛性を意味し、「静剛性」は、静的な力又は静的なモーメントと、それによる静的な変位・変形との関係で表される剛性を意味する。 As an example, "dynamic stiffness" means stiffness represented by the relationship between dynamic force or dynamic moment and resulting dynamic displacement, and "static stiffness" means static force or static It means the stiffness represented by the relationship between the static moment and the resulting static displacement/deformation.
 ・基本原理
 第1の実施形態の構造体の基本原理について説明する。図1は、第1の実施形態の構造体を含む系を示す図である。図2は、図1の別の例を示す図である。
- Basic principle The basic principle of the structure of the first embodiment will be described. FIG. 1 shows a system including the structure of the first embodiment. FIG. 2 is a diagram showing another example of FIG.
 図1に示すように、第1の実施形態の支持部SPTは、振動体を保持した状態の振動部OSと筐体HSとを連結して振動部OSを支持する。振動部OSは、振動周波数fで振動する。 As shown in FIG. 1, the supporting part SPT of the first embodiment supports the vibrating part OS by connecting the vibrating part OS holding the vibrating body and the housing HS. The vibrating part OS vibrates at a vibration frequency f.
 なお、図1では、一例として振動体を保持した状態の振動部OSが直線往復運動による振動(以下、「直線往復振動」と称する)をするかのように描かれているが、振動部OSの振動方向は任意である。例えば、振動部OSは、図2(a)に示すように回転運動による振動(以下、「回転振動」と称する)をしてもよく、図2(b)に示すように揺動運動による振動(以下、「揺動振動」と称する)をしてもよい。或いは、振動部OSの振動は、上記各振動態様の任意の組み合わせであってもよい。 In FIG. 1, as an example, the vibrating part OS holding the vibrating body is depicted as if it vibrates due to linear reciprocating motion (hereinafter referred to as "linear reciprocating vibration"). can be oscillated in any direction. For example, the vibration unit OS may vibrate by rotational motion (hereinafter referred to as “rotational vibration”) as shown in FIG. (hereinafter referred to as "swing vibration"). Alternatively, the vibration of the vibrating section OS may be any combination of the above vibration modes.
 ・動剛性
 第1の実施形態の構造体の支持部の動剛性について説明する。図3は、図1の系における振動モデルを示す図である。図4は、図3のモデルの振動伝達率の周波数特性を示すグラフである。
-Dynamic Rigidity Dynamic rigidity of the support portion of the structure of the first embodiment will be described. FIG. 3 is a diagram showing a vibration model in the system of FIG. FIG. 4 is a graph showing frequency characteristics of the vibration transmissibility of the model of FIG.
 支持部SPTは、振動体を保持した状態の振動部OSが発生させる振動のうち少なくとも振動周波数fにおいて振動を増幅させる動剛性を備えるように構成される。これを振動部OSから筐体HSへの振動伝達特性として図3を用いて説明すると、各周波数において、振動部OSから筐体HSへの振動伝達特性は、振動部OSの質量mと、振動部OSの振動方向に関する支持部SPTの動剛性kdとによって決まる。 The support part SPT is configured to have a dynamic rigidity that amplifies the vibration at least at the vibration frequency f among the vibrations generated by the vibrating part OS while holding the vibrating body. 3 as a vibration transfer characteristic from the vibrating unit OS to the housing HS. It is determined by the dynamic stiffness kd of the support portion SPT with respect to the vibration direction of the portion OS.
 振動体を保持した状態の振動部OSの発生する加振力F0に対する、筐体HSに伝達する加振力Fの比率F/F0は、振動伝達率と定義される。図4中の実線のグラフで示すように、図3のモデルは、周波数が高くなるにつれて、振動伝達率が高くなる励起された振動モードが発現した後に振動伝達率が漸減する周波数特性を呈する。具体的には、図3のモデルの振動伝達率は、周波数がfu以下の範囲では周波数が高くなるほど増加し、fuにおいて極大となる。ここで、fuは、図3のモデルの固有振動数である。図3のモデルの振動伝達率は、周波数が固有振動数fu以上の範囲では漸減し、√2fuでゼロクロスする。つまり、図3のモデルは、周波数が√2fu未満の範囲では振動伝達率が1よりも大となる、つまり振動強度を増幅させることができる。 The ratio F/F0 of the excitation force F transmitted to the housing HS to the excitation force F0 generated by the vibrating part OS while holding the vibrating body is defined as the vibration transmission ratio. As shown by the solid line graph in FIG. 4, the model in FIG. 3 exhibits frequency characteristics in which the vibration transmissibility gradually decreases after an excited vibration mode in which the vibration transmissibility increases as the frequency increases. Specifically, the vibration transmissibility of the model in FIG. 3 increases as the frequency becomes higher in the range below fu, and reaches a maximum at fu. where fu is the natural frequency of the model in FIG. The vibration transmissibility of the model in FIG. 3 gradually decreases in the frequency range equal to or higher than the natural frequency fu, and crosses zero at √2fu. That is, in the model of FIG. 3, the vibration transmissibility is greater than 1 in the range of frequencies less than √2fu, that is, the vibration strength can be amplified.
 図3のモデルの固有振動数は、質量mおよび動剛性kdによって決まる。そして、動剛性kdを小さくして固有振動数を低くするほど、低周波域における振動伝達率を高めることができ、反対に、動剛性kdを大きくして固有振動数を高くするほど、高周波域における振動伝達率を高めることができる。  The natural frequency of the model in Fig. 3 is determined by the mass m and the dynamic stiffness kd. The lower the dynamic stiffness kd and the lower the natural frequency, the higher the vibration transmissibility in the low frequency range. Conversely, the higher the dynamic stiffness kd and the higher the natural frequency, the higher the can increase the vibration transmissibility in
 一例として固有振動数を低くする場合について説明すると、図4からわかるように、固有振動数をfuよりも小さいfu’とした系の周波数特性(図4中の点線で示されたグラフ)における低周波域(例えば、fu’以下の周波数域)の振動伝達率は、図4中に実線で示された固有振動数fuの系の周波数特性における振動伝達率に比べて増加する。質量mは定数であるから、動剛性kdを小さくすることで、固有振動数fuを低下させることができる。故に、低周波域における振動伝達率向上の観点からすると、振動体を保持した状態の振動部OSの振動方向に関する支持部SPTの動剛性kdは、小さいほど好ましい。 To explain the case of lowering the natural frequency as an example, as can be seen from FIG. The vibration transmissibility in the frequency range (for example, the frequency range below fu') increases compared to the vibration transmissibility in the frequency characteristics of the system of the natural frequency fu indicated by the solid line in FIG. Since the mass m is a constant, the natural frequency fu can be lowered by reducing the dynamic stiffness kd. Therefore, from the viewpoint of improving the vibration transmissibility in the low-frequency range, it is preferable that the dynamic stiffness kd of the supporting portion SPT in the vibration direction of the vibrating portion OS holding the vibrating body is as small as possible.
 上記知見に基づき、本実施形態の支持部SPTは、振動体を保持した状態の振動部OSが発生させる振動の周波数成分のうち、少なくとも、特に振動伝達を増幅させたい所定の振動周波数fにおける振動伝達率が1よりも大となる固有振動数fuを有するように、動剛性kdが定められる。かかる動剛性kdを備えた支持部SPTおよび振動部OSを含む系は、振動周波数fにおける振動伝達率が1よりも大となる、励起された振動モードを発現させる。具体的には、支持部SPTは、与えられた振動部OSの振動方向、質量m、および振動周波数fに対して、支持部SPTおよび振動部OSを含む系の固有振動数fuを振動周波数fの1/√2倍よりも高く、かつ好ましくは振動周波数fに一致させる動剛性kdを備えるように構成される。 Based on the above findings, the support part SPT of the present embodiment is designed to generate vibration at least at a predetermined vibration frequency f, among the frequency components of vibration generated by the vibration part OS holding the vibrating body. The dynamic stiffness kd is determined so as to have a natural frequency fu at which the transmissibility is greater than one. A system including the supporting portion SPT and the vibrating portion OS having such a dynamic stiffness kd develops an excited vibration mode in which the vibration transmissibility is greater than 1 at the vibration frequency f. Specifically, for a given vibration direction, mass m, and vibration frequency f of the vibration member OS, the support member SPT changes the natural frequency fu of the system including the support member SPT and vibration member OS to the vibration frequency f , and preferably matched to the vibration frequency f.
 なお、支持部SPTおよび振動体を保持した状態の振動部OSを含む系の固有振動数fuをどの程度とするか、そのために動剛性kdの大きさをどのように定めるかは、振動強度を高める必要のある所定の振動周波数fにおいてどの程度の増幅効果を得たいか、すなわち所定の振動周波数fにおける振動伝達率をどれだけ高くしたいかに応じて、適宜決定することができる。 It should be noted that the degree of the natural frequency fu of the system including the supporting portion SPT and the vibrating portion OS holding the vibrating body and how to determine the magnitude of the dynamic stiffness kd for that purpose depend on the vibration intensity. It can be appropriately determined according to how much amplification effect is desired at a predetermined vibration frequency f to be increased, that is, how high the vibration transmissibility is desired at the predetermined vibration frequency f.
 ここで、支持部SPTの動剛性kdは、例えば以下の手順で導出することができる。
(1)支持部SPTの一端を筐体HSに接続し、支持部SPTの他端を、振動体を保持した状態の振動部OSと同じ質量mのおもりに接続する。
(2)(1)の系に対して固有振動解析を行い、1組以上の固有振動数および固有振動モードを特定する。
(3)(2)において特定した固有振動数および固有振動モードの組から、おもりが対象となる加振方向(振動部OSの振動方向)に振動している組を抽出する。
(4)(3)において抽出した組を固有振動数の小さい順にソートする。
(5)(4)で得られた最小の固有振動数をfu1として、動剛性kdを以下の数式で算出する。
   kd=m*(2π*fu1)
 上記数式によれば、振動強度を高めたい所定の振動周波数fにおいて所望の振動伝達率を得るために必要とされる固有振動数fu’を特定することにより、その固有振動数fu’を実現するための動剛性kd’を算出することができる。
Here, the dynamic stiffness kd of the support portion SPT can be derived, for example, by the following procedure.
(1) One end of the supporting portion SPT is connected to the housing HS, and the other end of the supporting portion SPT is connected to a weight having the same mass m as the vibrating portion OS holding the vibrating body.
(2) A natural vibration analysis is performed on the system of (1) to identify at least one set of natural frequencies and natural vibration modes.
(3) From the set of the natural frequency and the natural vibration mode specified in (2), a set in which the weight vibrates in the target vibration direction (vibration direction of the vibrating part OS) is extracted.
(4) Sort the sets extracted in (3) in ascending order of natural frequency.
(5) Using the minimum natural frequency obtained in (4) as fu1, the dynamic stiffness kd is calculated by the following formula.
kd=m*(2π*fu1) 2
According to the above formula, by specifying the natural frequency fu' required to obtain the desired vibration transmissibility at the predetermined vibration frequency f at which the vibration intensity is to be increased, the natural frequency fu' is realized. It is possible to calculate the dynamic stiffness kd′ for
 なお、本実施形態における支持部の「動剛性」に関する上記説明において「振動伝達率」の概念を用いているが、これは、本実施形態における支持部が振動部の振動強度を高めるために備えるべき動剛性を説明することを意図したものであり、本実施形態の構造体が振動部の振動を筐体に伝達させるものであることを意味するものではない。以下において詳しく説明するように、本実施形態の構造体は、振動部の振動強度を高めたい所定の振動周波数fにおいて振動増幅効果を発揮できる動剛性を支持部に付与し、振動部の振動方向における支持部の変位量(振幅)を大きくすることで、振動部の振動強度を高めることが可能である。一方、本実施形態の構造体では、振動部が支持部によって筐体に対して懸架された状態で支持されるため、振動部による振動が筐体へ伝達することが抑制され、さらにはその振動が構造体の外部に伝播することが抑えられる。 The concept of "vibration transmissibility" is used in the above description of the "dynamic rigidity" of the support part in this embodiment, but this is provided for the support part in this embodiment to increase the vibration strength of the vibrating part. This is intended to explain the power dynamic stiffness, and does not mean that the structure of this embodiment transmits the vibration of the vibrating section to the housing. As will be described in detail below, in the structure of the present embodiment, the support portion is provided with dynamic rigidity capable of exhibiting a vibration amplifying effect at a predetermined vibration frequency f at which the vibration intensity of the vibrating portion is to be increased, and the vibration direction of the vibrating portion is By increasing the amount of displacement (amplitude) of the supporting portion at , it is possible to increase the vibration intensity of the vibrating portion. On the other hand, in the structure of the present embodiment, since the vibrating portion is supported in a suspended state with respect to the housing by the supporting portion, transmission of vibration by the vibrating portion to the housing is suppressed, and furthermore, the vibration is suppressed. is suppressed from propagating outside the structure.
 ・静剛性
 第1の実施形態の構造体の静剛性について説明する。図5は、第1の実施形態の構造体の支持部の静剛性の解析モデルを示す。
- Static rigidity The static rigidity of the structure of the first embodiment will be described. FIG. 5 shows an analysis model of the static stiffness of the supporting portion of the structure of the first embodiment.
 支持部SPTは、振動体を保持した状態の振動部OSを支持するために必要な静剛性を備えるように構成される。具体的には、図5に示すように、支持部SPTは、振動部OSに印加される設計荷重Flに対して振動部OSを支持するために必要な静剛性ksを備える。振動部OSを支持するとは、例えば、設計荷重Flが加えられた場合でも振動部OSの位置姿勢を安定させることを意味し得る。位置姿勢を安定させることとは、設計荷重Flの印加による変位(回転変位を含む)を許容範囲内に抑えることを意味し得る。 The support part SPT is configured to have static rigidity necessary to support the vibrating part OS while holding the vibrating body. Specifically, as shown in FIG. 5, the support part SPT has a static rigidity ks necessary to support the vibrating part OS against the design load Fl applied to the vibrating part OS. Supporting the vibrating part OS can mean, for example, stabilizing the position and orientation of the vibrating part OS even when the design load Fl is applied. Stabilizing the position and orientation can mean suppressing the displacement (including rotational displacement) due to the application of the design load Fl within an allowable range.
 設計荷重Flは、振動体を保持した状態の振動部OSおよび支持部SPTを含む系の使用環境において想定される各種の荷重である。一例として、設計荷重Flは、以下の少なくとも1つを含むことができる。
・重力(例えば、振動体を保持した状態の振動部OSの自重および振動部OSに作用するユーザの体重による重力)
・慣性力
The design load Fl is various loads assumed in the operating environment of the system including the vibrating portion OS and the supporting portion SPT holding the vibrating body. As an example, the design load Fl can include at least one of the following.
Gravity (for example, the weight of the vibrating unit OS holding the vibrating body and the weight of the user acting on the vibrating unit OS)
・inertial force
 図5のモデルでは、支持部SPTのうち振動体を保持した状態の振動部OSとの接点CPに設計荷重Flを印加した時の支持部SPTの変位量をdとすると、静剛性ksは以下の数式で導出可能である。
   ks=Fl/d
In the model of FIG. 5, if the displacement amount of the supporting portion SPT when the design load Fl is applied to the contact point CP of the supporting portion SPT with the vibrating portion OS holding the vibrating member is d, then the static stiffness ks is as follows: can be derived by the formula
ks=Fl/d
 ここで、設計荷重Flの印加方向に関する静剛性ksが大きいほど、当該設計荷重Flによる支持部SPTの変位量dは小さくなる(つまり、設計荷重Flが加えられた場合でも振動体を保持した状態の振動部OSの位置姿勢が安定する)。設計荷重Flに抗して振動部OSを支持するために必要な静剛性ksは、例えば、図5のモデルにおいて設計荷重Flの大きさを想定上の最大値とした時に支持部SPTの変位量が設計上の許容範囲内に収まるような静剛性と定義することができる。 Here, the larger the static stiffness ks with respect to the direction in which the design load Fl is applied, the smaller the amount of displacement d of the support portion SPT due to the design load Fl (that is, even when the design load Fl is applied, the vibrating body is held). (the position and orientation of the vibrating part OS are stabilized). The static stiffness ks required to support the vibrating portion OS against the design load Fl is, for example, the amount of displacement of the support portion SPT when the magnitude of the design load Fl is assumed to be the maximum value in the model of FIG. can be defined as the static stiffness that is within the design tolerance.
 このように設計荷重Flに抗して振動体を保持した状態の振動部OSを支持するために必要な静剛性ksを支持部SPTに持たせることで、支持部SPTは振動部OSを支持するために必要な静的強度を備えるように構成される。具体的には、図5のモデルにおいて設計荷重Flの大きさを想定上の最大値とした時に支持部SPTに亘る応力の連続的な分布が解析により求められる。そして、応力分布の最大値(つまり、設計荷重Flによって支持部SPTに局所的に生じると想定される応力の最大値)が支持部SPTを構成する材料の許容応力以下となるように、支持部SPTの形状、位置、材料、またはそれらの組み合わせを決定する。これにより、想定上最大の設計荷重Flが振動部OSに印加されたとしても、支持部SPTは、破損することなく振動部OSの位置姿勢を安定させることができる。 In this way, the supporting portion SPT supports the vibrating portion OS by giving the supporting portion SPT the static rigidity ks necessary to support the vibrating portion OS in a state where the vibrating body is held against the design load Fl. configured to provide the static strength required for Specifically, when the magnitude of the design load Fl is assumed to be the assumed maximum value in the model of FIG. 5, the continuous distribution of the stress over the support portion SPT is obtained by analysis. Then, the maximum value of the stress distribution (that is, the maximum value of the stress assumed to be locally generated in the support portion SPT due to the design load Fl) is equal to or less than the allowable stress of the material constituting the support portion SPT. Determine SPT shape, location, material, or a combination thereof. Accordingly, even if the assumed maximum design load Fl is applied to the vibrating part OS, the supporting part SPT can stabilize the position and orientation of the vibrating part OS without being damaged.
 [実施例]
 第1の実施形態の構造体の一実施例について説明する。
[Example]
An example of the structure of the first embodiment will be described.
・構成
 図6は、第1の実施形態の一実施例の構造体を正面側の斜め上から見た斜視図である。図7は、第1の実施形態の一実施例の構造体を、その上部のフランジ部を切断した状態で示す平面図である。図8は、図7に示したフランジ部を切断した状態の構造体を図6とは異なる方向から見た斜視図である。図9は、第1の実施形態の一実施例の構造体の振動部に振動体を収容した状態を示す斜視図である。図10は、剛性に関する異方性を有する構造の一例を示す斜視図である。
- Configuration FIG. 6 is a perspective view of the structure of one example of the first embodiment, viewed obliquely from above on the front side. FIG. 7 is a plan view showing the structure of one example of the first embodiment with its upper flange portion cut away. 8 is a perspective view of the structure shown in FIG. 7 with the flange portion cut away, viewed from a direction different from that in FIG. 6. FIG. FIG. 9 is a perspective view showing a state in which a vibrating body is housed in a vibrating portion of the structure of one example of the first embodiment. FIG. 10 is a perspective view showing an example of a structure having anisotropy in stiffness.
 振動部が第1の軸に沿って直線往復振動する振動体を保持する場合に、支持部は、振動部が振動により第1の軸に沿って変位することを許容する一方で、振動部が自身または振動体にはたらく重力、または振動によって第1の軸とは異なる方向に変位しないように振動部を支持することが求められる。そのため、かかる構造体は、振動体の振動方向における動剛性が振動の伝達を増幅させることができる程度に低く、かつ、振動部をその位置姿勢を安定させた状態で支持できる程度に静剛性が高いことが望まれる。 When the vibrating part holds the vibrating body that linearly reciprocates along the first axis, the supporting part allows the vibrating part to be displaced along the first axis due to the vibration, while the vibrating part It is required to support the vibrating part so that it is not displaced in a direction different from the first axis due to gravity or vibration acting on itself or the vibrating body. Therefore, in such a structure, the dynamic rigidity in the vibration direction of the vibrating body is low enough to amplify the transmission of vibration, and the static rigidity is high enough to support the vibrating part in a stable position and orientation. High is desired.
 本実施例の構造体100は上記着想に基づいてなされたものである。本例では構造体100の支持部が第1の軸に沿った方向である上下(T-B)方向に振動する振動体140(図9参照)を保持した状態の振動部を支持する例について以下に説明する。ただし、振動部110の変位可能な方向および振動部110によって保持される振動体の振動方向はこれに限られない。 The structure 100 of this embodiment is based on the above idea. In this example, the supporting portion of the structure 100 supports the vibrating portion while holding the vibrating portion 140 (see FIG. 9) that vibrates in the vertical (TB) direction along the first axis. It is explained below. However, the displaceable direction of the vibrating portion 110 and the vibrating direction of the vibrating body held by the vibrating portion 110 are not limited thereto.
 図6~図9に示すように、構造体100は、振動体140を保持する振動部110と、振動部110を収容する筐体120と、筐体120内で振動部110を懸架した状態で支持する2つの支持部130SL、130SRとを備える。2つの支持部130SL、130SRは、配置が異なるものの、互いに同様の構成を備えている。故に、各支持部に共通する事項は、「130」の符号を用いて説明する。 As shown in FIGS. 6 to 9, the structure 100 includes a vibrating section 110 holding a vibrating body 140, a housing 120 housing the vibrating section 110, and a state in which the vibrating section 110 is suspended within the housing 120. It has two supporting parts 130SL and 130SR for supporting. The two support portions 130SL and 130SR are arranged differently, but have the same configuration. Therefore, items common to each supporting portion will be described using the reference numeral "130".
 本実施例の構造体100は一例として、前後(F-R)軸及び左右(SR-SL)軸を含む平面が水平面と概ね一致し、上下(T-B)軸方向が鉛直方向と概ね一致するように配置されている。 In the structure 100 of the present embodiment, as an example, the plane including the front-rear (FR) axis and the left-right (SR-SL) axis substantially coincides with the horizontal plane, and the up-down (TB) axis direction substantially coincides with the vertical direction. are arranged to
 振動部110は、一例として、底面部110bを有し図示上方が開口した中空の略円筒状形状を有しており、その円筒内部の中空部分に図9に示すように振動体140を収容する。振動体140は、例えば底面部110bに形成されているねじ穴を通して底面部110bにねじ止め固定される。振動部110の内径は、それに収容される略円筒形状の振動体140の外径とほぼ同じであることが好ましい。このように振動体140を内部に保持した振動部110は、振動体140と一体となって変位可能となる。振動体140は例えばボイスコイルモータ等のリニアモータであり、振動部110に保持された振動体140は図示上下(T-B)軸に沿って直線往復振動する。振動部110は、振動体140が発生する振動に伴って図示上下(T-B)軸に沿って直線往復振動する。 As an example, the vibrating portion 110 has a hollow, substantially cylindrical shape with a bottom portion 110b and an upper opening in the drawing, and a vibrating body 140 is accommodated in the hollow portion of the cylindrical interior as shown in FIG. . The vibrating body 140 is fixed to the bottom portion 110b by screwing through a screw hole formed in the bottom portion 110b, for example. The inner diameter of the vibrating portion 110 is preferably substantially the same as the outer diameter of the substantially cylindrical vibrating body 140 housed therein. The vibrating portion 110 holding the vibrating body 140 inside in this way can be displaced integrally with the vibrating body 140 . The vibrating body 140 is, for example, a linear motor such as a voice coil motor, and the vibrating body 140 held by the vibrating portion 110 linearly reciprocates along the illustrated vertical (TB) axis. The vibrating portion 110 linearly reciprocates along the vertical (TB) axis in the drawing in accordance with the vibration generated by the vibrating body 140 .
 振動部110の側面の対向する2か所には開口部110aが形成されている。これらの開口部110aは、振動部110内への振動体140の取付けや取外しのために作業者の手が届くようにするとともに、振動体140を駆動させることにより振動体140が発生する熱を振動部110の外部に放熱する役割を有する。 Openings 110a are formed at two opposing locations on the side surface of the vibrating portion 110 . These openings 110a allow an operator to reach for attaching or detaching the vibrating body 140 in the vibrating part 110, and also dissipate the heat generated by the vibrating body 140 when the vibrating body 140 is driven. It has a role of dissipating heat to the outside of the vibrating section 110 .
 筐体120は、一例として、少なくとも図示上方が開口した略円筒状に構成され、筐体120の中心軸周囲の円柱状の中空部分に振動部110の全体あるいは少なくとも一部を収容する。図6等に示す例では、筐体120は、振動部110の周囲全体に取り囲むように振動部110を収容している。 As an example, the housing 120 is configured in a substantially cylindrical shape with at least an upper opening in the drawing, and the whole or at least part of the vibrating section 110 is accommodated in a cylindrical hollow portion around the central axis of the housing 120 . In the example shown in FIG. 6 and the like, the housing 120 accommodates the vibrating section 110 so as to surround the vibrating section 110 entirely.
 筐体120の側面の対向する2か所であって、内部に収容した振動部110の側面に形成された各開口部110aと重なる位置には、開口部120aが形成されている。これらの開口部120aも、振動部110内への振動体140の取付けや取外しのために作業者の手が届くようにするとともに、振動体140を駆動させることにより振動体140が発生する熱を筐体120の外部に放熱する役割を有する。
 筐体120の図示上部の開口部の周囲には、フランジ部120bが形成されている。本例では、一例として、フランジ部120bは筐体120の図示左右方向に延びた形状を有している。フランジ部120bは、筐体120の図示上部にユーザが座ったり、もたれかかったりしたときにその荷重を支える役割を果たす。
Openings 120a are formed at two opposing locations on the side surface of the housing 120 and at positions overlapping the respective openings 110a formed on the side surface of the vibrating unit 110 housed inside. These openings 120a are also accessible to the operator for attaching or detaching the vibrating body 140 to or from the vibrating part 110, and heat generated by the vibrating body 140 when the vibrating body 140 is driven can be dissipated. It has a role of dissipating heat to the outside of the housing 120 .
A flange portion 120b is formed around the opening in the upper portion of the housing 120 in the figure. In this example, as an example, the flange portion 120b has a shape extending in the horizontal direction of the housing 120 in the drawing. The flange portion 120b plays a role of supporting the load when the user sits or leans on the illustrated upper portion of the housing 120 .
 また、筐体120の図示下部の外周周囲には、ねじ穴が形成された取付フランジ部120cが形成されている。本例の筐体120では、筐体120の図示正面側および背面側の2か所に取付フランジ部120cが形成されている。構造体100を取り付ける対象物(不図示)に対して、例えば取付フランジ部120cのねじ穴を通してねじ止めを施すことで、構造体100を対象物に固定することができる。 In addition, a mounting flange portion 120c having screw holes is formed around the outer periphery of the lower portion of the housing 120 in the figure. In the housing 120 of this example, mounting flange portions 120c are formed at two locations on the front side and rear side of the housing 120 in the figure. The structure 100 can be fixed to the object (not shown) to which the structure 100 is to be attached by, for example, screwing through the screw holes of the mounting flange portion 120c.
 さらに、図7および図8においてより明確に示されているように、筐体120の図示左右の側面の上部領域と下部領域には切欠き部120d,120eがそれぞれ形成されている。これらの切欠き部120d,120eは、後述する支持部130のうち振動部110の側面に固定される支持体132が筐体120の側壁を通って筐体120の外部に延出することを可能にし、かつ支持体132が変位したときに支持体132が筐体120の側壁に接触するのを防ぐ。 Furthermore, as shown more clearly in FIGS. 7 and 8, cutouts 120d and 120e are formed in the upper and lower regions of the left and right side surfaces of the housing 120, respectively. These notch portions 120d and 120e allow a support member 132 fixed to the side surface of the vibrating portion 110 among the support portions 130 described later to extend outside the housing 120 through the side wall of the housing 120. and prevent the support 132 from contacting the sidewalls of the housing 120 when the support 132 is displaced.
 支持部130は、振動部110が第1の軸(図示の例では上下(T-B)方向)に沿って直線往復振動するように、筐体120内で振動部110を懸架した状態で支持するように構成される。より詳しくは、振動部110は、筐体120の内部空間内に、筐体120の中心軸と同心となり、かつ振動部110の外周面と筐体120の内周面との間に隙間が生じるように配置される。さらに、振動部110は、上下方向に振動する際に想定される最大変位量で変位した場合でも振動部110の底面が筐体120の底面あるいは構造体100が取り付けられた対象物に接触しない高さ位置に配置される。振動部110は、このような配置位置において支持部130によって支持される。 The support portion 130 supports the vibrating portion 110 in a suspended state within the housing 120 so that the vibrating portion 110 linearly reciprocates along the first axis (vertical (TB) direction in the illustrated example). configured to More specifically, the vibrating section 110 is concentric with the central axis of the housing 120 in the inner space of the housing 120, and a gap is generated between the outer peripheral surface of the vibrating section 110 and the inner peripheral surface of the housing 120. are arranged as follows. Further, the vibration unit 110 is set at a height such that the bottom surface of the vibration unit 110 does not come into contact with the bottom surface of the housing 120 or the object to which the structure 100 is attached even when the vibration unit 110 is displaced by the maximum amount of displacement that is assumed when vibrating in the vertical direction. position. The vibrating section 110 is supported by the supporting section 130 at such an arrangement position.
 支持部130の構成について図示左側の支持部130SLを参照して説明すると、支持部130SLは、構造体100の図示上部側で振動部110に一方の端部(第1の端部)が固定された第1支持体としての支持体132SLAおよび筐体120に一方の端部(第1の端部)が固定された第2支持体としての支持体131SLAと、構造体100の図示下部側で振動部110に一方の端部(第1の端部)が固定された第1支持体としての支持体132SLBおよび筐体120に一方の端部(第1の端部)が固定された第2支持体としての支持体131SLBと、それら支持体131SLA,132SLA,131SLB,132SLBの他方の端部(第2の端部)が固定された連結部133SLとを含む。図示上部側の支持体131SLAおよび支持体132SLAは第1の組を構成し、図示下部側の支持体131SLBおよび支持体132SLBは第2の組を構成する。第1の組の支持体131SLAおよび支持体132SLAの他方の端部は、連結部133SLの図示上端部付近において連結部133SLに固定され、第2の組の支持体131SLBおよび支持体132SLBの他方の端部は、連結部133SLの図示下端部付近において連結部133SLに固定されている。したがって、第1の組の支持体131SLAおよび支持体132SLAと、第2の組の支持体131SLBおよび支持体132SLBとは、図示上下(T-B)軸方向に沿って互いに離間して配置されている。 The configuration of the support portion 130 will be described with reference to the support portion 130SL on the left side of the drawing. A support 132SLA as a first support and a support 131SLA as a second support whose one end (first end) is fixed to the housing 120 and the lower side of the structure 100 shown in the figure vibrate. A support 132SLB as a first support having one end (first end) fixed to the portion 110 and a second support having one end (first end) fixed to the housing 120 It includes a support 131SLB as a body and a connecting portion 133SL to which the other ends (second ends) of the supports 131SLA, 132SLA, 131SLB and 132SLB are fixed. Support 131SLA and support 132SLA on the upper side in the figure constitute a first set, and support 131SLB and support 132SLB on the lower side in the figure constitute a second set. The other end portions of the first set of supports 131SLA and 132SLA are fixed to the connection portion 133SL near the illustrated upper end portion of the connection portion 133SL, and the other ends of the second set of supports 131SLB and 132SLB are fixed. The end portion is fixed to the connecting portion 133SL in the vicinity of the illustrated lower end portion of the connecting portion 133SL. Therefore, the first set of supports 131SLA and 132SLA and the second set of supports 131SLB and 132SLB are spaced apart from each other along the vertical (TB) axial direction in the figure. there is
 図7に明瞭に示されているように、第1の組の支持体131SLAおよび支持体132SLAのうち、振動部110に一方の端部が固定された支持体132SLAの図示左右(SL-SR)方向の長さは、筐体120に一方の端部が固定された131SLAの同方向の長さよりも長くなっている。図7では第1の組の支持体131SLAおよび支持体132SLAの下に隠れているが、第2の組の支持体131SLBおよび支持体132SLBについても同様に、振動部110に一方の端部が固定された支持体132SLBの図示左右(SL-SR)方向の長さが、筐体120に一方の端部が固定された131SLBの同方向の長さよりも長くなっている。 As clearly shown in FIG. 7, of the first set of supports 131SLA and 132SLA, support 132SLA one end of which is fixed to vibrating section 110 is illustrated left and right (SL-SR). The length in the direction is longer than the length in the same direction of the 131SLA, one end of which is fixed to the housing 120 . Although hidden under the first set of supports 131SLA and 132SLA in FIG. The length in the left-right (SL-SR) direction of the supporting body 132SLB attached is longer than the length in the same direction of 131SLB, one end of which is fixed to the housing 120 .
 第1の組を成す図示上部側の支持体131SLAおよび支持体132SLAは、振動部110及び筐体120の図示上側において連結部133SLを介して振動部110と筐体120とを連結して、振動部110を支持する。また、第2の組を成す支持体131SLBおよび支持体132SLBは、振動部110及び筐体120の図示下側において連結部133SLを介して振動部110と筐体120とを連結して、振動部110を支持する。このように構成された支持部130SLは、各支持体131SLA,132SLA,131SLB,132SLBの弾性変形により、筐体120に対する振動部110の相対位置が上下(T-B)軸に沿って変位可能に振動部110を支持する。 The support 131SLA and the support 132SLA on the upper side in the figure, which constitute the first set, connect the vibrating part 110 and the housing 120 via the connecting part 133SL on the upper side in the figure of the vibrating part 110 and the housing 120, and vibrate. It supports the part 110 . Further, the support 131SLB and the support 132SLB forming the second set connect the vibrating section 110 and the housing 120 via the connecting section 133SL on the lower side of the vibrating section 110 and the housing 120 in the drawing, thereby Support 110. The supporting section 130SL configured in this manner allows the relative position of the vibrating section 110 with respect to the housing 120 to be displaced along the vertical (TB) axis by elastic deformation of the respective supporting bodies 131SLA, 132SLA, 131SLB, and 132SLB. Supports the vibrating section 110 .
 なお、説明は省略するが、他方の支持部130SRも支持部130SLと同様の構成を備える。これら2つの支持部130SL,130SRは、構造体100の中心軸(振動部110と筐体120の同心中心軸でもある)を中心として対称に互いに対向するように配置されている。 Although description is omitted, the other support portion 130SR also has the same configuration as the support portion 130SL. These two support parts 130SL and 130SR are arranged so as to face each other symmetrically about the central axis of the structure 100 (which is also the concentric central axis of the vibrating part 110 and the housing 120).
 図6~9は、振動部110に加振力が作用していない状態において、振動部110が筐体120に対する中立位置に位置する状態を示している。この状態から、振動部110に対して図示上向き(T方向)への加振力が作用し、振動部110が筐体120に対して図示上方向に変位すると、振動部110に固定された支持体132SLAおよび支持体132SLBの一方の端部もそれに伴って図示上方向に変位する。これにより、それらの支持体132SLAおよび支持体132SLBは、振動部110に固定されたそれぞれの一方の端部と、連結部133SLに固定されたそれぞれの他方の端部とを拘束端として、振動部110に固定された端部が図示上側となるように弾性変形領域内で曲げ変形させられた状態で、図示上方向に変位する。 FIGS. 6 to 9 show a state in which the vibrating section 110 is positioned at a neutral position with respect to the housing 120 when no vibrating force is acting on the vibrating section 110 . From this state, an excitation force acting upward in the figure (T direction) acts on the vibrating part 110, and when the vibrating part 110 is displaced upward in the figure with respect to the housing 120, the support fixed to the vibrating part 110 is displaced. One end of the body 132SLA and the support 132SLB is also displaced upward in the figure accordingly. As a result, the support 132SLA and the support 132SLB have one end fixed to the vibrating portion 110 and the other end fixed to the connecting portion 133SL as restraint ends. It is displaced upward in the figure while being bent and deformed within the elastic deformation region so that the end portion fixed to 110 faces the upper side in the figure.
 すると、それらの支持体132SLAおよび支持体132SLBの他方の端部が固定された連結部133SLもそれに伴って図示上方向にいくらか変位する。連結部133SLが図示上方向に変位することに伴い、連結部133SLに固定された支持体131SLAおよび支持体1321LBの他方の端部もそれに伴って図示上方向に変位し、それらの支持体131SLAおよび支持体131SLBも、連結部133SLに固定されたそれぞれの一方の端部と、筐体120に固定されたそれぞれの一方の端部とを拘束端として、連結部133SLに固定された端部が図示上側となるように弾性変形領域内で曲げ変形させられた状態で、図示上方向に変位する。 Then, the connecting portion 133SL to which the other ends of the support 132SLA and the support 132SLB are fixed is also somewhat displaced upward in the drawing. As the connecting portion 133SL is displaced upward in the drawing, the other end portions of the support 131SLA and the support 1321LB fixed to the connecting portion 133SL are also displaced upward in the drawing. The supporting body 131SLB also has one end fixed to the connecting part 133SL and one end fixed to the housing 120 as restraint ends, and the end fixed to the connecting part 133SL is illustrated. It is displaced upward in the figure while being bent and deformed in the elastic deformation region so as to face upward.
 これに対し、図6~9に示す状態から振動部110に対して図示下向き(B方向)への加振力が作用すると、振動部110、各支持体131SLA,132SLA,131SLB,132SLB、および連結部133SLの各部は上記と反対の方向に変位ないし変形する。なお、説明は省略するが、他方の支持部130SRの各部も支持部130SLの各部と同様に動作する。支持部130SL,130SRに支持された振動部110は、振動体140による加振力により上述のようにして図示上下(T-B)方向に往復直線振動する。 On the other hand, when an excitation force acts downward (in the direction B) on vibrating portion 110 from the states shown in FIGS. Each part of the part 133SL is displaced or deformed in the direction opposite to the above. Although description is omitted, each part of the other support part 130SR also operates in the same manner as each part of the support part 130SL. The vibrating portion 110 supported by the supporting portions 130SL and 130SR linearly vibrates reciprocatingly in the vertical (TB) direction in the figure by the vibrating force of the vibrating body 140 as described above.
 このように、支持部130は、第1支持体としての図示上下の支持体132SLA,132SLBおよび第2支持体としての図示上下の支持体131SLA,131SLBの弾性変形により、筐体120に対する振動部110の相対位置が第1の軸(図示上下(T-B)軸方向)に沿って変位可能に振動部110を支持する。 In this way, the support section 130 is vibrated with respect to the housing 120 by elastic deformation of the illustrated upper and lower supports 132SLA and 132SLB as first supports and the illustrated upper and lower supports 131SLA and 131SLB as second supports. support the vibrating portion 110 so as to be displaceable along the first axis (vertical (TB) axis direction in the drawing).
 なお、図9に示すように振動部110内に振動体140を収容した状態では、振動部110に振動体140を収容していない状態に比べて、振動体140の重量により振動部110がいくらか図示下方に変位する。さらに、振動部110内に振動体140を収容した状態では、振動体140の図示上部が筐体120の上部のフランジ部120bの上面から筐体120の外部にわずかに突出した状態となる。そのため、筐体120の図示上部にユーザが座ったり、もたれかかったりしたときには、振動体140の図示上部上面が筐体120の上部のフランジ部120bの上面と実質的に同じ高さになるまで振動部110が図示下方にさらに押し下げられ、振動部110はその位置を中立位置として支持部130SL,130SRに保持される。なお、このときユーザの身体による荷重は筐体120のフランジ部120bによって支持され、振動部110と共に図示下方に押し下げられた振動体140の図示上部上面がユーザの身体に接触した状態となる。 As shown in FIG. 9, when the vibrating body 140 is housed in the vibrating part 110, the weight of the vibrating body 140 makes the vibrating part 110 slightly larger than when the vibrating body 140 is not housed in the vibrating part 110. Displaced downward in the drawing. Furthermore, when the vibrating body 140 is accommodated in the vibrating section 110 , the illustrated upper portion of the vibrating body 140 slightly protrudes outside the housing 120 from the upper surface of the flange portion 120 b of the upper portion of the housing 120 . Therefore, when the user sits or leans against the illustrated upper portion of the housing 120, the illustrated upper surface of the vibrating body 140 vibrates until it reaches substantially the same height as the upper surface of the upper flange portion 120b of the housing 120. The portion 110 is further pushed downward in the drawing, and the vibrating portion 110 is held by the support portions 130SL and 130SR with that position as the neutral position. At this time, the load of the user's body is supported by the flange portion 120b of the housing 120, and the upper upper surface of the vibrating body 140 pushed down together with the vibrating portion 110 comes into contact with the user's body.
 支持部130は、振動体140を保持した状態の振動部110が上下(T-B)軸に沿って発生させる直線往復振動のうち少なくとも所定の振動周波数の振動、換言すれば、当該所定の振動周波数を含む周波数帯域における振動を増幅させる動剛性を備えるように構成される。支持部130の上記動剛性は、振動部110を介して支持部130に印加されることが想定される荷重(例えば、振動体140を保持した振動部110の重量による荷重や、構造体100に座ったりもたれかかったりしたユーザの身体により振動部110に作用する荷重)を考慮して定めることができる。 The support portion 130 is configured to generate at least a predetermined vibration frequency among the linear reciprocating vibrations generated along the vertical (TB) axis by the vibrating portion 110 holding the vibrating body 140, in other words, the predetermined vibration. It is configured to have a dynamic stiffness that amplifies vibrations in a frequency band that includes frequencies. The dynamic rigidity of the support section 130 is a load that is assumed to be applied to the support section 130 via the vibration section 110 (for example, a load due to the weight of the vibration section 110 holding the vibration body 140 or a load applied to the structure 100). It can be determined in consideration of the load acting on the vibrating section 110 from the body of the user sitting or leaning.
 振動部110は、振動体140が生じさせる直線往復振動の速度に応じて異なる周波数の振動を発生させ得る。支持部130は、それらの周波数のうち、より高い振動強度を達成したい所定の周波数を含む周波帯域における振動を増幅させることを可能にする。その一方で、支持部130は、振動部110を支持するために必要な静剛性を備えるように構成される。つまり、支持部130は、想定される荷重に対して振動部110の位置姿勢を安定させるのに十分な剛性(静剛性)を確保するとともに、当該振動部110が発生させる直線往復振動のうち少なくとも上記所定の振動周波数に対して高い振動強度を実現することができる。 The vibrating section 110 can generate vibrations of different frequencies according to the speed of the linear reciprocating vibration generated by the vibrating body 140 . The support portion 130 makes it possible to amplify vibration in a frequency band including a predetermined frequency for which higher vibration intensity is desired to be achieved. On the other hand, the support portion 130 is configured to have static rigidity necessary to support the vibrating portion 110 . That is, the support portion 130 ensures sufficient rigidity (static rigidity) to stabilize the position and orientation of the vibrating portion 110 against an assumed load, and at least the linear reciprocating vibration generated by the vibrating portion 110 A high vibration intensity can be realized with respect to the predetermined vibration frequency.
 具体的には、支持部130は、振動体140を保持した状態の振動部110の振動方向に沿って印加される力(つまり、上下(T-B)軸に沿って印加される力)に対する動剛性が低い一方で、設計荷重に対する静剛性が得られるように構成されている。支持部130は、例えば剛性に関して異方性を有する構造を含むことで、動剛性に関する制約と静剛性に関する制約との双方を満足させることができる。 Specifically, the support portion 130 resists the force applied along the vibration direction of the vibrating portion 110 holding the vibrating body 140 (that is, the force applied along the vertical (TB) axis). It is designed to have low dynamic stiffness and static stiffness against the design load. The support part 130 can satisfy both the constraint on dynamic stiffness and the constraint on static stiffness by including, for example, a structure having anisotropy in terms of stiffness.
 さらに、一例として、支持部130は、振動体140を保持した状態の振動部110の振動方向に沿って印加される力に対する剛性よりも、それとは別の方向に沿って印加される力に対する剛性が高くなるように構成されている。 Furthermore, as an example, the support portion 130 has a rigidity against a force applied along a direction different from the rigidity against a force applied along the vibration direction of the vibrating portion 110 holding the vibrating body 140 . is configured to be high.
 別の方向に沿って印加される力に対する剛性は、例えば以下の全部、または少なくとも1つである。
・上下(T-B)軸周りのモーメントに対する剛性
・前後(F-R)軸に沿って印加される力に対する剛性
・前後(F-R)軸周りのモーメントに対する剛性
・左右(SL-SR)軸に沿って印加される力に対する剛性
・左右(SL-SR)軸周りのモーメントに対する剛性
Stiffness against force applied along another direction is, for example, all or at least one of the following:
・Stiffness against moment around vertical (TB) axis ・Stiffness against force applied along front-back (FR) axis ・Stiffness against moment around front-back (FR) axis ・Side-left (SL-SR) Stiffness against force applied along the axis / Stiffness against moment around the left-right (SL-SR) axis
 図10に示す梁BMは、剛性に関して異方性を有する構造の一例であり、本実施例における各支持体131SLA,132SLA,131SLB,132SLBに相当する。梁BMは、振動体140を保持した状態の振動部110の振動方向(つまり、上下(T-B)軸)の寸法aが、前後(F-R)軸の寸法bおよび左右軸(SL-SR)軸の寸法lに比べて小さい。 The beam BM shown in FIG. 10 is an example of a structure having anisotropy in terms of rigidity, and corresponds to each support 131SLA, 132SLA, 131SLB, 132SLB in this embodiment. The beam BM is such that the dimension a in the vibration direction (that is, the vertical (TB) axis) of the vibrating portion 110 holding the vibrating body 140 is equal to the dimension b of the front-rear (FR) axis and the lateral axis (SL- SR) is small compared to the axis dimension l.
 梁BMの左端(SL端)を固定した状態で梁BMの右端(SR端)に上下(T-B)軸に沿って力を加える場合の剛性は、Kb1∝Eab/lで表される。ここで、Eはヤング率である。他方、梁BMの左端(SL端)を固定した状態で梁BMの右端(SR端)に前後(F-R)軸に沿って力を加える場合の剛性は、Kb2∝Eab/lである。つまり、Kb2/Kb1∝b/aとなる。このように、上下(T-B)軸の寸法aを前後(F-R)軸の寸法bおよび左右軸(SL-SR軸)の寸法lに比べて小さくすることで、上下(T-B)軸に沿って印加される力に対する剛性を、他の方向に沿って印加される力に対する剛性に比べて低くすることが可能である。 The stiffness when a force is applied along the vertical (TB) axis to the right end (SR end) of the beam BM while the left end (SL end) of the beam BM is fixed is K b1 ∝Ea 3 b/l 3 expressed. where E is Young's modulus. On the other hand, when a force is applied along the front-rear (FR) axis to the right end (SR end) of the beam BM while the left end (SL end) of the beam BM is fixed, the stiffness is K b2 ∝Eab 3 /l 3 is. That is, K b2 /K b1∝b 2 /a 2 . In this way, by making the dimension a of the vertical (TB) axis smaller than the dimension b of the front-rear (FR) axis and the dimension l of the lateral axis (SL-SR axis), the vertical (TB) ) the stiffness for forces applied along the axis can be lower than the stiffness for forces applied along other directions.
 上下(T-B)方向に波打つ形状を備える構造(いわゆる波板)も、上下(T-B)軸に沿って印加される力に対する剛性が、他の方向に沿って印加される力に対する剛性に比べて低い。 Structures with undulating shapes in the vertical (TB) direction (so-called corrugated sheets) also have a stiffness to forces applied along the vertical (TB) axis that is equal to the stiffness to forces applied along the other directions. low compared to
 このように、構造を適切な形状・寸法で構成することで、特定の方向に関する剛性を低く、かつその他の方向に関する剛性を高くすることができる。具体的には、支持部130の備える各支持体(例えば、支持体131SLA、支持体131SLB、支持体132SLA、および支持体132SLB)を、第1の軸に沿う方向(つまり上下(T-B)方向)の寸法が、第1の軸に直交する方向(前後(F-R)方向または左右(SL-SR)方向)の寸法に比べて小さい外形を備える梁として構成することで、支持部130の第1の軸に沿った方向に関する動剛性を低くすることができる。 In this way, by configuring the structure with appropriate shapes and dimensions, it is possible to reduce the rigidity in a specific direction and increase the rigidity in other directions. Specifically, each support (for example, the support 131SLA, the support 131SLB, the support 132SLA, and the support 132SLB) provided in the support section 130 is moved in the direction along the first axis (that is, the vertical (TB) direction) is smaller than the dimension in the direction perpendicular to the first axis (the front-rear (FR) direction or the left-right (SL-SR) direction). The dynamic stiffness in the direction along the first axis of can be reduced.
 本実施例においては、各支持部130の支持体131,132が上述した剛性特性を備えるように構成され、かつ、2つの支持部130SL,130SRが構造体100の中心軸(振動部110と筐体120の同心中心軸でもある)を中心として対称に互いに対向するように配置されていることにより、振動部110は、筐体120に対して図示上下(T-B)方向に変位可能であるが、それ以外の方向へは実質的に変位しないように、支持部130によって支持される。なお、支持部130の各支持体131SLA,132SLA,131SLB,132SLBは、上記のように図示上下(T-B)方向に比較的低い動剛性を備える一方で、同じく図示上下(T-B)方向において、振動体140を支持した状態の振動部110の重量による荷重と、上述したように振動体140を支持した振動部110がユーザの身体により図示下方(B)方向に押し下げられたときに振動部110に加えられる荷重とを少なくとも支持することができる静剛性を備える。 In this embodiment, the supports 131 and 132 of each support 130 are configured to have the above-described rigidity characteristics, and the two supports 130SL and 130SR are the central axes of the structure 100 (the vibrating section 110 and the housing). ), which is also the concentric center axis of the body 120), the vibrating section 110 can be displaced in the vertical (TB) direction in the drawing with respect to the housing 120. is supported by the support portion 130 so as not to be substantially displaced in other directions. Note that each of the supports 131SLA, 132SLA, 131SLB, and 132SLB of the support section 130 has a relatively low dynamic rigidity in the vertical (TB) direction of the drawing as described above. , the load due to the weight of the vibrating section 110 supporting the vibrating body 140, and the vibration when the vibrating section 110 supporting the vibrating body 140 as described above is pushed downward (B) in the figure by the user's body. It has static stiffness capable of supporting at least the loads applied to the portion 110 .
 支持部130の備える連結部(例えば連結部133SL)は、振動体140を保持した状態の振動部110の振動方向(つまり上下(T-B)方向)に直交する方向に関して、筐体120から離間して配置されている。したがって、例えば図7に示すように、支持部130の備える各支持体(例えば、支持体131SLA、支持体131SLB、支持体132SLA、および支持体132SLB)は、上方(T方向)から見ると筐体120の外周面からその径方向外方に延出している。 The connecting portion (for example, connecting portion 133SL) included in the support portion 130 is separated from the housing 120 in a direction orthogonal to the vibration direction (that is, the vertical (TB) direction) of the vibrating portion 110 holding the vibrating body 140. are arranged as follows. Therefore, for example, as shown in FIG. 7, each support (for example, support 131SLA, support 131SLB, support 132SLA, and support 132SLB) included in the support section 130 looks like a housing when viewed from above (T direction). It extends radially outward from the outer peripheral surface of 120 .
 支持部130の備える連結部133と振動部110および筐体120との間の距離を大きくするほど、各支持体の上下(T-B)軸に沿う方向の寸法に対する、上下(T-B)軸に直交する方向(左右(SL-SR)方向)の寸法の比が大きくなるので、支持部130の振動方向(図示上下(T-B)方向)に関する動剛性をより低くすることができる。他方、支持部130の備える連結部133と振動部110および筐体120との間の距離を小さくするほど、構造体100をコンパクトに構成することができる。各支持体の長さを含む各部寸法は、構造体100の大きさや振動体140の重量等を考慮して、支持部130が所望の振動周波数を含む帯域の周波数で振動する振動部110の振動を増幅させることができるように適宜設定することができる。 As the distance between the connecting portion 133 provided in the support portion 130 and the vibrating portion 110 and the housing 120 increases, the vertical (TB) relative to the dimension along the vertical (TB) axis of each support increases. Since the dimension ratio in the direction perpendicular to the axis (left-right (SL-SR) direction) increases, the dynamic rigidity of the support portion 130 in the vibration direction (up-down (TB) direction in the figure) can be made lower. On the other hand, the smaller the distance between the connecting portion 133 of the support portion 130 and the vibrating portion 110 and the housing 120, the more compact the structure 100 can be configured. The dimensions of each part, including the length of each support, are determined in consideration of the size of the structure 100 and the weight of the vibrating body 140, etc. can be appropriately set so that the can be amplified.
・作用
 本実施例の構造体の作用について説明する。
- Action The action of the structure of the present embodiment will be described.
 振動体140を保持した状態の振動部110が非振動状態にある場合には、支持部130に加振力は印加されない。他方、振動部110が非振動状態にある場合であっても、支持部130には、上述したような荷重(例えば、振動体140を保持した振動部110の重量による荷重や、構造体100に座ったりもたれかかったりしたユーザの身体により振動部110に作用する荷重)が印加され得る。しかしながら、支持部130は、設計荷重の印加方向に関して、支持部130の変位量が設計上の許容範囲内に収まるような静剛性を備えている。故に、振動部110が非振動状態にある場合には、支持部130の各支持体の変形は許容範囲内の変形に留まり、支持部130は上記荷重が印加されて変位した後の中立位置に位置する。 When the vibrating section 110 holding the vibrating body 140 is in a non-vibrating state, no vibrating force is applied to the support section 130 . On the other hand, even when the vibrating portion 110 is in the non-vibrating state, the support portion 130 is subjected to the above-described load (for example, the weight of the vibrating portion 110 holding the vibrating body 140, or the weight of the structure 100). A load acting on the vibrating section 110 by the body of the user sitting or leaning can be applied. However, the supporting portion 130 has static rigidity such that the amount of displacement of the supporting portion 130 is within a design allowable range with respect to the direction in which the design load is applied. Therefore, when the vibrating portion 110 is in the non-vibrating state, the deformation of each support of the support portion 130 remains within the allowable range, and the support portion 130 is in the neutral position after being displaced by the application of the load. To position.
 振動部110に保持された振動体140が振動状態となり、振動体140を保持した振動部110が図示上方(T方向)に変位すると、支持部130にも図示上方(T方向)に沿った加振力が印加される。他方、振動体140を保持した振動部110が図示下方(B方向)に変位すると、支持部130にも図示下方(B方向)に沿った加振力が印加される。 When the vibrating body 140 held by the vibrating part 110 enters a vibrating state and the vibrating part 110 holding the vibrating body 140 is displaced upward (in the T direction) in the drawing, the supporting part 130 is also subjected to a load along the upward direction in the drawing (T direction). A vibration force is applied. On the other hand, when the vibrating portion 110 holding the vibrating body 140 is displaced downward in the drawing (direction B), an excitation force along the downward direction in the drawing (direction B) is also applied to the supporting portion 130 .
 支持部130は、振動体140を保持した状態の振動部110が発生させる図示上下(T-B)方向の直線往復振動のうち、少なくとも上記所定の周波数の振動を増幅させる動剛性を備えるように構成されている。これにより、振動部110の少なくとも上記所定の振動周波数において、図示上下(T-B)方向における振動部110の直線往復振動の振動強度を高めることができる。 The support part 130 has a dynamic rigidity that amplifies at least the vibration of the predetermined frequency among the linear reciprocating vibrations in the vertical (TB) direction in the figure generated by the vibrating part 110 holding the vibrating body 140. It is configured. As a result, at least at the predetermined vibration frequency of the vibrating portion 110, the vibration intensity of the linear reciprocating vibration of the vibrating portion 110 in the vertical (TB) direction in the drawing can be increased.
 したがって、振動部110に振動体140が保持された本実施例の構造体100で構成される振動デバイス(図9参照)によれば、振動体140の上部上面をユーザの身体に接触させた状態で振動体140を図示上下(T-B)方向に往復直線振動させると、それを保持する振動部110が同じ方向に往復直線振動を開始し、やがてその振動周波数が上記所定の周波数に達すると、振動体140を保持した振動部110および支持部130を含む系の図示上下(T-B)方向に関する振動の固有振動数と共振し、振動体140を保持した振動部110の図示上下(T-B)方向における往復直線振動が増幅される。そのため、振動部110に保持された振動体140の上部上面が図示上(T)方向に変位する度に、振動体140の上部上面がユーザの身体により強く当接するようになるので、ユーザは当該周波数領域において振動デバイスによる音響体感効果をより強く感じることができる。このとき、ユーザは、視聴しているオーディオ・ビジュアルコンテンツ(映画、音楽ライブ映像等)の音や映像に加えて身体でも振動を感じることになるので、そのコンテンツへのより強い没入感を得ることができる。 Therefore, according to the vibrating device (see FIG. 9) configured by the structure 100 of the present embodiment in which the vibrating body 140 is held by the vibrating part 110, the upper surface of the vibrating body 140 is in contact with the user's body. When the vibrating body 140 is linearly reciprocated in the vertical (TB) direction in the figure, the vibrating part 110 holding it starts reciprocating linear vibration in the same direction, and eventually the vibration frequency reaches the predetermined frequency. , resonates with the natural frequency of the vibration of the system including the vibrating part 110 holding the vibrating body 140 and the support part 130 in the vertical (TB) direction in the drawing, and the vibrating part 110 holding the vibrating body 140 in the drawing (T The to-and-fro linear vibration in the -B) direction is amplified. Therefore, every time the upper upper surface of the vibrating body 140 held by the vibrating section 110 is displaced in the (T) direction in the drawing, the upper upper surface of the vibrating body 140 contacts the user's body more strongly. In the frequency domain, the acoustic effect of the vibrating device can be felt more strongly. At this time, the user will feel the vibration of the body in addition to the sound and image of the audio/visual content (movie, music live video, etc.) being viewed, so that the user can get a stronger sense of immersion in the content. can be done.
 さらに、本実施例の構造体100によれば、振動部110が筐体120の内壁面や底面等に接触することがないように、支持部130によって懸架(サスペンド)された状態で支持され、この懸架状態は振動部110が図示上下(T-B)方向に往復直線振動する間も維持される。これにより、振動部110による振動が筐体120に対して分離される。このように、振動部110が図示上下(T-B)方向に往復直線振動する際に、振動部110やそれに保持された振動体140が筐体120の内壁面や底面等に接触することがないので、振動部110の振動が筐体120に伝達することが抑えられ、その結果、筐体120からその外部に伝達する振動を抑制することができる。これにより、例えば複数の振動デバイスを並べて配置して使用するような場合において、ある振動デバイスからの振動が他の振動デバイスに伝播して、当該他の振動デバイスによる振動と干渉するような事態を抑制することができ、個々の振動デバイスによる振動をより高い解像度でユーザに知覚させることができる。 Furthermore, according to the structure 100 of the present embodiment, the vibrating section 110 is supported in a suspended state by the support section 130 so as not to contact the inner wall surface, bottom surface, or the like of the housing 120. This suspended state is maintained even while the vibrating portion 110 reciprocating linearly vibrates in the vertical (TB) direction of the drawing. As a result, the vibration caused by the vibrating section 110 is separated from the housing 120 . In this manner, when the vibrating section 110 linearly vibrates back and forth in the illustrated vertical (TB) direction, the vibrating section 110 and the vibrating body 140 held by it may come into contact with the inner wall surface, the bottom surface, or the like of the housing 120. Therefore, transmission of the vibration of the vibrating section 110 to the housing 120 is suppressed, and as a result, vibration transmitted from the housing 120 to the outside thereof can be suppressed. As a result, for example, when a plurality of vibrating devices are arranged side by side and used, the vibration from one vibrating device is transmitted to another vibrating device and interferes with the vibration of the other vibrating device. It can be suppressed, and the user can perceive the vibration by the individual vibrating device with higher resolution.
 本実施例の構造体100と振動体140とを含む振動デバイスは、振動部110に保持された振動体140の往復直線振動の振動方向と、支持部130によって支持された振動部110の変位可能な方向とが図示上下(T-B)方向で一致しており、振動部110がその他の方向への変位が生じることは実質的に無い。そのため、振動体140による振動エネルギーのほとんどは振動部110を図示上下(T-B)方向に往復直線振動させることに用いられる。なお、振動部110を図示上下(T-B)方向に往復直線振動させる場合、その振動周波数が次第に高くなるにつれて振動部110に2次、3次、・・・n次の振動モードが順次発生し、振動モードの態様によっては振動部110が図示上下(T-B)方向以外の方向に振動し得るが、その場合であっても、上記のように本実施例の構造体100は振動部110が図示上下(T-B)方向以外の方向への変位が生じることは実質的に無いように構成されているので、図示上下(T-B)方向以外の方向に生じうる振動によって振動部110がその振動方向に変位することを抑えることができる。そのため、ある振動モードにおいて振動部110に図示上下(T-B)方向以外の方向に振動が生じたとしても、例えば振動部110の外周面が筐体120の内周面に接触するようなことを防ぐことができる。 The vibrating device including the structure 100 and the vibrating body 140 of the present embodiment can displace the vibrating part 110 supported by the supporting part 130 in the reciprocating linear vibration direction of the vibrating part 140 held by the vibrating part 110 . direction coincides with the vertical (TB) direction in the drawing, and the vibrating portion 110 is not substantially displaced in other directions. Therefore, most of the vibrational energy of the vibrating body 140 is used to linearly vibrate the vibrating portion 110 back and forth in the vertical (TB) direction in the drawing. When the vibrating section 110 is linearly reciprocated in the vertical (TB) direction of the drawing, the vibrating section 110 sequentially generates secondary, tertiary, . However, depending on the vibration mode, the vibrating portion 110 may vibrate in directions other than the illustrated vertical (TB) direction. 110 is configured so that there is substantially no displacement in directions other than the illustrated vertical (TB) direction. 110 can be suppressed from being displaced in the vibration direction. Therefore, even if the vibrating section 110 vibrates in a certain vibration mode in a direction other than the illustrated vertical (TB) direction, the outer peripheral surface of the vibrating section 110 may contact the inner peripheral surface of the housing 120, for example. can be prevented.
 なお、ここで再び図4を参照して説明すると、より低い周波数において振動部110の図示上下(T-B)方向における往復直線振動の振動強度を高める場合は、支持部130の支持体131SLA,132SLA,131SLB,132SLB全体による図示上下(T-B)方向における動剛性kdがより低くなるように各支持体の形状や各部寸法がそれぞれ設計される。これにより、振動体140を保持した振動部110と支持部130とで構成される系の図示上下(T-B)方向に関する振動の固有振動数fuがより低い周波数領域にシフトし、そのより低い周波数領域における振動強度を高めることができるようになる。他方、より高い周波数において振動部110の図示上下(T-B)方向における往復直線振動の振動強度を高める場合は、支持部130の支持体131SLA,132SLA,131SLB,132SLB全体による図示上下(T-B)方向における動剛性kdがより高くなるように各支持体の形状や各部寸法がそれぞれ設計される。これにより、振動体140を保持した振動部110と支持部130とで構成される系の図示上下(T-B)方向に関する振動の固有振動数fuがより高い周波数領域にシフトし、そのより高い周波数領域における振動強度を高めることができるようになる。 Here, again referring to FIG. 4, in order to increase the vibration intensity of the reciprocating linear vibration of the vibrating portion 110 in the vertical (TB) direction of the drawing at a lower frequency, the support member 131SLA of the support portion 130, The shape and dimensions of each support are designed so that the dynamic stiffness kd in the vertical (TB) direction of the drawing by the entirety of 132SLA, 131SLB, and 132SLB is lower. As a result, the natural frequency fu of the vibration of the system composed of the vibrating portion 110 holding the vibrating body 140 and the supporting portion 130 in the vertical (TB) direction in the drawing shifts to a lower frequency region, It becomes possible to increase the vibration intensity in the frequency domain. On the other hand, when increasing the vibration intensity of the reciprocating linear vibration in the illustrated vertical (TB) direction of the vibrating section 110 at a higher frequency, the illustrated vertical (T- The shape and dimensions of each support are designed so that the dynamic stiffness kd in the B) direction is higher. As a result, the natural frequency fu of the vibration in the vertical (TB) direction in the drawing of the system composed of the vibrating portion 110 holding the vibrating body 140 and the support portion 130 shifts to a higher frequency region, It becomes possible to increase the vibration intensity in the frequency domain.
 以上説明したように、本実施例の構造体100は、支持部130を備える。支持部130は、振動体140を保持した状態の振動部110が発生させる直線往復振動の方向に関して、当該振動のうち少なくとも所定の振動周波数の振動(当該所定の振動周波数を含む周波数帯域における振動)を増幅させる動剛性を備えるように構成される。所定の振動周波数は、一例として、振動部110の振動を増幅させてより高い振動強度を得たい周波数である。その一方で、支持部130は、設計外力の印加される方向に関して、想定される荷重に抗して振動部110を支持するために必要な静剛性を備えるように構成される。故に、この構造体100によれば、設計時の想定範囲内の荷重に対して振動部110の位置姿勢が安定するように支持し、かつ当該振動部110が発生させる直線往復振動のうち、少なくとも上記所定の周波数の振動を増幅させることができる。つまり、この構造体100によれば、振動デバイスに求められる耐荷重性および振動強度を満足させることができる。 As described above, the structure 100 of this embodiment includes the support portion 130 . With respect to the direction of the linear reciprocating vibration generated by the vibrating section 110 holding the vibrating body 140, the supporting section 130 performs vibration of at least a predetermined vibration frequency (vibration in a frequency band including the predetermined vibration frequency). is configured to have a dynamic stiffness that amplifies the The predetermined vibration frequency is, for example, a frequency at which it is desired to amplify the vibration of the vibrating section 110 to obtain a higher vibration strength. On the other hand, the support section 130 is configured to have static rigidity necessary to support the vibrating section 110 against an assumed load in the direction in which the designed external force is applied. Therefore, according to the structure 100, the vibrating portion 110 is supported so that the position and orientation of the vibrating portion 110 are stabilized against the load within the assumed range at the time of design, and at least the linear reciprocating vibration generated by the vibrating portion 110 The vibration of the predetermined frequency can be amplified. In other words, according to this structure 100, it is possible to satisfy the load resistance and vibration strength required of a vibrating device.
 さらに、実施例の構造体100は、振動部110の変位(振動)可能な方向と振動部110に保持された振動体140の振動方向とが一致し、また、振動部110が筐体120の内部で支持部130によって懸架(サスペンド)された状態で支持されているので、振動部110による振動方向の振動、およびそれとは異なる方向への振動の発生を抑制することができ、そのような振動が構造体100の外部に伝播することを抑えることができる。 Furthermore, in the structure 100 of the embodiment, the direction in which the vibrating section 110 can be displaced (vibrated) matches the vibrating direction of the vibrating body 140 held by the vibrating section 110, and the vibrating section 110 is positioned relative to the housing 120. Since it is internally supported by the support portion 130 in a suspended state, it is possible to suppress the occurrence of vibration in the direction of vibration by the vibrating portion 110 and vibration in a direction different from that, and such vibration can be suppressed. can be suppressed from propagating to the outside of the structure 100 .
 なお、本実施例では、振動体140を保持した状態の振動部110が鉛直方向と概ね一致する図示上下(T-B)軸に沿って直線往復振動を発生し、かつ設計外力として例えば振動体140を保持した振動部110の重量、それらの加振力(慣性力)、およびユーザの身体からの荷重が振動部110に印加される例を説明した。本実施例では、支持部130が、振動部110の振動方向である上下(T-B)方向に関して、振動部110の少なくとも上記所定の振動周波数の振動を増幅させる動剛性を備えるように構成される一方で、設計外力の印加される方向に関して、振動部110を支持するために必要な静剛性を備えるように構成されている例を挙げて説明した。しかしながら、支持部130が支持する振動部110の振動方向及び支持部130に設計外力が印加される方向はこれに限られない。また、支持部130が支持する振動部110の振動方向は一方向に限られない。振動部110が複数の異なる方向に直線往復振動する場合は、支持部130は、各振動方向に関して、所定の振動周波数の振動を増幅させる動剛性を備えるように構成してもよい。 In this embodiment, the vibrating section 110 holding the vibrating body 140 generates a linear reciprocating vibration along a vertical (TB) axis in the figure, which substantially coincides with the vertical direction. An example has been described in which the weight of vibrating section 110 holding 140, the excitation force (inertial force) thereof, and the load from the user's body are applied to vibrating section 110 . In the present embodiment, the support portion 130 is configured to have dynamic rigidity that amplifies at least the vibration of the vibration portion 110 at the predetermined vibration frequency in the vertical (TB) direction, which is the vibration direction of the vibration portion 110. On the other hand, with respect to the direction in which the designed external force is applied, an example has been described in which the static rigidity required to support the vibrating portion 110 is provided. However, the vibration direction of the vibrating portion 110 supported by the support portion 130 and the direction in which the design external force is applied to the support portion 130 are not limited to this. Moreover, the vibration direction of the vibrating portion 110 supported by the support portion 130 is not limited to one direction. When the vibrating portion 110 linearly reciprocates in a plurality of different directions, the support portion 130 may be configured to have a dynamic stiffness that amplifies vibration at a predetermined vibration frequency in each vibration direction.
 また、本実施例では、構造体100がその中心軸に対して対称に互いに対向配置された2つの支持部130SL,130SRを備えた例を説明したが、構造体100が備える支持部130の数はこれに限られず、例えば3以上の任意の数の支持部130を備えた構成としてもよい。このとき、それらの支持部130は構造体100の中心軸周りに等間隔に配置されることが好ましい。なお、構造体100が1つの支持部130のみを備えた場合であっても、振動体140を保持した振動部110が振動したときに振動体140や振動部110が筐体120の内面に接触することが無いようなある一定の条件の下では、構造体100は1つの支持部130のみを備えた構成としてもよい。 In addition, in the present embodiment, an example in which the structure 100 includes two supporting portions 130SL and 130SR arranged symmetrically to face each other with respect to its central axis has been described. is not limited to this, and may be configured to include any number of support portions 130, for example, three or more. At this time, it is preferable that the support portions 130 are arranged at regular intervals around the central axis of the structure 100 . Note that even when the structure 100 includes only one support portion 130, the vibrating body 140 and the vibrating portion 110 come into contact with the inner surface of the housing 120 when the vibrating portion 110 holding the vibrating body 140 vibrates. The structure 100 may be configured with only one support 130 under certain conditions where there is no need to do so.
(2)第2の実施形態
 第2の実施形態について説明する。図11は、第2の実施形態の体感音響装置における複数の振動デバイスの配置を上方から見た図である。図12は、第2の実施形態の体感音響装置における複数の振動デバイスの振動方向を示す図である。
(2) Second Embodiment A second embodiment will be described. FIG. 11 is a top view of the arrangement of a plurality of vibrating devices in the sensory acoustic apparatus of the second embodiment. FIG. 12 is a diagram showing vibration directions of a plurality of vibrating devices in a sensory acoustic device according to the second embodiment.
 図11に示すように、体感音響装置1000は、ハウジング1100を備える。ハウジング1100は、例えばクッション、椅子、ソファー、ベッド、敷マット等であってもよく、あるいはそれらの一部であってもよい。ハウジング1100の内部には、一例として、複数の振動デバイス1200が水平面に沿ってマトリクス状に配置されている。なお、ハウジング1100の内部における複数の振動デバイス1200の配置はマトリクス状に限られず、例えばアレイ状等の他の任意の配置構成としてもよい。 As shown in FIG. 11 , the sensory acoustic device 1000 includes a housing 1100 . Housing 1100 may be, for example, a cushion, chair, sofa, bed, mattress, etc., or a portion thereof. Inside the housing 1100, for example, a plurality of vibration devices 1200 are arranged in a matrix along a horizontal plane. Note that the arrangement of the plurality of vibrating devices 1200 inside the housing 1100 is not limited to a matrix, and may be arranged in any other arrangement such as an array.
 振動デバイス1200は、一例として、第1の実施形態の実施例の構造体100の振動部110に振動体140を組み込むことで構成される。 As an example, the vibrating device 1200 is configured by incorporating the vibrating body 140 into the vibrating section 110 of the structure 100 of the example of the first embodiment.
 図12に示すように、複数の振動デバイス1200は、体感音響装置1000のユーザの身体に振動を伝達するための振動伝達面1200Sを形成する。この振動伝達面1200Sは、図9を参照して示した例では、各々の振動デバイス1200の振動部110に保持された振動体140の上部上面で形成される。振動伝達面1200Sは平面に限られず、曲面、複数の平面の組み合わせ、複数の曲面の組み合わせ、またはN個(N≧1)の平面およびM個(M≧1)の曲面の組み合わせであってもよい。体感音響装置1000は、振動伝達面1200Sを介して複数の振動デバイス1200の振動によりユーザの身体を刺激することでユーザに音響体感を提供する。複数の振動デバイス1200は、図示しないコントローラによって、振動の振幅、周波数、または位相の少なくとも1つを個別に制御可能に構成され得る。複数の振動デバイス1200の各々の動作をコントローラで制御することで、例えば、ユーザが視聴しているオーディオ・ビジュアルコンテンツの場面に合わせて、複数の振動デバイス1200の振動強度分布を変化させることができる。そのような振動強度分布の変化としては、例えば、ユーザが波の動きを感じるように、複数の振動デバイス1200のうちの一部の振動デバイス1200の振動強度を高くして、その振動強度が高い領域が移動していくようなことを含む。 As shown in FIG. 12, the plurality of vibration devices 1200 form a vibration transmission surface 1200S for transmitting vibrations to the body of the user of the sensory acoustic device 1000. As shown in FIG. In the example shown with reference to FIG. 9, this vibration transmitting surface 1200S is formed by the upper upper surface of the vibrating body 140 held by the vibrating portion 110 of each vibrating device 1200. As shown in FIG. The vibration transmitting surface 1200S is not limited to a plane, and may be a curved surface, a combination of a plurality of planes, a combination of a plurality of curved surfaces, or a combination of N (N≧1) planes and M (M≧1) curved surfaces. good. The sensory acoustic device 1000 provides a user with a sound sensation by stimulating the user's body with vibrations of a plurality of vibration devices 1200 via a vibration transmission surface 1200S. A plurality of vibrating devices 1200 may be configured to be individually controllable in at least one of amplitude, frequency, or phase of vibration by a controller (not shown). By controlling the operation of each of the plurality of vibration devices 1200 with a controller, for example, the vibration intensity distribution of the plurality of vibration devices 1200 can be changed according to the scene of the audio/visual content that the user is viewing. . As such a change in the vibration intensity distribution, for example, the vibration intensity of a part of the vibration devices 1200 among the plurality of vibration devices 1200 is increased so that the user can feel the movement of the waves, and the vibration intensity is increased. Including things like moving areas.
 各々の振動デバイス1200は、振動体を保持した状態の振動部が、振動伝達面1200Sの当該振動デバイス1200の位置における法線に沿って直線往復振動するように構成される。図12の例では、振動伝達面1200Sは水平面に対して略平行であり、振動デバイス1200は概ね鉛直方向に振動する。 Each vibrating device 1200 is configured such that the vibrating portion holding the vibrating body linearly reciprocates along the normal to the position of the vibrating device 1200 on the vibration transmission surface 1200S. In the example of FIG. 12, the vibration transmission surface 1200S is substantially parallel to the horizontal plane, and the vibration device 1200 vibrates substantially vertically.
 ここで、振動デバイス1200が、例えば第1の実施形態の実施例において図6~図9を参照して説明したように、振動部が支持部によって筐体に対して懸架された状態で支持され、さらに、振動部に保持された振動体の振動方向と、支持部によって支持された振動部の変位可能な方向とが一致するように構成されている場合には、ある振動デバイス1200で発生する振動がハウジング1100に伝達することが抑制され、したがってその振動がハウジング1100を介して他の振動デバイス1200で発生する振動と干渉する(共振する、または打ち消し合う)ことを防止することができる。これにより、ユーザは、個々の振動デバイス1200によって発生した振動を、他の振動デバイス1200による振動に影響されることなくクリアに感じることができる。つまり、本実施形態の体感音響装置1000によれば、高解像度の音響体感をユーザに提供することができる。 Here, the vibrating device 1200 is supported in a state in which the vibrating portion is suspended from the housing by the supporting portion, for example, as described with reference to FIGS. 6 to 9 in the example of the first embodiment. Further, when the vibrating direction of the vibrating body held by the vibrating portion and the displaceable direction of the vibrating portion supported by the supporting portion are configured to match, the vibrating device 1200 generates Vibration is suppressed from being transmitted to housing 1100 , so that the vibration can be prevented from interfering (resonating or canceling) with vibration generated in other vibration device 1200 via housing 1100 . As a result, the user can clearly feel the vibration generated by each vibrating device 1200 without being affected by the vibrations of other vibrating devices 1200 . In other words, according to the sensory acoustic device 1000 of the present embodiment, it is possible to provide the user with a high-resolution acoustic sensory experience.
 以上説明したように、第2の実施形態の体感音響装置1000は、複数の振動デバイス1200を備える。各振動デバイス1200は、例えば、第1の実施形態の各実施例の構造体100に振動体を組み込むことで構成される。これにより、耐荷重性および振動強度に優れた体感音響装置1000を提供することができる。つまり、この体感音響装置1000は、ユーザの体重による荷重に抗し、かつユーザに高解像度の音響体感を提供することができる。 As described above, the sensory acoustic device 1000 of the second embodiment includes a plurality of vibrating devices 1200 . Each vibrating device 1200 is configured, for example, by incorporating a vibrating body into the structure 100 of each example of the first embodiment. Accordingly, it is possible to provide the sensory acoustic device 1000 having excellent load resistance and vibration strength. In other words, the sensory acoustic device 1000 can withstand the load of the user's body weight and provide the user with a high-resolution acoustic sensory experience.
 なお、体感音響装置1000は、第1の実施形態の実施例に示した振動デバイスで構成してもよい。 Note that the sensory acoustic device 1000 may be configured with the vibration device shown in the example of the first embodiment.
(3)第3の実施形態
 本発明の第3の実施形態について説明する。上述した各実施形態は、振動強度を高めたい振動方向の振動モードをその他の方向の振動モードから孤立化させ、その振動方向においては振動源の振動を増幅させつつも、想定される荷重を支持することが可能な剛性を持たせることを可能にする構造体等を提供することに関するものであるのに対し、第3の実施形態は、振動強度を弱めたい振動方向の振動モードをその他の方向の振動モードから孤立化させ、その振動方向においては振動源の振動を減衰させつつも、想定される荷重を支持することが可能な剛性を持たせることを可能にする構造体等を提供することに関する。
(3) Third Embodiment A third embodiment of the present invention will be described. In each of the above-described embodiments, the vibration mode in the vibration direction in which the vibration intensity is to be increased is isolated from the vibration modes in other directions, and while the vibration of the vibration source is amplified in the vibration direction, the assumed load is supported. While the third embodiment relates to providing a structure or the like capable of imparting rigidity capable of reducing the vibration intensity, the vibration mode of the vibration direction in which the vibration intensity is desired to be weakened is changed to other directions. To provide a structure, etc., which can be isolated from the vibration mode of the vibration source, and can have rigidity capable of supporting an assumed load while attenuating the vibration of the vibration source in the vibration direction. Regarding.
 本実施形態の構造体における支持部の動剛性について、再び図3及び図4を参照して説明する。図3は図1の系における振動モデルを示す図であり、図4は図3のモデルの振動伝達率の周波数特性を示すグラフである。 The dynamic rigidity of the supporting portion in the structure of this embodiment will be described with reference to FIGS. 3 and 4 again. 3 is a diagram showing a vibration model in the system of FIG. 1, and FIG. 4 is a graph showing the frequency characteristics of the vibration transmissibility of the model of FIG.
 本実施形態における支持部SPTは、振動体を保持した状態の振動部OSが発生させる振動のうち少なくとも振動周波数fにおいて振動を減衰させる動剛性を備えるように構成される。これを振動部OSから筐体HSへの振動伝達特性として図3を用いて説明すると、各周波数において、振動部OSから筐体HSへの振動伝達特性は、振動部OSの質量mと、振動部OSの振動方向に関する支持部SPTの動剛性kdとによって決まる。 The support part SPT in this embodiment is configured to have a dynamic rigidity that damps vibration at least at the vibration frequency f among the vibrations generated by the vibrating part OS holding the vibrating body. 3 as a vibration transfer characteristic from the vibrating unit OS to the housing HS. It is determined by the dynamic stiffness kd of the support portion SPT with respect to the vibration direction of the portion OS.
 第1の実施形態において説明した通り、振動体を保持した状態の振動部OSの発生する加振力F0に対する、筐体HSに伝達する加振力Fの比率F/F0は、振動伝達率と定義される。図4中の実線のグラフで示すように、図3のモデルは、周波数が高くなるにつれて、振動伝達率が高くなる励起された振動モードが発現した後に振動伝達率が漸減する周波数特性を呈する。具体的には、図3のモデルの振動伝達率は、周波数がfu以下の範囲では周波数が高くなるほど増加し、fuにおいて極大となる。ここで、fuは、図3のモデルの固有振動数である。図3のモデルの振動伝達率は、周波数が固有振動数fu以上の範囲では漸減し、√2fuでゼロクロスする。つまり、図3のモデルは、周波数が√2fuを超える範囲では振動伝達率が1未満、つまり振動減衰効果を発揮させることができる。 As described in the first embodiment, the ratio F/F0 of the excitation force F transmitted to the housing HS to the excitation force F0 generated by the vibrating section OS holding the vibrating body is the vibration transmissibility. Defined. As shown by the solid line graph in FIG. 4, the model in FIG. 3 exhibits frequency characteristics in which the vibration transmissibility gradually decreases after an excited vibration mode in which the vibration transmissibility increases as the frequency increases. Specifically, the vibration transmissibility of the model in FIG. 3 increases as the frequency becomes higher in the range below fu, and reaches a maximum at fu. where fu is the natural frequency of the model in FIG. The vibration transmissibility of the model in FIG. 3 gradually decreases in the frequency range equal to or higher than the natural frequency fu, and crosses zero at √2fu. In other words, the model of FIG. 3 has a vibration transmissibility of less than 1 in the range where the frequency exceeds √2fu, that is, the vibration damping effect can be exhibited.
 図3のモデルの固有振動数は、質量mおよび動剛性kdによって決まる。そして、動剛性kdを小さくして固有振動数を低くするほど、振動減衰(振動伝達率<1)が可能な周波数領域(防振領域)を拡大することができる。図4からわかるように、固有振動数をfuよりも小さいfu’とした系の周波数特性(図4中の点線で示されたグラフ)における振動減衰領域’は、図4中に実線で示された固有振動数fuの系の周波数特性における防振領域に比べて拡大する。質量mは定数であるから、動剛性kdを小さくすることで、固有振動数fuを低下させることができる。故に、振動減衰効果の観点からすると、振動体OSの振動方向に関する構造体STRの動剛性kdは、小さいほど好ましい。  The natural frequency of the model in Fig. 3 is determined by the mass m and the dynamic stiffness kd. As the dynamic stiffness kd is decreased to lower the natural frequency, the frequency range (anti-vibration range) in which vibration damping (vibration transmissibility <1) can be expanded. As can be seen from FIG. 4, the vibration damping region' in the frequency characteristics of the system with the natural frequency fu' smaller than fu (the graph indicated by the dotted line in FIG. 4) is indicated by the solid line in FIG. It expands compared to the vibration isolation region in the frequency characteristics of the system with the natural frequency fu. Since the mass m is a constant, the natural frequency fu can be lowered by reducing the dynamic stiffness kd. Therefore, from the viewpoint of the vibration damping effect, it is preferable that the dynamic stiffness kd of the structure STR in the vibration direction of the vibrating body OS is as small as possible.
 上記知見に基づき、本実施形態の支持部SPTは、振動体を保持した状態の振動部OSが発生させる振動の周波数成分のうち、少なくとも、特に振動伝達を低減させたい所定の振動周波数fにおける振動伝達率が1未満となる固有振動数fuを有するように、動剛性kdが定められる。かかる動剛性kdを備えた支持部SPTおよび振動部OSを含む系は、振動周波数fにおける振動伝達率が1未満となる、励起された振動モードを発現させる。具体的には、支持部SPTは、与えられた振動部OSの振動方向、質量m、および振動周波数fに対して、支持部SPTおよび振動部OSを含む系の固有振動数fuを振動周波数fの1/√2倍よりも低くさせる動剛性kdを備えるように構成される。 Based on the above knowledge, the support part SPT of the present embodiment is designed to generate vibration at least at a predetermined vibration frequency f, among the frequency components of vibration generated by the vibration part OS holding the vibrating body. The dynamic stiffness kd is determined so as to have a natural frequency fu at which the transmissibility is less than one. A system including the support portion SPT and the vibrating portion OS having such a dynamic stiffness kd develops an excited vibration mode in which the vibration transmissibility is less than 1 at the vibration frequency f. Specifically, for a given vibration direction, mass m, and vibration frequency f of the vibration member OS, the support member SPT changes the natural frequency fu of the system including the support member SPT and vibration member OS to the vibration frequency f is configured to have a dynamic stiffness kd that is less than 1/√2 times .
 なお、支持部SPTおよび振動体を保持した状態の振動部OSを含む系の固有振動数fuをどの程度とするか、そのために動剛性kdの大きさをどのように定めるかは、振動周波数fにおいてどの程度の振動減衰効果を得たいか、すなわち所定の振動周波数fにおける振動伝達率をどれだけ低くしたいかに応じて、適宜決定することができる。 It should be noted that how much the natural frequency fu of the system including the supporting portion SPT and the vibrating portion OS holding the vibrating body should be, and how the magnitude of the dynamic stiffness kd is determined depends on the vibration frequency f can be appropriately determined depending on how much vibration damping effect is desired to be obtained in , that is, how low the vibration transmissibility is desired to be at a predetermined vibration frequency f.
 本実施形態の構造体が備える静剛性は第1の実施形態において図5を参照して説明した静剛性と同様であるので、ここでの詳細な説明は省略する。 The static rigidity of the structure of the present embodiment is the same as the static rigidity described with reference to FIG. 5 in the first embodiment, so detailed description is omitted here.
 本実施形態における構造体も、第1の実施形態の実施例に示した構造体100と同様の構成を備えることができる。ただし、第1の実施形態の実施例の構造体における支持部は、少なくとも1つの方向に発生させる振動のうち少なくとも所定の周波数の振動の伝達を増幅させる動剛性を備えるように構成されているのに対し、本実施形態の構造体における支持部は、少なくとも1つの方向に発生させる振動のうち少なくとも所定の周波数の振動の伝達を減衰させる動剛性を備えるように構成される。 The structure in this embodiment can also have the same configuration as the structure 100 shown in the example of the first embodiment. However, the supporting portion in the structure of the example of the first embodiment is configured to have a dynamic stiffness that amplifies the transmission of at least a predetermined frequency of vibrations generated in at least one direction. On the other hand, the supporting portion in the structure of the present embodiment is configured to have a dynamic stiffness that damps the transmission of at least a predetermined frequency of vibrations generated in at least one direction.
[実施例]
 ここで、第3の実施形態の構造体の実施例について説明する。
[Example]
An example of the structure of the third embodiment will now be described.
 本実施形態の一実施例の構造体は、図6~図9を参照して説明した構造体100と同様の構成を有する。ただし本実施例では、構造体100における支持部130(130SR,130SL)は、振動体140を保持した状態の振動部110が上下(T-B)軸に沿って発生させる直線往復振動のうち少なくとも所定の振動周波数の振動、換言すれば、当該所定の振動周波数を含む周波数帯域における振動を減衰させる動剛性を備えるように構成され、振動体140が生じさせる直線往復振動の速度に応じて異なる周波数の振動のうち、振動を減衰させたい所定の周波数を含む周波帯域における振動を減衰させることを可能にする。その一方で、支持部130は、振動部110を支持するために必要な静剛性を備える。 The structure of one example of this embodiment has the same configuration as the structure 100 described with reference to FIGS. However, in this embodiment, the support portion 130 (130SR, 130SL) in the structure 100 is at least the linear reciprocating vibration generated along the vertical (TB) axis by the vibrating portion 110 holding the vibrating body 140. Vibration at a predetermined vibration frequency, in other words, it is configured to have dynamic stiffness for damping vibration in a frequency band including the predetermined vibration frequency, and the frequency varies according to the speed of the linear reciprocating vibration generated by the vibrating body 140. vibration in a frequency band including a predetermined frequency to be damped. On the other hand, the support portion 130 has static rigidity necessary to support the vibrating portion 110 .
 なお、上記実施例の構造体における各々の支持部の各部寸法(高さ、十字部分の長さと厚み等)は、構造体の大きさや振動体の重量等を考慮して、支持部が所望の振動周波数で振動する振動部の振動を減衰させることができるように適宜設定することができる。 The dimensions (height, length and thickness of the cross section, etc.) of each support portion in the structure of the above embodiment are determined in consideration of the size of the structure and the weight of the vibrating body. It can be appropriately set so that the vibration of the vibrating portion that vibrates at the vibration frequency can be damped.
 このように、本実施形態によれば、振動強度を弱めたい振動方向の振動モードをその他の方向の振動モードから孤立化させ、その振動方向においては振動源の振動を減衰させつつも、想定される荷重を支持することが可能な剛性を持たせることを可能にする構造体を提供することができる。 As described above, according to the present embodiment, the vibration mode in the vibration direction whose vibration strength is desired to be weakened is isolated from the vibration modes in the other directions, and the vibration of the vibration source is attenuated in the vibration direction while the vibration of the vibration source is attenuated. It is possible to provide a structure capable of being rigid enough to support a heavy load.
(4)変形例
 実施形態の変形例について説明する。
(4) Modification A modification of the embodiment will be described.
 上記説明では、支持部が均質な材料からなることを前提とし、当該支持部の剛性に関する異方性を当該支持部の形状によって実現する例を示した。均質な材料からなる支持部は、一般に製造性が高いという利点がある。ただし、支持部の剛性に関する異方性は、当該支持部の材料の構成(例えば異種の材料の組み合わせ)によって実現することも可能である。 In the above explanation, it is assumed that the supporting part is made of a homogeneous material, and an example is shown in which the anisotropy of the rigidity of the supporting part is realized by the shape of the supporting part. A support made of a homogeneous material has the advantage that it is generally manufacturable. However, the anisotropy with respect to the stiffness of the support can also be achieved by the composition of the material of the support (for example, a combination of different materials).
 上記説明では、複数の支持部が振動部を複数の接点で支持する例を示した。しかしながら、任意の数の支持部が振動部の任意の数の接点で支持してよい。なお、接点なる用語は、支持部と振動部とが接触している面積の大きさを何ら限定しない。接点は、必要に応じて、接触領域、または接触面などの別の用語で読み替え可能である。 In the above explanation, an example was shown in which multiple supporting parts support the vibrating part with multiple contact points. However, any number of supports may support any number of contacts on the vibrating section. The term "contact point" does not limit the size of the contact area between the supporting portion and the vibrating portion. Contact may be read by other terms such as contact area or contact surface as appropriate.
 支持部、振動部、および筐体のうち2つ以上が異なる物体(器物)の一部であってもよい。 Two or more of the supporting part, the vibrating part, and the housing may be parts of different objects (warehouses).
 支持部、振動部、および筐体のうち2つ以上が一体成形されていてもよい。これにより、構造体を構成する部品点数を削減し、構造体の製造性を向上させることができる。 Two or more of the support section, vibrating section, and housing may be integrally formed. As a result, the number of parts constituting the structure can be reduced, and the manufacturability of the structure can be improved.
 第1,3の実施形態の実施例では、連結部が、第1支持体および第2支持体をそれぞれ含む複数の組を連結する例を示した。しかしながら、複数の組は、互いに連結されていなくてもよい。より詳細に説明すると、図6等を参照して説明した第1の実施形態の実施例に係る構造体100においては、第1の組を構成する支持体131SLA,132SLAは、第2の組を構成する支持体131SLB,132SLBと連結部133SLを介して連結されているが、これに代えて、第1の組を構成する支持体131SLA,132SLA同士が連結され、また、第2の組を構成する支持体131SLB,132SLB同士が連結されているが、第1の組の支持体131SLA,132SLAと第2の組の支持体131SLB,132SLBとが連結されていない構成としてもよい。 In the examples of the first and third embodiments, examples were shown in which the connecting portion connects a plurality of sets each including the first support and the second support. However, multiple sets may not be connected to each other. More specifically, in the structure 100 according to the example of the first embodiment described with reference to FIG. Constituent supports 131SLB and 132SLB are connected to each other via a connecting portion 133SL, but instead of this, the supports 131SLA and 132SLA constituting the first set are connected to each other, and the second set is constructed. Although the supporting bodies 131SLB and 132SLB are connected to each other, the first set of supporting bodies 131SLA and 132SLA and the second set of supporting bodies 131SLB and 132SLB may not be connected.
 以上、本発明の実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。また、上記の実施形態及び変形例は、組合せ可能である。
 
Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited to the above embodiments. Also, the above embodiments can be modified and modified in various ways without departing from the gist of the present invention. Also, the above embodiments and modifications can be combined.

Claims (10)

  1.  振動体を保持する振動部と、前記振動部を少なくとも部分的に収容する筐体と、前記振動部と前記筐体とを連結して前記振動部を支持する支持部とを具備し、
     前記支持部は、前記振動体を保持した状態の振動部が少なくとも1つの方向に発生させる振動のうち少なくとも所定の周波数の振動の伝達を増幅又は減衰させる動剛性を備え、かつ前記振動体を保持した状態の振動部を支持するために必要な静剛性を備えるように構成されており、
     前記構造体及び前記振動体を含む系は、前記少なくとも1つの方向における振動の振動周波数が高くなるにつれて、振動伝達率が高くなる励起された振動モードが発現した後に前記振動伝達率が漸減する特性を有し、
     前記支持部は、前記少なくとも所定の周波数の振動の伝達を増幅させる前記動剛性を備える場合には、前記所定の周波数における前記振動伝達率が1よりも大きくなるように前記励起された振動モードを発現させる前記動剛性をさらに備え、前記少なくとも所定の周波数の振動の伝達を減衰させる前記動剛性を備える場合には、前記所定の周波数における前記振動伝達率が1よりも小さくなるように前記励起された振動モードを発現させる前記動剛性をさらに備えており、
     前記支持部は、前記振動部を第1の軸に沿って直線往復振動するように支持するように構成されており、
     前記支持部は、
      前記振動部に連結される第1支持体と、前記筐体に連結される第2支持体とを含む第1の組と、
      前記振動部に連結される第1支持体と、前記筐体に連結される第2支持体とを含む第2の組であって、前記第1の軸方向に沿って前記第1の組から離間した位置に配置された第2の組と、
      前記第1の組の前記各支持体と前記第2の組の前記各支持体とを連結する連結部と、
    を含む、
     構造体。
    A vibrating unit that holds a vibrating body, a housing that at least partially accommodates the vibrating unit, and a supporting unit that connects the vibrating unit and the housing to support the vibrating unit,
    The support portion has dynamic rigidity for amplifying or attenuating transmission of vibration of at least a predetermined frequency among vibrations generated in at least one direction by the vibrating portion while holding the vibrating body, and holds the vibrating body. It is configured to have the static rigidity necessary to support the vibrating part in the state of
    The system including the structure and the vibrating body has the characteristic that the vibration transmissibility gradually decreases after an excited vibration mode in which the vibration transmissibility increases as the vibration frequency in the at least one direction increases. has
    When the support has the dynamic stiffness that amplifies the transmission of vibration at least at the predetermined frequency, the excited vibration mode is adjusted such that the vibration transmissibility at the predetermined frequency is greater than 1. In the case of further comprising the dynamic stiffness to be developed and the dynamic stiffness to attenuate the transmission of vibration of at least the predetermined frequency, the vibration transmissibility at the predetermined frequency is less than 1. further comprising the dynamic stiffness that expresses the vibration mode,
    The support portion is configured to support the vibrating portion so as to linearly reciprocate along a first axis,
    The support part is
    a first set including a first support connected to the vibrating portion and a second support connected to the housing;
    A second set including a first support connected to the vibrating portion and a second support connected to the housing, wherein from the first set along the first axial direction a second set arranged at spaced apart positions;
    a connecting portion that connects each of the supports of the first set and each of the supports of the second set;
    including,
    Structure.
  2.  前記支持部は、前記第1支持体および前記第2支持体の弾性変形により、前記筐体に対する前記振動部の相対位置が前記第1の軸に沿って変位可能に前記振動部を支持する、
     請求項1に記載の構造体。
    The supporting section supports the vibrating section such that the relative position of the vibrating section with respect to the housing can be displaced along the first axis by elastic deformation of the first support and the second support.
    The structure of Claim 1.
  3.  前記第1支持体および前記第2支持体は、前記第1の軸に沿う方向の寸法が、前記第1の軸に直交する方向の寸法に比べて小さい外形を備える梁である、
     請求項2に記載の構造体。
    The first support and the second support are beams having an outer shape in which the dimension in the direction along the first axis is smaller than the dimension in the direction orthogonal to the first axis,
    3. The structure of claim 2.
  4.  前記筐体は、当該筐体の前記第1の軸に沿った方向の少なくとも一方の端部にフランジを備える、
     請求項1乃至請求項3のいずれかに記載の構造体。
    the housing comprises a flange on at least one end of the housing in a direction along the first axis;
    A structure according to any one of claims 1 to 3.
  5.  前記フランジは、前記振動部および前記支持部よりも前記第1の軸に沿った方向に突出した位置に配置され、かつ前記振動部および前記支持部に接触しないように構成される、
     請求項4に記載の構造体。
    The flange is arranged at a position that protrudes in a direction along the first axis from the vibrating portion and the support portion, and is configured so as not to contact the vibrating portion and the support portion.
    5. The structure of claim 4.
  6.  前記振動部、前記筐体および前記支持部のうち2つ以上は均質な材料からなる、
     請求項1乃至請求項5のいずれか1項に記載の構造体。
    Two or more of the vibrating portion, the housing and the supporting portion are made of a homogeneous material,
    A structure according to any one of claims 1 to 5.
  7.  前記振動部、前記筐体および前記支持部のうち2つ以上は一体成形されている、
     請求項1乃至請求項6のいずれか1項に記載の構造体。
    Two or more of the vibrating portion, the housing and the supporting portion are integrally molded,
    A structure according to any one of claims 1 to 6.
  8.  請求項1乃至請求項7のいずれか1項に記載の構造体と、
     前記構造体の振動部に保持された振動体と、
    を備えた振動デバイス。
    a structure according to any one of claims 1 to 7;
    a vibrating body held by the vibrating portion of the structure;
    A vibrating device with
  9.  請求項8に記載された振動デバイスを複数具備した、
     体感音響装置。
    Equipped with a plurality of vibration devices according to claim 8,
    bodily sensation device.
  10.  前記複数の振動デバイスは、ユーザの身体に振動を伝達するための振動伝達面を形成し、
     前記複数の振動デバイスの各々は、前記振動伝達面の当該振動デバイスの位置における法線に沿って前記振動部が直線往復振動するように構成される、
     請求項9に記載の体感音響装置。
     
    the plurality of vibration devices forming a vibration transmission surface for transmitting vibrations to a user's body;
    Each of the plurality of vibrating devices is configured such that the vibrating portion linearly reciprocates along a normal to the position of the vibrating device on the vibration transmission surface.
    The sensory acoustic device according to claim 9 .
PCT/JP2022/015850 2021-03-31 2022-03-30 Structural body, vibrating device, and sensory acoustic apparatus WO2022210846A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/284,160 US20240165669A1 (en) 2021-03-31 2022-03-30 Structural body, vibrating device, and sensory acoustic apparatus
EP22781057.9A EP4316677A1 (en) 2021-03-31 2022-03-30 Structural body, vibrating device, and sensory acoustic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058978 2021-03-31
JP2021-058978 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210846A1 true WO2022210846A1 (en) 2022-10-06

Family

ID=81972124

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/034479 WO2022208935A1 (en) 2021-03-31 2021-09-21 Structure, vibration device, sensory acoustic device, structure design method, structure manufacturing method, and program
PCT/JP2022/015850 WO2022210846A1 (en) 2021-03-31 2022-03-30 Structural body, vibrating device, and sensory acoustic apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034479 WO2022208935A1 (en) 2021-03-31 2021-09-21 Structure, vibration device, sensory acoustic device, structure design method, structure manufacturing method, and program

Country Status (4)

Country Link
US (1) US20240165669A1 (en)
EP (1) EP4316677A1 (en)
JP (3) JPWO2022208935A1 (en)
WO (2) WO2022208935A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149862A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Ultrasonic oscillator
JP2003269395A (en) * 2002-01-09 2003-09-25 Hitachi Ltd Axial fan
JP2003274468A (en) 2002-03-14 2003-09-26 Tamagawa Kasei:Kk Low frequency sound amplifying oscillator
JP2009225535A (en) * 2008-03-14 2009-10-01 Toshiba Corp Stator structure of rotating electrical machine
CN201921093U (en) * 2010-12-08 2011-08-10 北京新体感电子技术有限公司 Somatosensory vibration body and somatosensory vibration sound pedestal
CN202610689U (en) * 2012-03-29 2012-12-19 中冶集团武汉勘察研究院有限公司 Vibrating beam
JP5169817B2 (en) * 2006-03-07 2013-03-27 日本電気株式会社 Piezoelectric actuator and electronic device
JP2015146718A (en) * 2014-02-04 2015-08-13 オリンパス株式会社 ultrasonic motor and ultrasonic stage
JP2019104454A (en) * 2017-12-14 2019-06-27 株式会社ブリヂストン Seat and method for adjusting pad vibration characteristic
JP2019130979A (en) * 2018-01-30 2019-08-08 Ntn株式会社 Suspension structure for in-wheel motor drive device
CN111075873A (en) * 2020-01-07 2020-04-28 长沙理工大学 Load-variable ultralow frequency vibration isolator and design method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120488A (en) * 1984-07-06 1986-01-29 Pioneer Electronic Corp Acoustic vibrator sensible to human body
US8668045B2 (en) * 2003-03-10 2014-03-11 Daniel E. Cohen Sound and vibration transmission pad and system
JP2005066585A (en) * 2003-08-25 2005-03-17 Mutsuo Hirano Polyfunctional vibrator
JP4709496B2 (en) * 2004-04-02 2011-06-22 株式会社デルタツーリング Sheet structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149862A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Ultrasonic oscillator
JP2003269395A (en) * 2002-01-09 2003-09-25 Hitachi Ltd Axial fan
JP2003274468A (en) 2002-03-14 2003-09-26 Tamagawa Kasei:Kk Low frequency sound amplifying oscillator
JP5169817B2 (en) * 2006-03-07 2013-03-27 日本電気株式会社 Piezoelectric actuator and electronic device
JP2009225535A (en) * 2008-03-14 2009-10-01 Toshiba Corp Stator structure of rotating electrical machine
CN201921093U (en) * 2010-12-08 2011-08-10 北京新体感电子技术有限公司 Somatosensory vibration body and somatosensory vibration sound pedestal
CN202610689U (en) * 2012-03-29 2012-12-19 中冶集团武汉勘察研究院有限公司 Vibrating beam
JP2015146718A (en) * 2014-02-04 2015-08-13 オリンパス株式会社 ultrasonic motor and ultrasonic stage
JP2019104454A (en) * 2017-12-14 2019-06-27 株式会社ブリヂストン Seat and method for adjusting pad vibration characteristic
JP2019130979A (en) * 2018-01-30 2019-08-08 Ntn株式会社 Suspension structure for in-wheel motor drive device
CN111075873A (en) * 2020-01-07 2020-04-28 长沙理工大学 Load-variable ultralow frequency vibration isolator and design method thereof

Also Published As

Publication number Publication date
JP2022159139A (en) 2022-10-17
JPWO2022208935A1 (en) 2022-10-06
JP7083121B1 (en) 2022-06-10
WO2022208935A1 (en) 2022-10-06
JP2022158868A (en) 2022-10-17
US20240165669A1 (en) 2024-05-23
EP4316677A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR101777319B1 (en) Self-tuned mass damper and system comprising the same
JP5027037B2 (en) Vibration control device
EP1744302A2 (en) Vibration excited sound absorber with dynamic tuning
TWI695128B (en) Active inertial damper system and method
JP2014096951A (en) Rotary electric machine
WO2022210846A1 (en) Structural body, vibrating device, and sensory acoustic apparatus
US5414775A (en) Noise attenuation system for vibratory feeder bowl
JP5133117B2 (en) Speaker mounting structure and speaker device
JP4312062B2 (en) Speaker mounting structure
JPH05302643A (en) Floor panel for housing
JP2013029137A (en) Damping device
JP4497685B2 (en) Dynamic damper
JP2009243538A (en) Vibration damping device
JP2004332847A (en) Damping device
US12080474B1 (en) Transformer and a transformer arrangement
KR100550451B1 (en) Device of vibration damping for speaker and A support of vibration damping for speaker
JP5276548B2 (en) Active vibration isolation method and vibration isolation device used therefor
JP4161991B2 (en) Speaker stand
JP7077393B1 (en) Railroad vehicle
JP2017034756A (en) Power generator
JP2005121072A (en) Vibration isolated support device
JP2008248490A (en) Active damper for building structure
JP3207745U (en) Vibration isolator
JP6504758B2 (en) Vibration isolator for vehicle
JPH0716279B2 (en) Vibrating unit, method of manufacturing the same, and body acoustic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022781057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781057

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE