JP2008248044A - Anisotropic electroconductive adhesive material - Google Patents

Anisotropic electroconductive adhesive material Download PDF

Info

Publication number
JP2008248044A
JP2008248044A JP2007090000A JP2007090000A JP2008248044A JP 2008248044 A JP2008248044 A JP 2008248044A JP 2007090000 A JP2007090000 A JP 2007090000A JP 2007090000 A JP2007090000 A JP 2007090000A JP 2008248044 A JP2008248044 A JP 2008248044A
Authority
JP
Japan
Prior art keywords
binder resin
resin layer
conductive adhesive
anisotropic conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007090000A
Other languages
Japanese (ja)
Other versions
JP2008248044A5 (en
Inventor
Kazumasa Amano
和正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007090000A priority Critical patent/JP2008248044A/en
Publication of JP2008248044A publication Critical patent/JP2008248044A/en
Publication of JP2008248044A5 publication Critical patent/JP2008248044A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic electroconductive adhesive material surely carrying out conduction and connection at a low electric resistance value without causing short-circuiting even in conduction and connection in a high-definition device in which connection terminals are formed into fine pitches. <P>SOLUTION: The anisotropic electroconductive adhesive material 2 formed on a base sheet 1 as a separator is composed by including a mesh member 23 as a particle movement regulating member for regulating the movement of electroconductive particles 22 in a binder resin layer 21 starting softening and flowing by being pressurized while being heated in the binder resin layer 21 in which the electroconductive particles 22 are uniformly dispersed and held. The mesh member 23 is formed of a thermoplastic resin material melting in the binder resin layer 21 without adversely affecting an adhesion holding ability of the binder resin layer 21 even by melting in a process of heating the binder resin layer 21 to a curing temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、接続端子同士を導通接続する際に用いられる異方性導電接着材に関する。   The present invention relates to an anisotropic conductive adhesive used when conducting connection between connection terminals.

近年、液晶表示パネル等の表示装置は、所謂ハイビジョン映像等の高精細画像を表示するために画素が高密度化され、これに伴い、画素を駆動するためのドライバチップやリード配線の接続端子ピッチも微細化している。   In recent years, display devices such as liquid crystal display panels have high-density pixels in order to display high-definition images such as so-called high-definition images, and accordingly, driver chip for driving the pixels and lead wiring connection terminal pitch Is also miniaturized.

上述のような高精細化表示装置の接続端子と高集積化されたドライバチップや外部配線基板との導通接続においては、特許文献1に示されるような異方性導電接着材が、信頼性及び作業性等の面で有利であることから広く用いられている。
特開平11−329542号公報
In the conductive connection between the connection terminal of the high-definition display device as described above and the highly integrated driver chip or external wiring board, the anisotropic conductive adhesive as shown in Patent Document 1 is reliable and It is widely used because it is advantageous in terms of workability.
JP 11-329542 A

異方性導電接着材を用いて接続端子同士を導通接続する場合、対応する接続端子間に異方性導電接着材を挟み、熱圧着ツールにより180℃程度に加熱しつつ加圧するが、この熱圧着時に、導電性粒子が相対的に圧力の高い接続端子の対向部から圧力の低い隣接接続端子間へ流動する。   When conducting connection between the connection terminals using an anisotropic conductive adhesive, the anisotropic conductive adhesive is sandwiched between the corresponding connection terminals, and heated while being heated to about 180 ° C. by a thermocompression bonding tool. At the time of crimping, the conductive particles flow from the facing portion of the connection terminal having a relatively high pressure to the adjacent connection terminals having a low pressure.

導電性粒子が対向接続端子間から流れ出すと、接続すべき接続端子間に挟持される導電性粒子の数が少なくなって導通接続の電気抵抗値が大きくなるだけでなく、接続端子ピッチが高度に微細化(ファインピッチ化)した高精細デバイスにおいては隣接接続端子間に移動した導電性粒子により隣接接続端子同士をショートさせるという問題があった。   When the conductive particles flow out between the opposing connection terminals, not only does the number of conductive particles sandwiched between the connection terminals to be connected decrease, the electrical resistance value of the conductive connection increases, but also the connection terminal pitch increases. In a high-definition device that has been miniaturized (fine pitch), there is a problem in that adjacent connection terminals are short-circuited by conductive particles that have moved between adjacent connection terminals.

本発明の目的は、接続端子がファインピッチ化した高精細デバイスにおける導通接続においてもショートを引き起こすことなく低電気抵抗値で確実に導通接続できる異方性導電接着材を提供することである。   An object of the present invention is to provide an anisotropic conductive adhesive that can reliably conduct a connection with a low electric resistance value without causing a short circuit even in a conduction connection in a high-definition device in which connection terminals have a fine pitch.

本発明の請求項1に記載の異方性導電接着材は、熱硬化性樹脂材料からなるバインダ樹脂層と、前記バインダ樹脂層中に分散保持された複数の導電性粒子と、前記バインダ樹脂層の前記熱硬化性樹脂材料が軟化して流動性を示す温度より高い温度で、且つ前記熱硬化性樹脂材料の硬化温度よりも低い温度の融点を有する材料で形成され、前記バインダ樹脂層が軟化して流動性を示す温度に加熱されつつ加圧されることによる前記バインダ樹脂層の流動に伴う前記導電性粒子の移動を規制する粒子移動規制部材とを、有することを特徴とするものである。   The anisotropic conductive adhesive according to claim 1 of the present invention includes a binder resin layer made of a thermosetting resin material, a plurality of conductive particles dispersed and held in the binder resin layer, and the binder resin layer. The thermosetting resin material is formed of a material having a melting point that is higher than the temperature at which the thermosetting resin material softens and exhibits fluidity and lower than the curing temperature of the thermosetting resin material, and the binder resin layer is softened And a particle movement regulating member that regulates the movement of the conductive particles accompanying the flow of the binder resin layer by being pressurized while being heated to a temperature exhibiting fluidity. .

請求項2に記載の異方性導電接着材は、請求項1に記載の異方性導電接着材において、前記粒子移動規制部材が、熱可塑性樹脂材料からなる糸を編んで形成され、前記バインダ樹脂層に包含された網目クロス材であることを特徴とするものである。   The anisotropic conductive adhesive according to claim 2 is the anisotropic conductive adhesive according to claim 1, wherein the particle movement restricting member is formed by knitting a yarn made of a thermoplastic resin material, and the binder It is a mesh cloth material included in the resin layer.

請求項3に記載の異方性導電接着材は、請求項1に記載の異方性導電接着材において、前記粒子移動規制部材が、前記導電性粒子を保持するバインダ樹脂層の一方の表面に重畳設置され、前記バインダ樹脂層に接する表面が断面が三角形をなす複数の突条を平行に並設してなる凹凸面に形成されている制動層であることを特徴とするものである。   The anisotropic conductive adhesive according to claim 3 is the anisotropic conductive adhesive according to claim 1, wherein the particle movement restricting member is formed on one surface of the binder resin layer holding the conductive particles. The braking layer is formed to be an uneven surface in which a plurality of protrusions having a triangular cross section are juxtaposed in parallel and the surface in contact with the binder resin layer is provided in an overlapping manner.

請求項4に記載の異方性導電接着材は、請求項1に記載の異方性導電接着材において、前記粒子移動規制部材が、前記導電性粒子を保持するバインダ樹脂層の一方の表面に重畳設置され、複数の穴が所定の配置で厚さ方向に穿設されている制動層であることを特徴とするものである。   The anisotropic conductive adhesive according to claim 4 is the anisotropic conductive adhesive according to claim 1, wherein the particle movement restricting member is formed on one surface of the binder resin layer holding the conductive particles. The braking layer is a braking layer which is provided in a superimposed manner and has a plurality of holes drilled in the thickness direction in a predetermined arrangement.

本発明の異方性導電接着材によれば、確実な導通接続が得られ導通接続の信頼性が向上する。   According to the anisotropic conductive adhesive of the present invention, a reliable conductive connection is obtained, and the reliability of the conductive connection is improved.

(第1実施形態)
図1(a)は本発明の第1実施形態としての異方性導電接着シートを示す模式的断面図である。
本実施形態の異方性導電接着シートは、PET(ポリエチレンテレフタレート:polyethylene terephthalate)からなるセパレータとしてのベースシート1の一方の表面に異方性導電接着材2が成形されて構成されている。
(First embodiment)
Fig.1 (a) is typical sectional drawing which shows the anisotropic conductive adhesive sheet as 1st Embodiment of this invention.
The anisotropic conductive adhesive sheet of this embodiment is configured by molding an anisotropic conductive adhesive 2 on one surface of a base sheet 1 as a separator made of PET (polyethylene terephthalate).

異方性導電接着材2は、熱硬化性樹脂のエポキシ樹脂をバインダ樹脂層21の材料として用い、このバインダ樹脂層21中に複数の導電性粒子22とメッシュ部材23とを包含させた構成となっている。   The anisotropic conductive adhesive 2 uses a thermosetting epoxy resin as a material for the binder resin layer 21, and includes a plurality of conductive particles 22 and a mesh member 23 included in the binder resin layer 21. It has become.

導電性粒子22は、アクリル樹脂ビーズを核としてその表面に金メッキ処理を施してなり、平均粒径が約5μm程度の粒子に調製されている。   The conductive particles 22 are prepared by making the surface of the acrylic resin beads a gold plating process and having an average particle diameter of about 5 μm.

メッシュ部材23は、バインダ樹脂層21の材料であるエポキシ樹脂に均一に溶融可能で且つバインダ樹脂としての物性に悪影響を及ぼさない熱可塑性樹脂材料を用い、これを材料として紡糸された樹脂繊維を所定のピッチに織り上げて形成されている。メッシュ部材23に用いられる熱可塑性樹脂材料は、前記バインダ樹脂層の前記熱硬化性樹脂材料が軟化して流動性を示す温度より高い温度で、且つ前記熱硬化性樹脂材料の硬化温度よりも低い温度の範囲にその融点を有する樹脂材料からなっている。この熱可塑性樹脂材料としては、プロピレン/エチレン/ブタジエン・ブロック・コポリマーやポリスチレンスピレンアクリル等を用いることができる。   The mesh member 23 uses a thermoplastic resin material that can be uniformly melted in the epoxy resin that is the material of the binder resin layer 21 and does not adversely affect the physical properties of the binder resin, and the resin fibers spun using the thermoplastic resin material as a predetermined material. It is formed by weaving to the pitch. The thermoplastic resin material used for the mesh member 23 is a temperature higher than the temperature at which the thermosetting resin material of the binder resin layer softens and exhibits fluidity, and is lower than the curing temperature of the thermosetting resin material. It consists of a resin material having its melting point in the temperature range. As the thermoplastic resin material, propylene / ethylene / butadiene block copolymer, polystyrene spylene acrylic, or the like can be used.

図1(b)は、本実施形態の異方性導電接着材をバインダ樹脂層21を透視して示した模式的平面図である。メッシュ部材23の縦糸231間のピッチ(横ピッチ)p1 と横糸232間のピッチ(縦ピッチ)p2 は、用途つまり導通接合すべきデバイスの接続端子ピッチに応じて設定される。例えば、高精細液晶表示パネルのリード配線端子にドライバチップをCOG(Chip On Glass)方式により導通接合するのに用いられる異方性導電接着材の場合であれば、配線端子間ピッチが20μm程度であるから、メッシュ部材23の長手ピッチつまり横ピッチp1 を約20μmに設定することが好ましい。   FIG. 1B is a schematic plan view showing the anisotropic conductive adhesive of this embodiment viewed through the binder resin layer 21. The pitch (transverse pitch) p1 between the warp yarns 231 and the pitch (vertical pitch) p2 between the weft yarns 232 of the mesh member 23 are set according to the use, that is, the connection terminal pitch of the device to be conductively joined. For example, in the case of an anisotropic conductive adhesive used for conductively bonding a driver chip to a lead wiring terminal of a high-definition liquid crystal display panel by a COG (Chip On Glass) method, the pitch between wiring terminals is about 20 μm. Therefore, it is preferable to set the longitudinal pitch of the mesh member 23, that is, the lateral pitch p1 to about 20 μm.

上述のような構成の異方性導電接着材は、種々の方法により製造可能であるが、そのうちでもロールコータ方式が好適に用いられる。このロールコータ方式による場合、まず、上述したような熱可塑性樹脂材料を用いてメッシュ部材23を製造し、これに導電性粒子21を分散混合したバインダ樹脂材料をロールコートすることによって容易に得られる。   The anisotropic conductive adhesive having the above-described configuration can be manufactured by various methods. Among them, the roll coater method is preferably used. In the case of this roll coater method, first, the mesh member 23 is manufactured using the thermoplastic resin material as described above, and it is easily obtained by roll coating a binder resin material in which the conductive particles 21 are dispersed and mixed. .

次に、本実施形態の異方性導電接着材を液晶表示パネルにドライバチップをCOG方式により導通接合する工程に使用する方法とその接合作用について、図2の斜視図と図3(a)〜(c)の模式的断面図に基づき説明する。   Next, a perspective view of FIG. 2 and FIG. 3 (a) to FIG. Description will be made based on the schematic cross-sectional view of (c).

図2に示すように、熱圧着接合工程で用いる熱圧着装置は、ワークを支持するテーブル3とこれに対して昇降自在に進退する熱圧着ツール4からなり、テーブル3の所定位置にワークとしての液晶表示パネル5がセットされる。液晶表示パネル5は一対のガラス基板51、52間に液晶を挟持させてなり、一方のガラス基板52の他方のガラス基板61の対応する端面から突出させた突出部521には液晶を駆動する信号電圧を供給するための配線回路53が配設され、この配線回路53にドライバチップ6が搭載される。   As shown in FIG. 2, the thermocompression bonding apparatus used in the thermocompression bonding process includes a table 3 that supports a workpiece and a thermocompression bonding tool 4 that moves up and down with respect to the workpiece 3. The liquid crystal display panel 5 is set. The liquid crystal display panel 5 has a liquid crystal sandwiched between a pair of glass substrates 51 and 52, and a signal for driving the liquid crystal is provided in a protruding portion 521 that protrudes from a corresponding end surface of the other glass substrate 61 of one glass substrate 52. A wiring circuit 53 for supplying a voltage is provided, and the driver chip 6 is mounted on the wiring circuit 53.

まず、異方性導電接着シートを所要の大きさに切断してベースシート1を剥離した異方性導電接着材2を、液晶表示パネル5の一方のガラス基板52の突出部521におけるドライバチップ搭載位置に載置する。このとき、図3(a)に示されるように、液晶表示パネル5の配線端子531間にメッシュ部材23の縦糸231が位置するように位置合わせを行いつつ異方性導電接着層2を載置する。   First, the anisotropic conductive adhesive 2 obtained by cutting the anisotropic conductive adhesive sheet to a required size and peeling the base sheet 1 is mounted on the driver chip on the protrusion 521 of one glass substrate 52 of the liquid crystal display panel 5. Place in position. At this time, as shown in FIG. 3A, the anisotropic conductive adhesive layer 2 is placed while positioning so that the warp 231 of the mesh member 23 is positioned between the wiring terminals 531 of the liquid crystal display panel 5. To do.

次いで、ドライバチップ6を上記異方性導電接着層2上に位置合わせを行いつつ載置する。このとき、図3(a)に示すように、液晶表示パネル5の配線端子531とドライバチップ6の対応する端子電極61とが異方性導電接着材2を挟んで正確に対向する配置となるように位置合わせを行う。   Next, the driver chip 6 is placed on the anisotropic conductive adhesive layer 2 while being aligned. At this time, as shown in FIG. 3A, the wiring terminals 531 of the liquid crystal display panel 5 and the corresponding terminal electrodes 61 of the driver chip 6 are arranged to accurately face each other with the anisotropic conductive adhesive 2 interposed therebetween. Align as follows.

次に、ヒータ41を内蔵する熱圧着ツール4をヒータ41をオンしつつ下降させ、その押圧ヘッド42の先端面をドライバチップ6の上面に当接させて熱圧着を開始する。これにより、図3(b)に示されるように、ドライバチップ6を介し加熱されて軟化し、流動性を持ったバインダ樹脂21が対向する配線端子531、端子電極61間において加圧され、加圧されていない隣設配線端子531、531間及び隣設端子電極61、61間に流れ込む。このバインダ樹脂21の流動に伴い、導電性粒子22も追従して移動しようとするが、前記バインダ樹脂21の流動性を示す温度より高い融点を有するメッシュ部材23は、いまだその温度では軟化していないため、前記メッシュ部材23によりその移動が規制される。その結果、図示されるように、メッシュ糸231、232が存在しない網目に対応する領域に大部分の導電性粒子22が集められた状態となる。この網目に対応する領域は、対応する配線端子531と端子電極61とが対向する領域である。   Next, the thermocompression bonding tool 4 incorporating the heater 41 is lowered while the heater 41 is turned on, and the front end surface of the pressing head 42 is brought into contact with the upper surface of the driver chip 6 to start thermocompression bonding. As a result, as shown in FIG. 3B, the binder resin 21 having fluidity is heated and softened through the driver chip 6 and is pressed between the wiring terminals 531 and the terminal electrodes 61 facing each other. It flows between the adjacent wiring terminals 531 and 531 which are not pressed and between the adjacent terminal electrodes 61 and 61. As the binder resin 21 flows, the conductive particles 22 also follow and move. However, the mesh member 23 having a melting point higher than the temperature indicating the fluidity of the binder resin 21 is still softened at that temperature. Therefore, the movement is restricted by the mesh member 23. As a result, as shown in the drawing, most of the conductive particles 22 are collected in a region corresponding to the mesh where the mesh yarns 231 and 232 do not exist. The region corresponding to the mesh is a region where the corresponding wiring terminal 531 and the terminal electrode 61 face each other.

この後、熱圧着ツール4(図2参照)を所定の最大ストローク位置まで下降させると、図3(c)に示されるように、熱可塑性樹脂からなるメッシュ部材23が融点以上に加熱されてバインダ樹脂21中に溶融し、且つ、導電性粒子22の大部分が対応する配線端子631と端子電極71間に選択的に押圧挟持された状態が得られる。   Thereafter, when the thermocompression bonding tool 4 (see FIG. 2) is lowered to a predetermined maximum stroke position, as shown in FIG. 3 (c), the mesh member 23 made of thermoplastic resin is heated to the melting point or higher and the binder is heated. A state is obtained in which the resin 21 is melted in the resin 21 and most of the conductive particles 22 are selectively pressed and sandwiched between the corresponding wiring terminal 631 and the terminal electrode 71.

以上のように、本実施形態の異方性導電接着シートは、導電性粒子22の追従移動を規制する部材としてメッシュ部材23を導電性粒子22と共にバインダ樹脂層21中に一体に成形したから、熱圧着導通接合工程において異方性導電接着材2を加熱しつつ加圧した際に、軟化し圧延されるバインダ樹脂21に追従する導電性粒子22の移動が抑制され、その結果、対応する配線端子531と端子電極61間に選択的に必要で充分な量の導電性粒子22が確実に挟圧保持され、電気抵抗値が小さく且つショートの無い信頼性に優れた導通接続状態が得られる。   As described above, since the anisotropic conductive adhesive sheet of the present embodiment is integrally formed in the binder resin layer 21 together with the conductive particles 22, the mesh member 23 is a member that regulates the follow-up movement of the conductive particles 22. When the anisotropic conductive adhesive 2 is heated and pressed in the thermocompression bonding process, the movement of the conductive particles 22 following the softened and rolled binder resin 21 is suppressed, and as a result, the corresponding wiring A necessary and sufficient amount of conductive particles 22 is selectively sandwiched and held between the terminal 531 and the terminal electrode 61, and a conductive connection state having a small electric resistance value and excellent reliability without a short circuit is obtained.

また、メッシュ部材23が、バインダ樹脂が硬化温度まで加熱される過程でバインダ樹脂に溶融すると共にその接着効果に悪影響を及ぼさない熱可塑性樹脂で形成されているから、バインダ樹脂として必要な接着強度が充分に確保される。   Further, since the mesh member 23 is formed of a thermoplastic resin that melts into the binder resin in the process of heating the binder resin to the curing temperature and does not adversely affect the adhesion effect thereof, the adhesive strength necessary for the binder resin can be obtained. Sufficiently secured.

(第2実施形態)
次に、本発明の第2実施形態について、図4(a)、(b)に基づき説明する。図4(a)は本実施形態の異方性導電接着シートの内部構成をバインダ樹脂層を透過して示した斜視図で、図4(b)はその模式的B−B線断面図である。なお、上記第1実施形態と同一の構成要素については同一の符号を付して、その説明を省略する。
(Second Embodiment)
Next, 2nd Embodiment of this invention is described based on Fig.4 (a), (b). FIG. 4A is a perspective view showing the internal configuration of the anisotropic conductive adhesive sheet of the present embodiment through a binder resin layer, and FIG. 4B is a schematic cross-sectional view taken along line BB. . In addition, the same code | symbol is attached | subjected about the component same as the said 1st Embodiment, and the description is abbreviate | omitted.

本実施形態の異方性導電接着シートは、ベースシート1の片側表面に、2層構造の異方性導電接着材7が形成されてなる。異方性導電接着材7は、粒子移動規制部材としての制動層71に導電接着層72が積層された2層構造に構成され、導電接着層72は、熱硬化性樹脂からなるバインダ樹脂721中に導電性粒子722が略均一に分散保持されてなる。   The anisotropic conductive adhesive sheet of this embodiment is formed by forming an anisotropic conductive adhesive 7 having a two-layer structure on one side surface of a base sheet 1. The anisotropic conductive adhesive 7 has a two-layer structure in which a conductive adhesive layer 72 is laminated on a braking layer 71 as a particle movement regulating member, and the conductive adhesive layer 72 is in a binder resin 721 made of a thermosetting resin. The conductive particles 722 are dispersed and held substantially uniformly.

制動層71は、上記第1実施形態のメッシュ部材23と同様に、バインダ樹脂層の熱硬化性樹脂材料が軟化して流動性を示す温度より高い温度で、且つ前記熱硬化性樹脂材料の硬化温度よりも低い温度の範囲に融点を有する樹脂材料であって、バインダ樹脂721がその硬化温度まで加熱される過程でバインダ樹脂721に溶融すると共にその接着保持効能に悪影響を及ぼさない熱可塑性樹脂を用いて形成され、その導電接着層72に接する表面は、断面が三角形の複数の突条711が平行に並設されてなる凹凸面に形成されている。この場合、突条711の並設ピッチp3 は、導電性粒子722の平均粒径よりも大きく、導通接続すべき接続端子の並設ピッチよりも小さい範囲に設定される。   As with the mesh member 23 of the first embodiment, the braking layer 71 is at a temperature higher than the temperature at which the thermosetting resin material of the binder resin layer softens and exhibits fluidity, and the thermosetting resin material is cured. A resin material having a melting point in a temperature range lower than the temperature, and a thermoplastic resin that melts into the binder resin 721 while the binder resin 721 is heated up to its curing temperature and does not adversely affect its adhesion holding effect. The surface that is formed using and in contact with the conductive adhesive layer 72 is formed as an uneven surface in which a plurality of protrusions 711 having a triangular cross section are arranged in parallel. In this case, the juxtaposed pitch p3 of the protrusions 711 is set in a range larger than the average particle diameter of the conductive particles 722 and smaller than the juxtaposition pitch of connection terminals to be electrically connected.

このように、異方性導電接着材7を粒子移動規制部材としての制動層71と導電接着層72との2層構造とすることにより、粒子移動規制部材を備えた本発明に係わる異方性導電接着材7を容易に製造することができる。すなわち、ベースシート1上に制動層71を所定の形状に例えばインジェクション法等により形成し、その上に、導電接着層72をロールコート法等により積層することによって、異方性導電接着材7が容易に得られる。   As described above, the anisotropic conductive adhesive 7 has a two-layer structure of the braking layer 71 and the conductive adhesive layer 72 as a particle movement restricting member, whereby the anisotropy according to the present invention including the particle movement restricting member is provided. The conductive adhesive 7 can be easily manufactured. That is, the anisotropic conductive adhesive 7 is formed by forming the braking layer 71 on the base sheet 1 in a predetermined shape by, for example, the injection method and laminating the conductive adhesive layer 72 thereon by the roll coating method or the like. Easy to get.

本実施形態の異方性導電接着シートを熱圧着接合工程において用いる際は、突条711の延在方向を接続すべき接続端子の延在方向に平行に揃えて、異方性導電接着材7を一方の接続端子アレイ上に載置する。   When the anisotropic conductive adhesive sheet of this embodiment is used in the thermocompression bonding process, the anisotropic conductive adhesive 7 is aligned with the extending direction of the protrusions 711 parallel to the extending direction of the connection terminals to be connected. Is placed on one of the connection terminal arrays.

載置された異方性導電接着材7を熱圧着ツールにより加熱しつつ加圧すると、まず、導電性粒子722が制動層71における隣設突条711、711間の溝712内に進入する。溝712内に進入した導電性粒子722は、突条711の延在方向への移動は規制されないが、延在方向と直角方向つまり、接続端子の並設(アレイ)方向への移動は規制される。   When the placed anisotropic conductive adhesive 7 is pressed while being heated by a thermocompression bonding tool, the conductive particles 722 first enter the grooves 712 between the adjacent protrusions 711 and 711 in the braking layer 71. The conductive particles 722 entering the grooves 712 are not restricted from moving in the extending direction of the protrusions 711, but are restricted from moving in the direction perpendicular to the extending direction, that is, in the direction in which the connection terminals are arranged (array). The

大部分の導電性粒子722が溝712内に進入した状態で、更に熱圧着ツールにより異方性導電接着材7が加熱されつつ加圧されることにより、制動層71がバインダ樹脂721中に溶融し、この後、制動層材料の熱可塑性樹脂が溶融したバインダ樹脂721が硬化する。この硬化状態においては、導電性粒子722が移動を規制された突条711の並設方向(接続端子のアレイ方向)に対し略均等に分布している。   In a state where most of the conductive particles 722 have entered the groove 712, the anisotropic conductive adhesive 7 is further heated and pressed by a thermocompression bonding tool, so that the braking layer 71 is melted in the binder resin 721. Thereafter, the binder resin 721 in which the thermoplastic resin of the braking layer material is melted is cured. In this cured state, the conductive particles 722 are distributed substantially uniformly with respect to the juxtaposed direction of the protrusions 711 whose movement is restricted (array direction of the connection terminals).

これにより、導通接続すべき対応する接続端子同士が必要で充分な数量の導電性粒子を挟圧保持した状態で確実に導通接続され、且つ、隣り合う接続端子同士の絶縁性が確保される。   Accordingly, the corresponding connection terminals to be conductively connected are necessary and are securely connected in a state where a sufficient number of conductive particles are held and held, and insulation between adjacent connection terminals is ensured.

(第3実施形態)
次に、本発明の第3実施形態について、図5(a)、(b)に基づき説明する。図5(a)は本実施形態の異方性導電接着シートの内部構成をバインダ樹脂層を透過して示した斜視図で、図5(b)はその模式的B−B線断面図である。なお、上記第1実施形態と同一の構成要素については同一の符号を付して、その説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described based on FIGS. 5 (a) and 5 (b). FIG. 5A is a perspective view showing the internal configuration of the anisotropic conductive adhesive sheet of the present embodiment through a binder resin layer, and FIG. 5B is a schematic cross-sectional view taken along line BB. . In addition, the same code | symbol is attached | subjected about the component same as the said 1st Embodiment, and the description is abbreviate | omitted.

第3実施形態としての異方性導電接着材8は、導電性粒子の移動を規制するための複数の貫通穴811が厚さ方向に所定の配置で穿設された制動層81に、バインダ樹脂821中に導電性粒子822が均一に分散保持されてなる上記第2実施形態の導電接着層72と同じ構成の導電接着層82を積層したものである。   An anisotropic conductive adhesive 8 as a third embodiment includes a binder resin on a braking layer 81 in which a plurality of through holes 811 for restricting the movement of conductive particles are formed in a predetermined arrangement in the thickness direction. A conductive adhesive layer 82 having the same structure as the conductive adhesive layer 72 of the second embodiment, in which conductive particles 822 are uniformly dispersed and held in 821, is laminated.

制動層81は、第2実施形態の制動層71と同様に、バインダ樹脂層の熱硬化性樹脂材料が軟化して流動性を示す温度より高い温度で、且つ前記熱硬化性樹脂材料の硬化温度よりも低い温度の範囲に融点を有する樹脂材料であって、導電接着層82のバインダ樹脂821が硬化温度まで加熱される過程でバインダ樹脂821に溶融すると共にその接着保持効能に悪影響を及ぼさない熱可塑性樹脂を用いて形成されている。   Like the braking layer 71 of the second embodiment, the braking layer 81 has a temperature higher than the temperature at which the thermosetting resin material of the binder resin layer softens and exhibits fluidity, and the curing temperature of the thermosetting resin material. A resin material having a melting point in a lower temperature range, and the binder resin 821 of the conductive adhesive layer 82 melts into the binder resin 821 in the process of being heated to the curing temperature and does not adversely affect the adhesion holding effect. It is formed using a plastic resin.

貫通穴811は、マトリクス配列で穿設され、その少なくとも何れか一方の配設ピッチp4 は、導通接続すべき接続端子のピッチと同じ寸法に設定されることが好ましく、また、その内径Dは、導電性粒子822の平均粒径dに対して
3d≦D≦5d
程度に設定されることが好ましい。
The through holes 811 are formed in a matrix arrangement, and at least one of the arrangement pitches p4 is preferably set to the same dimension as the pitch of the connection terminals to be conductively connected, and the inner diameter D is For the average particle diameter d of the conductive particles 822
3d ≦ D ≦ 5d
It is preferable to set the degree.

このように構成される本実施形態の異方性導電接着材8は、制動層81と導電接着層82を個々にそれぞれに適した方法で製造しておき、出来上がった制動層81に出来上がった導電接着層82を貼着することにより、容易に得ることができる。   In the anisotropic conductive adhesive material 8 of this embodiment configured as described above, the braking layer 81 and the conductive adhesive layer 82 are individually manufactured by a method suitable for each, and the completed conductive layer 8 is formed into a conductive layer. By attaching the adhesive layer 82, it can be easily obtained.

本実施形態の異方性導電接着材8を熱圧着接合工程において用いる際は、接合すべき接続端子アレイのピッチと同じ寸法に設定したピッチp4 で並ぶ貫通穴811の列が対応する接続端子に適正に重なるように位置を合わせて異方性導電接着材8を載置する。   When the anisotropic conductive adhesive material 8 of this embodiment is used in the thermocompression bonding process, the row of through holes 811 arranged at a pitch p4 set to the same dimension as the pitch of the connection terminal array to be joined is the corresponding connection terminal. The anisotropic conductive adhesive 8 is placed so as to be properly aligned.

載置された異方性導電接着材8を熱圧着ツールにより加熱しつつ加圧すると、各導電性粒子822がそれぞれに近い貫通穴811内に進入する。大部分の導電性粒子822が貫通穴811内に進入した状態で、更に熱圧着ツールにより加熱されつつ加圧されることにより、制動層81がバインダ樹脂821中に溶融し、この後、制動層材料が溶融したバインダ樹脂821が硬化する。この硬化状態においては、貫通穴811により追従移動を規制された大部分の導電性粒子822が対向する接続端子間に挟圧保持されている。これにより、接続すべき対応する接続端子同士が必要で充分な数量の導電性粒子を挟圧保持した状態で確実に導通接続され、且つ、隣り合う接続端子同士の絶縁性が確保される。   When the placed anisotropic conductive adhesive 8 is pressed while being heated by a thermocompression bonding tool, each conductive particle 822 enters into a through hole 811 close to each other. In a state where most of the conductive particles 822 have entered the through hole 811, the brake layer 81 is melted in the binder resin 821 by being further pressurized while being heated by the thermocompression bonding tool. The binder resin 821 in which the material is melted is cured. In this cured state, most of the conductive particles 822 whose follow-up movement is restricted by the through hole 811 are held between the opposing connection terminals. As a result, the corresponding connection terminals to be connected to each other are securely connected in a state in which a sufficient amount of conductive particles are necessary and held, and insulation between adjacent connection terminals is ensured.

なお、本発明は、上記実施形態に限定されるものではない。
例えば、図1に示した第1実施形態ではメッシュ部材23の網目ピッチp1 を、図5に示した第3実施形態では貫通穴811の配設ピッチp4 を、それぞれ、導通接続すべき接続端子ピッチと略同じ寸法に設定したが、これに限らず、上記各ピッチp1 、p4 は接続端子ピッチよりも小さく設定することも可能である。これにより、圧延されるバインダ樹脂に追従する導電性粒子の移動を規制する制動効果が増し、硬化したバインダ樹中に保持される導電性粒子の分布がより均等化されるため、異方性導電接着材を導通接合部に載置する際の接続端子列に対する位置合わせにおいて、許容幅を大きく見込むことができ、導通接合作業が容易になる。
The present invention is not limited to the above embodiment.
For example, in the first embodiment shown in FIG. 1, the mesh pitch p1 of the mesh member 23 is set, and in the third embodiment shown in FIG. 5, the arrangement pitch p4 of the through holes 811 is set to the connection terminal pitch to be conductively connected. The pitches p1 and p4 can be set smaller than the connection terminal pitch. This increases the braking effect that restricts the movement of the conductive particles that follow the rolled binder resin, and the distribution of the conductive particles held in the hardened binder tree is made more uniform. In positioning with respect to the connection terminal row when the adhesive is placed on the conductive bonding portion, a large allowable width can be expected, and the conductive bonding work is facilitated.

また、上記第1実施形態においては、本発明の異方性導電接着材がドライバチップと液晶表示パネルのガラス基板に配設された駆動回路の配線端子との導通接合に採用されているが、本発明の異方性導電接着材は、フレキシブル配線基板等の配線基板と駆動回路基板の配線端子とのように配線基板同士の導通接合にも好適に用いることができる。配線基板同士の導通接合には、図4に示した第2実施形態としての異方性導電接着材7のように導電性粒子の追従移動を一方向(溝711の並設方向)において規制する異方性導電接着材がより好適である。   In the first embodiment, the anisotropic conductive adhesive of the present invention is used for conductive bonding between the driver chip and the wiring terminal of the drive circuit disposed on the glass substrate of the liquid crystal display panel. The anisotropic conductive adhesive of the present invention can also be suitably used for conductive bonding between wiring boards such as a wiring board such as a flexible wiring board and a wiring terminal of a drive circuit board. For the conductive bonding between the wiring boards, the follow-up movement of the conductive particles is restricted in one direction (the direction in which the grooves 711 are arranged) as in the anisotropic conductive adhesive 7 as the second embodiment shown in FIG. An anisotropic conductive adhesive is more preferable.

更に、図1に示す第1実施形態と図5に示す第3実施形態の折衷例として、貫通穴811が設けられた制動層81を図1のメッシュ部材24のようにバインダ樹脂821中に一体に包含させてもよい。   Furthermore, as an example of compromise between the first embodiment shown in FIG. 1 and the third embodiment shown in FIG. 5, a braking layer 81 provided with a through hole 811 is integrated into a binder resin 821 like the mesh member 24 in FIG. 1. May be included.

加えて、第3実施形態において制動層81に設ける穴は、貫通穴でなく、導電性粒子の追従移動を有効に規制可能な深さを備えた凹部であってもよい。   In addition, the hole provided in the braking layer 81 in the third embodiment may not be a through hole but a recess having a depth that can effectively restrict the follow-up movement of the conductive particles.

(a)は本発明の第1実施形態としての異方性導電接着シートを示す模式的断面図で、(b)はその要部構成を透視して示す平面図である。(A) is typical sectional drawing which shows the anisotropic conductive adhesive sheet as 1st Embodiment of this invention, (b) is a top view which sees through and shows the principal part structure. 上記第1実施形態の異方性導電接着材を用いた熱圧着工程を示す斜視図である。It is a perspective view which shows the thermocompression bonding process using the anisotropic conductive adhesive material of the said 1st Embodiment. (a)〜(c)は、それぞれ、上記熱圧着工程における熱圧着動作を段階順に示した各段階毎模式的断面図である。(A)-(c) is each typical sectional drawing for each step which showed the thermocompression bonding operation | movement in the said thermocompression bonding process in order of a step, respectively. (a)は本発明の第2実施形態としての異方性導電接着シートを示す斜視図、(b)はそのB−B線断面図である。(A) is a perspective view which shows the anisotropic conductive adhesive sheet as 2nd Embodiment of this invention, (b) is the BB sectional drawing. (a)は本発明の第3実施形態としての異方性導電接着シートを示す斜視図、(b)はそのB−B線断面図である。(A) is a perspective view which shows the anisotropic conductive adhesive sheet as 3rd Embodiment of this invention, (b) is the BB sectional drawing.

符号の説明Explanation of symbols

1 ベースシート
2 異方性導電接着材
21 バインダ樹脂層
22 導電性粒子
23 メッシュ部材
3 テーブル
4 熱圧着ツール
41 ヒータ
42 押圧ヘッド
5 液晶表示パネル
51、52 ガラス基板
53 配線回路
531 配線端子
6 ドライバチップ
61 端子電極
7、 異方性導電接着材
71 制動層
711 突条
712 溝
72 導電接着層
8 異方性導電接着材
81 制動層
811 貫通穴
82 導電接着層
DESCRIPTION OF SYMBOLS 1 Base sheet 2 Anisotropic conductive adhesive 21 Binder resin layer 22 Conductive particle 23 Mesh member 3 Table 4 Thermocompression bonding tool 41 Heater 42 Press head 5 Liquid crystal display panel 51, 52 Glass substrate 53 Wiring circuit 531 Wiring terminal 6 Driver chip 61 Terminal electrode 7, anisotropic conductive adhesive 71 braking layer 711 ridge 712 groove 72 conductive adhesive layer 8 anisotropic conductive adhesive 81 braking layer 811 through hole 82 conductive adhesive layer

Claims (4)

熱硬化性樹脂材料からなるバインダ樹脂層と、
前記バインダ樹脂層中に分散保持された複数の導電性粒子と、
前記バインダ樹脂層の前記熱硬化性樹脂材料が軟化して流動性を示す温度より高い温度で、且つ前記熱硬化性樹脂材料の硬化温度よりも低い温度の融点を有する材料で形成され、前記バインダ樹脂層が軟化して流動性を示す温度に加熱されつつ加圧されることによる前記バインダ樹脂層の流動に伴う前記導電性粒子の移動を規制する粒子移動規制部材とを、有することを特徴とする異方性導電接着材。
A binder resin layer made of a thermosetting resin material;
A plurality of conductive particles dispersed and held in the binder resin layer;
The binder resin layer is formed of a material having a melting point that is higher than the temperature at which the thermosetting resin material is softened and exhibits fluidity and lower than the curing temperature of the thermosetting resin material, A particle movement regulating member that regulates the movement of the conductive particles accompanying the flow of the binder resin layer by being pressurized while being heated to a temperature at which the resin layer is softened and exhibits fluidity, An anisotropic conductive adhesive.
前記粒子移動規制部材は、熱可塑性樹脂材料からなる糸を編んで形成され、前記バインダ樹脂層に包含された網目クロス材であることを特徴とする請求項1に記載の異方性導電接着材。   2. The anisotropic conductive adhesive according to claim 1, wherein the particle movement regulating member is a mesh cloth material formed by knitting a yarn made of a thermoplastic resin material and included in the binder resin layer. . 前記粒子移動規制部材は、前記導電性粒子を保持するバインダ樹脂層の一方の表面に重畳設置され、前記バインダ樹脂層に接する表面が断面が三角形をなす複数の突条を平行に並設してなる凹凸面に形成されている制動層であることを特徴とする請求項1に記載の異方性導電接着材。   The particle movement restricting member is arranged to overlap with one surface of the binder resin layer holding the conductive particles, and a plurality of protrusions having a triangular cross section in parallel with the surface in contact with the binder resin layer are arranged in parallel. The anisotropic conductive adhesive according to claim 1, wherein the anisotropic conductive adhesive is a braking layer formed on the uneven surface. 前記粒子移動規制部材は、前記導電性粒子を保持するバインダ樹脂層の一方の表面に重畳設置され、複数の穴が所定の配置で厚さ方向に穿設されている制動層であることを特徴とする請求項1に記載の異方性導電接着材。   The particle movement restricting member is a braking layer that is superimposed on one surface of a binder resin layer that holds the conductive particles, and a plurality of holes are formed in a predetermined arrangement in the thickness direction. The anisotropic conductive adhesive according to claim 1.
JP2007090000A 2007-03-30 2007-03-30 Anisotropic electroconductive adhesive material Pending JP2008248044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090000A JP2008248044A (en) 2007-03-30 2007-03-30 Anisotropic electroconductive adhesive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090000A JP2008248044A (en) 2007-03-30 2007-03-30 Anisotropic electroconductive adhesive material

Publications (2)

Publication Number Publication Date
JP2008248044A true JP2008248044A (en) 2008-10-16
JP2008248044A5 JP2008248044A5 (en) 2010-03-25

Family

ID=39973383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090000A Pending JP2008248044A (en) 2007-03-30 2007-03-30 Anisotropic electroconductive adhesive material

Country Status (1)

Country Link
JP (1) JP2008248044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974147B1 (en) * 2015-07-31 2016-08-23 株式会社フジクラ Wiring assembly, structure with conductor layer, and touch sensor
CN110752194A (en) * 2018-07-23 2020-02-04 美科米尚技术有限公司 Micro-adhesive structures and methods of forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974147B1 (en) * 2015-07-31 2016-08-23 株式会社フジクラ Wiring assembly, structure with conductor layer, and touch sensor
JP2017033279A (en) * 2015-07-31 2017-02-09 株式会社フジクラ Wiring body assembly, structure with conductor layer, and touch sensor
TWI612452B (en) * 2015-07-31 2018-01-21 Fujikura Ltd Wiring body combination, structure having a conductor layer, and touch detector
US9983448B2 (en) 2015-07-31 2018-05-29 Fujikura Ltd. Wiring body assembly, structure with conductor layer, and touch sensor
CN110752194A (en) * 2018-07-23 2020-02-04 美科米尚技术有限公司 Micro-adhesive structures and methods of forming the same
CN110752194B (en) * 2018-07-23 2023-11-28 美科米尚技术有限公司 Micro-adhesive structure and method of forming the same

Similar Documents

Publication Publication Date Title
JP4513024B2 (en) Multilayer anisotropic conductive film
TW201635648A (en) Anisotropic conductive film and connection structure
TW201717216A (en) Anisotropic conductive film and connection structure
KR102639862B1 (en) Connection body and connection body production method
DE112015002027T5 (en) Method for bonding flexible printed circuit boards
JP2009523306A (en) Circuit board connection structure using anisotropic conductive film, adhesion method, and adhesion state evaluation method using the same
EP2248400A2 (en) Method of connection of flexible printed circuit board and electronic device obtained thereby
JP6187918B2 (en) Circuit member connection structure, connection method, and connection material
CN102543894A (en) Electrical connection pad structure and integrated circuit comprising a plurality of electrical connection pad structures
JP2008248044A (en) Anisotropic electroconductive adhesive material
KR100878673B1 (en) Anisotropic Conductive Film and Manufacturing Method Thereof
JP4887751B2 (en) Thermocompression bonding equipment for flexible wiring boards
WO2010067283A1 (en) Textile carrier for electrically addressing an electronic component in an electronic textile
JP7369756B2 (en) Connection body and method for manufacturing the connection body
JP5281762B2 (en) Electrode bonding structure
CN211980057U (en) Binding structure and display panel
DE102017129541B4 (en) Electronic device and display device therewith
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JPH087957A (en) Connecting method of circuit board and connecting structure body, and adhesive film using for it
KR101008824B1 (en) Semiconductor device having electrode attached polymer particle and Semiconductor package using the same
CN210692516U (en) Integrated device
CN219999665U (en) Flexible circuit board with support body
KR100646068B1 (en) Anisotropic conductive film
JP5556424B2 (en) Wiring board and connection method
CN210779064U (en) Integrated device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030