JP2008247700A - Water-repellent, oil-repellent contamination preventive antireflection film and method for manufacturing the same, and lens, glass sheet, glass, optical equipment, device using solar energy, and display - Google Patents

Water-repellent, oil-repellent contamination preventive antireflection film and method for manufacturing the same, and lens, glass sheet, glass, optical equipment, device using solar energy, and display Download PDF

Info

Publication number
JP2008247700A
JP2008247700A JP2007093676A JP2007093676A JP2008247700A JP 2008247700 A JP2008247700 A JP 2008247700A JP 2007093676 A JP2007093676 A JP 2007093676A JP 2007093676 A JP2007093676 A JP 2007093676A JP 2008247700 A JP2008247700 A JP 2008247700A
Authority
JP
Japan
Prior art keywords
water
oil
repellent
antifouling
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093676A
Other languages
Japanese (ja)
Other versions
JP5347125B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2007093676A priority Critical patent/JP5347125B2/en
Priority to PCT/JP2008/056372 priority patent/WO2008120782A1/en
Publication of JP2008247700A publication Critical patent/JP2008247700A/en
Application granted granted Critical
Publication of JP5347125B2 publication Critical patent/JP5347125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-repellent, oil-repellent contamination preventive antireflection film having water-repellent, oil-repellent and contamination preventive properties, water drop release property and durability, and a method for manufacturing the film, to provide a lens, a glass sheet and glass having the water-repellent, oil-repellent contamination preventive antireflection film formed thereon, and to provide optical equipment, a device using solar energy and a display using them. <P>SOLUTION: The water-repellent, oil-repellent contamination preventive antireflection film 12 includes: water-repellent, oil-repellent contamination preventive transparent fine particles 5 melt sticking to the surface of a planar base 1; and a coating 11 of a water-repellent, oil-repellent contamination preventive substance covering a part of the base 1 where the transparent fine particles 1a are not melt sticking. The transparent fine particles 5 are melt sticking in a part of their surfaces to the surface of the base 1, while the other exposed part is covered with the water-repellent, oil-repellent contamination preventive coating 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高耐久性で且つ撥水撥油防汚性の反射防止膜およびその製造方法、撥水撥油防汚性の反射防止膜が表面に形成されたレンズやガラス板、ガラス、さらにそれらが装着された光学装置、太陽エネルギー利用装置、およびディスプレイに関する。 The present invention relates to a highly durable, water- and oil-repellent antifouling antireflection film and a method for producing the same, a lens, a glass plate, glass having a water-repellent, oil-repellent and antifouling antireflection film formed on the surface, glass, The present invention relates to an optical device, a solar energy utilization device, and a display on which they are mounted.

フッ化炭素基を有するクロロシラン化合物の溶液をガラス基材の表面に接触させると、表面反応により単分子膜状の撥水性被膜を形成できることはすでによく知られている(例えば、特許文献1参照)。
このような撥水性被膜の製造原理は、ガラス基材表面の水酸基(シラノール基)等の活性水素とクロロシリル基との脱塩酸反応によりシロキサン結合を形成することにある。
It is already well known that when a solution of a chlorosilane compound having a fluorocarbon group is brought into contact with the surface of a glass substrate, a monomolecular film-like water-repellent coating can be formed by a surface reaction (see, for example, Patent Document 1). .
The principle of production of such a water-repellent coating is to form a siloxane bond by a dehydrochlorination reaction between active hydrogen such as a hydroxyl group (silanol group) on the surface of the glass substrate and a chlorosilyl group.

特開平4−132637号公報JP-A-4-132737

しかしながら、従来の化学吸着膜は吸着剤と平坦な基材表面との化学結合のみを用いているため、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるためには撥水撥油防汚性や離水性が乏しいという課題があった。また、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。 However, since the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the flat substrate surface, the contact angle of the water droplet is only about 120 degrees, and the water droplets and dirt are naturally removed. Has the problem of poor water and oil repellency and antifouling properties and water separation. Moreover, the subject that durability, such as abrasion resistance and a weather resistance, was also scarce occurred.

本発明は、撥水撥油防汚機能が要求される光学装置のレンズや太陽電池や太陽熱温水器等の太陽エネルギー利用装置の表面ガラス板やCRTやPDP、LCD等、ディスプレイのフェイスプレート用のガラスにおいて、反射防止機能を付与するとともに、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性の向上を目的とする。 The present invention provides a lens for an optical device that requires a water / oil repellent / antifouling function, a surface glass plate of a solar energy utilization device such as a solar cell or a solar water heater, or a display face plate such as a CRT, PDP, or LCD. The purpose of the glass is to provide an antireflection function and to improve durability such as wear resistance and weather resistance, water drop water separation (also referred to as water slidability), oil repellency, and antifouling properties.

前記課題を解決するための手段として提供される第1の発明に係る撥水撥油防汚性反射防止膜は、ガラス基材の表面に融着した撥水撥油防汚性の透明微粒子を含む。
ここで「融着」とは、ガラス基材および透明微粒子の一部が共融により接着された状態をいう。
The water / oil repellent / antifouling antireflective coating according to the first invention provided as means for solving the above-mentioned problems comprises water / oil repellent / antifouling transparent fine particles fused to the surface of a glass substrate. Including.
Here, “fusion” refers to a state where a glass substrate and a part of transparent fine particles are bonded together by eutectic fusion.

第1の発明に係る撥水撥油防汚性反射防止膜において、前記透明微粒子として、粒径の異なるものが混合して用いられていることが好ましい。 In the water / oil repellent / antifouling antireflection film according to the first invention, it is preferable that the transparent fine particles having different particle diameters are mixed and used.

第1の発明に係る撥水撥油防汚性反射防止膜において、撥水撥油防汚性被膜が少なくとも前記透明微粒子の表面に共有結合していることが好ましい。 In the water / oil repellent / antifouling antireflection film according to the first aspect of the invention, it is preferable that the water / oil repellent / antifouling coating is covalently bonded to at least the surface of the transparent fine particles.

第1の発明に係る撥水撥油防汚性反射防止膜において、前記撥水撥油防汚性被膜が−CF基を含むことが好ましい。 In the water / oil repellent / antifouling antireflection film according to the first aspect of the invention, it is preferable that the water / oil repellent / antifouling coating contains a —CF 3 group.

第1の発明に係る撥水撥油防汚性反射防止膜において、前記透明微粒子が透光性でかつ前記ガラス基材より軟化点が高いシリカ、アルミナ、およびジルコニアのいずれかであることが好ましい。 In the water- and oil-repellent and antifouling antireflection film according to the first invention, the transparent fine particles are preferably translucent and any one of silica, alumina, and zirconia having a higher softening point than the glass substrate. .

第1の発明に係る撥水撥油防汚性反射防止膜において、前記透明微粒子の粒径が400nm未満であることが好ましい。 In the water / oil repellent / antifouling antireflection film according to the first invention, the transparent fine particles preferably have a particle size of less than 400 nm.

第1の発明に係る撥水撥油防汚性反射防止膜において、水に対する接触角が140度以上であることが好ましい。 In the water / oil repellent / antifouling antireflection film according to the first aspect of the invention, the contact angle with respect to water is preferably 140 degrees or more.

第1の発明に係る撥水撥油防汚性反射防止膜において、前記透明微粒子は、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を介して前記ガラス基材の表面に融着されていてもよい。 In the water / oil repellent / antifouling antireflection film according to the first aspect of the invention, the transparent fine particles are formed through the metal oxide transparent film fused to the transparent fine particles at a temperature lower than that of the glass substrate. It may be fused to the surface of the substrate.

第2の発明に係るレンズは、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されている。
第3の発明に係るガラス板は、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されている。
第4の発明に係るガラスは、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されている。
第5の発明に係る光学装置は、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されているレンズを装着を装着している。
第6の発明に係る太陽エネルギー利用装置は、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されているガラス板を装着している。
第7の発明に係るディスプレイは、第1の発明に係る撥水撥油防汚性反射防止膜が表面に形成されているガラスを装着している。
The lens according to the second invention has the water / oil repellent antifouling antireflection film according to the first invention formed on the surface thereof.
The glass plate according to the third invention has the water / oil repellent / antifouling antireflection film according to the first invention formed on the surface thereof.
The glass according to the fourth invention has the water / oil repellent / antifouling antireflection film according to the first invention formed on the surface thereof.
An optical device according to a fifth aspect of the present invention is equipped with a lens on which the water / oil / oil repellent antifouling antireflection film according to the first aspect is formed.
A solar energy utilization apparatus according to a sixth aspect is equipped with a glass plate on which the water / oil / oil repellent / antifouling antireflection film according to the first aspect is formed.
A display according to a seventh aspect is equipped with a glass on which the water / oil / oil repellent / antifouling antireflection film according to the first aspect is formed.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法は、第1の官能基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液をガラス基材に接触させ、前記第1のシラン化合物のシリル基と前記ガラス基材の表面の活性水素基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた反応性ガラス基材を製造する工程Aと、前記第1の官能基と反応して共有結合を形成する第2の官能基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液中に透明微粒子を分散し、前記第2のシラン化合物のシリル基と前記透明微粒子の表面の活性水素基との反応により前記第2のシラン化合物の単分子膜で表面が覆われた反応性透明微粒子を製造する工程Bと、
前記反応性ガラス基材と前記反応性透明微粒子とを接触させた状態で加熱して前記第1の官能基と前記第2の官能基とを反応させ、形成した共有結合を介して前記透明微粒子を表面に結合させたガラス基材を製造する工程Cと、前記工程Cで前記透明微粒子を表面に結合させたガラス基材を、酸素を含む雰囲気中で加熱処理し、前記ガラス基材の表面に前記透明微粒子を融着させ、前記融着した透明微粒子で表面が覆われたガラス基材を製造する工程Dと、フッ化炭素基を含む第3のシラン化合物と非水系の有機溶媒とを含む第3の化学吸着液を前記融着した透明微粒子で表面が覆われたガラス基材に接触させて、前記第3のシラン化合物のシリル基と前記融着した透明微粒子で表面が覆われたガラス基材の表面の活性水素基との反応により前記フッ化炭素基よりなる撥水撥油防汚性被膜を形成する工程Eとを含む。
なお、「活性水素基」とは、縮合反応によりシリル基と結合を形成する任意の官能基をいう。
According to an eighth aspect of the present invention, there is provided a method for producing a water / oil / oil repellent antifouling antireflective film, wherein a first chemical adsorption solution containing a first silane compound containing a first functional group and a non-aqueous organic solvent is glass. A reactive glass group that is brought into contact with a substrate and whose surface is covered with a monomolecular film of the first silane compound by a reaction between the silyl group of the first silane compound and the active hydrogen group on the surface of the glass substrate. A second chemisorbed solution comprising a step A for producing a material, a second silane compound containing a second functional group that reacts with the first functional group to form a covalent bond, and a non-aqueous organic solvent Reactive transparent in which transparent fine particles are dispersed therein and the surface is covered with a monomolecular film of the second silane compound by the reaction of the silyl group of the second silane compound and the active hydrogen group on the surface of the transparent fine particle Step B for producing fine particles;
Heating the reactive glass substrate and the reactive transparent fine particles in contact with each other to react the first functional group and the second functional group, and forming the transparent fine particles through the formed covalent bond The glass substrate having the surface bonded to the surface C, and the glass substrate having the transparent fine particles bonded to the surface in the step C are heat-treated in an atmosphere containing oxygen, and the surface of the glass substrate A step D for producing a glass substrate having a surface covered with the fused transparent fine particles, a third silane compound containing a fluorocarbon group, and a non-aqueous organic solvent. The third chemical adsorption liquid containing was brought into contact with the glass substrate whose surface was covered with the fused transparent fine particles, and the surface was covered with the fused silyl groups of the third silane compound and the fused transparent fine particles. By reaction with active hydrogen groups on the surface of glass substrate Serial and a step E of forming a water-repellent, oil-repellent, soil-resistant coating formed of fluorocarbon group.
The “active hydrogen group” refers to any functional group that forms a bond with a silyl group by a condensation reaction.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記第1および第2の官能基の一方がエポキシ基、他方がアミノ基またはイミノ基であってもよい。 In the method for producing a water / oil / oil repellent antifouling antireflection film according to the eighth invention, one of the first and second functional groups may be an epoxy group and the other may be an amino group or an imino group.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記工程A、B、およびEのいずれか1、2、または3において、前記シリル基と前記活性水素基との反応後、未反応物を洗浄除去する。
なお、「前記シリル基と前記活性水素基との反応」とは、工程Aにおいては第1のシラン化合物のシリル基とガラス基材の表面の活性水素基との反応を、工程Bにおいては第2のシラン化合物のシリル基と透明微粒子の表面の活性水素基との反応を、工程Eにおいては第3のシラン化合物のシリル基と融着した透明微粒子で表面が覆われたガラス基材の表面の活性水素基との反応をそれぞれ意味する。また、「未反応物」とは、工程Aにおいては未反応の第1のシラン化合物を、工程Bにおいては未反応の第2のシラン化合物を、工程Eにおいては未反応の第3のシラン化合物をそれぞれ意味する。
In the method for producing a water / oil repellent antifouling antireflective film according to the eighth invention, in any one of 1, 2 or 3 of the steps A, B and E, the silyl group and the active hydrogen group After the reaction, unreacted substances are removed by washing.
The “reaction between the silyl group and the active hydrogen group” refers to the reaction between the silyl group of the first silane compound and the active hydrogen group on the surface of the glass substrate in the step A, and the reaction in the step B. The surface of the glass substrate whose surface is covered with the transparent fine particles fused with the silyl group of the third silane compound in the step E in the reaction between the silyl group of the silane compound 2 and the active hydrogen group on the surface of the transparent fine particles. Means a reaction with an active hydrogen group. Further, the “unreacted substance” means an unreacted first silane compound in the step A, an unreacted second silane compound in the step B, and an unreacted third silane compound in the step E. Means each.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記工程Aの前に、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を前記ガラス基材の表面に形成する工程Fをさらに有していてもよい。
なお、本発明において、「金属」には、ホウ素(B)、ケイ素(Si)等のいわゆる半金属元素が含まれるものとする。
前記工程Fにおける前記透明被膜の形成にゾルゲル法を用いることが好ましい。
In the method for producing a water / oil / oil repellent antifouling antireflection film according to the eighth invention, before the step A, a transparent coating of metal oxide which is fused to the transparent fine particles at a temperature lower than that of the glass substrate. Step F may be further formed on the surface of the glass substrate.
In the present invention, “metal” includes so-called semi-metal elements such as boron (B) and silicon (Si).
It is preferable to use a sol-gel method for forming the transparent film in the step F.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液にそれぞれ含まれる前記第1、第2および第3のシラン化合物のいずれか1、2、または3はアルコキシシラン化合物であってもよい。
なお、「アルコキシシラン化合物」とは、シラン化合物のうち、一般式−SiOR(Rはアルキル基を表す)で表されるアルコキシシリル基を有するものをいう。
In the method for producing a water / oil repellent antifouling antireflection film according to the eighth invention, the first, second and third silanes contained in the first, second and third chemical adsorption liquids, respectively. Any one, two, or three of the compounds may be an alkoxysilane compound.
The “alkoxysilane compound” refers to a silane compound having an alkoxysilyl group represented by the general formula —SiOR (R represents an alkyl group).

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液にそれぞれ含まれる前記第1、第2および第3のシラン化合物のいずれか1、2、または3はハロシラン化合物であってもよい。
なお、「ハロシラン化合物」とは、シラン化合物のうち、一般式−SiX(Xは、塩素、臭素、ヨウ素のいずれかを表す)で表されるハロシリル基を有するものをいう。
In the method for producing a water / oil repellent antifouling antireflection film according to the eighth invention, the first, second and third silanes contained in the first, second and third chemical adsorption liquids, respectively. Any one, two, or three of the compounds may be halosilane compounds.
The “halosilane compound” refers to a silane compound having a halosilyl group represented by the general formula —SiX (X represents any one of chlorine, bromine, and iodine).

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を縮合触媒として含んでいてもよい。
この場合、さらに助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、およびオキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含むことが好ましい。
In the method for producing a water / oil / oil repellent / antifouling antireflection film according to the eighth invention, the first, second and third chemical adsorption liquids containing the alkoxysilane compound are further carboxylic acid 1 or 2 or more compounds selected from the group consisting of metal salts, carboxylate metal salts, carboxylate metal salt polymers, carboxylate metal salt chelates, titanate esters and titanate ester chelates may be included as a condensation catalyst. Good.
In this case, it is preferable that the cocatalyst further includes one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds.

第8の発明に係る撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒としてケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、およびオキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含んでいてもよい。 In the method for producing a water / oil / oil repellent / antifouling antireflection film according to the eighth invention, the first, second and third chemical adsorption liquids containing the alkoxysilane compound are ketimines as a condensation catalyst. One or more compounds selected from the group consisting of compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds may be further included.

請求項1〜8記載の撥水撥油防汚性反射防止膜、および請求項15〜24記載の撥水撥油防汚性反射防止膜の製造方法によれば、板状の基材の表面が撥水撥油防汚性の透明微粒子と撥水撥油防汚性物質の被膜で覆われているので、基材の表面に撥水撥油防汚性、水滴離水性、耐久性を賦与することができる。 According to the water- and oil-repellent and antifouling antireflection film according to claim 1 and the method for producing the water and oil repellent and antifouling antireflection film according to claims 15 to 24, the surface of the plate-like substrate Is covered with a coating of water- and oil-repellent antifouling transparent fine particles and a water-repellent oil-repellent antifouling substance, so that the surface of the base material is given water and oil repellent antifouling properties, water droplet separation and durability. can do.

請求項1〜8記載の撥水撥油防汚性反射防止膜、請求項9記載のレンズ、請求項10記載のガラス板、請求項11記載のガラス、請求項12記載の光学装置、請求項13記載の太陽エネルギー利用装置、請求項14記載のディスプレイ、および請求項15〜24記載の撥水撥油防汚性反射防止膜の製造方法においては、撥水撥油防汚性反射防止膜のガラス基材の表面が融着した撥水撥油防汚性の透明微粒子で覆われているので、撥水撥油防汚性反射防止膜が凹凸を有する複雑な表面形状を呈し、そのため、いわゆる「蓮の葉効果」により高い撥水撥油防汚性を有する。 The water / oil / oil repellent antifouling antireflection film according to claim 1, the lens according to claim 9, the glass plate according to claim 10, the glass according to claim 11, the optical device according to claim 12, 13. The solar energy utilization apparatus according to claim 13, the display according to claim 14, and the method for producing a water / oil / oil / repellency antifouling antireflection film according to claims 15 to 24, wherein Since the surface of the glass substrate is covered with the fused water- and oil-repellent and antifouling transparent fine particles, the water- and oil-repellent and antifouling antireflection film exhibits a complex surface shape with irregularities, and so High water and oil repellent antifouling property due to "lotus leaf effect".

特に請求項2記載の撥水撥油防汚性反射防止膜は、粒径の異なる透明微粒子が混合して用いられているので、撥水撥油防汚性反射防止膜の表面形状がフラクタル性を有し、撥水撥油防汚性を向上できる。 In particular, since the water / oil / oil / repellency / antifouling antireflection film according to claim 2 is used by mixing transparent fine particles having different particle diameters, the surface shape of the water / oil / oil / repellency / antifouling antireflection film is fractal. The water and oil repellency and antifouling properties can be improved.

請求項3記載の撥水撥油防汚性反射防止膜は、撥水撥油防汚性被膜が少なくとも透明微粒子の表面に共有結合しているので、その耐久性を向上できる。 The water / oil repellent / antifouling antireflective coating according to claim 3 can improve the durability since the water / oil repellent / antifouling coating is covalently bonded to at least the surface of the transparent fine particles.

請求項4記載の撥水撥油防汚性反射防止膜は、撥水撥油防汚性被膜が−CF基を含んでいるので、撥水撥油防汚性を向上できる。 The water / oil repellent / antifouling antireflection film according to claim 4 can improve the water / oil repellent / antifouling property since the water / oil repellent / antifouling coating film contains —CF 3 group.

請求項5記載の撥水撥油防汚性反射防止膜は、透明微粒子が透光性でかつガラス基材より軟化点が高いシリカ、アルミナ、あるいはジルコニアであるので、微粒子の形状を損なうことなくガラス基材の表面に融着できる。 The water / oil / oil repellent / antifouling antireflection film according to claim 5 is made of silica, alumina, or zirconia having transparent fine particles having a light-transmitting property and a softening point higher than that of the glass substrate, so that the shape of the fine particles is not impaired. Can be fused to the surface of the glass substrate.

請求項6記載の撥水撥油防汚性反射防止膜は、透明微粒子の粒径が可視光の波長より小さい400nm未満であるので、可視光の散乱が少なく、高い透光性を維持できる。 The water / oil / oil repellent / antifouling antireflective film according to claim 6 has a transparent particle size of less than 400 nm, which is smaller than the wavelength of visible light, and therefore can hardly scatter visible light and maintain high translucency.

請求項7記載の撥水撥油防汚性反射防止膜は、水に対する接触角が140度以上であるので、水滴の転落角が小さくなり、実質上水滴が付着しなくなる。 The water / oil / oil / repellency antifouling antireflection film according to claim 7 has a contact angle with respect to water of 140 ° or more, so that the drop angle of the water droplet becomes small and the water droplet does not substantially adhere.

請求項8記載の撥水撥油防汚性反射防止膜は、透明微粒子は、ガラス基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜を介してガラス基材の表面に融着されているので、融着時における透明微粒子の熱変形が抑制されている。 9. The water / oil / oil repellent antifouling antireflection film according to claim 8, wherein the transparent fine particles are adhered to the surface of the glass substrate through a transparent film of metal oxide which is fused to the transparent fine particles at a temperature lower than that of the glass substrate. Since it is fused, thermal deformation of the transparent fine particles at the time of fusion is suppressed.

請求項9記載のレンズ、請求項10記載のガラス板、請求項11記載のガラスにおいては、その表面が撥水撥油防汚性反射防止膜で覆われているので、表面に撥水撥油防汚性、水滴離水性、および耐久性を賦与することができる。 In the lens according to claim 9, the glass plate according to claim 10, and the glass according to claim 11, the surface is covered with a water-repellent / oil-repellent / antifouling antireflection film. It can impart antifouling properties, water droplet water separation and durability.

請求項12記載の光学装置においては、撥水撥油防汚性反射防止膜が表面に形成されているレンズを装着しているので、レンズに撥水撥油防汚性、水滴離水性、および耐久性を賦与することができる。その結果、光学装置のメンテナンス作業が軽減されるとともに、光学装置の寿命も延長することができる。 In the optical device according to claim 12, since the lens having the water / oil repellent / antifouling antireflective film formed thereon is mounted, the lens is provided with water / oil repellent / antifouling property, water-drop-off property, and Durability can be imparted. As a result, maintenance work of the optical device can be reduced and the life of the optical device can be extended.

請求項13記載の太陽エネルギー利用装置においては、撥水撥油防汚性反射防止膜が表面に形成されているガラス板を装着しているので、ガラス板に撥水撥油防汚性、水滴離水性、および耐久性を賦与することができる。その結果、太陽光の吸収効率が向上するとともにメンテナンス作業が軽減されし、太陽エネルギー利用装置の効率および稼働率が向上する。 In the solar energy utilization apparatus according to claim 13, since the glass plate having the water repellent / oil repellent / antifouling antireflection film formed thereon is mounted, the water / oil repellent / antifouling property, water droplets are attached to the glass plate. Water release and durability can be imparted. As a result, the absorption efficiency of sunlight is improved, the maintenance work is reduced, and the efficiency and operating rate of the solar energy utilization device are improved.

請求項14記載のディスプレイにおいては、撥水撥油防汚性反射防止膜が表面に形成されているガラスを装着しているので、ガラスに撥水撥油防汚性、水滴離水性、および耐久性を賦与することができる。その結果、ディスプレイで鮮明な画像を見ることができるとともに、ディスプレイのメンテナンス作業(フェイスプレートの清掃作業)を軽減することができる。 In the display according to claim 14, since the glass on which the water / oil repellent / antifouling antireflection film is formed is attached, the glass is provided with water / oil / oil repellent / antifouling property, water droplet repellent property, and durability. Sex can be imparted. As a result, a clear image can be seen on the display, and the maintenance work of the display (face plate cleaning work) can be reduced.

請求項15〜24記載の撥水撥油防汚性反射防止膜の製造方法では、第1の官能基と第2の官能基とを反応させ、形成した共有結合を介して透明微粒子を表面に結合させたガラス基材を製造し、次いでこれを加熱処理して、融着した透明微粒子で表面が覆われたガラス基材を製造し、その上に撥水撥油防汚性被膜を形成しているので、全表面にわたり実質的に均一に透明微粒子で覆われ、視認性、透明性、および耐久性に優れた撥水撥油防汚性反射防止膜を得ることができる。 In the method for producing a water / oil / oil repellent antifouling antireflection film according to claims 15 to 24, the first functional group and the second functional group are reacted to form transparent fine particles on the surface via the formed covalent bond. A bonded glass substrate is manufactured, and then this is heat-treated to produce a glass substrate whose surface is covered with fused transparent fine particles, on which a water and oil repellent and antifouling film is formed. Therefore, it is possible to obtain a water / oil repellent antifouling antireflection film which is substantially uniformly covered with transparent fine particles over the entire surface and is excellent in visibility, transparency and durability.

請求項16記載の撥水撥油防汚性反射防止膜の製造方法は、第1および第2の官能基の一方がエポキシ基、他方がアミノ基またはイミノ基であるので、工程Cにおいて、これらの官能基同士の反応により形成された共有結合を介してガラス基材と透明微粒子を強固に結合固定できる。 The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 16, wherein one of the first and second functional groups is an epoxy group and the other is an amino group or an imino group. The glass substrate and the transparent fine particles can be firmly bonded and fixed through the covalent bond formed by the reaction between the functional groups.

請求項17記載の撥水撥油防汚性反射防止膜の製造方法は、シリル基と活性水素基との反応後、未反応物を洗浄除去するので、融着した透明微粒子で表面が覆われたガラス基材の表面に共有結合した撥水撥油防汚性被膜のみが形成されることにより、撥水撥油防汚性反射防止膜の撥水撥油防汚性および耐久性を向上できる。 In the method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 17, the unreacted material is washed away after the reaction between the silyl group and the active hydrogen group, so that the surface is covered with fused transparent fine particles. By forming only the water- and oil-repellent and antifouling film covalently bonded to the surface of the glass substrate, the water and oil and oil repellent and antifouling properties and durability of the water and oil and oil repellent and antireflective film can be improved. .

請求項18記載の撥水撥油防汚性反射防止膜の製造方法は、工程Aの前に、ガラス基材よりも低い温度で透明微粒子と融着する金属酸化物の透明被膜を形成する工程Fを有するので、工程Dにおける加熱処理をより低温で行うことができる。 The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 18, wherein before step A, a step of forming a metal oxide transparent coating fused to transparent fine particles at a temperature lower than that of the glass substrate. Since it has F, the heat treatment in the step D can be performed at a lower temperature.

請求項19記載の撥水撥油防汚性反射防止膜の製造方法では、透明被膜の形成にゾルゲル法を用いるので、透明被膜の形成を簡便に行うことができる。 In the method for producing a water- and oil-repellent and antifouling antireflection film according to claim 19, since the sol-gel method is used for forming the transparent film, the transparent film can be easily formed.

請求項20記載の撥水撥油防汚性反射防止膜の製造方法では、第1、第2、および第3の化学吸着液にそれぞれ含まれる第1、第2および第3のシラン化合物のいずれか1、2、または3は、活性水素基との反応の際に有害な塩化水素を発生しないアルコキシシラン化合物であるので、撥水撥油防汚性反射防止膜の製造をより安全に行うことができるとともに、製造設備の腐食や酸性廃液の発生を抑制できる。 The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 20, wherein any of the first, second and third silane compounds contained in the first, second and third chemical adsorption liquids, respectively. , 1, 2 or 3 is an alkoxysilane compound that does not generate harmful hydrogen chloride upon reaction with active hydrogen groups, so that it is safer to produce a water and oil repellent antifouling antireflective coating It is possible to suppress the corrosion of production equipment and the generation of acidic waste liquid.

請求項21記載の撥水撥油防汚性反射防止膜の製造方法では、第1、第2、および第3の化学吸着液にそれぞれ含まれる第1、第2および第3のシラン化合物のいずれか1、2、または3は、活性水素基との反応性の高いハロシラン化合物であるので、撥水撥油防汚性反射防止膜の製造をより高効率に行うことができるとともに、触媒の添加が不要になる。 The water / oil / oil repellent / antifouling antireflection film according to claim 21, wherein any of the first, second and third silane compounds contained in the first, second and third chemical adsorption liquids, respectively. 1, 2, or 3 is a halosilane compound that is highly reactive with active hydrogen groups, so that it is possible to produce a water- and oil-repellent antifouling antireflective coating more efficiently and to add a catalyst. Is no longer necessary.

請求項22記載の撥水撥油防汚性反射防止膜の製造方法では、第1、第2、および第3の化学吸着液のうちアルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むので、アルコキシシラン化合物と活性水素基との反応時間を短縮し、撥水撥油防汚性反射防止膜の製造をより高効率に行うことができる。 The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 22, wherein the first, second and third chemical adsorption liquids containing an alkoxysilane compound are further used as a condensation catalyst as a carboxylic acid. Since it contains one or more compounds selected from the group consisting of metal salts, carboxylate metal salts, carboxylate metal salt polymers, carboxylate metal salt chelates, titanate esters and titanate ester chelates, alkoxysilane compounds and The reaction time with the active hydrogen group can be shortened, and the production of the water / oil / oil / antifouling antireflection film can be carried out more efficiently.

請求項23および24記載の撥水撥油防汚性反射防止膜の製造方法では、第1、第2、および第3の化学吸着液のうちアルコキシシラン化合物を含むものは、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からからなる群より選択される1または2以上の化合物をさらに含むので、アルコキシシラン化合物と活性水素基との反応時間を短縮し、撥水撥油防汚性反射防止膜の製造をより高効率に行うことができる。特に、これらの化合物と上述の縮合触媒の両者をともに含む場合には、反応時間をさらに短縮できる。 25. The method for producing a water- and oil-repellent and antifouling antireflection film according to claim 23 and 24, wherein the first, second and third chemical adsorption liquids containing an alkoxysilane compound are ketimine compounds, organic acids. 1 or 2 or more compounds selected from the group consisting of an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound. The production of a water / oil repellent antifouling antireflection film can be carried out more efficiently. In particular, when both of these compounds and the above condensation catalyst are included, the reaction time can be further shortened.

以下、図面を参照しながら本発明の一実施の形態に係る撥水撥油防汚性反射防止膜について説明する。
図1に示すように、本発明の一実施の形態に係る撥水撥油防汚性反射防止膜12は、表面に撥水撥油防汚性被膜11が形成されたシリカ微粒子5(撥水撥油防汚性の透明微粒子の一例)がガラス基材1の表面に融着した構造を有する。撥水撥油防汚性被膜11は、CF基を含むフッ化炭素基の一例であるパーフルオロオクチル基(CF(CF−)を含むシラン化合物と、融着したシリカ微粒子で表面が覆われたガラス基材1aの表面の水酸基(活性水素を有する官能基(活性水素基)の一例)との反応により、その表面に共有結合している。
Hereinafter, a water / oil repellent antifouling antireflection film according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the water / oil repellent / antifouling antireflective coating 12 according to one embodiment of the present invention has a silica fine particle 5 (water repellent) having a water / oil repellent / antifouling coating 11 formed on the surface thereof. An example of the oil repellent antifouling transparent fine particles) has a structure fused to the surface of the glass substrate 1. The water / oil repellent / antifouling coating 11 is composed of a silane compound containing a perfluorooctyl group (CF 3 (CF 2 ) 7 —), which is an example of a fluorocarbon group containing a CF 3 group, and fused silica fine particles. It is covalently bonded to the surface by reaction with a hydroxyl group (an example of a functional group having active hydrogen (an active hydrogen group)) on the surface of the glass substrate 1a covered with the surface.

撥水撥油防汚性反射防止膜12の製造方法は、第1の官能基の一例であるエポキシ基3を含む第1のシラン化合物の一例であるアルコキシシラン化合物と縮合触媒、および非水系の有機溶媒とを混合して作成した第1の化学吸着液をガラス基材1に接触させ、アルコキシシラン化合物のアルコキシシリル基(シリル基の一例)と、図2(a)に模式的に示したガラス基材1の表面の水酸基2(活性水素基の一例)との反応により、エポキシ基3が表面に導入された、すなわち、エポキシ基3を含むアルコキシシラン化合物の単分子膜3aで表面が覆われた反応性ガラス基材4(図2(b))を製造する工程Aと、エポキシ基3と反応して共有結合を形成する第2の官能基の一例であるアミノ基7を含む第2のシラン化合物の一例であるアルコキシシラン化合物と縮合触媒、および非水系の有機溶媒とを混合して作成した第2の化学吸着液中にシリカ微粒子5を分散し、アルコキシシラン化合物のアルコキシシリル基と、図3(a)に模式的に示したシリカ微粒子5の表面の水酸基6(活性水素基の一例)との反応により、アミノ基7が表面に導入された、すなわち、アミノ基7を含むアルコキシシラン化合物の単分子膜8で表面が覆われた反応性シリカ微粒子(反応性透明微粒子の一例)9(図3(b))を製造する工程Bと、反応性ガラス基材4と反応性シリカ微粒子9とを接触させた状態で加熱してエポキシ基3とアミノ基7とを反応させ、シリカ微粒子が共有結合を介して表面に結合したガラス基材10(図4)を製造する工程Cと、シリカ微粒子が共有結合を介して表面に結合したガラス基材10を、酸素を含む雰囲気中で加熱処理し、融着したシリカ微粒子で表面が覆われたガラス基材1a(図5参照)を製造する工程Dと、フッ化炭素基を含む第3のシラン化合物の一例であるアルコキシシラン化合物と縮合触媒、および非水系の有機溶媒とを混合して作成した第3の化学吸着液を、融着したシリカ微粒子で表面が覆われたガラス基材1aに接触させて、アルコキシシラン化合物のアルコキシシリル基と、融着したシリカ微粒子で表面が覆われたガラス基材1aの表面の水酸基との反応により、撥水撥油防汚性被膜11(図1参照)を形成する工程Eとを含んでいる。
以下、工程A〜Eについてより詳細に説明する。
The method for producing the water / oil repellent / antifouling antireflection film 12 includes an alkoxysilane compound, which is an example of a first silane compound containing an epoxy group 3, which is an example of a first functional group, a condensation catalyst, and a non-aqueous system. A first chemical adsorption solution prepared by mixing an organic solvent is brought into contact with the glass substrate 1 and schematically shown in FIG. 2 (a) and an alkoxysilyl group (an example of a silyl group) of the alkoxysilane compound. Epoxy group 3 is introduced into the surface by reaction with hydroxyl group 2 (an example of an active hydrogen group) on the surface of glass substrate 1, that is, the surface is covered with monomolecular film 3 a of an alkoxysilane compound containing epoxy group 3. Step A for producing the broken reactive glass substrate 4 (FIG. 2B) and a second containing an amino group 7 which is an example of a second functional group that reacts with the epoxy group 3 to form a covalent bond. Arco is an example of a silane compound Silica fine particles 5 are dispersed in a second chemical adsorption solution prepared by mixing a silane compound, a condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilyl group of the alkoxysilane compound is schematically shown in FIG. The amino group 7 was introduced into the surface by the reaction with the hydroxyl group 6 (an example of the active hydrogen group) on the surface of the silica fine particle 5 shown specifically, that is, the monomolecular film 8 of the alkoxysilane compound containing the amino group 7 Process B for producing reactive silica fine particles (an example of reactive transparent fine particles) 9 (FIG. 3B) with the surface covered, and the reactive glass substrate 4 and the reactive silica fine particles 9 are in contact with each other. Step C for producing a glass substrate 10 (FIG. 4) in which the silica fine particles are bonded to the surface through covalent bonds by reacting with epoxy groups 3 and amino groups 7 by heating with silica, and the silica fine particles via covalent bonds On the surface The combined glass substrate 10 is heat-treated in an oxygen-containing atmosphere to produce a glass substrate 1a (see FIG. 5) whose surface is covered with fused silica fine particles, and a fluorocarbon group. Glass whose surface is covered with silica fine particles fused with a third chemisorbed liquid prepared by mixing an alkoxysilane compound, which is an example of a third silane compound, a condensation catalyst, and a non-aqueous organic solvent The water- and oil-repellent and antifouling coating film 11 is brought into contact with the substrate 1a by the reaction between the alkoxysilyl group of the alkoxysilane compound and the hydroxyl group on the surface of the glass substrate 1a whose surface is covered with fused silica fine particles. And step E of forming (see FIG. 1).
Hereinafter, the processes A to E will be described in more detail.

工程Aでは、エポキシ基を有する単分子膜3aで表面が覆われた反応性ガラス基材4を製造する。
反応性ガラス基材4の製造に用いるガラス基材1の材質、形状、および大きさについて特に制限はなく、乗り物および建築物において使用される任意の窓ガラス材を用いることができる。また、表面に活性水素基が存在していれば、表面被膜が形成されていてもよい。なお、本実施の形態において、活性水素基は水酸基2であるが、活性水素を含むアミノ基等であってもよい。
In step A, the reactive glass substrate 4 whose surface is covered with the monomolecular film 3a having an epoxy group is manufactured.
There is no restriction | limiting in particular about the material of the glass base material 1 used for manufacture of the reactive glass base material 4, a shape, and a magnitude | size, Arbitrary window glass materials used in a vehicle and a building can be used. Moreover, as long as an active hydrogen group exists on the surface, a surface film may be formed. In the present embodiment, the active hydrogen group is the hydroxyl group 2, but may be an amino group containing active hydrogen or the like.

反応性ガラス基材4の製造に用いる第1の化学吸着液は、エポキシ基3を含むアルコキシシラン化合物と、アルコキシシリル基とガラス基材1の表面の水酸基2との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The first chemical adsorption liquid used for the production of the reactive glass substrate 4 is for accelerating the condensation reaction between the alkoxysilane compound containing the epoxy group 3 and the alkoxysilyl group and the hydroxyl group 2 on the surface of the glass substrate 1. It is prepared by mixing a condensation catalyst and a non-aqueous organic solvent.

エポキシ基3を含むアルコキシシラン化合物としては、直鎖状アルキレン基の両末端に、エポキシ基(オキシラン環)を含む官能基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化1)で表されるアルコキシシラン化合物が好ましい。 The alkoxysilane compound containing an epoxy group 3 has a functional group containing an epoxy group (oxirane ring) and an alkoxysilyl group at both ends of a linear alkylene group, and is represented by the following general formula (Formula 1). Preferred are alkoxysilane compounds.

Figure 2008247700
Figure 2008247700

上式において、Eはエポキシ基を含む官能基を、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。 In the above formula, E represents a functional group containing an epoxy group, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms.

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

第1の化学吸着液をガラス基材1の表面に塗布し、室温の空気中で反応させると、アルコキシシリル基とガラス基材1の表面の水酸基2とが縮合反応を起こし、下記の化2で示されるような構造を有するエポキシ基を含む単分子膜3aを生成する。なお、酸素原子から延びた3本の単結合はガラス基材1の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はガラス基材1の表面のケイ素原子と結合している。 When the first chemical adsorption solution is applied to the surface of the glass substrate 1 and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl group 2 on the surface of the glass substrate 1 cause a condensation reaction, and the following chemical formula 2 A monomolecular film 3a including an epoxy group having a structure as shown in FIG. The three single bonds extending from the oxygen atom are bonded to the surface of the glass substrate 1 or the silicon (Si) atom of the adjacent silane compound, at least one of which is a silicon atom on the surface of the glass substrate 1. Is combined with.

Figure 2008247700
Figure 2008247700

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、ガラス基材1の表面に付着した油脂分や水分により阻害されるので、ガラス基材1をよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of the glass substrate 1, so that these impurities can be removed in advance by thoroughly washing and drying the glass substrate 1. preferable.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして反応性ガラス基材4の製造を行うと、反応性ガラス基材4の品質を損なうことなく反応時間を1時間程度にまで短縮できる。 For example, when the reactive glass substrate 4 is produced by using H3 of Japan Epoxy Resin Co., Ltd. which is a ketimine compound instead of dibutyltin oxide as the condensation catalyst and the other conditions are the same, The reaction time can be shortened to about 1 hour without losing quality.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にして反応性ガラス基材4の製造を行うと、反応時間を20分程度に短縮できる。 Furthermore, when the reactive glass substrate 4 is produced by using a mixture of H3 and dibutyltin bisacetylacetonate (mixing ratio is 1: 1) of Japan Epoxy Resin Co., Ltd. as the condensation catalyst, and other conditions are the same. The reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸としても特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 Moreover, although it does not specifically limit as an organic acid which can be used, For example, a formic acid, an acetic acid, propionic acid, a butyric acid, malonic acid etc. are mentioned.

第1の化学吸着液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the first chemical adsorption solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

第1の化学吸着液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 A preferable concentration of the alkoxysilane compound in the first chemical adsorption solution is 0.5 to 3% by mass.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、エポキシ基を含む単分子膜3aで表面が覆われた反応性ガラス基材4が得られる。このようにして製造される反応性ガラス基材4の断面構造の模式図を図2(b)に示す。なお、図2(b)においては、エポキシ基を有する単分子膜3aの一例として、下記の化3で表される構造を有するものを示している。 After the reaction, washing with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted materials yields a reactive glass substrate 4 whose surface is covered with a monomolecular film 3a containing an epoxy group. It is done. A schematic view of the cross-sectional structure of the reactive glass substrate 4 manufactured in this way is shown in FIG. 2B shows an example of a monomolecular film 3a having an epoxy group having a structure represented by the following chemical formula 3.

Figure 2008247700
Figure 2008247700

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、生成した反応性ガラス基材4を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、反応性ガラス基材4の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、反応性ガラス基材4の表面に共有結合により固定されていないが、エポキシ基3を含んでいるため、反応性シリカ微粒子9に対してエポキシ基を含む単分子膜3aと同様の反応性を有している。そのため、洗浄を行わなくても、工程C以降の撥水撥油防汚性反射防止膜12の製造工程に特に支障をきたすことはない(以上工程A)。 After the reaction, when the generated reactive glass substrate 4 is left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol groups are Causes a condensation reaction with an alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the reactive glass substrate 4. Although this polymer film is not fixed to the surface of the reactive glass substrate 4 by a covalent bond, it contains an epoxy group 3 and therefore is similar to the monomolecular film 3 a containing an epoxy group with respect to the reactive silica fine particles 9. It has the reactivity of. Therefore, even if it does not wash | clean, the manufacturing process of the water repellent / oil repellent antifouling anti-reflective film 12 after the process C will not be particularly hindered (process A above).

工程Bでは、アミノ基を有する単分子膜8で表面が覆われた反応性シリカ微粒子9を製造する。
製造される撥水撥油防汚製ガラス板12の透明度を損なわないためには、反応性シリカ微粒子9の製造に用いるシリカ微粒子5の直径は、可視光波長(380〜700nm)より小さいことが好ましい。具体的には、微粒子の直径は10〜400nmであることが好ましく、10〜300nmであることがより好ましく、10〜100nmであることがさらに好ましい。用いられるシリカ微粒子5の粒径は単一であってもよいが、2以上の異なる粒径を有するシリカ微粒子を混合して用いると、得られる撥水撥油防汚性反射防止膜12の表面がフラクタル性を有し、撥水撥油防汚性が向上するため好ましい。
In step B, reactive silica fine particles 9 whose surface is covered with a monomolecular film 8 having an amino group are produced.
In order not to impair the transparency of the water / oil repellent / antifouling glass plate 12 to be produced, the diameter of the silica fine particles 5 used for the production of the reactive silica fine particles 9 should be smaller than the visible light wavelength (380 to 700 nm). preferable. Specifically, the diameter of the fine particles is preferably 10 to 400 nm, more preferably 10 to 300 nm, and even more preferably 10 to 100 nm. The silica fine particles 5 used may have a single particle diameter, but when silica fine particles having two or more different particle diameters are mixed and used, the surface of the resulting water / oil repellent / antifouling antireflection film 12 is used. Is preferable because it has fractal properties and improves water and oil repellency and antifouling properties.

本実施の形態では、透明微粒子としてシリカ微粒子を用いているが、水酸基、アミノ基等の、アルコキシシリル基およびハロシリル基と反応する活性水素基を表面に有し、透光性でガラス基材よりも軟化点の高い任意の微粒子を用いることができる。シリカ以外に用いることのできる透明微粒子としては、シリカ、ジルコニア等の微粒子が挙げられる。 In the present embodiment, silica fine particles are used as the transparent fine particles. However, the surface has active hydrogen groups that react with alkoxysilyl groups and halosilyl groups, such as hydroxyl groups and amino groups, and are translucent from a glass substrate. Also, any fine particles having a high softening point can be used. Examples of transparent fine particles that can be used in addition to silica include fine particles such as silica and zirconia.

反応性シリカ微粒子9の製造に用いる第2の化学吸着液は、アミノ基7を含むアルコキシシラン化合物と、アルコキシシリル基とシリカ微粒子5の表面の水酸基6との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The second chemical adsorption liquid used for the production of the reactive silica fine particles 9 is a condensation catalyst for promoting the condensation reaction between the alkoxysilane compound containing amino groups 7 and the alkoxysilyl groups and the hydroxyl groups 6 on the surface of the silica fine particles 5. And a non-aqueous organic solvent.

アミノ基7を含むアルコキシシラン化合物としては、直鎖状アルキレン基の両末端に、アミノ基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化4)で表されるアルコキシシラン化合物が好ましい。 As the alkoxysilane compound containing an amino group 7, an alkoxysilane compound having an amino group and an alkoxysilyl group at both ends of a linear alkylene group and represented by the following general formula (Formula 4) is preferable.

Figure 2008247700
Figure 2008247700

上式において、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。なお、アミノ基7は、アルコキシシリル基との副反応を避けるために、保護基によって保護されていてもよい。保護基は加水分解等により容易に除去できるものが好ましく、ケトンとアミノ基との反応により生成するケチミン誘導体等が挙げられる。
また、アミノ基7は、化4に示したような1級アミン以外に2級アミンでもよく、アミノ基7の代わりにピロール基、イミダゾール基等のイミノ基を有する官能基を含むアルコキシシラン化合物を用いることができる。
In the above formula, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms. The amino group 7 may be protected by a protecting group in order to avoid side reactions with the alkoxysilyl group. The protecting group is preferably one that can be easily removed by hydrolysis or the like, and examples thereof include a ketimine derivative produced by the reaction between a ketone and an amino group.
The amino group 7 may be a secondary amine other than the primary amine as shown in Chemical Formula 4, and an alkoxysilane compound containing a functional group having an imino group such as a pyrrole group or an imidazole group instead of the amino group 7 may be used. Can be used.

第2の化学吸着液中にシリカ微粒子5を分散させ、室温の空気中で反応させると、アルコキシシリル基とシリカ微粒子5の表面の水酸基6とが縮合反応を起こし、下記の化5で示されるような構造を有するアミノ基を含む単分子膜8を生成する。なお、酸素原子から延びた3本の単結合はガラス基材1の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はガラス基材1の表面のケイ素原子と結合している。 When the silica fine particles 5 are dispersed in the second chemical adsorption liquid and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl groups 6 on the surface of the silica fine particles 5 cause a condensation reaction, which is represented by the following chemical formula 5. A monomolecular film 8 including an amino group having such a structure is generated. The three single bonds extending from the oxygen atom are bonded to the surface of the glass substrate 1 or the silicon (Si) atom of the adjacent silane compound, at least one of which is a silicon atom on the surface of the glass substrate 1. Is combined with.

Figure 2008247700
Figure 2008247700

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、シリカ微粒子5の表面に付着した油脂分や水分により阻害されるので、シリカ微粒子5をよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of the silica fine particles 5, and it is preferable to remove these impurities in advance by thoroughly washing and drying the silica fine particles 5.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

第1の化学吸着液において用いることのできる縮合触媒のうち、スズ(Sn)塩を含む化合物は、アルコキシシラン誘導体に含まれるアミノ基7と反応して沈殿を生成するため、第2の化学吸着液において縮合触媒として用いることができない。
したがって、第2の化学吸着液においては、カルボン酸スズ塩、カルボン酸エステルスズ塩、カルボン酸スズ塩ポリマー、カルボン酸スズ塩キレートを除き、第1の化学吸着液と同様の化合物を単独でまたは2種類以上を混合して縮合触媒として用いることができる。
第2の化学吸着液に用いることのできる助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間については第1の化学吸着液と同様であるので、説明を省略する。
Among the condensation catalysts that can be used in the first chemical adsorption solution, the compound containing a tin (Sn) salt reacts with the amino group 7 contained in the alkoxysilane derivative to form a precipitate. It cannot be used as a condensation catalyst in a liquid.
Therefore, in the second chemisorbed liquid, the same compounds as those in the first chemisorbed liquid are used alone, except for the carboxylic acid tin salt, the carboxylic acid ester tin salt, the carboxylic acid tin salt polymer, and the carboxylic acid tin salt chelate. Two or more types can be mixed and used as a condensation catalyst.
The types of cocatalysts that can be used in the second chemisorbed liquid and combinations thereof, the types of solvents, alkoxysilane compounds, condensation catalysts, and the concentrations of cocatalysts, reaction conditions, and reaction times, the first chemisorbed liquid Since it is the same as that, the description is omitted.

反応後、溶媒で洗浄し、表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、アミノ基を含む単分子膜8で表面が覆われた反応性シリカ微粒子9が得られる。このようにして製造される反応性シリカ微粒子9の断面構造の模式図を図3(b)に示す。なお、図3(b)においては、アミノ基を有する単分子膜8の一例として、下記の化6で表される構造を有するものを示している。 After the reaction, washing with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface yields reactive silica fine particles 9 whose surface is covered with a monomolecular film 8 containing amino groups. A schematic diagram of the cross-sectional structure of the reactive silica fine particles 9 produced in this way is shown in FIG. FIG. 3B shows an example of a monomolecular film 8 having an amino group having a structure represented by the following chemical formula 6.

Figure 2008247700
Figure 2008247700

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、生成した反応性シリカ微粒子9を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、反応性シリカ微粒子9の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、反応性シリカ微粒子9の表面に共有結合により固定されていないが、アミノ基7を含んでいるため、反応性ガラス基材4に対してアミノ基を含む単分子膜8と同様の反応性を有している。そのため、洗浄を行わなくても、工程C以降の撥水撥油防汚性反射防止膜12の製造工程に特に支障をきたすことはない(以上工程B)。 After the reaction, when the generated reactive silica fine particles 9 are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol groups are converted to alkoxy. Causes a condensation reaction with a silyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the reactive silica fine particles 9. Although this polymer film is not fixed to the surface of the reactive silica fine particle 9 by a covalent bond, it contains an amino group 7 and therefore is similar to the monomolecular film 8 containing an amino group with respect to the reactive glass substrate 4. It has the reactivity of. Therefore, even without cleaning, the manufacturing process of the water / oil repellent / antifouling antireflective film 12 after Step C is not particularly hindered (Step B).

工程Aにおいて用いることができるエポキシ基を有するアルコキシシラン化合物の一例としては、下記(1)〜(11)に示した化合物が挙げられる。また、工程Bにおいて用いることができるアミノ基を有するアルコキシシラン化合物の一例としては、下記(12)〜(18)に示した化合物が挙げられる。 As an example of the alkoxysilane compound which has an epoxy group which can be used in process A, the compound shown to following (1)-(11) is mentioned. Moreover, as an example of the alkoxysilane compound which has an amino group which can be used in the process B, the compound shown to following (12)-(18) is mentioned.

(1)(CHOCH)CHO(CHSi(OCH
(2)(CHOCH)CHO(CHSi(OCH
(3)(CHOCH)CHO(CH11Si(OCH
(4)(CHCHOCH(CH)CH(CHSi(OCH
(5)(CHCHOCH(CH)CH(CHSi(OCH
(6)(CHCHOCH(CH)CH(CHSi(OCH
(7)(CHOCH)CHO(CHSi(OC
(8)(CHOCH)CHO(CH11Si(OC
(9)(CHCHOCH(CH)CH(CHSi(OC
(10)(CHCHOCH(CH)CH(CHSi(OC
(11)(CHCHOCH(CH)CH(CHSi(OC
(12)HN(CHSi(OCH
(13)HN(CHSi(OCH
(14)HN(CHSi(OCH
(15)HN(CHSi(OCH
(16)HN(CHSi(OC
(17)HN(CHSi(OC
(18)HN(CHSi(OC
(1) (CH 2 OCH) CH 2 O (CH 2) 3 Si (OCH 3) 3
(2) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OCH 3) 3
(3) (CH 2 OCH) CH 2 O (CH 2) 11 Si (OCH 3) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(6) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(7) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(8) (CH 2 OCH) CH 2 O (CH 2) 11 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(11) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OC 2 H 5) 3
(12) H 2 N (CH 2 ) 3 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(15) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(16) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(17) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(18) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)CHO−基は、化7で表される官能基(グリシドキシ基)を表し、(CHCHOCH(CH)CH−基は、化8で表される官能基(3,4−エポキシシクロヘキシル基)を表す。 Here, the (CH 2 OCH) CH 2 O— group represents a functional group (glycidoxy group) represented by Chemical Formula 7, and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by Chemical Formula 8. Functional group (3,4-epoxycyclohexyl group).

Figure 2008247700
Figure 2008247700

Figure 2008247700
Figure 2008247700

なお、本実施の形態においては、第1の官能基としてエポキシ基を、第2の官能基としてアミノ基をそれぞれ用いたが、第1の官能基としてアミノ基を、第2の官能基としてエポキシ基をそれぞれ用いてもよい。 In this embodiment, an epoxy group is used as the first functional group and an amino group is used as the second functional group. However, the amino group is used as the first functional group and the epoxy is used as the second functional group. Each group may be used.

工程Cでは、反応性ガラス基材4と反応性シリカ微粒子9とを接触させた状態で加熱してエポキシ基3とアミノ基7とを反応させ、シリカ微粒子が共有結合を介して表面に結合したガラス基材10を製造する。
反応性シリカ微粒子9を分散液中に分散させ、反応性ガラス基材4に塗布後、分散液を蒸発させる。その後加熱すると、化9に示したようなエポキシ基とアミノ基との付加反応により、シリカ微粒子が共有結合を介して表面に結合したガラス基材10が得られる。
In step C, the reactive glass substrate 4 and the reactive silica fine particles 9 are heated in contact with each other to react the epoxy groups 3 and the amino groups 7 so that the silica fine particles are bonded to the surface via covalent bonds. The glass substrate 10 is manufactured.
The reactive silica fine particles 9 are dispersed in the dispersion liquid, and after coating on the reactive glass substrate 4, the dispersion liquid is evaporated. When heated thereafter, the glass substrate 10 in which the silica fine particles are bonded to the surface through a covalent bond is obtained by an addition reaction between an epoxy group and an amino group as shown in Chemical Formula 9.

Figure 2008247700
Figure 2008247700

反応性シリカ微粒子9の分散液としては、エポキシ基3およびアミノ基7と副反応を起こさず、ガラス基材1およびシリカ微粒子5の表面をそれぞれ覆っているエポキシ基を含む単分子膜3aおよびアミノ基を含む単分子膜8を破壊しない任意の液体を用いることができる。好ましい分散液としては、エタノールが挙げられる。
エポキシ基とアミノ基との反応の場合、好ましい反応温度は100℃、好ましい反応時間は30分である。
As the dispersion liquid of the reactive silica fine particles 9, the monomolecular film 3 a and amino group containing epoxy groups that do not cause side reactions with the epoxy groups 3 and amino groups 7 and cover the surfaces of the glass substrate 1 and the silica fine particles 5, respectively. Any liquid that does not destroy the monomolecular film 8 containing groups can be used. A preferred dispersion includes ethanol.
In the case of a reaction between an epoxy group and an amino group, a preferable reaction temperature is 100 ° C., and a preferable reaction time is 30 minutes.

反応後、洗浄溶媒で洗浄すると、未反応の反応性シリカ微粒子9が除去され、シリカ微粒子が共有結合を介して表面に結合したガラス基材10が得られる。このようにして製造されるシリカ微粒子が共有結合を介して表面に結合したガラス基材10の断面構造の模式図を図4に示す。
洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい(以上工程C)。
After the reaction, when washed with a washing solvent, unreacted reactive silica fine particles 9 are removed, and a glass substrate 10 in which the silica fine particles are bonded to the surface through covalent bonds is obtained. FIG. 4 shows a schematic diagram of a cross-sectional structure of the glass substrate 10 in which the silica fine particles thus produced are bonded to the surface through covalent bonds.
As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. (Step C).

工程Dでは、シリカ微粒子が共有結合を介して表面に結合したガラス基材10を、酸素を含む雰囲気中で加熱処理し、ガラス基材1およびシリカ微粒子5の表面を覆う単分子膜を分解させ、併せてガラス基材1とシリカ微粒子5とを融着させることにより、融着した単層のシリカ微粒子で表面が覆われたガラス基材1a(図5参照)を製造する。
加熱処理温度は、ガラス基材1およびシリカ微粒子5の表面を覆う単分子膜が分解する温度、およびガラス基材1とシリカ微粒子5との融着が起こる温度よりも高く、かつガラス基材1およびシリカ微粒子5の融解温度よりも低くなければならない。ガラス基材1として青板ガラスを用いた場合には、好ましい加熱処理温度は650度程度である。また、反応時間は、650℃の空気中で加熱処理を行った場合には30分である。
このようにして得られた融着したシリカ微粒子で表面が覆われたガラス基材1aの断面構造の模式図を図5に示す(以上工程D)。
In step D, the glass substrate 10 on which the silica fine particles are bonded to the surface via a covalent bond is heat-treated in an atmosphere containing oxygen to decompose the monomolecular film covering the surfaces of the glass substrate 1 and the silica fine particles 5. In addition, the glass substrate 1a (see FIG. 5) whose surface is covered with the fused single layer silica fine particles is manufactured by fusing the glass substrate 1 and the silica fine particles 5 together.
The heat treatment temperature is higher than the temperature at which the monomolecular film covering the surfaces of the glass substrate 1 and the silica fine particles 5 is decomposed, and the temperature at which the glass substrate 1 and the silica fine particles 5 are fused, and the glass substrate 1 And the melting temperature of the silica fine particles 5 must be lower. When blue plate glass is used as the glass substrate 1, a preferable heat treatment temperature is about 650 degrees. The reaction time is 30 minutes when heat treatment is performed in air at 650 ° C.
FIG. 5 shows a schematic diagram of the cross-sectional structure of the glass substrate 1a whose surface is covered with the fused silica fine particles thus obtained (step D).

工程Eでは、融着したシリカ微粒子で表面が覆われたガラス基材1aの表面に撥水撥油防汚性被膜11を形成し、撥水撥油防汚性反射防止膜12を製造する。 In step E, the water / oil / oil / repellency / antifouling coating 11 is formed on the surface of the glass substrate 1a whose surface is covered with the fused silica fine particles, and the water / oil / oil / repellency / antifouling antireflection film 12 is produced.

撥水撥油防汚性反射防止膜12の製造に用いる第3の化学吸着液は、フッ化炭素基を含むアルコキシシラン化合物と、融着したシリカ微粒子で表面が覆われたガラス基材1aの表面の水酸基とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The third chemical adsorption liquid used for the production of the water / oil repellent / antifouling antireflective film 12 is composed of an alkoxysilane compound containing a fluorocarbon group and a glass substrate 1a whose surface is covered with fused silica fine particles. It is prepared by mixing a condensation catalyst for accelerating the condensation reaction between the surface hydroxyl group and the alkoxysilyl group and a non-aqueous organic solvent.

フッ化炭素基を含むアルコキシシラン化合物としては、下記の一般式(化10)で表されるアルコキシシラン化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group include an alkoxysilane compound represented by the following general formula (Formula 10).

Figure 2008247700
Figure 2008247700

上式において、mは0〜20の整数を、nは0〜9の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。
また、Yは、(CH(kは1〜3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH、および単結合のいずれかを表す。
In the above formula, m represents an integer of 0 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and a single bond. Represents one of the bonds.

第3の化学吸着液に用いることのできる縮合触媒、助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間については第1の化学吸着液と同様であるので、説明を省略する。 Condensation catalyst that can be used for the third chemical adsorption solution, types of promoters and combinations thereof, solvent types, alkoxysilane compounds, condensation catalysts, and concentrations of promoters, reaction conditions, and reaction time Since it is the same as a chemical adsorption liquid, description is abbreviate | omitted.

本実施の形態においては、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に第3の化学吸着液の調製および融着したシリカ微粒子で表面が覆われたガラス基材1aとの反応を行うことができる。
このようにして得られる撥水撥油防汚性反射防止膜12の断面構造の模式図を図1に示す。なお、図1においては、撥水撥油防汚性被膜11の一例として、下記の化11で表される構造を有するものを示している。
Although the case where an alkoxysilane compound is used has been described in this embodiment mode, a halosilane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. The reaction with the glass substrate 1a whose surface is covered with silica fine particles prepared and fused with the third chemisorbed liquid can be performed in the same manner as the alkoxysilane compound.
A schematic view of the cross-sectional structure of the water / oil / oil repellent / antifouling antireflection film 12 obtained in this manner is shown in FIG. In addition, in FIG. 1, what has the structure represented by following Chemical formula 11 as an example of the water repellent / oil repellent antifouling film 11 is shown.

Figure 2008247700
Figure 2008247700

単分子膜状の撥水撥油防汚性被膜11の膜厚は、たかだか1nm程度であるため、融着したシリカ微粒子で表面が覆われたガラス基材1aの表面に形成された50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、撥水撥油防汚性反射防止膜12の見かけ上の表面エネルギーを小さくでき、水滴接触角は、140度以上(本実施の形態では150度程度)となり、超撥水が実現できる。 Since the film thickness of the monomolecular water-repellent / oil-repellent antifouling film 11 is at most about 1 nm, it is about 50 nm formed on the surface of the glass substrate 1a covered with fused silica fine particles. The unevenness is hardly damaged. In addition, due to this unevenness effect (so-called “lotus leaf effect”), the apparent surface energy of the water / oil repellent / antifouling antireflective coating 12 can be reduced, and the water droplet contact angle is 140 degrees or more (this embodiment) In the form, it is about 150 degrees), and super water repellency can be realized.

また、撥水撥油防汚性反射防止膜12の基材ガラスの表面には、ガラスよりも硬度が高いシリカ微粒子5が融着しているので、耐摩耗性も大幅に向上している。
また、撥水撥油防汚性反射防止膜12において、ガラス基材1の表面に形成されたシリカ微粒子5および撥水撥油防汚性被膜11を含む被膜の厚さは、全体で100nm程度であるため、ガラス基材1の透明性が損なわれることもない。
In addition, since the silica fine particles 5 having a hardness higher than that of the glass are fused on the surface of the base glass of the water / oil / oil repellent / antireflective antireflection film 12, the wear resistance is greatly improved.
Further, in the water / oil / oil / repellency / antifouling antireflection film 12, the total thickness of the coating including the silica fine particles 5 and the water / oil / oil / repellency / antifouling coating 11 formed on the surface of the glass substrate 1 is about 100 nm. Therefore, the transparency of the glass substrate 1 is not impaired.

反応後、生成した撥水撥油防汚性反射防止膜12を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、撥水撥油防汚性反射防止膜12の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、単分子膜と異なり、その全体が撥水撥油防汚性反射防止膜12の表面に共有結合により固定されていることはないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも撥水撥油防汚性反射防止膜12として使用できる。 After the reaction, when the generated water / oil / oil repellent anti-reflective coating 12 is left in the air without washing with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, The produced silanol group causes a condensation reaction with the alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the water / oil / oil repellent / antifouling antireflection film 12. Unlike the monomolecular film, the polymer film is not entirely fixed to the surface of the water / oil / oil / fouling / antireflection film 12 by a covalent bond, but has a fluorocarbon group. It has water and oil repellency and antifouling properties. Therefore, it can be used as the water / oil repellent / antifouling antireflective film 12 in this state as long as the durability is somewhat inferior.

また、工程Eにおいて用いることができるフッ化炭素基を含むアルコキシシラン化合物としては、下記(21)〜(32)に示す化合物が挙げられる。 Moreover, as an alkoxysilane compound containing the fluorocarbon group which can be used in the process E, the compound shown to following (21)-(32) is mentioned.

(21)CFCHO(CH15Si(OCH
(22)CF(CHSi(CH(CH15Si(OCH
(23)CF(CF(CHSi(CH(CHSi(OCH
(24)CF(CF(CHSi(CH(CHSi(OCH
(25)CFCOO(CH15Si(OCH
(26)CF(CF(CHSi(OCH
(27)CFCHO(CH15Si(OC
(28)CF(CHSi(CH(CH15Si(OC
(29)CF(CF(CHSi(CH(CHSi(OC
(30)CF(CF(CHSi(CH(CHSi(OC
(31)CFCOO(CH15Si(OC
(32)CF(CF(CHSi(OC
(21) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(25) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(27) CF 3 CH 2 O (CH 2) 15 Si (OC 2 H 5) 3
(28) CF 3 (CH 2 ) 3 Si (CH 3) 2 (CH 2) 15 Si (OC 2 H 5) 3
(29) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(30) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(31) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(32) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

また、工程Eにおいて用いることができるフッ化炭素基を含むハロシラン化合物としては、下記(41)〜(46)に示す化合物が挙げられる。 Moreover, as a halosilane compound containing the fluorocarbon group which can be used in the process E, the compound shown to following (41)-(46) is mentioned.

(41)CFCHO(CH15SiCl
(42)CF(CHSi(CH(CH15SiCl
(43)CF(CF(CHSi(CH(CHSiCl
(44)CF(CF(CHSi(CH(CHSiCl
(45)CFCOO(CH15SiCl
(46)CF(CF(CHSiCl
(41) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(42) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(43) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(44) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(45) CF 3 COO (CH 2 ) 15 SiCl 3
(46) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3

本実施の形態においては、工程Aにおいてガラス基材1をそのまま反応性ガラス基材4の製造に用いたが、ガラス基材1よりも低い温度でシリカ微粒子5を融着する被膜をガラス基材1の表面に形成する工程Fを工程Aの前に行ってもよい。
被膜としては、透明性を有しガラス基材1よりも低い温度でシリカ微粒子5を融着することのできる任意の被膜(透明被膜)を用いることができるが、ゾルゲル法により形成された酸化ケイ素、酸化アルミニウム等の金属酸化物の乾燥ゲル膜が好ましい。
縮合触媒を含む金属アルコキシドの溶液をガラス基材1表面に塗布後溶媒を蒸発させると、空気中の水分によるアルコキシル基の加水分解により生成する水酸基とアルコキシル基との間で縮合反応が起こり、ガラス基材1の表面に金属酸化物の透明な乾燥ゲル膜が形成される。
未焼結の乾燥ゲル膜の表面および内部には、ガラス基材1よりも多くの遊離の水酸基が存在するため、ガラス基材1よりも低い温度でシリカ微粒子5と融着できる。
In the present embodiment, the glass substrate 1 is used as it is for the production of the reactive glass substrate 4 in the step A. However, a coating for fusing the silica fine particles 5 at a lower temperature than the glass substrate 1 is used as the glass substrate. The process F formed on the surface of 1 may be performed before the process A.
As the coating, any coating (transparent coating) that has transparency and can fuse the silica fine particles 5 at a temperature lower than that of the glass substrate 1 can be used. Silicon oxide formed by a sol-gel method can be used. A dry gel film of a metal oxide such as aluminum oxide is preferred.
When a solution of a metal alkoxide containing a condensation catalyst is applied to the surface of the glass substrate 1 and the solvent is evaporated, a condensation reaction takes place between the hydroxyl group generated by hydrolysis of the alkoxyl group by moisture in the air and the alkoxyl group, and the glass A transparent dry gel film of metal oxide is formed on the surface of the substrate 1.
Since there are more free hydroxyl groups than the glass substrate 1 on the surface and inside of the unsintered dry gel film, the silica fine particles 5 can be fused at a temperature lower than that of the glass substrate 1.

透明被膜の一例であるシリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液をガラス基材1の表面に塗布し、溶媒を蒸発させることにより行うことができる。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については第1の化学吸着液と同様であるので、説明を省略する。
Formation of a dry gel film of silica, which is an example of a transparent film, is obtained by mixing a sol solution obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with the glass substrate 1. It can be performed by applying to the surface and evaporating the solvent.
Since the condensation catalyst, cocatalyst, solvent type, tetraalkoxysilane concentration, and addition amount of the catalyst that can be used are the same as those in the first chemical adsorption solution, description thereof is omitted.

ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法により行うことができる。
また、乾燥ゲル膜の膜厚は、撥水撥油防汚性反射防止膜12の製造に用いるシリカ微粒子5の粒径にもよるが、10〜50nmが好ましい。
このようにして得られたシリカの乾燥ゲル膜を表面に有するガラス基材1を用いて撥水撥油防汚性反射防止膜12の製造を行うと、工程Dにおける加熱処理を300度以下の低温で行うことが可能となり、あらかじめ風冷強化されたガラスの強化度を劣化させることなく融着したシリカ微粒子で表面が覆われたガラス基材1aを製造できる。
The application of the sol solution can be performed by an arbitrary method such as a dip coating method, a spin coating method, a spray method, or a screen printing method.
Moreover, although the film thickness of a dry gel film is based also on the particle size of the silica fine particle 5 used for manufacture of water-repellent oil-repellent antifouling antireflection film 12, 10-50 nm is preferred.
When the water-repellent / oil-repellent / antifouling antireflective film 12 is produced using the glass substrate 1 having the silica dry gel film thus obtained on the surface, the heat treatment in the step D is performed at 300 ° C. or less. It becomes possible to carry out at a low temperature, and the glass substrate 1a whose surface is covered with silica fine particles fused can be manufactured without deteriorating the strengthening degree of the glass which has been tempered by air cooling in advance.

なお、シリカの乾燥ゲル膜以外にも、透明性を有しガラス基材1よりも低い温度でシリカ微粒子1を融着することのできる任意の透明被膜を形成し用いることができる。用いることのできる透明被膜としては、例えば、シリカ、酸化チタン等の乾燥ゲル膜等が挙げられる。
また、ゾル溶液にリン酸またはホウ酸をそれぞれ数パーセント添加しておくと、リンシリケートガラス(PSG)やボロンシリケートガラス(BSG)の乾燥ゲル膜が形成され、工程Eにおける加熱処理温度を250℃程度まで低減できる
In addition to the dry gel film of silica, any transparent film that has transparency and can fuse the silica fine particles 1 at a temperature lower than that of the glass substrate 1 can be formed and used. Examples of the transparent film that can be used include dry gel films such as silica and titanium oxide.
Moreover, when phosphoric acid or boric acid is added to the sol solution at several percents, a dry gel film of phosphorus silicate glass (PSG) or boron silicate glass (BSG) is formed, and the heat treatment temperature in step E is 250 ° C. Can be reduced to the extent

撥水撥油防汚性反射防止膜12は、150度程度の水滴接触角を有している。
参考として、異なる体積の水滴(0.02〜0.08ml)を用いた実験より求められた、撥水性表面上における水滴に対する接触角と転落角の関係を図6に示す。このグラフより明らかなように、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となる。
そのため、撥水撥油防汚性反射防止膜12を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落することがわかる。
The water / oil repellent antifouling antireflection film 12 has a water droplet contact angle of about 150 degrees.
As a reference, FIG. 6 shows the relationship between the contact angle with respect to water droplets on the water-repellent surface and the falling angle, obtained from experiments using water droplets (0.02 to 0.08 ml) of different volumes. As is apparent from this graph, when the water droplet contact angle is 150 degrees or more, the falling angle is 15 degrees or less regardless of the volume of the water droplet.
Therefore, it can be seen that when the water / oil / oil repellent antifouling antireflection film 12 is used as a window glass plate for a vehicle or a building, most of the water droplets cannot fall on the surface and fall down.

撥水撥油防汚性反射防止膜12は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求される乗り物や建築物の窓用ガラス板として用いることができる。
撥水撥油防汚性反射防止膜12を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。
また、撥水撥油防汚性反射防止膜12を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。
The water / oil repellent / antifouling anti-reflective coating 12 has excellent durability such as abrasion resistance and weather resistance, water repellency (sliding property), and antifouling properties, and requires a water / oil repellent / antifouling function. It can be used as a glass plate for windows of vehicles and buildings.
Vehicles that can use the water / oil repellent / antifouling antireflective coating 12 include automobiles, railway vehicles, ships, etc., and are used as glass plates for windows of any windows, regardless of driver seats, cabins, etc. be able to.
In addition, examples of buildings that can use the water / oil repellent / antifouling antireflective coating 12 include arbitrary buildings such as single-family houses, apartment houses, and office buildings.

以下、本発明の効果を確認するために行った実施例について説明するが、本願発明は、これら実施例によって何ら制限されるものではない。 Examples carried out for confirming the effects of the present invention will be described below, but the present invention is not limited to these examples.

なお、本発明に関するガラス基板には、光学装置用レンズや太陽エネルギー利用装置用のガラス板や、ディスプレイ用フェイスプレートがあるが、代表例として、以下に太陽熱温水器用のガラス板を取り上げて説明する。 The glass substrate according to the present invention includes a lens for an optical device, a glass plate for a solar energy utilization device, and a face plate for a display. As a representative example, a glass plate for a solar water heater will be described below. .

(実施例1)
(1)反応性ガラス基材の調製
太陽熱温水器用のガラス板を用意し、よく洗浄して乾燥した。
3−グリシドキシプロピルトリメトキシシラン(化12、信越化学工業株式会社製)0.99重量部、およびジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、第1の化学吸着液を調製した。
Example 1
(1) Preparation of reactive glass substrate A glass plate for a solar water heater was prepared, washed thoroughly and dried.
0.99 parts by weight of 3-glycidoxypropyltrimethoxysilane (Chemical Formula 12, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.01 parts by weight of dibutyltin bisacetylacetonate (condensation catalyst) were weighed, and this was 100 parts by weight. A first chemical adsorption solution was prepared by dissolving in a hexamethyldisiloxane solvent.

Figure 2008247700
Figure 2008247700

このようにして得られた第1の化学吸着液を自動車用窓ガラス板の表面に塗布し、空気中(相対湿度45%)で2時間程度反応させた。
その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
The first chemisorbed liquid thus obtained was applied to the surface of an automotive window glass plate and reacted in air (relative humidity 45%) for about 2 hours.
Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(2)反応性シリカ微粒子の調製
平均粒径100nmのシリカ微粒子を用意し、よく洗浄して乾燥した。
3−アミノプロピルトリメトキシシラン(化13、信越化学工業株式会社製)0.99重量部、および酢酸(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン−ジメチルホルムアミド混合溶媒(1:1v/v)に溶解し、第2の化学吸着液を調製した。
(2) Preparation of reactive silica fine particles Silica fine particles having an average particle diameter of 100 nm were prepared, washed thoroughly and dried.
0.99 parts by weight of 3-aminopropyltrimethoxysilane (Chemical 13 manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.01 part by weight of acetic acid (condensation catalyst) were weighed, and 100 parts by weight of hexamethyldisiloxane- A second chemisorbed solution was prepared by dissolving in a dimethylformamide mixed solvent (1: 1 v / v).

Figure 2008247700
Figure 2008247700

このようにして得られた第2の化学吸着液に乾燥したシリカ微粒子を混入撹拌して空気中(相対湿度45%)で2時間程度反応させた。
その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
The dried fine silica particles were mixed and stirred in the second chemisorbed liquid thus obtained and reacted in air (relative humidity 45%) for about 2 hours.
Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(3)エポキシ基とアミノ基との反応によるシリカ微粒子の太陽熱温水器用のガラス板の表面への結合固定
(2)において調製した反応性シリカ微粒子をエタノールに分散し、(1)において調製した反応性ガラス基材の表面に塗布した。エタノールを蒸発させた後、100℃程度で30分程度加熱した。その後、クロロホルムで洗浄し、自動車用窓ガラス板の表面に結合固定されなかったシリカ微粒子を除去した。
(3) Bonding and fixing silica fine particles to the surface of a glass plate for solar water heater by reaction of epoxy group and amino group The reactive silica fine particles prepared in (2) are dispersed in ethanol, and the reaction prepared in (1) It apply | coated to the surface of a property glass base material. After evaporating the ethanol, it was heated at about 100 ° C. for about 30 minutes. Then, it wash | cleaned with chloroform and the silica fine particle which was not couple | bonded and fixed to the surface of the window glass plate for motor vehicles was removed.

(4)シリカ微粒子の太陽熱温水器用のガラス板の表面への融着
(3)で調製した、エポキシ基とアミノ基との反応を介して表面にシリカ微粒子が結合固定された太陽熱温水器用のガラス板を、650℃の空気中で30分間程度加熱した。走査型電子顕微鏡観察により、太陽熱温水器用のガラス板の表面にアルミナ微粒子が融着固定されていることを確認した。
(4) Glass for solar water heater prepared by fusing silica fine particles to the surface of a glass plate for solar water heater (3), wherein silica fine particles are bonded and fixed on the surface through reaction between epoxy groups and amino groups The plate was heated in air at 650 ° C. for about 30 minutes. It was confirmed by scanning electron microscope observation that alumina fine particles were fused and fixed on the surface of a glass plate for a solar water heater.

(5)撥水撥油防汚性皮膜の形成
(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリクロロシラン(化14)1重量部を、脱水したノナン100重量部に溶解し、第3の化学吸着液を調製した。
(4)で調製した、表面にシリカ微粒子が融着固定された自動車用窓ガラス板の表面に、相対湿度30%以下の乾燥空気中で第3の化学吸着液を塗布し反応させた。反応後、フロン系溶媒で洗浄し、未反応のトリクロロシラン化合物を除去した。
(5) Formation of water- and oil-repellent and antifouling film (heptadecafluoro-1,1,2,2-tetrahydrodecyl) 1 part by weight of trichlorosilane (Chemical Formula 14) is dissolved in 100 parts by weight of dehydrated nonane. A third chemisorbed liquid was prepared.
The third chemical adsorption solution was applied and reacted in dry air with a relative humidity of 30% or less on the surface of the automotive window glass plate prepared in (4) and fused with silica fine particles on the surface. After the reaction, it was washed with a fluorocarbon solvent to remove the unreacted trichlorosilane compound.

Figure 2008247700
Figure 2008247700

このようにして得られた撥水撥油防汚性反射防止膜が表面に形成された太陽熱温水器用のガラス板の見かけ上の水滴接触角を測定したところ、約150度であった。
なお、比較のために、平坦な基材表面にCF(CF27(CH22SiCl3を用いて撥水撥油防汚性被膜を作成してみたが、単分子膜の臨界表面エネルギーは6mN/m程度になり、最大水滴接触角は115度程度であった。これに対して、本発明では、蓮の葉と同様の凸凹効果により140度以上を実現できた。
The apparent water droplet contact angle of the glass plate for a solar water heater on which the water / oil / oil repellent / antifouling antireflection film thus obtained was formed was about 150 °.
For comparison, an attempt was made to create a water / oil repellent / antifouling film using CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 on the surface of a flat substrate. The surface energy was about 6 mN / m, and the maximum water droplet contact angle was about 115 degrees. On the other hand, in this invention, 140 degree | times or more was realizable by the uneven | corrugated effect similar to a lotus leaf.

一方、透明シリカ微粒子はガラスよりも硬度が高く、しかもガラス板表面とは直接融着されているため、直接ガラス板表面にCF(CF27(CH22SiCl3を用いて作成された単分子膜に比べて耐摩耗性も大幅に向上できた。
また、できた微粒子被膜の厚さは、トータルで100nm程度であるため、透明性が損なわれることもなかった。
さらにまた、このような反射防止膜は、表面近傍では屈折率が小さく、基材表面に近づくに伴い段階的に大きくできるため、通常4%程度ある表面反射を1%台まで大幅に低減できた。
On the other hand, transparent silica fine particles are harder than glass and are directly fused to the glass plate surface, so they are made directly using CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 on the glass plate surface. Compared to the monomolecular film, the wear resistance was greatly improved.
Moreover, since the total thickness of the fine particle coating was about 100 nm, the transparency was not impaired.
Furthermore, since such an antireflection film has a small refractive index in the vicinity of the surface and can be increased stepwise as it approaches the substrate surface, the surface reflection, which is usually about 4%, can be greatly reduced to the 1% level. .

(実施例2)
実施例1の(1)〜(4)と同様の処理を行い、表面にシリカ微粒子が融着固定された太陽熱温水器用のガラス板を調製した。
撥水撥油防汚性皮膜の形成は、下記のように行った。
(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリメトキシシラン(化15)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.011重量%を秤量し、これをヘキサメチルジシロキサン溶媒100重量部に溶解して第3の化学吸着液を調製した。表面にシリカ微粒子が融着固定された太陽熱温水器用のガラス板を第3の化学吸着液に漬浸し2時間程度反応させた。その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
(Example 2)
The same processing as in (1) to (4) of Example 1 was performed to prepare a glass plate for a solar water heater in which silica fine particles were fused and fixed on the surface.
The formation of the water / oil repellent / antifouling film was performed as follows.
0.99 parts by weight of (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (Chemical Formula 15) and 0.011% by weight of dibutyltin diacetylacetonate (condensation catalyst) were weighed, A third chemical adsorption solution was prepared by dissolving in 100 parts by weight of a methyldisiloxane solvent. A glass plate for a solar water heater with silica fine particles fused and fixed on the surface was immersed in a third chemical adsorption solution and reacted for about 2 hours. Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

Figure 2008247700
Figure 2008247700

(実施例3)
一方、実施例1と同様の方法でガラス板表面にエポキシ基の代わりにアミノ基を有する化学吸着単分子膜を形成し、シリカ微粒子表面にアミノ基の代わりにエポキシ基を有する化学吸着単分子膜を形成し、エポキシ基とアミノ基との反応でガラス板表面にシリカ微粒子を1層固着させ、最後にCF(CF(CHSiClを反応させると、SiCl基は、エポキシ基とも反応するので、実施例1と同様の撥水撥油防汚性ガラスを製造できた。
(Example 3)
On the other hand, a chemisorption monomolecular film having an amino group instead of an epoxy group is formed on the glass plate surface in the same manner as in Example 1, and a chemisorption monomolecular film having an epoxy group instead of an amino group on the surface of the silica fine particles When a layer of silica fine particles is fixed to the glass plate surface by the reaction of an epoxy group and an amino group, and finally CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is reacted, the SiCl group is Since it also reacts with the epoxy group, the same water / oil repellent antifouling glass as in Example 1 could be produced.

(実施例4)
実施例1と同様の方法を用い、太陽電池製造時に透明基材表面にあらかじめ微粒子が融着した凸凹基板を形成しておき、太陽電池セルを形成後に撥水撥油防汚性反射防止膜を形成し、水滴接触角が150度程度(実用上、水滴接触角が140以上であれば同様の効果が得られた。)の反射防止膜を形成して実用化試験を行った。その結果、半年後でも空気中の粉塵や雨水による汚れもほとんど付着せず、普通のガラスを装着した場合に比べて平均3%程度光利用効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽電池では、1年後でも汚れによる効率低下はほとんどみられなかった。
Example 4
Using the same method as in Example 1, an uneven substrate with fine particles fused in advance to the surface of a transparent base material during the production of a solar cell, and after forming the solar cell, a water / oil / oil / antifouling antireflection film is formed. An antireflection film having a water droplet contact angle of about 150 degrees (similar effect was obtained if the water droplet contact angle was 140 or more in practical use) was formed, and a practical test was conducted. As a result, even after half a year, dust in the air and dirt due to rainwater hardly adhered, and the light utilization efficiency was improved by about 3% on average compared to the case where ordinary glass was attached. Further, in the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar cell, the efficiency is hardly reduced even after one year.

(実施例5)
一方、実施例1において、ガラス板表面に微粒子融着用のガラス板よりさらに融点が低い親水性の被膜、例えばゾル−ゲル法を用いたシリカ含有膜等をあらかじめ形成しておくと、焼成温度を300度以下の低温でも、この被膜を介して微粒子を微粒子の形状をほとんど損なうことなく、ガラス基板表面に間接的に微粒子を融着固定できる。
つまり、この方法では、あらかじめ風冷強化されたガラス板を用いても、強化度を劣化させることなく表面が凸凹のガラス板を製造できる。
(Example 5)
On the other hand, in Example 1, when a hydrophilic coating having a lower melting point than the glass plate for fine particle fusion, such as a silica-containing film using a sol-gel method, is formed in advance on the glass plate surface, the firing temperature is set. Even at a low temperature of 300 ° C. or less, the fine particles can be indirectly fused and fixed to the surface of the glass substrate through this film with almost no loss of the shape of the fine particles.
That is, with this method, even if a glass plate that has been tempered in advance with air cooling is used, a glass plate with an uneven surface can be produced without degrading the degree of strengthening.

そこで、あらかじめ風冷強化したガラス基板にゾル−ゲル法を用いてシリカ含有膜を形成した。
テトラメトキシシラン(Si(OCH)0.99重量部、およびジブチルスズジアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、ゾル溶液を調製した。このようにして得られたゾル溶液をよく洗浄して乾燥した風冷強化ガラスの表面に塗布し、溶媒を蒸発させると、テトラメトキシシランが加水分解し脱アルコール反応して膜厚50nm程度の多量の水酸基を含むシリカ系透明被膜(シリカ乾燥ゲル膜)が形成された。
このようにして得られたシリカ系透明被膜の上に、実施例1と同様の方法で微粒子膜を形成し、280℃で焼成した後、実施例1と同様の方法で撥水撥油防汚性単分子膜を形成すると、水滴接触角が145度程度の表面が撥水撥油防汚性で且つ反射防止機能を持つガラス板が得られた。
Therefore, a silica-containing film was formed on a glass substrate tempered in advance by air-cooling using a sol-gel method.
0.99 parts by weight of tetramethoxysilane (Si (OCH 3 ) 4 ) and 0.01 parts by weight of dibutyltin diacetylacetonate (condensation catalyst) were weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent, A sol solution was prepared. When the sol solution thus obtained is applied to the surface of the air-cooled tempered glass that has been thoroughly washed and dried, and the solvent is evaporated, tetramethoxysilane is hydrolyzed and dealcoholized, resulting in a large amount of about 50 nm. A silica-based transparent film (silica dry gel film) containing the hydroxyl group of was formed.
A fine particle film is formed on the silica-based transparent film thus obtained by the same method as in Example 1 and baked at 280 ° C., and then the water- and oil-repellent and antifouling method by the same method as in Example 1. When a water-soluble monomolecular film was formed, a glass plate having a water-drop contact angle of about 145 degrees and a water / oil / oil / antifouling property and an antireflection function was obtained.

さらに、この撥水撥油防汚性で且つ反射防止機能を持つガラス板を太陽熱温水器に装着し実用化試験を行うと、空気中の粉塵や雨水による汚れもほとんど付着せず、普通のガラスを装着した場合に比べて初期値で平均3%程度集熱効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽熱温水器では、1年後でも汚れによる効率低下はほとんどみられなかった。 Furthermore, when this water and oil repellent antifouling and antireflective glass plate is mounted on a solar water heater and tested for practical use, dirt from the dust and rainwater in the air hardly adheres, and ordinary glass The heat collection efficiency was improved by about 3% on average as compared with the case where the device was installed. In the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar water heater, the efficiency was hardly reduced even after one year.

以上の実験結果は、本発明の撥水撥油防汚性反射防止膜を用いた太陽電池や太陽熱温水器がきわめて高効率であり、耐久性が高いことを示している。 The above experimental results show that the solar cell and the solar water heater using the water / oil repellent / antifouling antireflection film of the present invention are extremely efficient and highly durable.

なお、以上の実施例4および5では、太陽電池や太陽熱温水器の用途について例示したが、本発明の応用は、これら用途に限定されるものではなく、太陽エネルギーを利用する機器、例えば温室等にも適用できることはいうまでもない。 In addition, in the above Examples 4 and 5, although illustrated about the use of a solar cell or a solar water heater, the application of this invention is not limited to these uses, For example, the apparatus using solar energy, for example, a greenhouse Needless to say, this can also be applied.

(実施例6)
実施例1と同様の方法を用いて撥水撥油防汚性反射防止膜を形成したレンズを製作し、光学機器に装着しテスト使用してみたが、指紋の付着がほとんど無く、しかも光透過率は反射防止マルチコート膜と同等であり遜色のないレンズを製作できた。
(Example 6)
Using the same method as in Example 1, a lens having a water / oil repellent / antifouling antireflective coating was fabricated and mounted on an optical device for test use. The rate was the same as that of the anti-reflection multi-coated film, and a comparable lens could be produced.

(実施例7)
さらにまた、実施例1と同様の方法を用いて表面に撥水撥油防汚性反射防止膜を形成したCRTを製作し、テスト使用してみたが、指紋の付着がほとんど無く、さらに室内の蛍光灯等の写り込みを低減でき、視認性を大幅に向上できた。
なお、同じ原理で、この技術が、PDPやLCDの表示面にて適用できることは言うまでもない。
(Example 7)
Furthermore, a CRT having a water / oil / oil / antifouling antireflection film formed on the surface was produced using the same method as in Example 1 and was used for testing. It was possible to reduce the reflection of fluorescent lights, etc., and the visibility was greatly improved.
Needless to say, this technique can be applied to the display surface of a PDP or LCD based on the same principle.

以上説明したとおり、本発明によれば、撥水撥油防汚機能が要求される光学装置用レンズや太陽エネルギー利用装置用ガラス板、ディスプレイ用フェイスプレートにおいて、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水撥油防汚性反射防止膜を提供できる。
したがって、本発明は、撥水撥油防汚機能が要求される光学装置のレンズや太陽エネルギー利用装置のガラス板やディスプレイのフェイスプレート用いられるガラス表面に、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水撥油防汚性反射防止膜を形成でき、光学性能に優れて光学装置や、光利用効率に優れた太陽エネルギー利用装置、視認性防汚性に優れたディスプレイを提供できる。
As described above, according to the present invention, durability, such as wear resistance and weather resistance, in lenses for optical devices, glass plates for solar energy utilization devices, and face plates for displays that require water / oil repellent / antifouling functions. Water-repellent / oil-repellent / anti-fouling anti-reflective coating excellent in water resistance, water-drop separation (also referred to as water slidability) and anti-fouling properties
Therefore, the present invention provides durability such as wear resistance and weather resistance on the lens surface of an optical device, a glass plate of a solar energy utilization device and a glass plate used for a face plate of a display, which are required to have a water and oil repellent and antifouling function. Water and oil repellent and anti-fouling anti-reflective coatings with excellent water repellency (also called water slidability) and antifouling properties, optical devices with excellent optical performance, and solar energy utilization devices with excellent light utilization efficiency A display having excellent visibility and antifouling properties can be provided.

本発明の一実施の形態に係る撥水撥油防汚性反射防止膜の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-sectional structure of the water repellent / oil repellent antifouling | reflective antireflection film which concerns on one embodiment of this invention. 同撥水撥油防汚性反射防止膜の製造方法において、ガラス基材の表面にエポキシ基を含む単分子膜を形成する工程を説明するために分子レベルまで拡大した模式図であり、(a)は反応前のガラス表面の断面構造、(b)はエポキシ基を含む単分子膜が形成された反応性ガラス基材の断面構造をそれぞれ表す。In the manufacturing method of the same water-repellent / oil-repellent antifouling antireflection film, it is a schematic view enlarged to a molecular level to explain a step of forming a monomolecular film containing an epoxy group on the surface of a glass substrate, (a ) Represents the cross-sectional structure of the glass surface before the reaction, and (b) represents the cross-sectional structure of the reactive glass substrate on which a monomolecular film containing an epoxy group is formed. 同撥水撥油防汚性反射防止膜の製造方法において、シリカ微粒子の表面にアミノ基を含む単分子膜を形成する工程を説明するために分子レベルまで拡大した模式図であり、(a)は反応前のシリカ微粒子の断面構造、(b)はアミノ基を含む単分子膜が形成された反応性シリカ微粒子の断面構造をそれぞれ表す。FIG. 5 is a schematic diagram enlarged to the molecular level for explaining a step of forming a monomolecular film containing an amino group on the surface of silica fine particles in the method for producing the water / oil repellent / antifouling antireflection film; Represents the cross-sectional structure of the silica fine particles before the reaction, and (b) represents the cross-sectional structure of the reactive silica fine particles on which a monomolecular film containing an amino group is formed. 同撥水撥油防汚性反射防止膜の製造方法において、シリカ微粒子が共有結合を介して表面に結合したガラス基材を製造する工程を説明するためにその断面構造を分子レベルまで拡大した模式図である。In the method for producing the water / oil / oil / antifouling antireflection film, the cross-sectional structure is expanded to the molecular level in order to explain the process of producing a glass substrate in which silica fine particles are bonded to the surface through covalent bonds. FIG. 融着したシリカ微粒子で表面が覆われたガラス基材の断面構造を表す模式図である。It is a schematic diagram showing the cross-sectional structure of the glass base material in which the surface was covered with the fused silica fine particles.

符号の説明Explanation of symbols

1:ガラス基材、1a:融着したシリカ微粒子で表面が覆われたガラス基材、2:水酸基、3:エポキシ基、3a:エポキシ基を含む単分子膜、4:反応性ガラス基材、5:シリカ微粒子、6:水酸基、7:アミノ基、8:アミノ基を含む単分子膜、9:反応性シリカ微粒子、10:シリカ微粒子が共有結合を介して表面に結合したガラス基材、11:撥水撥油防汚性被膜、12:撥水撥油防汚性反射防止膜 1: glass substrate, 1a: glass substrate whose surface is covered with fused silica fine particles, 2: hydroxyl group, 3: epoxy group, 3a: monomolecular film containing epoxy group, 4: reactive glass substrate, 5: Silica fine particles, 6: Hydroxyl group, 7: Amino group, 8: Monomolecular film containing amino group, 9: Reactive silica fine particles, 10: Glass substrate in which silica fine particles are bonded to the surface through covalent bonds, 11 : Water / oil repellent / antifouling coating, 12: Water / oil repellent / antifouling anti-reflective coating

Claims (24)

ガラス基材の表面に融着した撥水撥油防汚性の透明微粒子を含むことを特徴とする撥水撥油防汚性反射防止膜。 A water / oil repellent / antifouling antireflection film comprising water / oil repellent / antifouling transparent fine particles fused to the surface of a glass substrate. 請求項1記載の撥水撥油防汚性反射防止膜において、前記透明微粒子として、粒径の異なるものが混合して用いられていることを特徴とする撥水撥油防汚性反射防止膜。 The water / oil repellent / antifouling antireflective film according to claim 1, wherein the transparent fine particles have different particle diameters. . 請求項1および2のいずれか1項に記載の撥水撥油防汚性反射防止膜において、撥水撥油防汚性被膜が少なくとも前記透明微粒子の表面に共有結合していることを特徴とする撥水撥油防汚性反射防止膜。 The water / oil / oil / repellency / antifouling antireflection film according to claim 1, wherein the water / oil / oil / repellency / antifouling coating is covalently bonded to at least the surface of the transparent fine particles. Water and oil repellent antifouling antireflective coating. 請求項3記載の撥水撥油防汚性反射防止膜において、前記撥水撥油防汚性被膜が−CF基を含むことを特徴とする撥水撥油防汚性反射防止膜。 The water / oil / oil / repellency / antifouling antireflection film according to claim 3, wherein the water / oil / oil / repellency / antifouling coating comprises —CF 3 groups. 請求項1〜4のいずれか1項に記載の撥水撥油防汚性反射防止膜において、前記透明微粒子が透光性でかつ前記ガラス基材より軟化点が高いシリカ、アルミナ、およびジルコニアのいずれかであることを特徴とする撥水撥油防汚性反射防止膜。 5. The water / oil / oil repellent / antifouling antireflection film according to claim 1, wherein the transparent fine particles are translucent and have a softening point higher than that of the glass substrate, such as silica, alumina, and zirconia. A water / oil repellent antifouling antireflective film characterized by being either. 請求項1〜5のいずれか1項に記載の撥水撥油防汚性反射防止膜において、前記透明微粒子の粒径が400nm未満であることを特徴とする撥水撥油防汚性反射防止膜。 The water / oil repellent / antifouling antireflection film according to any one of claims 1 to 5, wherein the transparent fine particles have a particle size of less than 400 nm. film. 請求項1〜6のいずれか1項に記載の撥水撥油防汚性反射防止膜において、水に対する接触角が140度以上であることを特徴とする撥水撥油防汚性反射防止膜。 The water / oil repellent / antifouling antireflective film according to claim 1, wherein the water contact angle is 140 ° or more. . 請求項1〜7のいずれか1項に記載の撥水撥油防汚性反射防止膜において、前記透明微粒子は、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を介して前記ガラス基材の表面に融着されていることを特徴とする撥水撥油防汚性反射防止膜。 The water / oil repellent / antifouling antireflective film according to claim 1, wherein the transparent fine particles are made of a metal oxide that is fused to the transparent fine particles at a temperature lower than that of the glass substrate. A water / oil repellent antifouling antireflective film, which is fused to the surface of the glass substrate through a transparent film. 請求項1〜8のいずれか1項に記載の撥水撥油防汚性反射防止膜が表面に形成されていることを特徴とするレンズ。 A lens, wherein the water / oil / oil repellent / antifouling antireflective film according to claim 1 is formed on a surface thereof. 請求項1〜8のいずれか1項に記載の撥水撥油防汚性反射防止膜が表面に形成されていることを特徴とするガラス板。 A glass plate, characterized in that the water / oil repellent / antifouling antireflective film according to claim 1 is formed on a surface thereof. 請求項1〜8のいずれか1項に記載の撥水撥油防汚性反射防止膜が表面に形成されていることを特徴とするガラス。 A glass characterized in that the water / oil / oil repellent / antifouling antireflection film according to claim 1 is formed on a surface thereof. 請求項9記載のレンズを装着したことを特徴とする光学装置。 An optical device comprising the lens according to claim 9. 請求項10記載のガラス板を装着したことを特徴とする太陽エネルギー利用装置。 A solar energy utilization apparatus, comprising the glass plate according to claim 10. 請求項11記載のガラスを装着したことを特徴とするディスプレイ。 A display comprising the glass according to claim 11. 第1の官能基を含む第1のシラン化合物と非水系の有機溶媒とを含む第1の化学吸着液をガラス基材に接触させ、前記第1のシラン化合物のシリル基と前記ガラス基材の表面の活性水素基との反応により前記第1のシラン化合物の単分子膜で表面が覆われた反応性ガラス基材を製造する工程Aと、
前記第1の官能基と反応して共有結合を形成する第2の官能基を含む第2のシラン化合物と非水系の有機溶媒とを含む第2の化学吸着液中に透明微粒子を分散し、前記第2のシラン化合物のシリル基と前記透明微粒子の表面の活性水素基との反応により前記第2のシラン化合物の単分子膜で表面が覆われた反応性透明微粒子を製造する工程Bと、
前記反応性ガラス基材と前記反応性透明微粒子とを接触させた状態で加熱して前記第1の官能基と前記第2の官能基とを反応させ、形成した共有結合を介して前記透明微粒子を表面に結合させたガラス基材を製造する工程Cと、
前記工程Cで前記透明微粒子を表面に結合させたガラス基材を、酸素を含む雰囲気中で加熱処理し、前記ガラス基材の表面に前記透明微粒子を融着させ、前記融着した透明微粒子で表面が覆われたガラス基材を製造する工程Dと、
フッ化炭素基を含む第3のシラン化合物と非水系の有機溶媒とを含む第3の化学吸着液を前記融着した透明微粒子で表面が覆われたガラス基材に接触させて、前記第3のシラン化合物のシリル基と前記融着した透明微粒子で表面が覆われたガラス基材の表面の活性水素基との反応により前記フッ化炭素基よりなる撥水撥油防汚性被膜を形成する工程Eとを含むことを特徴とする撥水撥油防汚性反射防止膜の製造方法。
A first chemical adsorption liquid containing a first silane compound containing a first functional group and a non-aqueous organic solvent is brought into contact with a glass substrate, and the silyl group of the first silane compound and the glass substrate Step A for producing a reactive glass substrate whose surface is covered with a monomolecular film of the first silane compound by reaction with active hydrogen groups on the surface;
Dispersing transparent fine particles in a second chemical adsorption liquid containing a second silane compound containing a second functional group that reacts with the first functional group to form a covalent bond and a non-aqueous organic solvent, Step B for producing reactive transparent fine particles whose surface is covered with a monomolecular film of the second silane compound by a reaction between the silyl group of the second silane compound and the active hydrogen group on the surface of the transparent fine particles;
Heating the reactive glass substrate and the reactive transparent fine particles in contact with each other to react the first functional group and the second functional group, and forming the transparent fine particles through the covalent bond formed Step C for producing a glass substrate having a surface bonded to the surface,
The glass substrate in which the transparent fine particles are bonded to the surface in the step C is heat-treated in an atmosphere containing oxygen, and the transparent fine particles are fused to the surface of the glass substrate. Step D for producing a glass substrate whose surface is covered;
A third chemisorbed liquid containing a third silane compound containing a fluorocarbon group and a non-aqueous organic solvent is brought into contact with the glass substrate whose surface is covered with the fused transparent fine particles, and the third The water- and oil-repellent and antifouling coating composed of the fluorocarbon group is formed by the reaction between the silyl group of the silane compound and the active hydrogen group on the surface of the glass substrate whose surface is covered with the fused transparent fine particles. A process for producing a water- and oil-repellent and antifouling antireflective film comprising the step E.
請求項15記載の撥水撥油防汚性反射防止膜の製造方法において、前記第1および第2の官能基の一方がエポキシ基、他方がアミノ基またはイミノ基であることを特徴とする撥水撥油防汚性反射防止膜の製造方法。 16. The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 15, wherein one of the first and second functional groups is an epoxy group and the other is an amino group or an imino group. A method for producing a water / oil repellent antifouling antireflection film. 請求項15および16のいずれか1項に記載の撥水撥油防汚性反射防止膜の製造方法において、前記工程A、B、およびEのいずれか1、2、または3において、前記シリル基と前記活性水素基との反応後、未反応物を洗浄除去することを特徴とする撥水撥油防汚性反射防止膜の製造方法。 The method for producing a water / oil repellent / antifouling antireflective film according to any one of claims 15 and 16, wherein in any one of the steps A, B and E, 1, 2 or 3, the silyl group A method for producing a water- and oil-repellent antifouling antireflection film, wherein unreacted substances are washed away after the reaction between the water and the active hydrogen group. 請求項15〜17のいずれか1項に記載の撥水撥油防汚性反射防止膜の製造方法において、前記工程Aの前に、前記ガラス基材よりも低い温度で前記透明微粒子と融着する金属酸化物の透明被膜を前記ガラス基材の表面に形成する工程Fをさらに有することを特徴とする撥水撥油防汚性反射防止膜の製造方法。 The method for producing a water / oil repellent / antifouling antireflection film according to any one of claims 15 to 17, wherein the transparent fine particles are fused to the glass substrate at a temperature lower than that of the glass substrate before the step A. A process for producing a water- and oil-repellent antifouling antireflection film, further comprising a step F of forming a transparent film of metal oxide on the surface of the glass substrate. 請求項18記載の撥水撥油防汚性反射防止膜の製造方法において、前記工程Fにおける前記透明被膜の形成にゾルゲル法を用いることを特徴とする撥水撥油防汚性反射防止膜の製造方法。 19. The method for producing a water / oil / oil / repellency / antifouling antireflection film according to claim 18, wherein a sol-gel method is used for forming the transparent film in the step F. Production method. 請求項15〜19のいずれか1項に記載の撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液にそれぞれ含まれる前記第1、第2および第3のシラン化合物のいずれか1、2、または3はアルコキシシラン化合物であることを特徴とする撥水撥油防汚性反射防止膜の製造方法。 20. The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 15, wherein the first, second, and third chemical adsorption liquids each include the first, Any one of 1, 2 or 3 of the second and third silane compounds is an alkoxysilane compound. A method for producing a water / oil repellent antifouling antireflection film, wherein 請求項15〜19のいずれか1項に記載の撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液にそれぞれ含まれる前記第1、第2および第3のシラン化合物のいずれか1、2、または3はハロシラン化合物であることを特徴とする撥水撥油防汚性反射防止膜の製造方法。 20. The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 15, wherein the first, second, and third chemical adsorption liquids each include the first, Any one of 1, 2 or 3 of the second and third silane compounds is a halosilane compound. A method for producing a water- and oil-repellent antifouling antireflection film, wherein 請求項20記載の撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液のうち前記アルコキシシラン化合物を含むものは、さらに縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物を含むことを特徴とする撥水撥油防汚性反射防止膜の製造方法。 The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 20, wherein the first, second and third chemical adsorption liquids containing the alkoxysilane compound are further used as a condensation catalyst. It includes one or more compounds selected from the group consisting of a carboxylic acid metal salt, a carboxylic acid ester metal salt, a carboxylic acid metal salt polymer, a carboxylic acid metal salt chelate, a titanate ester, and a titanate ester chelate. A method for producing a water- and oil-repellent antifouling antireflection film. 請求項20記載の撥水撥油防汚性反射防止膜の製造方法において、前記第1、第2、および第3の化学吸着液のうち前記アルコキシシラン化合物を含むものは、縮合触媒としてケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含むことを特徴とする撥水撥油防汚性反射防止膜の製造方法。 21. The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 20, wherein the first, second and third chemical adsorption liquids contain the alkoxysilane compound as a condensation catalyst. Water repellent / oil repellent / antifouling antireflective coating, further comprising one or more compounds selected from the group consisting of organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds Manufacturing method. 請求項22記載の撥水撥油防汚性反射防止膜の製造方法において、さらに助触媒として、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物をさらに含むことを特徴とする撥水撥油防汚性反射防止膜の製造方法。 23. The method for producing a water / oil / oil repellent / antifouling antireflection film according to claim 22, further comprising, as a co-catalyst, a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound. A method for producing a water- and oil-repellent antifouling antireflective film, further comprising one or more selected compounds.
JP2007093676A 2007-03-30 2007-03-30 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display Active JP5347125B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007093676A JP5347125B2 (en) 2007-03-30 2007-03-30 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
PCT/JP2008/056372 WO2008120782A1 (en) 2007-03-30 2008-03-31 Water-and-oil-repellent antifouling antireflection film, process for producing the same, and lens, glass plate, glass, optical device, apparatus for utilizing solar energy, and display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093676A JP5347125B2 (en) 2007-03-30 2007-03-30 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display

Publications (2)

Publication Number Publication Date
JP2008247700A true JP2008247700A (en) 2008-10-16
JP5347125B2 JP5347125B2 (en) 2013-11-20

Family

ID=39808362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093676A Active JP5347125B2 (en) 2007-03-30 2007-03-30 Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display

Country Status (2)

Country Link
JP (1) JP5347125B2 (en)
WO (1) WO2008120782A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222199A (en) * 2009-03-25 2010-10-07 Kagawa Univ Water-repelling and oil-repelling antifouling glass, process of production thereof and glass window, solar energy utilization device, and optical equipment using the glass
JP2014228728A (en) * 2013-05-23 2014-12-08 日揮触媒化成株式会社 Base material with antireflection film, and method for producing the same
KR101546084B1 (en) 2013-08-06 2015-08-20 경기대학교 산학협력단 Surface Structure Layer having Antifouling Property
JP2017186241A (en) * 2014-05-15 2017-10-12 旭硝子株式会社 Transportation machine interior member and transportation machine interior assembly
KR101916503B1 (en) * 2015-06-24 2018-11-07 경기대학교 산학협력단 Composition For Hydrophobic Thin Film, Hydrophobic Thin Film And Manufacturing Method Thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075234B2 (en) 2009-09-02 2012-11-21 ソニー株式会社 Optical element and display device
HUP1600384A1 (en) * 2016-06-15 2018-01-29 Hungaro Lux Light Kft Anti-reflection coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239633A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Water and repelling film and manufacture thereof
JP2001180981A (en) * 1999-12-24 2001-07-03 Asahi Glass Co Ltd Glass member for facing having glare-proof coating and method of setting it up
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331977B2 (en) * 2006-06-14 2013-10-30 国立大学法人 香川大学 Manufacturing method of solar energy utilization device
JP4654443B2 (en) * 2006-06-28 2011-03-23 国立大学法人 香川大学 Manufacturing method of solar energy utilization device
JP4670057B2 (en) * 2006-06-28 2011-04-13 国立大学法人 香川大学 Method for producing water and oil repellent antifouling glass plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239633A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Water and repelling film and manufacture thereof
JP2001180981A (en) * 1999-12-24 2001-07-03 Asahi Glass Co Ltd Glass member for facing having glare-proof coating and method of setting it up
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222199A (en) * 2009-03-25 2010-10-07 Kagawa Univ Water-repelling and oil-repelling antifouling glass, process of production thereof and glass window, solar energy utilization device, and optical equipment using the glass
JP2014228728A (en) * 2013-05-23 2014-12-08 日揮触媒化成株式会社 Base material with antireflection film, and method for producing the same
KR101546084B1 (en) 2013-08-06 2015-08-20 경기대학교 산학협력단 Surface Structure Layer having Antifouling Property
JP2017186241A (en) * 2014-05-15 2017-10-12 旭硝子株式会社 Transportation machine interior member and transportation machine interior assembly
US11280939B2 (en) 2014-05-15 2022-03-22 AGC Inc. Glass article and production method for glass article
US11448802B2 (en) 2014-05-15 2022-09-20 AGC Inc. Glass article and production method for glass article
KR101916503B1 (en) * 2015-06-24 2018-11-07 경기대학교 산학협력단 Composition For Hydrophobic Thin Film, Hydrophobic Thin Film And Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP5347125B2 (en) 2013-11-20
WO2008120782A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5487418B2 (en) Water repellent / oil repellent / anti-fouling light reflecting plate, manufacturing method thereof, tunnel, road sign, display board, vehicle, building using the same.
JP5157143B2 (en) Base with antireflection film
WO1998027021A1 (en) Nonfogging and stainproof glass articles
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JP2007126332A (en) Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate
US7422642B2 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film used in the method
JP5804548B2 (en) Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
JP2000256040A (en) Glass panel for automobile window
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP2008282751A (en) Ice-accretion and snow-accretion preventive insulator and electric wire, antenna, their manufacturing method, and power transmission steel tower using them
JP5326086B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP5343271B2 (en) Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same
JP2012220898A (en) Wear-resistant, ultra-water-repellent, oil-repellent, antifouling, and light-transmissive film, method for manufacturing the same, and glass window, solar energy utilization device, optical device, and display device using the same
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
WO2009107191A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate
JP4929459B2 (en) Method for producing water and oil repellent antifouling glass plate
JP5526331B2 (en) Antireflection film and method for producing the same.
JP5343226B2 (en) Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate
WO2009107190A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150