JP2008245617A - Nutrient salt composition using farm and marine waste and for silicon supply to water area, and production system thereof - Google Patents

Nutrient salt composition using farm and marine waste and for silicon supply to water area, and production system thereof Download PDF

Info

Publication number
JP2008245617A
JP2008245617A JP2007093904A JP2007093904A JP2008245617A JP 2008245617 A JP2008245617 A JP 2008245617A JP 2007093904 A JP2007093904 A JP 2007093904A JP 2007093904 A JP2007093904 A JP 2007093904A JP 2008245617 A JP2008245617 A JP 2008245617A
Authority
JP
Japan
Prior art keywords
rice husk
water
husk ash
water area
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093904A
Other languages
Japanese (ja)
Other versions
JP4985042B2 (en
Inventor
Yasushi Mishima
康史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007093904A priority Critical patent/JP4985042B2/en
Publication of JP2008245617A publication Critical patent/JP2008245617A/en
Application granted granted Critical
Publication of JP4985042B2 publication Critical patent/JP4985042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon supply material using chaff ash and shell, supplying silicon to water area so as to change the water area to be in environmental conditions on which diatom easily proliferates. <P>SOLUTION: Concerning a nutrient salt composition to be supplied to water area, promoting proliferation of the diatom of a preferential microalgae on water area, the nutrient salt composition to be supplied to water area is provided by being compounded with the chaff ash and pulverized calcium carbonate resources as the main ingredients, and a modification method of nutrient salt conditions in the water area is provided. Thereby, silicon is supplied to water area short in silicon so as to change the water area to be in environmental conditions on which the diatom proliferates easily. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、農水産廃棄物等を利用した、水域へのケイ素補給用栄養塩組成物に関するものであり、更に詳しくは、水域の栄養塩環境を珪藻が増殖しやすい環境に改変するための、農産廃棄物であるもみ殻灰と水産廃棄物である貝殻を利用した新しい水域へのケイ素補給用栄養塩組成物及び該組成物による水域環境の改変方法に関するものである。本発明は、農産廃棄物であるもみ殻を利用したもみ殻発電の残さとなるもみ殻灰、及び水産廃棄物である貝殻等の炭酸カルシウム資源を利用した水域補給用ケイ素材料を提供するものであり、ケイ素不足水域に該ケイ素材料を供給することにより、水域の生態系において重要な基礎生産者であり、高次生産者の有用な餌である珪藻が増殖しやすい環境にすることが可能な水域へのケイ素補給用材料を提供するものである。   The present invention relates to a nutrient composition for supplementing silicon to water using agricultural and fishery wastes, etc., more specifically, for changing the nutrient environment of the water to an environment in which diatoms can easily grow, The present invention relates to a nutrient composition for supplying silicon to a new water area using rice husk ash which is an agricultural waste and a shell which is an aquatic waste, and a method for modifying the water environment by using the composition. The present invention provides rice husk ash, which is the residue of rice husk power generation using rice husks that are agricultural wastes, and a silicon material for water supply using calcium carbonate resources such as sea shells that are marine wastes. Yes, by supplying the silicon material to the silicon-deficient water area, it is possible to create an environment in which diatoms, which are important basic producers in the ecosystem of the water area, and are useful for high-level producers, can easily grow. A material for replenishing silicon to water is provided.

ケイ素は、水域の優先微細藻類である珪藻の必須元素である。大規模ダムの建設や、海域への窒素、リンの負荷増大により、相対的なケイ素欠損が問題視されつつある(非特許文献1−11)。珪藻は、種類にもよるが、海域ではケイ素濃度が2−5μmol/L以下になると、他の栄養塩類(窒素、リン)が十分量あってもその増殖が妨げられる(非特許文献11)。   Silicon is an essential element of diatom, which is a preferred microalgae in water. Due to the construction of a large-scale dam and an increase in the load of nitrogen and phosphorus on the sea area, relative silicon deficiency is being regarded as a problem (Non-patent Documents 1-11). Depending on the type of diatom, if the silicon concentration is 2-5 μmol / L or less in the sea area, its growth is hindered even if there is a sufficient amount of other nutrients (nitrogen, phosphorus) (Non-patent Document 11).

鞭毛藻類の窒素、リンの取込み速度は、一般に、珪藻よりも低いが、ケイ素が不足すると、珪藻の増殖がさまたげられ、その増殖にケイ素を必要としない鞭毛藻類等にとって有利な環境となる(非特許文献9、10、11)。鞭毛藻類には、魚介類にダメージを与える種が多く、結果として水域の生態系に悪影響を及ぼし、ひいては魚介類の生産低下を引き起こす可能性がある。   Nitrogen and phosphorus uptake rates of flagellate algae are generally lower than that of diatoms. However, when silicon is insufficient, diatom growth is hindered, and it becomes an advantageous environment for flagellate algae that do not require silicon for growth (non- Patent Documents 9, 10, and 11). There are many species of flagellate algae that damage fish and shellfish, and as a result, it can adversely affect the ecosystem of the aquatic area, which can lead to a decline in production of fish and shellfish.

水域のケイ素のほとんどは、河川由来であり、粘土鉱物の風化作用等によって、水域へと運ばれる。しかしながら、大規模なダム等が建設されると、ダムの止水中で淡水性の珪藻が増殖し、それまで海域へと運ばれていたケイ素が、ダム湖にトラップされ、海域へのケイ素供給が減少してしまう。   Most of the silicon in the water is derived from rivers and is transported to the water by the weathering action of clay minerals. However, when large-scale dams are constructed, freshwater diatoms grow in the dam's still water, and silicon that has been transported to the sea until then is trapped in the dam lake, and silicon is supplied to the sea. It will decrease.

ケイ素が不足した水域へケイ素を供給してやれば、鞭毛藻類の増殖を抑制し、水域の生態系において有用な珪藻を増殖させることが可能であると考えられる。従来、水域へのケイ素及びリンの補給については、先行技術として、例えば、鉄鋼スラグを用いる方法が提案されている(特許文献1)。しかしながら、鉄鋼スラグは、鉱工業の産業廃棄物であるため、その精錬過程において、有害重金属等が混入する恐れがあり、実際の海域への散布には、注意を要する。一方、もみ殻灰及び貝殻は、天然生物由来の材料であり、自然界に回帰させても、問題はないと考えられる。   If silicon is supplied to the water area lacking silicon, it is thought that the growth of flagellate algae can be suppressed and diatoms useful in the ecosystem of the water area can be propagated. Conventionally, for example, a method using steel slag has been proposed as a prior art for replenishing silicon and phosphorus to water areas (Patent Document 1). However, since steel slag is industrial waste of the mining industry, there is a possibility that harmful heavy metals and the like may be mixed in the refining process. On the other hand, rice husk ash and shells are materials derived from natural organisms, and it is considered that there is no problem even if they are returned to the natural world.

瀬戸内海では、冨栄養化を防止するために、COD、リン、窒素の総量規制が実施され、一部の海域を除き、冨栄養化は沈静化しつつある。しかしながら、窒素の総量規制に先立ち、リンの総量規制が先行して行われたため、海域全体では植物プランクトンの増殖に必要な栄養塩である窒素が過剰で、リンが不足する事態になっている(非特許文献1)。   In the Seto Inland Sea, the total amount of COD, phosphorus, and nitrogen is regulated to prevent drought nutrition, and drought nutrition is calming down except for some sea areas. However, since the total amount of phosphorus was controlled prior to the total amount of nitrogen, the entire sea area is in excess of nitrogen, which is a nutrient necessary for the growth of phytoplankton, resulting in a shortage of phosphorus ( Non-patent document 1).

また、ダム等の開発により、海域へのケイ素の流入量が減少し、ケイ素不足の海域も増加すると考えられる(非特許文献4−11)。このような栄養塩類の不均衡は、海域生態系の基礎生産に悪影響を与え、有害鞭毛藻類の発生や漁業生産を低下させている一因でもある。   In addition, the development of dams and the like will reduce the inflow of silicon into the sea area and increase the number of silicon-deficient sea areas (Non-patent Documents 4-11). Such nutrient imbalances have a negative impact on the basic production of marine ecosystems, which is one of the factors that reduce the occurrence of harmful flagellar algae and fishery production.

また、東南アジア諸国において盛んに行われている水産養殖の水産養殖場においては、溶存態無機窒素及び溶存態無機リンが過剰であり、溶存態ケイ素が不足しやすい状況となっている(三島、未発表データ)。この様な状況では、珪藻よりも有害な鞭毛藻類や、藍藻が増殖しやすいと考えられる。   In addition, aquaculture farms of aquaculture that are actively practiced in Southeast Asian countries are in a state where dissolved inorganic nitrogen and dissolved inorganic phosphorus are excessive, and dissolved silicon is likely to be insufficient (Mishima, Presentation data). In such a situation, flagellar algae that are more harmful than diatoms and cyanobacteria are likely to grow.

特開2003−134958号公報JP 2003-134958 A 原島省:沿岸海洋研究,43,39−44(2005)「フェリーモニタリングデータに基づいたシリカ欠損仮説の検証」Harashima: Coastal Ocean Research, 43, 39-44 (2005) “Verification of silica deficiency hypothesis based on ferry monitoring data” Officer,C.B.and J.H.Ryther (1980): The possible importance of silicon in marine eutrophication. Prog Mari Ecol.Prog.Ser.,3, 83-91Officer, C.B.and J.H.Ryther (1980): The possible importance of silicon in marine eutrophication.Prog Mari Ecol.Prog.Ser., 3, 83-91 Tsunogai,S.and Y.Watanabe(1983):Role of dissolved silicate in the occurrence of phytoplankton bloom. J.Oceanogr.Soc.Jpn.,39,231-239Tsunogai, S. and Y. Watanabe (1983): Role of dissolved silicate in the occurrence of phytoplankton bloom. J. Oceanogr. Soc. Jpn., 39, 231-239 Billen, G., C.Lancelot and M.Meybeck (1991):N,P,and Si retention along the aquatic continuum from land to ocean, p. 1944, In, Ocean Margin Processes in Global Change,eds.R.F.C., Mantoura,J.-M.Martin and R.Wollast,WileyBillen, G., C. Lancelot and M. Meybeck (1991): N, P, and Si retention along the aquatic continuum from land to ocean, p. 1944, In, Ocean Margin Processes in Global Change, eds.RFC, Mantoura , J.-M.Martin and R.Wollast, Wiley Humborg, C.,V.Ittekot,A Cociasu and B.Bodungen (1988):Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature,27,385-388Humborg, C., V. Ittekot, A Cociasu and B. Bodungen (1988): Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure.Nature, 27, 385-388 Ittekot,V.,C.Humborg and P.Schafer (2000):Hydrological alterations and marine biogeochemistry: a silicate issue?BioScience,50,776-782Ittekot, V., C.Humborg and P.Schafer (2000): Hydrological alterations and marine biogeochemistry: a silicate issue? BioScience, 50,776-782 Vorosmarty,C.J.,K.P.Sharma,B.M.Fekete,A.H.Copeland,J,Holden, J.Marble and J.A.Lough (1997):The storage and aging of continental runoff in large reservoir systems of the world.Ambio, 26, 210-219Vorosmarty, C.J., K.P.Sharma, B.M.Fekete, A.H.Copeland, J, Holden, J.Marble and J.A.Lough (1997): The storage and aging of continental runoff in large reservoir systems of the world.Ambio, 26, 210-219 Turner,R.E.and N.N.Rabalais (1994): Coastal eutrophication near the Mississipi river delta. Nature,368,619-621Turner, R.E.and N.N.Rabalais (1994): Coastal eutrophication near the Mississipi river delta.Nature, 368,619-621 Turner Thomas,W.A.,A.N.Dodson and F.M.H.Reid(1978):Diatom productivity compared to other algae in natural marine phytoplankton assemblages.J.Phycol.,14,250-253Turner Thomas, W.A., A.N.Dodson and F.M.H.Reid (1978): Diatom productivity compared to other algae in natural marine phytoplankton assemblages.J.Phycol., 14,250-253 Delmas,D.,A.Herbland and S.Y.Maestrini(1992):Environmental conditons which lend to increase in cell density of the toxic dinoflagellates Dinophysis spp.in nutrient-rich and nutrient-poor waters of the French Atlantic coast. Mar. Ecol.Prog.Ser.,89,53-61Delmas, D., A. Herbland and SYMaestrini (1992): Environmental conditons which lend to increase in cell density of the toxic dinoflagellates Dinophysis spp. In nutrient-rich and nutrient-poor waters of the French Atlantic coast. Mar. Ecol. Prog.Ser., 89,53-61 Egge,J.K.and D L.Aksnes(1992):Silicate as regulating nutrient in phytoplankton competitionMar.Ecol.Prog.Ser.,83,281-289Egge, J.K. and D L. Aksnes (1992): Silicate as regulating nutrient in phytoplankton competition Mar. Ecol. Prog. Ser., 83, 281-289

このような状況の中で、本発明者は、上記従来技術に鑑みて、水域の状況に応じ、ケイ素を補給し、栄養塩状態を是正し、珪藻が増殖しやすい環境を整えることを可能とする水域へのケイ素補給材を開発することを目標として鋭意研究を重ねた結果、農産廃棄物のもみ殻灰と水産廃棄物の貝殻粉砕物を利用して作製したケイ素補給用栄養塩組成物からなるケイ素補給材が有用であることを見出し、本発明を完成するに至った。本発明は、水域へケイ素を補給して珪藻の増殖を促進する水域補給用栄養塩組成物及びその製造方法を提供することを目的とするものである。また、本発明は、上記組成物を水域へ供給して、水域の栄養塩環境を珪藻が増殖しやすい環境に改変する方法を提供することを目的とするものである。   Under such circumstances, the present inventor is able to replenish silicon according to the state of the water area, correct the nutrient salt state, and prepare an environment in which diatoms can easily grow. As a result of intensive research with the goal of developing silicon supplements for water bodies, the nutrient supplement composition for silicon supplements produced using rice husk ash of agricultural waste and crushed shells of marine waste As a result, the present inventors have found that the silicon supplement is useful and has completed the present invention. An object of the present invention is to provide a nutrient composition for replenishing water and replenishing silicon to the water to promote the growth of diatoms and a method for producing the same. Another object of the present invention is to provide a method for supplying the above composition to a water area to change the nutrient environment of the water area to an environment in which diatoms can easily grow.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)水域の優先微細藻類である珪藻の増殖を促進するために水域に補給するケイ素補給用栄養塩組成物であって、主成分としてもみ殻灰と炭酸カルシウム資源の粉砕物を配合した水域補給用栄養塩組成物。
(2)もみ殻灰が、農産廃棄物のもみ殻灰又はそれを硝酸で処理した酸処理もみ殻灰である、前記(1)に記載の水域補給用栄養塩組成物。
(3)もみ殻灰が、もみ殻発電残さのもみ殻灰である、前記(1)に記載の水域補給用栄養塩組成物。
(4)炭酸カルシウム源の粉砕物が、水産廃棄物である貝殻粉砕物である、前記(1)に記載の水域補給用栄養塩組成物。
(5)貝殻ともみ殻灰の混合比が重量比で10:6に近づくように調整されている、前記(1)に記載の水域補給用栄養塩組成物。
(6)前記(1)から(5)のいずれかに記載の水域補給用栄養塩組成物を製造するシステムであって、もみ殻灰又は硝酸で処理した酸処理もみ殻灰と炭酸カルシウム源の粉砕物の混合物を焼成することにより水域補給用栄養塩組成物を製造する工程と、酸処理もみ殻灰の作製時に排出される薄い濃度の硝酸含有廃液をCaCO乃至貝殻で中和して液体肥料を製造する工程からなる水域補給用栄養塩組成物の製造システム。
(7)前記(1)から(5)のいずれかに記載の水域補給用栄養塩組成物をケイ素源として適用水域に供給し、当該適用水域中に存在する珪藻の増殖を促進させる水域環境に改変することを特徴とする水域の栄養塩環境の改変方法。
(8)リンが過剰である水域においては、硝酸で処理した酸処理もみ殻灰と貝殻粉砕物の混合物から作製した水域補給用栄養塩組成物をケイ素源として水域に供給する、前記(7)に記載の水域の栄養塩環境の改変方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A nutrient composition for replenishing silicon to promote the growth of diatoms, which are the preferred microalgae in the water area, which is a water area that contains rice husk ash and a pulverized calcium carbonate resource as main components. Nutrient composition for replenishment.
(2) The nutritive salt composition for water supply according to (1), wherein the rice husk ash is rice husk ash of agricultural waste or acid-treated rice husk ash obtained by treating it with nitric acid.
(3) The nutritive salt composition for water supply according to (1), wherein the rice husk ash is rice husk ash of rice husk power generation residue.
(4) The nutrient composition for water supply according to (1), wherein the pulverized product of the calcium carbonate source is a crushed shellfish shell, which is a marine waste.
(5) The nutrient composition for water supply according to (1), wherein the mixing ratio of shellfish and chaff ash is adjusted so as to approach 10: 6 by weight.
(6) A system for producing a nutrient composition for replenishing water according to any one of (1) to (5) above, comprising acid-treated rice husk ash treated with rice husk ash or nitric acid and a source of calcium carbonate A process for producing a nutrient salt composition for replenishing water by firing a mixture of pulverized products, and a neutral concentration of nitric acid-containing waste liquid discharged when producing acid-treated rice husk ash, neutralized with CaCO 3 or shells to obtain a liquid A system for producing a nutrient salt composition for water supply comprising a process for producing a fertilizer.
(7) Supplying the nutrient composition composition for replenishing water according to any one of (1) to (5) above to an applied water area as a silicon source, and promoting the growth of diatoms present in the applied water area A method for modifying a nutrient environment of a water area, characterized by modifying.
(8) In a water area where phosphorus is excessive, the nutrient composition composition for replenishing water prepared from a mixture of acid-treated rice husk ash treated with nitric acid and crushed shell is supplied to the water area as a silicon source (7) The method for modifying the nutrient environment of the water area described in 1.

次に、本発明について更に詳細に説明する。
本発明は、水域の優先微細藻類である珪藻の増殖を促進するために水域に補給する栄養塩組成物であって、主成分としてもみ殻灰と炭酸カルシウム資源の粉砕物を配合したことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a nutrient composition for replenishing water areas to promote the growth of diatoms, which are the preferred microalgae of water areas, and is characterized by blending rice husk ash and calcium carbonate resources as the main components It is what.

本発明では、もみ殻灰が、農産廃棄物のもみ殻灰又はそれを硝酸で処理した酸処理もみ殻灰であること、もみ殻灰が、もみ殻発電残さのもみ殻灰であること、炭酸カルシウム源の粉砕物が、水産廃棄物である貝殻粉砕物であること、貝殻ともみ殻灰の混合比が重量比で10:6に近づくように調整されていること、を好ましい実施の態様としている。この場合、材料中の可溶性のケイ素濃度に応じて、これらの混合比率を若干変えることも適宜可能である。   In the present invention, rice husk ash is rice husk ash from agricultural waste or acid-treated rice husk ash obtained by treating it with nitric acid, rice husk ash is rice husk ash from rice husk power generation residue, It is a preferred embodiment that the pulverized calcium source is a crushed shell of seafood, and that the mixing ratio of shell and chaff ash is adjusted to approach 10: 6 by weight. . In this case, depending on the soluble silicon concentration in the material, it is possible to change the mixing ratio slightly.

また、本発明は、上記の水域補給用栄養塩組成物を製造するシステムであって、もみ殻灰又は硝酸で処理した酸処理もみ殻灰と炭酸カルシウム源の粉砕物の混合物を焼成することにより水域補給用栄養塩組成物を製造する工程と、酸処理もみ殻灰の作製時に排出される薄い濃度の硝酸含有廃液をCaCO乃至貝殻で中和して液体肥料を製造する工程からなることを特徴とするものである。 The present invention also provides a system for producing the above-mentioned nutrient composition for replenishing water areas, by firing a mixture of rice husk ash or acid-treated rice husk ash treated with nitric acid and a pulverized product of a calcium carbonate source. A process for producing a nutrient composition for replenishing water, and a process for producing a liquid fertilizer by neutralizing a waste nitric acid-containing waste liquid discharged at the time of producing acid-treated rice husk ash with CaCO 3 or shells. It is a feature.

また、本発明は、水域の栄養塩環境を改変する方法であって、上記の水域補給用栄養塩組成物をケイ素源として適用水域に供給し、当該適用水域中に存在する珪藻の増殖を促進させる水域環境に改変することを特徴とするものである。本発明では、リンが過剰である水域においては、硝酸で処理した酸処理もみ殻灰と貝殻粉砕物の混合物から作製した水域補給用栄養塩組成物をケイ素源として水域に供給すること、を好ましい実施の態様としている。   The present invention also relates to a method for modifying a nutrient environment in a water area, wherein the nutrient composition for replenishing a water area is supplied to an applied water area as a silicon source and promotes the growth of diatoms present in the applied water area. It is characterized by changing to a water environment. In the present invention, it is preferable to supply a nutrient solution composition for replenishment of water prepared from a mixture of acid-treated rice husk ash treated with nitric acid and shell pulverized material to the water region as a silicon source in water regions containing excess phosphorus. This is an embodiment.

ケイ酸植物である稲は、全世界で栽培され、特にアジア地域では主食として重要な農産物であり、副産物として、稲藁、もみ殻等が産出される。この副産物の中で、もみ殻は、収集コストを削減できることから、タイ、インドネシア等では発電に使用されている。しかしながら、もみ殻には多量のケイ酸が含まれており、発電後に多量のもみ殻灰が残る。また、世界各地では、貝類の漁労、養殖が行われているが、その貝殻の多くは産業廃棄物として処理されている。   Rice, which is a silicic acid plant, is cultivated all over the world, and is an important agricultural product as a staple food especially in the Asian region, and rice straw, rice husk, etc. are produced as by-products. Among these by-products, rice husk is used for power generation in Thailand, Indonesia, etc. because it can reduce collection costs. However, rice husk contains a large amount of silicic acid, and a large amount of rice husk ash remains after power generation. In addition, shellfish are fished and cultivated around the world, but most of the shells are treated as industrial waste.

本発明では、農産廃棄物であるもみ殻灰と水産廃棄物である貝殻を利用し、水域の栄養塩環境を珪藻が増殖しやすい環境に改変するケイ素補給用材料を作製することであり、作製に当たり、排出される酸性廃液も、液体肥料に変換し、これらの廃棄物を余す所無く利用する方法を提案するものである。   In the present invention, using rice husk ash that is agricultural waste and shells that are aquatic waste, it is to produce a silicon supplement material that changes the nutrient environment of the water area to an environment in which diatoms can easily grow, In this case, the acidic waste liquid discharged is also converted into liquid fertilizer, and a method of using these wastes without any waste is proposed.

本発明により、次のような効果が奏される。
(1)農産廃棄物であるもみ殻灰及び水産廃棄物である貝殻を有効利用し、水域へケイ素を補給するための水域補給用栄養塩組成物を提供することが可能である。
(2)水域へのケイ素供給は、水域の有用な基礎生産者である珪藻が増殖しやすい環境を整えることを可能とする。
(3)本発明では、ケイ素供給材料を作製する際に排出される酸廃液も肥料として有効利用することが可能である。
The present invention has the following effects.
(1) It is possible to provide a nutrient composition for replenishment of water for replenishing silicon to water by effectively utilizing rice husk ash as agricultural waste and seashell as fishery waste.
(2) The supply of silicon to the water area makes it possible to prepare an environment in which diatoms, which are useful basic producers in the water area, can easily grow.
(3) In this invention, the acid waste liquid discharged | emitted when producing a silicon supply material can also be effectively utilized as a fertilizer.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、もみ殻発電に利用したもみ殻灰等として、広島県の農家から入手したもみ殻を電気炉中で900℃、2時間燃焼処理したもの使用した。また、貝殻は、広島県産のカキ殻を利用した。両者を、乳鉢、乳棒及びフードミキサーで粉砕した。   In this example, rice husks obtained from a farmer in Hiroshima were used as rice husk ash used for rice husk power generation, which was burned in an electric furnace at 900 ° C. for 2 hours. The shells used were oyster shells from Hiroshima. Both were ground with a mortar, pestle and food mixer.

(1)酸処理もみ殻灰の作製
もみ殻灰に重量の10倍量の0.1N−HNOを加え、24時間室温で放置した後、遠心分離により上澄みを除去した。その後、蒸留水で3回洗浄し、90℃のオーブンで乾燥させて酸処理もみ殻灰を作製した。
(1) Preparation of acid-treated rice husk ash 10 times the weight of 0.1N-HNO 3 was added to rice husk ash and left at room temperature for 24 hours, and then the supernatant was removed by centrifugation. Thereafter, it was washed three times with distilled water and dried in an oven at 90 ° C. to produce acid-treated rice husk ash.

(2)もみ殻灰とカキ殻の混合割合
もみ殻の乾重量当たりの灰分、ケイ酸(SiO)濃度は、22.5%及び21.8%であるので、もみ殻灰当たりのケイ酸含有量は96.9%となる。また、貝殻の主成分はCaCOである。
(2) Mixing ratio of rice husk ash and oyster shell As the ash and silicic acid (SiO 2 ) concentration per dry weight of rice husk is 22.5% and 21.8%, silicic acid per rice husk ash The content is 96.9%. The main component of the shell is CaCO 3 .

SiOとCaCOを混合し、強熱処理した場合の化学反応は、以下であると考えられる。
CaCO→CaO+CO
CaO+SiO→CaSiO+CO
よって
CaCO+SiO→CaSiO+CO
本化学式通りであれば、貝殻ともみ殻灰の混合比率は重量比で10:6となる。CaCOは約900℃でCaOとCOに解離する。しかしながら、CaOの融点は2570℃、SiO(石英ガラス)の軟化点は1650℃であり、完全に反応を進行させるには、非常に高温で反応させなければならない。このような高温での反応はコスト的にも非現実的であり、もみ殻発電などで発生する熱を利用する場合900℃程度が現実的であると考えられる。
本実施例では、これら化学反応が完全には進まないであろうが、貝殻ともみ殻灰の混合比率は重量比で10:6として、ケイ素供給材料を作製した。
It is considered that the chemical reaction when SiO 2 and CaCO 3 are mixed and subjected to strong heat treatment is as follows.
CaCO 3 → CaO + CO 2
CaO + SiO 2 → CaSiO 3 + CO 2
Therefore, CaCO 3 + SiO 2 → CaSiO 3 + CO 2
If it is according to this chemical formula, the mixing ratio of shellfish and rice husk ash will be 10: 6 by weight. CaCO 3 dissociates into CaO and CO 2 at about 900 ° C. However, the melting point of CaO is 2570 ° C., and the softening point of SiO 2 (quartz glass) is 1650 ° C. In order to make the reaction proceed completely, the reaction must be performed at a very high temperature. Such a reaction at a high temperature is unrealistic in terms of cost, and it is considered that about 900 ° C. is practical when using heat generated by rice husk power generation or the like.
In this example, these chemical reactions would not progress completely, but the silicon feedstock was made with a mixing ratio of shell and chaff ash of 10: 6 by weight.

(3)ケイ素供給材料の作製
カキ殻ともみ殻灰、及びカキ殻と酸処理もみ殻灰を、それぞれ、少量の蒸留水とともによく混合し、磁製るつぼに入れ、900℃で1時間焼成した。焼成後、これらを乳ばち、乳棒で粉砕した。カキ殻ともみ殻灰を混合した物を材料A、カキ殻と酸処理もみ殻灰を混合した物を材料Bとした。もみ殻灰、酸処理もみ殻灰、カキ殻、材料A及び材料Bの写真を図1に示した。
(3) Production of silicon supply material Oyster shell and rice husk ash, and oyster shell and acid-treated rice husk ash were mixed well with a small amount of distilled water, placed in a porcelain crucible, and fired at 900 ° C. for 1 hour. After baking, these were milked and ground with a pestle. Material A is a mixture of oyster shell and rice husk ash, and Material B is a mixture of oyster shell and acid-treated rice husk ash. The photographs of rice husk ash, acid-treated rice husk ash, oyster shell, material A and material B are shown in FIG.

図1に示した様に、もみ殻灰のみかけの比重は低く、酸処理をすることにより、約0.5g/cmから、約0.6g/cmへと若干減容できた。また、焼成後の材料A及びBともに、約0.6g/cmであり、貝殻ともみ殻灰の重量比率10:6であるにもかかわらず、みかけの比重は酸処理もみ殻灰とほぼ同程度であった。 As shown in FIG. 1, lower the specific gravity of the apparent rice hull ash by the acid treatment, from about 0.5 g / cm 3, was slightly compaction to about 0.6 g / cm 3. In addition, both the fired materials A and B are about 0.6 g / cm 3 , and the apparent specific gravity is almost the same as that of acid-treated rice husk ash, although the weight ratio of shell husk ash is 10: 6. It was about.

(4)各材料及びケイ素供給材料の元素組成
本実施例に用いた材料の元素組成を表1に示す。表より、これら実験材料に含まれる有害重金属類(鉛、カドミウム、クロム)の濃度は非常に低いことが解る。特に、酸処理を行うことにより、もみ殻の重金属及びリンの濃度は減少した。また、ケイ素供給材料中の硝酸可溶性のケイ素濃度は40mg/g程度となった。
(4) Elemental composition of each material and silicon supply material Table 1 shows the elemental composition of the material used in this example. From the table, it can be seen that the concentration of harmful heavy metals (lead, cadmium, chromium) contained in these experimental materials is very low. In particular, the concentration of heavy metals and phosphorus in the rice husk decreased with the acid treatment. Further, the concentration of nitric acid-soluble silicon in the silicon supply material was about 40 mg / g.

(5)ケイ素供給材料の海水中への溶出実験1
材料A及びBを広島湾海水(塩分濃度31.2psu)に25mg/Lになるように加え、室温(20℃程度)24時間振とうし、重金属類、リン、ケイ素の溶出量を測定した。その結果を表2に示す。材料A,Bともに重金属類の溶出は検出限界以下であった。
(5) Elution experiment 1 of silicon feedstock into seawater
Materials A and B were added to Hiroshima Bay seawater (salt concentration 31.2 psu) at 25 mg / L, shaken at room temperature (about 20 ° C.) for 24 hours, and the elution amounts of heavy metals, phosphorus, and silicon were measured. The results are shown in Table 2. In both materials A and B, the elution of heavy metals was below the detection limit.

また、25mg中に存在する硝酸可溶性ケイ素は、約1mgであるので、そのほとんどが24時間以内で海水中へと溶出することが分かった。1mg/LのSiはモル濃度に換算すると、35μmol/Lとなり、水域で珪藻が増殖するためには十分なケイ素濃度(2μmol/L以上、非特許文献11)となる。   In addition, since the nitrate-soluble silicon present in 25 mg is about 1 mg, most of it was found to elute into seawater within 24 hours. When converted to a molar concentration, 1 mg / L of Si is 35 μmol / L, which is a sufficient silicon concentration (2 μmol / L or more, Non-Patent Document 11) for diatom growth in water.

一方、材料Aでは、リンの溶出は、0.08mgであり、モル濃度に換算すると、2.6μmol/Lとなってしまう。リンが過剰である水域においてケイ素を供給する場合は、材料Bを用いなければならない。   On the other hand, in the material A, the elution of phosphorus is 0.08 mg, which is 2.6 μmol / L in terms of molar concentration. Material B must be used when supplying silicon in water where phosphorus is in excess.

(5)ケイ素供給材料の海水中への溶出実験2
2Lポリ瓶に、もみ殻灰、酸処理もみ殻灰、貝殻粉砕物、貝殻焼成物(CaOを主成分とする)、材料A、材料Bを広島湾ろ過海水中(初期pH=8.08、溶存態無機リン(DIP)=0.80μmol/L、溶存態ケイ素(D−Si)=34.8μmol/L)に25mg/Lとなるように加え、室温(20℃程度)において、マグネチックスターラーで撹拌しながら培養し、定期的に海水試料を採取し、海水のpH、DIP、D−Si濃度を測定した。
(5) Elution experiment of silicon supply material into seawater 2
In a 2L plastic bottle, rice husk ash, acid-treated rice husk ash, crushed shell, fired shell (based on CaO), material A and material B in Hiroshima Bay filtered seawater (initial pH = 8.08, In addition to dissolved inorganic phosphorus (DIP) = 0.80 μmol / L, dissolved silicon (D-Si) = 34.8 μmol / L) at 25 mg / L, a magnetic stirrer at room temperature (about 20 ° C.) The mixture was cultured with stirring, and seawater samples were periodically collected, and the pH, DIP, and D-Si concentrations of the seawater were measured.

結果を、図2に示す。図中のpH、DIP、D−Si濃度は、ブランク実験との差で示している。D−Si濃度は、材料A,Bで培養開始直後からすみやかに溶出し、他の物はほとんど溶出しなかった。材料A,B中の可溶性ケイ素の濃度は、約40mg/gであるので、25mg中には1mg(36μmol)のケイ素が含まれている。20時間で可溶性ケイ素の約60%が、1週間で約80%が溶出したことになる。   The results are shown in FIG. The pH, DIP, and D-Si concentrations in the figure are shown as differences from the blank experiment. The D-Si concentration eluted immediately after the start of culture with the materials A and B, and the other substances were hardly eluted. Since the concentration of soluble silicon in the materials A and B is about 40 mg / g, 25 mg contains 1 mg (36 μmol) of silicon. About 20% of the soluble silicon was eluted in 20 hours and about 80% was dissolved in one week.

DIP濃度は、材料A,Bで、培養直後(5時間)に若干溶出したが、その後はほとんど溶出しなかった。材料A,B中のリンの濃度は、それぞれ1.5、0.61mg/gであるので、25mg中には、それぞれ37.5μg(1.2μmol)、15.3μg(0.49μmol)のリンが含まれている。5時間で可溶性リンのそれぞれ約20%、32%が、1週間で約29%、40%が溶出したことになる。もみ殻灰では、リン濃度が徐々に上昇し、1週間で0.8μmol/L上昇した。   DIP concentrations of materials A and B were slightly eluted immediately after culturing (5 hours), but were hardly eluted thereafter. Since the concentrations of phosphorus in materials A and B are 1.5 and 0.61 mg / g, respectively, 37.5 μg (1.2 μmol) and 15.3 μg (0.49 μmol) of phosphorus are contained in 25 mg, respectively. It is included. In about 5 hours, about 20% and 32% of the soluble phosphorus was eluted in about 29% and 40% in one week, respectively. In rice husk ash, the phosphorus concentration gradually increased and increased by 0.8 μmol / L in one week.

pHは、材料A,Bで、培養直後(1−5時間)に0.2程度上昇したが、その後はほぼ一定の値であった。海水のpHは現場の植物プランクトンによる生産等で容易に変化する。0.2程度の変化は、水域生態系にダメージを与えるほど大きな変化ではないと考えられる。   The pH of materials A and B increased by about 0.2 immediately after the cultivation (1-5 hours), but was almost constant thereafter. The pH of seawater is easily changed by production using phytoplankton on site. A change of about 0.2 is not considered to be so large as to damage the aquatic ecosystem.

本実施例におけるケイ素及びリンの溶出挙動は、表2に示した結果とは若干異なる結果である。表2の結果は、24時間激しく振とう、抽出した結果であり、現場海域では、本実施例の様に、比較的ゆるやかな、溶出挙動を示すと考えられる。   The elution behavior of silicon and phosphorus in this example is slightly different from the results shown in Table 2. The results in Table 2 are the results of extraction with vigorous shaking for 24 hours, and it is considered that the elution behavior is relatively gentle in the in-situ sea area as in this example.

本実施例の様に、材料A及びBを用いることにより、水域で珪藻が増殖するためには、十分なケイ素濃度(2μM以上、非特許文献11)にすることが可能である。一方、両者ともリンの溶出は非常に小さい値であったが、材料Aでは表2に示す様に、潜在的には、多量にリンを溶出させる能力があるので、リンが過剰である水域においてケイ素を供給する場合は、材料Bを用いなければならない。   As in this example, by using the materials A and B, it is possible to achieve a sufficient silicon concentration (2 μM or more, Non-Patent Document 11) for diatom growth in water. On the other hand, the elution of phosphorus was very small in both cases, but as shown in Table 2, the material A has the potential to elute a large amount of phosphorus, so in the water area where phosphorus is excessive. When supplying silicon, material B must be used.

(7)もみ殻灰酸処理廃液の利用
もみ殻灰の酸処理は、薄い硝酸を使用している。廃液はCaCOが主成分である貝殻で簡単に中和することが可能である。表2に示した様に、もみ殻灰、貝殻中には有害金属類(鉛、カドミウム、クロム)がほとんど含まれておらず、鉄、亜鉛、銅等の必須微量金属類を若干含有している。酸処理廃液の中和液は、窒素、リン、カリウム及び微量金属類を含有し、液体肥料として、農業へ利用することが可能である。
(7) Use of rice husk ash acid treatment waste liquor Rice husk ash acid treatment uses thin nitric acid. The waste liquid can be easily neutralized with a shell composed mainly of CaCO 3 . As shown in Table 2, rice hull ash and shells are almost free of harmful metals (lead, cadmium, chromium) and contain some essential trace metals such as iron, zinc and copper. Yes. The neutralization liquid of acid treatment waste liquid contains nitrogen, phosphorus, potassium, and trace metals, and can be used for agriculture as liquid fertilizer.

以上詳述したように、本発明は、農水産廃棄物等を利用した、水域へのケイ素補給用組成物に係るものであり、本発明により、農産廃棄物であるもみ殻灰及び水産廃棄物である貝殻を有効利用し、水域へケイ素を補給するための水域補給用栄養塩組成物を提供することが可能である。水域へのケイ素供給は、水域の有用な基礎生産者である珪藻が増殖しやすい環境を整えることを可能とする。しかも、本発明では、ケイ素供給材料を作製する際に排出される酸廃液も肥料として有効利用することが可能である。本発明は、水域の生態系において重要な基礎生産者であり、高次生産者の有用な餌である珪藻が増殖しやすい環境にするためのケイ素補給用栄養塩組成物及び水域改変方法を提供するものとして有用である。   As described in detail above, the present invention relates to a composition for silicon supplementation to water bodies using agricultural and marine wastes, etc., and according to the present invention, rice husk ash and marine wastes are agricultural wastes. It is possible to provide a nutritive salt composition for replenishing water to effectively utilize the sea shells and replenish silicon to the water. The silicon supply to the water area makes it possible to prepare an environment in which diatoms, which are useful basic producers of the water area, can easily grow. Moreover, in the present invention, the acid waste liquid discharged when producing the silicon feed material can be effectively used as a fertilizer. The present invention provides a nutritional salt composition for silicon supplementation and a method for altering the water area, which is an important basic producer in the ecosystem of the water area, and makes it an environment in which diatoms, which are useful food for higher-order producers, can easily grow. Useful as something to do.

もみ殻灰、酸処理もみ殻灰、ガキ殻、材料A及び材料Bの写真を示す。Photographs of rice husk ash, acid-treated rice husk ash, oyster shell, material A and material B are shown. ケイ素供給材料の海水中への溶出実験の結果(海水のケイ素、リンの濃度、pH値)を示す。The result of the elution experiment into the seawater of the silicon supply material (silicon and phosphorus concentrations in seawater, pH value) is shown.

Claims (8)

水域の優先微細藻類である珪藻の増殖を促進するために水域に補給するケイ素補給用栄養塩組成物であって、主成分としてもみ殻灰と炭酸カルシウム資源の粉砕物を配合した水域補給用栄養塩組成物。   Nutrient composition for supplementing silicon to replenish water in order to promote the growth of diatoms, which are the preferred microalgae in the water area, and the nutrition for replenishing water that contains rice husk ash and pulverized calcium carbonate resources as the main components Salt composition. もみ殻灰が、農産廃棄物のもみ殻灰又はそれを硝酸で処理した酸処理もみ殻灰である、請求項1に記載の水域補給用栄養塩組成物。   The nutrient composition for water supply according to claim 1, wherein the rice husk ash is rice husk ash from agricultural waste or acid-treated rice husk ash obtained by treating the rice husk ash with nitric acid. もみ殻灰が、もみ殻発電残さのもみ殻灰である、請求項1に記載の水域補給用栄養塩組成物。   The nutrient composition for water supply according to claim 1, wherein the rice husk ash is rice husk ash of rice husk power generation residue. 炭酸カルシウム源の粉砕物が、水産廃棄物である貝殻粉砕物である、請求項1に記載の水域補給用栄養塩組成物。   The nutrient composition for replenishing water according to claim 1, wherein the pulverized product of the calcium carbonate source is a crushed shell of shellfish. 貝殻ともみ殻灰の混合比が重量比で10:6に近づくように調整されている、請求項1に記載の水域補給用栄養塩組成物。   The nutrient composition for replenishing water according to claim 1, wherein the mixing ratio of shellfish and rice husk ash is adjusted to approach 10: 6 by weight. 請求項1から5のいずれかに記載の水域補給用栄養塩組成物を製造するシステムであって、もみ殻灰又は硝酸で処理した酸処理もみ殻灰と炭酸カルシウム源の粉砕物の混合物を焼成することにより水域補給用栄養塩組成物を製造する工程と、酸処理もみ殻灰の作製時に排出される薄い濃度の硝酸含有廃液をCaCO乃至貝殻で中和して液体肥料を製造する工程からなる水域補給用栄養塩組成物の製造システム。 A system for producing a nutrient composition for replenishing water according to any one of claims 1 to 5, wherein a mixture of acid-treated rice husk ash treated with rice husk ash or nitric acid and a ground product of a calcium carbonate source is calcined. From the process of producing a nutrient composition for water replenishment and the process of producing liquid fertilizer by neutralizing the waste liquid containing nitric acid with a low concentration discharged during the production of acid-treated rice husk ash with CaCO 3 or shells A manufacturing system of a nutrient composition for replenishing water. 請求項1から5のいずれかに記載の水域補給用栄養塩組成物をケイ素源として適用水域に供給し、当該適用水域中に存在する珪藻の増殖を促進させる水域環境に改変することを特徴とする水域の栄養塩環境の改変方法。   The nutrient composition for replenishing water according to any one of claims 1 to 5 is supplied to a water area as a silicon source, and the water environment is modified to promote the growth of diatoms present in the water area. To modify the nutrient environment of the water area. リンが過剰である水域においては、硝酸で処理した酸処理もみ殻灰と貝殻粉砕物の混合物から作製した水域補給用栄養塩組成物をケイ素源として水域に供給する、請求項7に記載の水域の栄養塩環境の改変方法。   The water area according to claim 7, wherein in the water area where phosphorus is excessive, a nutrient composition composition for replenishing water area prepared from a mixture of acid-treated rice husk ash treated with nitric acid and crushed shell is supplied to the water area as a silicon source. To modify the nutrient environment
JP2007093904A 2007-03-30 2007-03-30 Production system of nutrient composition for silicon supplementation to water area using agricultural and marine product waste and method for modifying nutrient environment of water area Expired - Fee Related JP4985042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093904A JP4985042B2 (en) 2007-03-30 2007-03-30 Production system of nutrient composition for silicon supplementation to water area using agricultural and marine product waste and method for modifying nutrient environment of water area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093904A JP4985042B2 (en) 2007-03-30 2007-03-30 Production system of nutrient composition for silicon supplementation to water area using agricultural and marine product waste and method for modifying nutrient environment of water area

Publications (2)

Publication Number Publication Date
JP2008245617A true JP2008245617A (en) 2008-10-16
JP4985042B2 JP4985042B2 (en) 2012-07-25

Family

ID=39971323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093904A Expired - Fee Related JP4985042B2 (en) 2007-03-30 2007-03-30 Production system of nutrient composition for silicon supplementation to water area using agricultural and marine product waste and method for modifying nutrient environment of water area

Country Status (1)

Country Link
JP (1) JP4985042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104542362A (en) * 2013-10-12 2015-04-29 敖志辉 Method for spatial coculture of shellfish and sea cucumber seedlings by utilizing same buoyant raft
JP2015167538A (en) * 2014-03-10 2015-09-28 太平洋セメント株式会社 Culture solution for promoting propagation of diatoms and method for promoting propagation of diatoms
WO2021005860A1 (en) * 2019-07-05 2021-01-14 太平洋セメント株式会社 Raw material for culturing, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288485A (en) * 1988-09-21 1990-03-28 Agency Of Ind Science & Technol Production of slow acting silicate fertilizer
JPH07327544A (en) * 1994-06-09 1995-12-19 Green Karuchiyaa:Kk Material for improving quality of bottom layer and water
JP2001258420A (en) * 2000-03-23 2001-09-25 Tetra Co Ltd Silicon-eluting material for proliferating diatom
JP2004194505A (en) * 2002-12-16 2004-07-15 Kanetani Ichiro Artificial fish reef and method for producing the same
JP2005146238A (en) * 2003-11-14 2005-06-09 Yukie Matsuo Recycling (production of power generation fuel, and natural silica extraction system) of chaff-made tray/container and converting system of foodstuff waste to fuel
JP2006081532A (en) * 2004-09-17 2006-03-30 Toshio Yagi Fishery damage-preventing system of water quality environment improvement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288485A (en) * 1988-09-21 1990-03-28 Agency Of Ind Science & Technol Production of slow acting silicate fertilizer
JPH07327544A (en) * 1994-06-09 1995-12-19 Green Karuchiyaa:Kk Material for improving quality of bottom layer and water
JP2001258420A (en) * 2000-03-23 2001-09-25 Tetra Co Ltd Silicon-eluting material for proliferating diatom
JP2004194505A (en) * 2002-12-16 2004-07-15 Kanetani Ichiro Artificial fish reef and method for producing the same
JP2005146238A (en) * 2003-11-14 2005-06-09 Yukie Matsuo Recycling (production of power generation fuel, and natural silica extraction system) of chaff-made tray/container and converting system of foodstuff waste to fuel
JP2006081532A (en) * 2004-09-17 2006-03-30 Toshio Yagi Fishery damage-preventing system of water quality environment improvement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104542362A (en) * 2013-10-12 2015-04-29 敖志辉 Method for spatial coculture of shellfish and sea cucumber seedlings by utilizing same buoyant raft
JP2015167538A (en) * 2014-03-10 2015-09-28 太平洋セメント株式会社 Culture solution for promoting propagation of diatoms and method for promoting propagation of diatoms
WO2021005860A1 (en) * 2019-07-05 2021-01-14 太平洋セメント株式会社 Raw material for culturing, and method for producing same
CN113993372A (en) * 2019-07-05 2022-01-28 太平洋水泥株式会社 Material for cultivation and manufacturing method thereof
JP7465268B2 (en) 2019-07-05 2024-04-10 太平洋セメント株式会社 Aquaculture materials and their manufacturing method

Also Published As

Publication number Publication date
JP4985042B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
EP1753554B1 (en) A composition for growth of diatom algae
JP2015006979A (en) Mixture of natural humic
JP4710036B2 (en) Iron chelate generating material and method of using the same
Saikia Review on Periphyton as Mediator of nutrient transfer in aquatic ecosystems.
JP4985042B2 (en) Production system of nutrient composition for silicon supplementation to water area using agricultural and marine product waste and method for modifying nutrient environment of water area
Liu et al. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa
KR20170087798A (en) method for producing the agent for improving water and sediment by the shell
JP6793286B2 (en) Growth promotion material for herbivorous bivalve molluscs and growth promotion method
JP4415151B2 (en) Separation and recovery of humic substances in mud
JP6908940B2 (en) Iron supply agent and biological growth method
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
JP2009106195A (en) Soil conditioner for promoting bottom-clinging of suspended larva of shellfish, and method for promoting bottom-clinging of suspended larva of shellfish
JP2007151416A (en) Artificial bottom-of-water base for epizoism/growth of aquatic animal or cleaning of culture site bottom
KR101890804B1 (en) The mixture for maximization the effect of removing red tide
JP2003134958A (en) Method for promoting co2 absorption in ocean using iron and steel slag
JP2005342624A (en) Method for producing bottom sediment purification material composed of shell
JP2023176981A (en) Nutrient supply material using methane fermentation digested liquid and seashell
KR20180029299A (en) Water Treatment Method For Removing Water-bloom and Red Tide Using Mineral with Rich Sulfur Amino Acids
JP7395651B1 (en) Algae reef and its manufacturing method
TWI724662B (en) Reservoir sludge bionic coral and manufacturing method thereof
JP5615625B2 (en) Anti-germination of aquatic plants
CN103896348A (en) Water nitrite degradation agent
JP2019149963A (en) Ferrous ion controlled release unglazing and manufacturing method thereof, and bivalve farming tool and aquatic environment maintenance method using the unglazing
CN106927791A (en) A kind of method that utilization excess sludge prepares rich water liquid and sustained release groove
KR101890803B1 (en) The mixture for removal of red tide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees