JP2008244986A - High frequency amplifier - Google Patents

High frequency amplifier Download PDF

Info

Publication number
JP2008244986A
JP2008244986A JP2007084050A JP2007084050A JP2008244986A JP 2008244986 A JP2008244986 A JP 2008244986A JP 2007084050 A JP2007084050 A JP 2007084050A JP 2007084050 A JP2007084050 A JP 2007084050A JP 2008244986 A JP2008244986 A JP 2008244986A
Authority
JP
Japan
Prior art keywords
amplifier
voltage
output
comparator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084050A
Other languages
Japanese (ja)
Other versions
JP4862724B2 (en
Inventor
Yoshihiro Watajima
義宏 渡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007084050A priority Critical patent/JP4862724B2/en
Publication of JP2008244986A publication Critical patent/JP2008244986A/en
Application granted granted Critical
Publication of JP4862724B2 publication Critical patent/JP4862724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency amplifier in which communication quality is ensured by keeping constant the signal level of inter-modulation distortion of an amplifier for communication that operates in a high frequency domain, and high-efficiency operation can be performed with low power consumption even when an environmental temperature is changed. <P>SOLUTION: The high frequency amplifier comprises: an amplifier 2 which inputs high frequency power; a distortion level detection circuit 5 which defines branch output from the output line of the amplifier 2 as detection output; a comparator 6 which compares the detection voltage with a reference voltage; and a control circuit 7 to which the output voltage of the comparator 6 is input, and which includes a ROM in which a data table determining a supply voltage to the gate electrode and the drain electrode of the amplifier 2 in accordance with the output voltage of the comparator 6 is written in the inside. On the basis of ROM data, the drain voltage and the gate voltage of the amplifier 2 are controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、マイクロ波帯域などの高周波領域において動作する高周波増幅器に関するものである。 The present invention relates to a high-frequency amplifier that operates in a high-frequency region such as a microwave band.

動作環境温度変化に対して歪特性の劣化を最小限とするFET増幅器として、例えば、特開2003−224429号公報図1(特許文献1参照)には、LDMOS FET1のソース端子が接地され、ゲートバイアス端子3から温度補償回路2およびチョークコイルを介してゲート電圧Vgsが、またドレインバイアス端子4からチョークコイルを介してドレイン電圧Vdsがそれぞれ印加され、増幅器として動作するものが開示されている。   As an FET amplifier that minimizes deterioration of distortion characteristics with respect to changes in operating environment temperature, for example, in Japanese Patent Application Laid-Open No. 2003-224429, FIG. 1 (see Patent Document 1), the source terminal of an LDMOS FET 1 is grounded, and the gate A gate voltage Vgs is applied from the bias terminal 3 via the temperature compensation circuit 2 and the choke coil, and a drain voltage Vds is applied from the drain bias terminal 4 via the choke coil to operate as an amplifier.

また、特開平7−202580号公報図1(特許文献2参照)には、信号増幅用のFET1と制御専用のFET2のゲート同士を接続し、可変基準電圧発生器によってゲート電圧を可変し、ドレイン電流を制御する。FET1のドレイン端子は出力端子に接続され、FET2のドレイン端子は、歪が発生する周波数を通すバンドパスフィルタとピーク検出器を用いて歪量を検出し、電圧比較増幅器でこの歪量がある値を超えない様に可変基準電圧発生器を制御している。従ってFET2は常に歪特性が最適になる様にドレイン電流を制御され、結果、FET1も最適ドレイン電流となる。     In FIG. 1 of Japanese Patent Laid-Open No. 7-202580 (see Patent Document 2), the gates of a signal amplification FET 1 and a control FET 2 are connected to each other, and the gate voltage is varied by a variable reference voltage generator. Control the current. The drain terminal of the FET 1 is connected to the output terminal, and the drain terminal of the FET 2 detects the amount of distortion using a bandpass filter and a peak detector that pass the frequency at which distortion occurs, and the voltage comparison amplifier has a certain amount of distortion. The variable reference voltage generator is controlled so as not to exceed. Therefore, the drain current of FET2 is always controlled so that the distortion characteristics are optimal, and as a result, FET1 also has the optimal drain current.

特開2003−224429号公報(第1図)JP 2003-224429 A (FIG. 1)

特開平7−202580号公報(第1図)JP-A-7-202580 (FIG. 1)

しかし、特許文献1に記載のものでは、増幅器のゲート電圧Vg側に、温度補償回路としてサーミスタ(温度センサ)を利用し、環境温度に対応してゲート電圧を変化させ、増幅器に流れる電流を制御することで効率化を図っているものの温度補償回路2には、抵抗素子21、22やサーミスタ23、24の素子固有の抵抗値ばらつきがあり、十分な温度補償が困難であるという課題があった。   However, in the device described in Patent Document 1, a thermistor (temperature sensor) is used as a temperature compensation circuit on the gate voltage Vg side of the amplifier, the gate voltage is changed according to the environmental temperature, and the current flowing through the amplifier is controlled. Although the temperature compensation circuit 2 is designed to improve efficiency, there is a variation in resistance values inherent in the resistance elements 21 and 22 and the thermistors 23 and 24, which makes it difficult to perform sufficient temperature compensation. .

また、特許文献2に記載のものでは、電圧比較増幅器6の一方の入力端子に基準電圧(Vref)を入力し、ピーク検出器5からの信号がVrefよりも小さいときは動作しないため、広いレンジに亘る動作が不可能であるという課題があった。   Moreover, in the thing of patent document 2, since a reference voltage (Vref) is input into one input terminal of the voltage comparison amplifier 6, and it does not operate | move when the signal from the peak detector 5 is smaller than Vref, it is a wide range. There was a problem that the operation over the range was impossible.

この発明は、上記のような課題を解消するためになされたもので、マイクロ波、ミリ波帯などの高周波領域において動作する通信用増幅器の相互変調歪みの信号レベルを一定に保つことにより通信品質を確保し、また、環境温度が変化しても高効率で低消費電力動作が可能な高周波増幅器を提供することを目的とする。   The present invention has been made to solve the above-described problems. Communication quality is maintained by keeping the signal level of intermodulation distortion of a communication amplifier operating in a high frequency region such as a microwave and a millimeter wave band constant. It is another object of the present invention to provide a high-frequency amplifier that can operate with high efficiency and low power consumption even when the environmental temperature changes.

請求項1の発明に係る高周波増幅器は、ソース電極が接地されたゲート電極及びドレイン電極を有し、高周波電力を入力する増幅器と、この増幅器の出力ラインに設けられ、一方の分岐出力を高周波増幅出力線路とし、他方の分岐出力を制御出力線路とする電力分配器と、この電力分配器の前記制御出力線路に接続され、前記増幅器で生じた非線形歪量を抽出し、検波出力とする歪レベル検波回路と、この歪レベル検波回路の出力電圧を一方の入力とし、あらかじめ設定した所望の高周波出力電力に対応した基準電圧を他方の入力とすることにより差分電圧を出力する比較器と、この比較器の出力電圧が入力され、出力は前記増幅器のゲート電極とドレイン電極とにそれぞれ接続され、内部に前記比較器の出力電圧に対応して前記増幅器のゲート電極及びドレイン電極に対する供給電圧を定めるデータテーブルを書き込んだROMを有する制御回路とを備え、前記比較器に入力する前記基準電圧の出力電圧値より大きい電圧値に対しては、前記増幅器のドレイン電圧を減少させると共にゲート電圧を減少させ、前記比較器に入力する前記基準電圧の出力電圧値より小さい電圧値に対しては、前記増幅器のドレイン電圧を増加させると共にゲート電圧を増加させることにより、前記基準電圧に対応する出力電力を保ちつつ動作するものである。 The high-frequency amplifier according to the first aspect of the present invention has a gate electrode and a drain electrode whose source electrodes are grounded, and is provided in an amplifier for inputting high-frequency power and an output line of the amplifier, and one of the branch outputs is high-frequency amplified. Distortion level that is connected to the control output line of the power distributor, and that extracts the nonlinear distortion generated in the amplifier and that is used as a detection output as an output line and the other branch output as a control output line The comparison circuit that outputs the differential voltage by using the detection circuit and the output voltage of the distortion level detection circuit as one input and the reference voltage corresponding to the desired high frequency output power set in advance as the other input, and this comparison The output voltage of the amplifier is inputted, the output is connected to the gate electrode and the drain electrode of the amplifier, respectively, and the gain of the amplifier corresponding to the output voltage of the comparator inside. A control circuit having a ROM in which a data table defining supply voltages for the first electrode and the drain electrode is written, and for a voltage value greater than the output voltage value of the reference voltage input to the comparator, the drain of the amplifier By decreasing the voltage and decreasing the gate voltage, for voltage values smaller than the output voltage value of the reference voltage input to the comparator, increasing the drain voltage of the amplifier and increasing the gate voltage, It operates while maintaining the output power corresponding to the reference voltage.

請求項2の発明に係る高周波増幅器は、前記制御回路と前記増幅器のドレイン電極との接続、及び前記制御回路と前記増幅器のゲート電極との接続は、それぞれ高周波電力周波数のn/4(n:正の奇数)管内波長のストリップ線路を介している請求項1に記載のものである。 In the high frequency amplifier according to the invention of claim 2, the connection between the control circuit and the drain electrode of the amplifier, and the connection between the control circuit and the gate electrode of the amplifier are respectively n / 4 (n: 2. A positive odd number) through a stripline with an in-tube wavelength.

以上のように、請求項1に係る発明によれば、入力電力に対応して、あらかじめ設定した歪み信号レベルに合わせてドレイン電圧及びゲート電圧を制御することで、出力飽和電力以下の一定領域に出力電力を保つことができる。また、歪み信号レベルに対して適切なバックオフ量を保つことで、環境温度変化に対しても電力効率と低消費電力を考慮した通信品質の良い高周波増幅器を得ることができる。   As described above, according to the first aspect of the present invention, the drain voltage and the gate voltage are controlled in accordance with the preset distortion signal level corresponding to the input power, so that the output saturation power can be kept within a certain region. Output power can be maintained. In addition, by maintaining an appropriate back-off amount with respect to the distortion signal level, it is possible to obtain a high-frequency amplifier with good communication quality considering power efficiency and low power consumption even with respect to environmental temperature changes.

請求項2に係る発明によれば、高周波の漏洩による制御回路への影響を軽減するため制御回路と高周波回路とは、1/4λg線路で隔離されているので、マイクロ波などの漏洩による制御信号の誤動作などを軽減することが可能である。   According to the invention of claim 2, since the control circuit and the high frequency circuit are separated by the 1 / 4λg line in order to reduce the influence on the control circuit due to the leakage of the high frequency, the control signal due to the leakage of the microwave or the like. It is possible to alleviate malfunctions.

実施の形態1.
以下、この発明の実施の形態1について図1を用いて説明する。図1は、実施の形態1による高周波増幅器のブロック構成図である。図1において、1はマイクロ波帯域などの高周波入力信号を入力する入力端子、2は高周波入力信号を増幅するFETトランジスタなどで構成した増幅器、3は増幅した高周波信号を出力する出力端子、4は増幅器2で増幅された増幅信号を通過させると共にその一部を分岐出力させる電力分配器などで構成された電力検出回路、5は電力検出回路4の分岐信号を受け、この分岐信号を検波する歪みレベル検波回路である。歪みレベル検波回路5は分岐信号レベルに応じて出力電圧(Vdet)を発生する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIG. FIG. 1 is a block configuration diagram of a high-frequency amplifier according to the first embodiment. In FIG. 1, 1 is an input terminal for inputting a high frequency input signal such as a microwave band, 2 is an amplifier composed of an FET transistor for amplifying the high frequency input signal, 3 is an output terminal for outputting an amplified high frequency signal, 4 is A power detection circuit 5 including a power distributor that allows the amplified signal amplified by the amplifier 2 to pass through and outputs a part of the amplified signal is received. The power detection circuit 5 receives the branch signal of the power detection circuit 4 and detects the branch signal. This is a level detection circuit. The distortion level detection circuit 5 generates an output voltage (Vdet) according to the branch signal level.

6は検波された検波電圧(Vdet)を一方の入力とし、任意に設定可能な基準電圧発生器からの基準電圧(Vref)を他方の入力する比較器である。7は、比較器6で比較したVdetとVrefとの比較結果に対応した出力電圧(Vcom)を受け、増幅器2に制御信号を送出する制御回路である。制御回路7は、あらかじめ、Vcomの出力電圧値に対応する内容を書き込み、メモリテーブルとしたROMなどの記憶素子を保有しており、Vcomに対応して増幅器2のドレイン電圧(Vd)及びゲート電圧(Vg)を発生させ、増幅器2のゲートとドレインに制御電圧を供給する機能を受け持つ。 Reference numeral 6 denotes a comparator which receives the detected detection voltage (Vdet) as one input and inputs a reference voltage (Vref) from a reference voltage generator which can be arbitrarily set. A control circuit 7 receives an output voltage (Vcom) corresponding to a comparison result between Vdet and Vref compared by the comparator 6 and sends a control signal to the amplifier 2. The control circuit 7 previously stores the contents corresponding to the output voltage value of Vcom and has a storage element such as a ROM as a memory table, and the drain voltage (Vd) and gate voltage of the amplifier 2 corresponding to Vcom. (Vg) is generated, and the control voltage is supplied to the gate and drain of the amplifier 2.

次に動作について説明する。制御回路7のROMに書き込まれたデータテーブルは、あらかじめ増幅器2の入出力電力特性を求め、増幅器2のドレイン電圧(Vd)及びゲート電圧(Vg)の最適定数(バックオフ量)を保有しており、最適定数は増幅器2の歪を抽出し、歪みレベル検波回路5の検波電圧の大小から抽出した出力電圧Vcomに対応している。Vcomに対応したドレイン電圧(Vd)及びゲート電圧(Vg)を合わせて制御することで予め設定した一定の歪み信号レベルを保つ。   Next, the operation will be described. The data table written in the ROM of the control circuit 7 obtains the input / output power characteristics of the amplifier 2 in advance, and holds the optimum constants (backoff amount) of the drain voltage (Vd) and the gate voltage (Vg) of the amplifier 2. The optimum constant corresponds to the output voltage Vcom extracted from the magnitude of the detection voltage of the distortion level detection circuit 5 by extracting the distortion of the amplifier 2. A constant distortion signal level set in advance is maintained by controlling the drain voltage (Vd) and the gate voltage (Vg) corresponding to Vcom together.

図2は、実施の形態1による高周波増幅器の回路図である。図2において、増幅器2が介在する高周波線路と制御回路7からのVd制御信号及びVg制御信号とは高周波の漏洩を防止するため、表面線路を(n/4)×λg(n:奇数の整数)長で構成し、裏面などを地導体としたマイクロ波ストリップ線路で隔離しており、増幅器2のドレイン電圧(Vd)は制御回路7の電源(PS)から可変減衰器(VATT)を介して直接供給される。また、増幅器2のゲート電圧(Vg)も同様に制御回路7のPSからVATTを介して供給され、高周波線路と結合する。なお、λgは高周波電力周波数(f)の逆数であり、搬送される高周波伝送線路の管内波長を示す。 FIG. 2 is a circuit diagram of the high-frequency amplifier according to the first embodiment. In FIG. 2, the high-frequency line through which the amplifier 2 is interposed and the Vd control signal and the Vg control signal from the control circuit 7 are (n / 4) × λg (n: an odd integer) in order to prevent high-frequency leakage. ) It is configured with a length and is separated by a microwave strip line whose back surface is a ground conductor. The drain voltage (Vd) of the amplifier 2 is supplied from the power supply (PS) of the control circuit 7 via a variable attenuator (VATT). Supplied directly. Similarly, the gate voltage (Vg) of the amplifier 2 is supplied from the PS of the control circuit 7 via the VATT, and is coupled to the high frequency line. Note that λg is the reciprocal of the high-frequency power frequency (f) and indicates the in-tube wavelength of the high-frequency transmission line to be conveyed.

次に、増幅器2のドレイン電圧(Vd)及びゲート電圧(Vg)の最適定数(バックオフ量)を設定する方法について説明する。図3は、増幅器2の入出力特性を示す一例である。図3において、入力電力(P)が漸増することにより、低電力領域ではリニアに出力電力も増加するが、一定入力電力で出力電力は飽和する。このとき、既定の増幅器2のドレイン電圧(Vd)を増減させることにより、一定の入力電圧に対して出力飽和電力も変化する。すなわちVdが増加すると出力飽和電力も増加し、Vdが減少すると出力飽和電力も減少する。また、一般的に増幅器のゲート電圧Vgを変化させるとドレイン電流(Ids)も変化する。すなわちゲート電圧(Vg)が増加するとドレイン電流(Ids)も増加し、Vgが減少するとIdsも減少する。 Next, a method for setting optimum constants (backoff amounts) of the drain voltage (Vd) and the gate voltage (Vg) of the amplifier 2 will be described. FIG. 3 is an example showing the input / output characteristics of the amplifier 2. In FIG. 3, as the input power (P) gradually increases, the output power increases linearly in the low power region, but the output power saturates at a constant input power. At this time, by increasing or decreasing the drain voltage (Vd) of the predetermined amplifier 2, the output saturation power also changes with respect to a constant input voltage. That is, when Vd increases, the output saturation power increases, and when Vd decreases, the output saturation power also decreases. In general, when the gate voltage Vg of the amplifier is changed, the drain current (Ids) also changes. That is, when the gate voltage (Vg) increases, the drain current (Ids) also increases, and when Vg decreases, Ids also decreases.

図4は、高周波増幅器の環境温度変化などによる入出力特性を説明する図である。図4では、常温時既定の増幅器のドレイン電圧(Vd)及びゲート電圧(Vg)に対して低温時には出力飽和電力は増加し、高温時には出力飽和電量は減少する。これは、常温時、既定のゲート電圧(Vg)に対して、低温時にはゲート電圧(Vg)は上昇するためIdsも増加する。逆に高温時にはゲート電圧(Vg)は減少するためIdsも減少するためである。 FIG. 4 is a diagram for explaining input / output characteristics of the high-frequency amplifier due to environmental temperature changes and the like. In FIG. 4, the output saturation power increases at a low temperature and the output saturation power decreases at a high temperature with respect to the drain voltage (Vd) and gate voltage (Vg) of the predetermined amplifier at room temperature. This is because Ids increases because the gate voltage (Vg) increases at a low temperature with respect to a predetermined gate voltage (Vg) at room temperature. Conversely, at high temperatures, the gate voltage (Vg) decreases, so Ids also decreases.

以上から比較器6に入力する基準電圧(Vref)の出力値より大きい電圧値に対しては、ドレイン電圧を減少させるとともにゲート電圧も減少させ、比較器6に入力する基準電圧の出力値より小さい電圧値に対しては、ドレイン電圧を増加させると共にゲート電圧を増加させることにより、独立して制御する場合と比べて制御スピードの効率化を図ることが可能となる。 From the above, for a voltage value larger than the output value of the reference voltage (Vref) input to the comparator 6, the drain voltage is decreased and the gate voltage is also decreased, which is smaller than the output value of the reference voltage input to the comparator 6. With respect to the voltage value, by increasing the drain voltage and the gate voltage, it is possible to increase the efficiency of the control speed as compared with the case of independent control.

従って、図3、図4に示すように入力電力や環境温度変化に対して出力飽和電力に到らない規定出力電力(P)を維持するためには、出力飽和電力(Psat)と規定出力電力(P)との差分であるバックオフ電力量を設定することにより、これに対応するVdとVgのデータテーブルを作成し、規定出力電圧(P)時の歪レベル検波回路5からの情報に基づき制御回路7で増幅器2のドレインとゲートとを制御することにより省電力化を図ることが可能である。 Therefore, as shown in FIGS. 3 and 4, in order to maintain the specified output power (P 0 ) that does not reach the output saturation power with respect to the input power and the environmental temperature change, the output saturation power (Psat) and the specified output By setting the back-off power amount that is the difference from the power (P 0 ), a data table of Vd and Vg corresponding to this is created, and the distortion level detection circuit 5 at the specified output voltage (P 0 ) Power control can be achieved by controlling the drain and gate of the amplifier 2 by the control circuit 7 based on the information.

すなわち、歪レベルを一定にするためには、規定出力電力(P)に対応するVrefを設定し、このときのバックオフ量を零とし、バックオフ量と制御電圧を設定する。もしくは規定出力電力より大きい電力で設定する場合には、バックオフ量を+の規定値とすることにより入力電力などの増減に対応させて制御する。 That is, in order to make the distortion level constant, Vref corresponding to the specified output power (P 0 ) is set, the backoff amount at this time is set to zero, and the backoff amount and the control voltage are set. Alternatively, when the power is set to be higher than the specified output power, the backoff amount is controlled to correspond to the increase or decrease of the input power or the like by setting the backoff amount to a specified value of +.

以上のように、実施形態1によれば温度補償回路を用いることなく、歪み信号成分のみを検出することで、入力電力や環境温度が変動した場合でも適切なバックオフ量を保つことで、一定の出力電力を保つようにする動作が可能となる。 As described above, according to the first embodiment, by detecting only the distortion signal component without using the temperature compensation circuit, it is possible to maintain an appropriate back-off amount even when the input power and the environmental temperature fluctuate. It is possible to operate so as to maintain the output power.

また歪み信号レベルを一定に保ちつつバイアス制御を行うので,回路構成素子によるばらつきの影響を受けにくくなり、安定した通信品質を保つことができる効果がある。 In addition, since bias control is performed while keeping the distortion signal level constant, there is an effect that it is difficult to be affected by variations due to circuit constituent elements and stable communication quality can be maintained.

この発明の実施の形態1による高周波増幅器のブロック構成図である。It is a block block diagram of the high frequency amplifier by Embodiment 1 of this invention. この発明の実施の形態1による高周波増幅器の回路図である。1 is a circuit diagram of a high frequency amplifier according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1による高周波増幅器回路の高周波増幅器の入出力特性を説明する図である。It is a figure explaining the input-output characteristic of the high frequency amplifier of the high frequency amplifier circuit by Embodiment 1 of this invention. 高周波増幅器の環境温度変化などによる入出力特性を説明する図である。It is a figure explaining the input-output characteristic by the environmental temperature change etc. of a high frequency amplifier.

符号の説明Explanation of symbols

1・・入力端子 2・・増幅器 3・・出力端子 4・・電力検出回路(電力分配器)
5・・歪みレベル検波回路 6・・比較器 7・・制御回路
1 ・ ・ Input terminal 2 ・ ・ Amplifier 3 ・ ・ Output terminal 4 ・ ・ Power detection circuit (Power distributor)
5 ・ ・ Distortion level detection circuit 6 ・ ・ Comparator 7 ・ ・ Control circuit

Claims (2)

ソース電極が接地されたゲート電極及びドレイン電極を有し、高周波電力を入力する増幅器と、この増幅器の出力ラインに設けられ、一方の分岐出力を高周波増幅出力線路とし、他方の分岐出力を制御出力線路とする電力分配器と、この電力分配器の前記制御出力線路に接続され、前記増幅器で生じた非線形歪量を抽出し、検波出力とする歪レベル検波回路と、この歪レベル検波回路の出力電圧を一方の入力とし、あらかじめ設定した所望の高周波出力電力に対応した基準電圧を他方の入力とすることにより差分電圧を出力する比較器と、この比較器の出力電圧が入力され、出力は前記増幅器のゲート電極とドレイン電極とにそれぞれ接続され、内部に前記比較器の出力電圧に対応して前記増幅器のゲート電極及びドレイン電極に対する供給電圧を定めるデータテーブルを書き込んだROMを有する制御回路とを備え、前記比較器に入力する前記基準電圧の出力電圧値より大きい電圧値に対しては、前記増幅器のドレイン電圧を減少させると共にゲート電圧を減少させ、前記比較器に入力する前記基準電圧の出力電圧値より小さい電圧値に対しては、前記増幅器のドレイン電圧を増加させると共にゲート電圧を増加させることにより、前記基準電圧に対応する出力電力を保ちつつ動作する高周波増幅器。 The source electrode has a grounded gate electrode and drain electrode, and is provided in an amplifier that inputs high-frequency power, and an output line of this amplifier. One branch output is a high-frequency amplification output line, and the other branch output is a control output. A power distributor as a line, a distortion level detection circuit connected to the control output line of the power distributor, extracting a nonlinear distortion amount generated by the amplifier, and serving as a detection output, and an output of the distortion level detection circuit A comparator that outputs a differential voltage by using a voltage as one input and a reference voltage corresponding to a desired high-frequency output power set in advance as the other input, and an output voltage of the comparator are input, Connected to the gate electrode and the drain electrode of the amplifier, respectively, and supplied to the gate electrode and the drain electrode of the amplifier corresponding to the output voltage of the comparator inside A control circuit having a ROM in which a data table for determining a voltage is written, and for a voltage value larger than the output voltage value of the reference voltage input to the comparator, the drain voltage of the amplifier is decreased and the gate voltage is reduced. For the voltage value smaller than the output voltage value of the reference voltage input to the comparator, the output corresponding to the reference voltage is increased by increasing the drain voltage of the amplifier and increasing the gate voltage. A high-frequency amplifier that operates while maintaining power. 前記制御回路と前記増幅器のドレイン電極との接続、及び前記制御回路と前記増幅器のゲート電極との接続は、それぞれ高周波電力周波数のn/4(n:正の奇数)管内波長のストリップ線路を介している請求項1に記載の高周波増幅器。 The connection between the control circuit and the drain electrode of the amplifier, and the connection between the control circuit and the gate electrode of the amplifier are via a strip line of n / 4 (n: positive odd number) in-tube wavelength of the high frequency power frequency. The high-frequency amplifier according to claim 1.
JP2007084050A 2007-03-28 2007-03-28 High frequency amplifier Active JP4862724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084050A JP4862724B2 (en) 2007-03-28 2007-03-28 High frequency amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084050A JP4862724B2 (en) 2007-03-28 2007-03-28 High frequency amplifier

Publications (2)

Publication Number Publication Date
JP2008244986A true JP2008244986A (en) 2008-10-09
JP4862724B2 JP4862724B2 (en) 2012-01-25

Family

ID=39915747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084050A Active JP4862724B2 (en) 2007-03-28 2007-03-28 High frequency amplifier

Country Status (1)

Country Link
JP (1) JP4862724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015791A (en) * 2010-06-30 2012-01-19 Fujitsu Ltd Transmission circuit and movable communication terminal
JP2015037284A (en) * 2013-08-15 2015-02-23 富士通株式会社 Radio communication circuit and radio communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469916A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Diagnostic controlling method of semiconductor manufacturing equipment
JPH0661750A (en) * 1992-08-10 1994-03-04 Mitsubishi Electric Corp High frequency amplifier device
JPH0715247A (en) * 1993-06-25 1995-01-17 Fujitsu Ltd Power amplifier
JPH09232890A (en) * 1996-02-20 1997-09-05 Nippon Motorola Ltd Power amplifier and transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469916A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Diagnostic controlling method of semiconductor manufacturing equipment
JPH0661750A (en) * 1992-08-10 1994-03-04 Mitsubishi Electric Corp High frequency amplifier device
JPH0715247A (en) * 1993-06-25 1995-01-17 Fujitsu Ltd Power amplifier
JPH09232890A (en) * 1996-02-20 1997-09-05 Nippon Motorola Ltd Power amplifier and transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015791A (en) * 2010-06-30 2012-01-19 Fujitsu Ltd Transmission circuit and movable communication terminal
JP2015037284A (en) * 2013-08-15 2015-02-23 富士通株式会社 Radio communication circuit and radio communication device

Also Published As

Publication number Publication date
JP4862724B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US7010276B2 (en) Communications signal amplifiers having independent power control and amplitude modulation
US8344808B2 (en) Non-linear capacitance compensation
CN100521509C (en) Gain changeable amplifier
KR100631973B1 (en) Variable gain broadband amplifier
WO2022174645A1 (en) Amplitude modulation-phase modulation compensation circuit, radio frequency power amplifier and device
KR20040028963A (en) Active bias circuit
US9287830B2 (en) Stacked bias I-V regulation
CN112803905B (en) Compensation circuit
US11085954B2 (en) Control circuit, bias circuit, and control method
US7446609B2 (en) Variable gain amplifier with gain adjusting circuit
JP4583967B2 (en) High frequency power amplifier and output power adjustment method thereof
US8219049B2 (en) Generating a process and temperature tracking bias voltage
CN1965472B (en) Method and apparatus for DOHERTY amplifier biasing
US9319001B2 (en) Amplifier circuit, biasing block with output gain compensation thereof, and electronic apparatus
JP4862724B2 (en) High frequency amplifier
JP2006093896A (en) Class-e amplifier and eer modulation amplifier device
JP3403195B2 (en) In particular, a MESFET power amplifier mounted on a satellite for microwave signal amplification and its power supply unit
JP4722384B2 (en) Multistage high power amplifier
RU2271605C2 (en) Radio transmitting device incorporating provision for adapting to load
JP2010171706A (en) High frequency amplifier
US11368129B2 (en) Amplifier circuit
KR100313429B1 (en) FT predistorter without insertion loss
JP5305481B2 (en) Signal transmission circuit
JP2018056885A (en) Amplifier circuit
US20080129383A1 (en) Differential amplifier circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250