JP2008244394A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008244394A
JP2008244394A JP2007086632A JP2007086632A JP2008244394A JP 2008244394 A JP2008244394 A JP 2008244394A JP 2007086632 A JP2007086632 A JP 2007086632A JP 2007086632 A JP2007086632 A JP 2007086632A JP 2008244394 A JP2008244394 A JP 2008244394A
Authority
JP
Japan
Prior art keywords
semiconductor device
heat dissipation
fin
ppm
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086632A
Other languages
Japanese (ja)
Inventor
Takao Maeda
貴雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007086632A priority Critical patent/JP2008244394A/en
Publication of JP2008244394A publication Critical patent/JP2008244394A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having high reliability and high cooling performance. <P>SOLUTION: The semiconductor device A is provided with: semiconductor chips 11a, 11b each having a semiconductor element formed thereon; a heat dissipation substrate 21; metal plates 23a, 23b and 23c; a plurality of fin-like members 22 separated from each other; a sealing member 15 for sealing the semiconductor chips 11a (11b); a rear surface side metallized layer 24 interposed between the heat dissipating plate 21 and the fin-like members 22; and a main surface side metallized layer 26 interposed between the heat dissipating substrate 21 and the metal plates 23a, 23b and 23c. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体チップを実装してなる半導体装置に係り、特に、放熱対策に関する。   The present invention relates to a semiconductor device on which a semiconductor chip is mounted, and more particularly to a heat dissipation measure.

図7は、従来のIGBTチップを搭載した半導体装置の構造を示す断面図である。同図に示すように、セラミック等により構成されている放熱基板101の主面側には、放熱基板101にはんだ層102により固定されたAl板104と、Al板104の主面にAlろうによって固定されたAlN板106と、AlN板106の主面にAlろうによって固定されたAl配線108と、Al配線108の上にはんだ109により固定された半導体チップ120とを備えている。また、放熱基板101の裏面側には、グリース112を挟んでフィン付きのヒートシンク113が取り付けられている。一般には、放熱基板101はCu−Moなどにより構成され、ヒートシンク113はAl合金により構成されている。   FIG. 7 is a cross-sectional view showing the structure of a semiconductor device on which a conventional IGBT chip is mounted. As shown in the figure, on the main surface side of the heat radiating substrate 101 made of ceramic or the like, an Al plate 104 fixed to the heat radiating substrate 101 with a solder layer 102 and an Al brazing on the main surface of the Al plate 104 A fixed AlN plate 106, an Al wiring 108 fixed to the main surface of the AlN plate 106 with Al solder, and a semiconductor chip 120 fixed on the Al wiring 108 with solder 109 are provided. Further, a heat sink 113 with fins is attached to the rear surface side of the heat dissipation substrate 101 with the grease 112 interposed therebetween. In general, the heat dissipation substrate 101 is made of Cu—Mo or the like, and the heat sink 113 is made of an Al alloy.

放熱基板101とヒートシンク113との間に介在するグリース112は、熱膨張係数αが約23(ppm/K)のAl合金からなるヒートシンク113、および熱膨張係数αが約9(ppm/K)のCu−Moからなる放熱基板101間の熱膨張係数差に起因する応力を緩和するためのものである。   The grease 112 interposed between the heat dissipation substrate 101 and the heat sink 113 includes a heat sink 113 made of an Al alloy having a thermal expansion coefficient α of about 23 (ppm / K), and a thermal expansion coefficient α of about 9 (ppm / K). This is to relieve stress caused by the difference in thermal expansion coefficient between the heat dissipation substrates 101 made of Cu-Mo.

上述のように、基板間にグリースを介在させたものとして、たとえば、特開2003−27080号公報には、フィン付きの放熱体と、発熱体である電子部品との間に、熱伝導性グリースを介在させた半導体装置が開示されている。   As described above, for example, Japanese Patent Application Laid-Open No. 2003-27080 discloses a thermally conductive grease between a finned heat dissipator and an electronic component that is a heat generator. A semiconductor device in which is interposed is disclosed.

特開2003−27080号公報Japanese Patent Laid-Open No. 2003-27080

図7や上記公報に開示される構造では、グリースにより熱膨張係数差に起因する熱応力は緩和しうるものの、グリースは、金属やセラミックに比べると、熱伝導率が低いことに加えて、接続部の信頼性を悪化させるという難点がある。すなわち、グリースはその両側の部材をずらせるものであるので、グリースによって両側の部材が固定されるものではない。また、グリース中にボイドが発生しやすく、ボイドが発生すると、上記公報のごとく、グリースの熱伝導率の向上を図っていても、期待した効果が得られないことになる。   In the structure disclosed in FIG. 7 and the above publication, although the thermal stress due to the difference in thermal expansion coefficient can be relieved by the grease, the grease has a lower thermal conductivity than that of metal or ceramic, There is a difficulty in deteriorating the reliability of the part. In other words, since the grease displaces the members on both sides, the members on both sides are not fixed by the grease. In addition, voids are likely to occur in the grease. If voids are generated, the expected effect cannot be obtained even if the thermal conductivity of the grease is improved as described in the above publication.

本発明の目的は、接続部の信頼性を維持しつつ、高い放熱機能を有する半導体装置を提供することにある。   An object of the present invention is to provide a semiconductor device having a high heat dissipation function while maintaining the reliability of a connection portion.

本発明の半導体装置は、半導体チップを実装するための実装部材群を備えており、実装部材群は、無機絶縁性材料からなる放熱基板と、その主面側に搭載された金属板と、その裏面側に互いに離間して固定された複数のフィン状部材とを有している。   The semiconductor device of the present invention includes a mounting member group for mounting a semiconductor chip. The mounting member group includes a heat dissipation substrate made of an inorganic insulating material, a metal plate mounted on the main surface side thereof, and And a plurality of fin-like members fixed to the back surface side apart from each other.

これにより、放熱基板の裏面側において、複数のフィン状部材が互いに離間しているので、放熱基板と金属板との熱膨張係数差や、放熱基板とフィン状部材との熱膨張係数差が大きくても、そのことに起因するフィン状部材と放熱基板との接続部の信頼性は維持される。すなわち、フィン状部材と放熱基板との間で熱応力が発生しても、放熱基板の開放部分に熱応力が分散(吸収)されるので、接続部がはがれるなどのおそれが回避されるからである。したがって、グリースをフィン状部材と放熱基板との間に介在させる必要はなく、メタライズ層とのろう付け,接着,嵌合などにより、フィン状部材を放熱基板に固定することが可能となる。よって、ヒートシンクであるフィン状部材と放熱基板との間の接続部の信頼性が向上する。   Accordingly, since the plurality of fin-like members are separated from each other on the back surface side of the heat dissipation board, the difference in thermal expansion coefficient between the heat dissipation board and the metal plate and the difference in thermal expansion coefficient between the heat dissipation board and the fin-like member are large. However, the reliability of the connection portion between the fin-like member and the heat dissipation substrate resulting from that is maintained. That is, even if thermal stress is generated between the fin-like member and the heat dissipation board, the thermal stress is dispersed (absorbed) in the open part of the heat dissipation board, so that the possibility of the connection part being peeled off is avoided. is there. Therefore, it is not necessary to interpose the grease between the fin-like member and the heat dissipation substrate, and the fin-like member can be fixed to the heat dissipation substrate by brazing, bonding, fitting, or the like with the metallized layer. Therefore, the reliability of the connection part between the fin-like member which is a heat sink and the heat dissipation substrate is improved.

放熱基板の主面に主面側メタライズ層を形成して、金属板を主面側メタライズ層にろう付けすることにより、放熱基板と金属板との間の接続状態が強固になって、より信頼性が向上する。ろう付けには、はんだなどの低温ろう付け、黄銅ろうなどの高温ろう付けなどがあるが、いずれを用いてもかまわない。   By forming the main surface side metallization layer on the main surface of the heat dissipation board and brazing the metal plate to the main surface side metallization layer, the connection state between the heat dissipation substrate and the metal plate becomes stronger and more reliable Improves. Brazing includes low-temperature brazing such as solder and high-temperature brazing such as brass brazing, and any of them may be used.

放熱基板の裏面に裏面側メタライズ層を形成して、フィン状部材を裏面側メタライズ層にろう付けすることにより、放熱基板とフィン状部材との間の接続状態が強固になって、より信頼性が向上する。   By forming a backside metallization layer on the backside of the heat dissipation board and brazing the fin-like member to the backside metallization layer, the connection state between the heat dissipation board and the fin-like member becomes stronger and more reliable. Will improve.

金属板が、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の金属材料により構成されていることによって、半導体チップとの熱膨張係数差が小さくなるので、熱応力をできるだけ小さくすることができる。   Since the metal plate is made of a metal material having a thermal expansion coefficient greater than 0 (ppm / K) and not more than 10 (ppm / K), the difference in thermal expansion coefficient from the semiconductor chip is reduced. The stress can be made as small as possible.

金属板がCu−MoまたはCu−Wにより構成されていることによって、半導体チップ側から放熱基板への熱伝達量が多くなり、放熱機能が向上する。   When the metal plate is made of Cu—Mo or Cu—W, the amount of heat transferred from the semiconductor chip side to the heat dissipation substrate is increased, and the heat dissipation function is improved.

放熱基板が、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の無機絶縁性材料により構成されていることによって、金属板との熱膨張係数差が小さくなるので、熱応力をできるだけ小さくすることができる。     Since the heat dissipation substrate is made of an inorganic insulating material having a thermal expansion coefficient larger than 0 (ppm / K) and 10 (ppm / K) or less, the difference in thermal expansion coefficient from the metal plate is reduced. The thermal stress can be made as small as possible.

放熱基板が、AlN,窒化珪素,SiCおよびそれらのうち少なくとも1つを主成分とする複合材料から選ばれた材料により構成されていることによって、放熱基板の熱膨張係数が半導体チップの熱膨張係数に近づくので、熱応力をできるだけ小さくすることができる。窒化珪素には、化学量論組成のものSiだけでなく、化学量論組成からずれた不定比のものも含まれる。 The heat dissipation substrate is made of a material selected from AlN, silicon nitride, SiC, and a composite material containing at least one of them as a main component, so that the heat expansion coefficient of the heat dissipation substrate is the coefficient of thermal expansion of the semiconductor chip. Therefore, the thermal stress can be made as small as possible. Silicon nitride includes not only stoichiometric Si 3 N 4 but also non-stoichiometric ones deviating from stoichiometric composition.

放熱基板と金属板との熱膨張係数差が、7(ppm/K)以下であることにより、熱膨張係数差に起因する熱応力をできるだけ小さくすることができる。   When the thermal expansion coefficient difference between the heat dissipation substrate and the metal plate is 7 (ppm / K) or less, the thermal stress due to the thermal expansion coefficient difference can be made as small as possible.

フィン状部材が、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の金属材料により構成されていることによって、フィン状部材と放熱基板との熱膨張係数差に起因する熱応力をできるだけ小さくすることができる。   Since the fin-like member is made of a metal material having a thermal expansion coefficient greater than 0 (ppm / K) and not more than 10 (ppm / K), the difference in thermal expansion coefficient between the fin-like member and the heat dissipation substrate can be reduced. The resulting thermal stress can be made as small as possible.

フィン状部材が、Cu−MoまたはCu−Wにより構成されていることによって、熱応力をできるだけ小さくして、接合の信頼性を維持しつつ、ヒートシンクであるフィン状部材から熱媒体へ熱伝達量が向上し、放熱機能が向上する。フィン状部材が、熱伝導率の高いCuまたはCu合金により構成されていることによって、特に放熱機能が向上する。   Since the fin-like member is made of Cu-Mo or Cu-W, the heat transfer amount from the fin-like member serving as a heat sink to the heat medium is maintained while minimizing the thermal stress and maintaining the reliability of the joining. And the heat dissipation function is improved. Since the fin-like member is made of Cu or Cu alloy having a high thermal conductivity, the heat dissipation function is particularly improved.

半導体素子が、ワイドバンドギャップ半導体を用いたパワーデバイスであることにより、チップ温度が比較的高温に達しても、熱応力をできるだけ小さくして接続部の信頼性を維持しつつ、高い耐熱性により、動作を持続することができる。   Because the semiconductor element is a power device using a wide band gap semiconductor, even when the chip temperature reaches a relatively high temperature, the thermal stress is kept as low as possible to maintain the reliability of the connection part, and the high heat resistance. , Can continue operation.

本発明の半導体装置によると、熱応力の抑制により、接続部の信頼性を保持しつつ、高い放熱機能を有する半導体装置を提供することができる。   According to the semiconductor device of the present invention, it is possible to provide a semiconductor device having a high heat dissipation function while maintaining the reliability of the connecting portion by suppressing thermal stress.

図1は、実施の形態における半導体装置Aの構造を示す縦断面図である。同図に示すように、本実施の形態の半導体装置Aは、主要部材として、スイッチングトランジスタなどの半導体素子が形成された半導体チップ11a,11bと、半導体チップ11a,11bで発生した熱を外方に放出するための放熱基板21と、半導体チップ11a(11b)の裏面電極14等に接続され放熱基板21の主面側に延びる,Cu−MoまたはCu−Wからなる金属板23a,23b,23cと、半導体チップ11a(11b)の主面電極16と金属板23とを接続するリボン部材17と、半導体チップ11a(11b),金属板23b(23c),リボン部材17等を放熱基板21の主面側で封止する封止部材15と、放熱基板21の裏面に互いに離間して固定された,Cu,Cu合金,Cu−Mo,またはCu−Wからなる多数のフィン状部材22とを備えている。   FIG. 1 is a longitudinal sectional view showing a structure of a semiconductor device A in the embodiment. As shown in the figure, the semiconductor device A of the present embodiment has, as main members, semiconductor chips 11a and 11b on which semiconductor elements such as switching transistors are formed, and heat generated in the semiconductor chips 11a and 11b. The metal plate 23a, 23b, 23c made of Cu-Mo or Cu-W, which is connected to the heat dissipation substrate 21 and the back electrode 14 of the semiconductor chip 11a (11b) and extends to the main surface side of the heat dissipation substrate 21. And a ribbon member 17 that connects the main surface electrode 16 of the semiconductor chip 11a (11b) and the metal plate 23, and the semiconductor chip 11a (11b), the metal plate 23b (23c), the ribbon member 17 and the like It is made of a sealing member 15 that is sealed on the surface side, and Cu, Cu alloy, Cu—Mo, or Cu—W that are fixed to the back surface of the heat dissipation substrate 21 so as to be separated from each other. And a plurality of fin-shaped member 22.

放熱基板21は、AlN,Al−SiC,Si−SiC等の無機絶縁性材料(本実施の形態では、セラミックス)によって構成されている。放熱基板21の裏面には、ほぼ全面に亘って裏面側メタライズ層24が形成されており、Cu,Cu合金,Cu−MoまたはCu−Wからなるフィン状部材22は、ろう付け(銀ろう,銅ろうなど)によって裏面側メタライズ層24に接合されている。放熱基板21の主面には、金属板23a,23b,23cとの接続部のみに主面側メタライズ層26が形成されており、Cu−MoやCu−Wなどからなる金属板23a,23b,23cは、ろう付け(はんだなどの低温ろう)によって主面側メタライズ層26に接合されている。裏面側メタライズ層24および主面側メタライズ層26は、たとえばMo合金,W合金,Mo−Mn合金などの金属膜とAlN等とを水素雰囲気中で反応させることにより形成され、その後、表面にNiメッキが施されている。   The heat dissipation substrate 21 is made of an inorganic insulating material (in this embodiment, ceramics) such as AlN, Al—SiC, or Si—SiC. On the back surface of the heat dissipation substrate 21, a back surface side metallized layer 24 is formed over almost the entire surface, and the fin-like member 22 made of Cu, Cu alloy, Cu—Mo or Cu—W is brazed (silver brazing, The back metallization layer 24 is joined by a copper braze or the like. The main surface side metallized layer 26 is formed on the main surface of the heat dissipation substrate 21 only at the connection portions with the metal plates 23a, 23b, and 23c, and the metal plates 23a, 23b, and the like made of Cu-Mo, Cu-W, or the like. 23c is joined to the main surface side metallization layer 26 by brazing (low temperature brazing such as solder). The back surface side metallized layer 24 and the main surface side metallized layer 26 are formed by reacting, for example, a metal film such as Mo alloy, W alloy, Mo—Mn alloy and AlN in a hydrogen atmosphere. It is plated.

放熱基板21の材料は、AlN,窒化珪素,SiCまたはそれらのうち少なくとも1つを主成分とする複合材料に限定されるものではないが、限定することが好ましい。AlNの熱膨張係数αは約4.5(ppm/K),熱伝導率は約200(W/m・K)であり、窒化珪素の熱膨張係数αは約2〜3(ppm/K),熱伝導率は最大約80(W/m・K)であり、SiCの熱膨張係数αは約4(ppm/K),熱伝導率は約200〜500(W/m・K)である。したがって、これらの放熱用材料は、アルミナ等の汎用セラミックスの熱伝導率よりもはるかに大きく、アルミニウム(熱伝導率約240(W/m・K)に近い熱伝導率を有しながら、熱膨張係数αはアルミニウム(α≒23(ppm/K))よりもはるかに小さく半導体チップの熱膨張係数α(Siで約3(ppm/K)、SiCで約4(ppm/K))に近い。したがって、放熱基板21を、AlN,窒化珪素,SiCまたはそれらのうち少なくとも1つを主成分とする複合材料により構成することによって、大きな熱伝達量を維持しつつ、熱応力をできるだけ小さくすることができる。   The material of the heat dissipation substrate 21 is not limited to AlN, silicon nitride, SiC, or a composite material containing at least one of them as a main component, but is preferably limited. The thermal expansion coefficient α of AlN is about 4.5 (ppm / K), the thermal conductivity is about 200 (W / m · K), and the thermal expansion coefficient α of silicon nitride is about 2 to 3 (ppm / K). The thermal conductivity is about 80 (W / m · K) at the maximum, the thermal expansion coefficient α of SiC is about 4 (ppm / K), and the thermal conductivity is about 200 to 500 (W / m · K). . Therefore, these heat-dissipating materials are much larger than the thermal conductivity of general-purpose ceramics such as alumina, and have a thermal conductivity close to that of aluminum (thermal conductivity of about 240 (W / m · K), while being thermally expanded. The coefficient α is much smaller than aluminum (α≈23 (ppm / K)) and is close to the thermal expansion coefficient α of the semiconductor chip (about 3 (ppm / K) for Si and about 4 (ppm / K) for SiC). Therefore, by configuring the heat dissipation substrate 21 with AlN, silicon nitride, SiC, or a composite material containing at least one of them as a main component, it is possible to minimize the thermal stress while maintaining a large heat transfer amount. it can.

金属板23a,23b,23cの材料は、Cu−MoやCu−Wに限定されるものではない。ただし、Cu−Moの熱膨張係数αは約6.5〜8(ppm/K),熱伝導率は約200(W/m・K)であり、Cu−Wの熱膨張係数αは約6.5〜7(ppm/K),熱伝導率は180〜200(W/m・K)である。これらの複合材料の熱伝導率は、Cuの熱伝導率(約400(W/m・K))に比べるとかなり低いものの、アルミニウム(Al)に近い値であり、一方、熱膨張係数αは、Cuの熱膨張係数α(≒17)よりもはるかに小さく半導体チップの熱膨張係数α(Siで約3(ppm/K)、SiCで約4(ppm/K))に近い。したがって、金属板23を、Cu−MoまたはCu−Wより構成することによって、大きな熱伝達量を維持しつつ、熱応力をできるだけ小さくすることができる。   The material of the metal plates 23a, 23b, and 23c is not limited to Cu—Mo or Cu—W. However, the thermal expansion coefficient α of Cu—Mo is about 6.5 to 8 (ppm / K), the thermal conductivity is about 200 (W / m · K), and the thermal expansion coefficient α of Cu—W is about 6 .5-7 (ppm / K), and thermal conductivity is 180-200 (W / m · K). The thermal conductivity of these composite materials is much lower than that of Cu (about 400 (W / m · K)), but is close to that of aluminum (Al), while the thermal expansion coefficient α is , Much smaller than the thermal expansion coefficient α (≈17) of Cu and close to the thermal expansion coefficient α of the semiconductor chip (about 3 (ppm / K) for Si and about 4 (ppm / K) for SiC). Therefore, by configuring the metal plate 23 from Cu—Mo or Cu—W, it is possible to minimize the thermal stress while maintaining a large heat transfer amount.

フィン状部材22の材料は、Cu,Cu合金,Cu−MoまたはCu−Wに限定されるものではない。ただし、金属板23a,23b,23cと同様に、フィン状部材22を、Cu−MoまたはCu−Wより構成することによって、大きな熱伝達量を維持しつつ、熱応力をできるだけ小さくすることができる。また、フィン状部材22を、CuまたはCu合金より構成することによって、高い熱伝導率を有するフィン状部材22を用いて、放熱機能をより高めることができる。   The material of the fin-like member 22 is not limited to Cu, Cu alloy, Cu—Mo, or Cu—W. However, similarly to the metal plates 23a, 23b, and 23c, by configuring the fin-like member 22 from Cu—Mo or Cu—W, it is possible to minimize the thermal stress while maintaining a large heat transfer amount. . Further, by configuring the fin-like member 22 from Cu or Cu alloy, the heat radiation function can be further enhanced by using the fin-like member 22 having high thermal conductivity.

放熱基板21の裏面およびフィン状部材22は、紙面に垂直な方向に流れる冷却液(冷却媒体)にさらされており、フィン状部材22により、冷却液との熱交換効率を高めるように構成されている。冷却液に代えて、ヘリウム,アルゴン,窒素,空気などの気体であってもよい。   The back surface of the heat dissipation substrate 21 and the fin-like member 22 are exposed to a coolant (cooling medium) flowing in a direction perpendicular to the paper surface, and the fin-like member 22 is configured to increase the heat exchange efficiency with the coolant. ing. Instead of the coolant, a gas such as helium, argon, nitrogen, or air may be used.

封止部材15は、エポキシ樹脂,ウレタン樹脂,シリコーン樹脂などからなり、ポッティングによって形成されたものである。なお、一般的には、半導体装置Aをモジュールに組み込んで、必要な配線が終了した後には、上方はゼラチン質の保護膜で満たされるので、封止部材は必ずしも必要ではないが、組み立て工程における信頼性や、使用時には環境が多彩に変化することを考慮すると、封止部材15を設けることが好ましい。   The sealing member 15 is made of epoxy resin, urethane resin, silicone resin, or the like, and is formed by potting. In general, after the semiconductor device A is incorporated in a module and necessary wiring is completed, the upper portion is filled with a gelatinous protective film, so that a sealing member is not always necessary. In consideration of reliability and various changes in environment during use, it is preferable to provide the sealing member 15.

次に、半導体チップ11a(11b)の構造について説明する。図2は、本実施の形態における半導体チップ11a(11b)の縦断面図である。同図に示すように、半導体チップ11a(11b)は、抵抗率が0.02Ωcm、厚みが400μmで、[ 1 1-2 0 ]方向に約8°オフさせた( 0 0 0 1 )面を主面とするn型の4H−SiC基板30と、in-situドープを伴うCVDエピタキシャル成長法により、4H−SiC基板30の上に成長された,厚みが約10μmのn型エピタキシャル成長層31と備えている。   Next, the structure of the semiconductor chip 11a (11b) will be described. FIG. 2 is a longitudinal sectional view of the semiconductor chip 11a (11b) in the present embodiment. As shown in the figure, the semiconductor chip 11a (11b) has a resistivity of 0.02 Ωcm, a thickness of 400 μm, and a (0 0 0 1) plane that is turned off by about 8 ° in the [1 1-2 0] direction. An n-type 4H—SiC substrate 30 as a main surface and an n-type epitaxial growth layer 31 having a thickness of about 10 μm grown on the 4H—SiC substrate 30 by a CVD epitaxial growth method with in-situ doping. Yes.

そして、半導体チップ11a(11b)内の縦型MOSFET1は、エピタキシャル成長層31の表面部の一部に形成されたpウェル領域32と、pウェル領域32の表面部の各一部に形成されたn型ソース領域33およびpコンタクト領域35と、エピタキシャル成長層31の上に形成されたシリコン酸化膜からなるゲート絶縁膜38と、4H−SiC基板30の裏面上に形成された、Ni膜(又はNi合金膜)からなる裏面電極40と、ゲート絶縁膜38のうちソース領域33及びpコンタクト領域35の上方に位置する部分を開口した領域の上に形成されたNi膜(又はNi合金膜)からなるソース電極41と、ゲート絶縁膜40の上にソース電極41とは離間した位置に形成されたAl膜(又はAl合金膜)からなるゲート電極42とを備えている。 The vertical MOSFET 1 in the semiconductor chip 11a (11b) includes a p-well region 32 formed in a part of the surface portion of the epitaxial growth layer 31, and an n-type formed in each part of the surface portion of the p-well region 32. Type source region 33 and p + contact region 35, gate insulating film 38 made of a silicon oxide film formed on epitaxially grown layer 31, and Ni film (or Ni) formed on the back surface of 4H-SiC substrate 30 A rear electrode 40 made of an alloy film) and a Ni film (or Ni alloy film) formed on the gate insulating film 38 on a region where the portions located above the source region 33 and the p + contact region 35 are opened. A gate electrode made of an Al film (or an Al alloy film) formed on the gate insulating film 40 at a position apart from the source electrode 41 and the source electrode 41. And a 42.

図2には表示されていないが、多数のトランジスタセルが集合して1つの縦型MOSFETが構成されている。この縦型MOSFETの各トランジスタセルにおいて、オン時には、裏面電極40から供給される電子が、4H−SiC基板30からエピタキシャル成長層31の最上部まで縦方向に流れた後、pウェル領域32の最上部のチャネル領域を経て、ソース領域33に達することになる。   Although not shown in FIG. 2, a number of transistor cells are gathered to form one vertical MOSFET. In each transistor cell of the vertical MOSFET, when supplied, electrons supplied from the back electrode 40 flow in the vertical direction from the 4H-SiC substrate 30 to the uppermost portion of the epitaxial growth layer 31, and then the uppermost portion of the p-well region 32. The source region 33 is reached through the channel region.

一方、半導体チップ11a(11b)内のショットキーダイオード2は、エピタキシャル成長層31の表面部の一部に形成されたpガードリング領域45と、pガードリング領域45を含むエピタキシャル成長層31の上に形成されたシリコン酸化膜43と、シリコン酸化膜43のうちpガードリング領域45に跨る部分の上方に位置する部分を開口した領域の上に形成されたNi膜(又はNi合金膜)からなるショットキー電極46と、縦型MOSFET1と共通の裏面電極40とを備えている。   On the other hand, the Schottky diode 2 in the semiconductor chip 11 a (11 b) is formed on the p guard ring region 45 formed on a part of the surface portion of the epitaxial growth layer 31 and the epitaxial growth layer 31 including the p guard ring region 45. Schottky comprising a silicon oxide film 43 formed and a Ni film (or Ni alloy film) formed on a region of the silicon oxide film 43 that is located above the portion extending over the p guard ring region 45. An electrode 46 and a back electrode 40 common to the vertical MOSFET 1 are provided.

ここで、縦型MOSFET1のソース電極41と、ショットキーダイオード2のショットキー電極46とは、保護用絶縁膜まで延びて共通のパッドである上面電極16(図3参照)となっている。また、縦型MOSFET1のゲート電極は、図2とは異なる断面において保護用絶縁膜上まで延びてゲートパッド18(図3参照)となっている。   Here, the source electrode 41 of the vertical MOSFET 1 and the Schottky electrode 46 of the Schottky diode 2 extend to the protective insulating film and form the upper surface electrode 16 (see FIG. 3) which is a common pad. Further, the gate electrode of the vertical MOSFET 1 extends onto the protective insulating film in a cross section different from that of FIG. 2 and serves as a gate pad 18 (see FIG. 3).

図4は、実施の形態における半導体装置を含むモジュールの電気回路図である。同図に示すように、モジュール内において、電源端子VDDと接地端子VSSとの間には、直列に接続された3組の半導体チップ11a,11bが、互いに並列に接続されている。各半導体チップ11a(11b)には、縦型MOSFET1とショットキーダイオード2とが互いに並列に配置されている。各電気配線13aは接地端子VSSに接続され、電気配線13cは電源端子VDDに接続され、中間の各電気配線13bから三相の電力信号U,V,Wが取り出される。すなわち、電源端子VDDおよび接地端子VSS間に印加される直流電力信号を3相の電力信号に変換するインバータ回路が構成されている。本実施の形態のインバータ回路は、燃料電池や水素電池などの直流電力を自動車のエンジンを駆動するための三相の電力に変換するものである。   FIG. 4 is an electric circuit diagram of a module including the semiconductor device according to the embodiment. As shown in the figure, in the module, three sets of semiconductor chips 11a and 11b connected in series are connected in parallel between the power supply terminal VDD and the ground terminal VSS. In each semiconductor chip 11a (11b), a vertical MOSFET 1 and a Schottky diode 2 are arranged in parallel with each other. Each electrical wiring 13a is connected to the ground terminal VSS, the electrical wiring 13c is connected to the power supply terminal VDD, and three-phase power signals U, V, and W are taken out from each intermediate electrical wiring 13b. That is, an inverter circuit that converts a DC power signal applied between the power supply terminal VDD and the ground terminal VSS into a three-phase power signal is configured. The inverter circuit according to the present embodiment converts direct-current power such as a fuel cell or a hydrogen battery into three-phase power for driving an automobile engine.

図3は、実施の形態における半導体装置Aの上面図である。半導体装置Aには、図4に示す電源端子VDDと接地端子VSSとの間に、直列に配置された1対の半導体チップ11a,11bの3組が配置されている。つまり、合計6個の半導体チップ11aまたは11bが配置されている。また、電気配線として機能する金属板23は、半導体チップ11a(11b)の裏面側だけでなく、外部との電気的接続を行うためのパッドとなる領域まで延びている。そして、接地端子VSSに接続される金属板23aと、半導体チップ11aの上面電極16とは、リボン部材17により接続され、金属板23aおよびリボン部材17が電気配線13aとして機能する。金属板23bと半導体チップ11bの上面電極16とは、リボン部材17によって接続されており、金属板23bおよびリボン部材17が電気配線13bとして機能する。金属板23cの端部は、電源端子VDDに接続されるパッドになっていて、金属板23cが電気配線13cの一部として機能する。すなわち、モジュールとして組立てられた状態では、各2つの半導体チップ11a,11bが電気配線13a,13b,13cにより直列に接続されている。   FIG. 3 is a top view of the semiconductor device A according to the embodiment. In the semiconductor device A, three sets of a pair of semiconductor chips 11a and 11b arranged in series are arranged between the power supply terminal VDD and the ground terminal VSS shown in FIG. That is, a total of six semiconductor chips 11a or 11b are arranged. Further, the metal plate 23 functioning as electric wiring extends not only to the back surface side of the semiconductor chip 11a (11b) but also to a region that becomes a pad for electrical connection with the outside. The metal plate 23a connected to the ground terminal VSS and the upper surface electrode 16 of the semiconductor chip 11a are connected by the ribbon member 17, and the metal plate 23a and the ribbon member 17 function as the electrical wiring 13a. The metal plate 23b and the upper surface electrode 16 of the semiconductor chip 11b are connected by a ribbon member 17, and the metal plate 23b and the ribbon member 17 function as the electrical wiring 13b. The end of the metal plate 23c is a pad connected to the power supply terminal VDD, and the metal plate 23c functions as a part of the electric wiring 13c. That is, in the state assembled as a module, the two semiconductor chips 11a and 11b are connected in series by the electric wirings 13a, 13b, and 13c.

一方、半導体チップ11aのゲートパッド18と、制御信号入力部である金属板23dとは、ボンディングワイヤ19によって電気的に接続されている。また、半導体チップ11bのゲートパッド18と、制御信号入力部である金属板23eとは、ボンディングワイヤ19によって、電気的に接続されている。そして、封止部材15は、ゲートパッド18,ボンディングワイヤ19および金属板23d(23e)の一部をも封止している。   On the other hand, the gate pad 18 of the semiconductor chip 11a and the metal plate 23d as a control signal input unit are electrically connected by a bonding wire 19. Further, the gate pad 18 of the semiconductor chip 11b and the metal plate 23e which is a control signal input unit are electrically connected by a bonding wire 19. The sealing member 15 also seals part of the gate pad 18, the bonding wire 19 and the metal plate 23d (23e).

そして、モジュールとして組み立てられた状態では、金属板23d,23eには制御信号用の信号配線が接続され、金属板23aのパッドには接地端子VSS(図4参照)からの電力配線が接続され、金属板23cのパッドには電源端子VDD(図4参照)からの電力配線が接続され、金属板23のパッドには三相の電力信号U,V,Wを出力するための電力配線が接続される。   And in the state assembled as a module, the signal wiring for control signals is connected to the metal plates 23d and 23e, and the power wiring from the ground terminal VSS (see FIG. 4) is connected to the pad of the metal plate 23a. The power wiring from the power supply terminal VDD (see FIG. 4) is connected to the pad of the metal plate 23c, and the power wiring for outputting the three-phase power signals U, V, W is connected to the pad of the metal plate 23. The

本実施の形態の半導体装置Aによると、放熱基板21の裏面側に、互いに離間した複数のフィン状部材22が設けられているので、フィン状部材22と放熱基板21との間で熱応力が発生しても放熱基板21の開放部分で吸収されて接続部の信頼性が維持される。したがって、フィン状部材22をCuまたはCu合金などの熱伝導率の大きい金属材料で構成しても、接続部の信頼性を維持しつつ、放熱機能を高めることが可能になる。また、フィン状部材22をCu−MoまたはCu−Wにより構成することによって、無機絶縁性材料からなる放熱基板21とフィン状部材22との熱膨張係数差を小さくすることができるので、接続部の信頼性はさらに向上する。   According to the semiconductor device A of the present embodiment, the plurality of fin-like members 22 that are separated from each other are provided on the back surface side of the heat dissipation substrate 21, so that thermal stress is generated between the fin-like member 22 and the heat dissipation substrate 21. Even if it occurs, it is absorbed by the open portion of the heat dissipation substrate 21 and the reliability of the connecting portion is maintained. Therefore, even if the fin-like member 22 is made of a metal material having a high thermal conductivity such as Cu or Cu alloy, the heat radiation function can be enhanced while maintaining the reliability of the connecting portion. Further, since the fin-like member 22 is made of Cu-Mo or Cu-W, the difference in thermal expansion coefficient between the heat dissipation substrate 21 made of an inorganic insulating material and the fin-like member 22 can be reduced, so that the connecting portion Reliability is further improved.

(他の実施の形態)
上記開示された本発明の実施の形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
(Other embodiments)
The structure of the embodiment of the present invention disclosed above is merely an example, and the scope of the present invention is not limited to the scope of these descriptions. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

図5は、実施の形態の第1変形例を示す部分断面図である。同図に示すように、放熱基板21の裏面には、フィン状部材22と同数の溝が形成されており、フィン状部材22の基端部22aは溝と嵌合している。裏面側メタライズ層24は、溝の壁面に形成されており、フィン状部材22はろう付けによって、裏面側メタライズ層24と接合されている。本変形例により、実施の形態に比べ、フィン状部材22と裏面側メタライズ層24との接合面積が増大するので、接続の信頼性が向上するとともに、フィン状部材22と放熱基板21との間の熱パスの面積も拡大するので、放熱機能も向上する。   FIG. 5 is a partial cross-sectional view showing a first modification of the embodiment. As shown in the figure, the same number of grooves as the fin-like member 22 are formed on the back surface of the heat dissipation substrate 21, and the base end portion 22 a of the fin-like member 22 is fitted in the groove. The back surface side metallized layer 24 is formed on the wall surface of the groove, and the fin-like member 22 is joined to the back surface side metallized layer 24 by brazing. According to this modification, the bonding area between the fin-like member 22 and the back-side metallized layer 24 is increased as compared with the embodiment, so that the connection reliability is improved and the fin-like member 22 and the heat dissipation board 21 are connected. Since the area of the heat path is expanded, the heat dissipation function is also improved.

図6は、実施の形態の第2変形例を示す部分断面図である。同図に示すように、放熱基板21の裏面には、裏面側メタライズ層24を形成した後に形成された溝が形成されている。また、フィン状部材22の基端部22bは、他の部分よりも薄く段付きになっており、基端部22bが放熱基板21の溝と嵌合している。そして、フィン状部材22の段付き部の縁部と裏面側メタライズ層24とが、ろう付けによって接合されている。本変形例によると、実施の形態に比べ、フィン状部材22が基端部22bにおいて、放熱基板21の溝と嵌合しているので、放熱基板21によるフィン状部材22の保持機能が増大し、接続部の信頼性が向上する。さらに、フィン状部材22の基端部22bと放熱基板21とが溝の壁面で直接接触しているので、放熱基板21とフィン状部材22との間の熱伝達率が第1変形例よりも大きくなって、放熱機能が向上する。なお、組立時には、室温でフィン状部材22の基端部22bが放熱基板21の溝に嵌合されるので、フィン状部材22の熱膨張係αが放熱基板21の熱膨張係数αよりも大きければ、温度が上昇しても、フィン所部材22の基端部22bと放熱基板21の溝との嵌合が緩むことはない。   FIG. 6 is a partial cross-sectional view showing a second modification of the embodiment. As shown in the figure, a groove formed after the back surface side metallization layer 24 is formed is formed on the back surface of the heat dissipation substrate 21. Further, the base end portion 22 b of the fin-like member 22 is thinner and stepped than the other portions, and the base end portion 22 b is fitted in the groove of the heat dissipation substrate 21. And the edge part of the step part of the fin-shaped member 22 and the back surface side metallization layer 24 are joined by brazing. According to this modification, since the fin-like member 22 is fitted in the groove of the heat dissipation board 21 at the base end portion 22b, the holding function of the fin-like member 22 by the heat dissipation board 21 is increased compared to the embodiment. , The reliability of the connecting portion is improved. Furthermore, since the base end portion 22b of the fin-like member 22 and the heat dissipation substrate 21 are in direct contact with each other at the wall surface of the groove, the heat transfer coefficient between the heat dissipation substrate 21 and the fin-like member 22 is higher than that in the first modification. Increases heat dissipation function. At the time of assembly, since the base end portion 22b of the fin-like member 22 is fitted into the groove of the heat dissipation board 21 at room temperature, the thermal expansion coefficient α of the fin-like member 22 must be larger than the thermal expansion coefficient α of the heat dissipation board 21. For example, even if the temperature rises, the fitting between the base end portion 22b of the fin member 22 and the groove of the heat dissipation board 21 does not loosen.

第1変形例および第2変形例においては、裏面側メタライズ層24を形成せずに、接着剤によって放熱基板21とフィン状部材22とを接続してもよい。フィン状部材22の基端部22bと放熱基板21の溝とが嵌合しているので、接続部の信頼性が悪化することはないからである。その方が製造コストの低減を図ることができる利点がある。特に、第2変形例では、基端部22aと溝の壁面とが直接接触しているので、熱伝達率も高く維持される。   In the first modification and the second modification, the heat radiating substrate 21 and the fin-like member 22 may be connected by an adhesive without forming the back-side metallized layer 24. This is because the base end portion 22b of the fin-like member 22 and the groove of the heat dissipation substrate 21 are fitted, so that the reliability of the connection portion does not deteriorate. This has the advantage that the manufacturing cost can be reduced. In particular, in the second modification, the base end portion 22a and the wall surface of the groove are in direct contact with each other, so that the heat transfer coefficient is also maintained high.

上記実施の形態および変形例においては、フィン状部材22は、板状であるとしているが、板状であってもその間に切り込みを入れることができ、あるいは、棒状もしくは針状であってもよいものとする。   In the embodiment and the modification described above, the fin-like member 22 has a plate shape. However, the fin-like member 22 may have a plate shape or a notch therebetween, or may have a rod shape or a needle shape. Shall.

本発明の半導体装置は、ワイドバンドギャップ半導体(SiC,GaN,Diamondなど)を用いたパワーデバイスを有するものに適用することにより、Siデバイスの動作温度以上でスイッチング動作などを行なわれ、チップ温度が150°C以上に達しても、熱応力をできるだけ小さくして接続部の信頼性を維持しつつ、高い耐熱性により動作を持続することができ、著効を奏することができる。   By applying the semiconductor device of the present invention to a device having a power device using a wide band gap semiconductor (SiC, GaN, Diamond, etc.), the switching operation is performed at a temperature higher than the operating temperature of the Si device, and the chip temperature is increased. Even when the temperature reaches 150 ° C. or higher, the operation can be maintained with high heat resistance while reducing the thermal stress as much as possible to maintain the reliability of the connecting portion, and a remarkable effect can be obtained.

上記実施の形態では、半導体チップ11a(11b)に、縦型MOSFET1とショットキーダイオード2とが形成されているが、縦型MOSFETとショットキーダイオードが個別の半導体チップに形成されていてもよい。なお、半導体チップ11a(11b)には、縦型MOSFET1に代えて、ゲート絶縁膜がシリコン酸化膜でなく窒化膜や酸窒化膜である縦型MISFETを設けてもよい。   In the above embodiment, the vertical MOSFET 1 and the Schottky diode 2 are formed on the semiconductor chip 11a (11b). However, the vertical MOSFET and the Schottky diode may be formed on individual semiconductor chips. The semiconductor chip 11a (11b) may be provided with a vertical MISFET whose gate insulating film is not a silicon oxide film but a nitride film or an oxynitride film instead of the vertical MOSFET 1.

上記実施の形態では、半導体チップ11a(11b)に、縦型MOSFETが形成されているが、本発明の半導体チップは、横型MOSFETなどの半導体素子が形成されているものであってもよい。その場合には、裏面電極40に代えて、半導体チップの主面側にドレイン電極が形成されることになるので、金属板は、バックバイアスを確保するものでよく、その場合には、放熱基板21とほぼ全面に亘って接触していてもよい。また、金属板は、単にチップを支持するだけの機能しかないダイパッドであってもよく、その場合には、チップの下方のみに設けられていてもよい。   In the above embodiment, the vertical MOSFET is formed in the semiconductor chip 11a (11b). However, the semiconductor chip of the present invention may be one in which a semiconductor element such as a lateral MOSFET is formed. In this case, since the drain electrode is formed on the main surface side of the semiconductor chip instead of the back surface electrode 40, the metal plate may ensure a back bias. 21 may be in contact with substantially the entire surface. Further, the metal plate may be a die pad that has only a function of simply supporting the chip, and in that case, it may be provided only under the chip.

また、本発明の半導体装置は、MOSFETやショットキーダイオードが形成された半導体チップを搭載したものに限定されるものではなく,IGBT,JFET等を搭載した半導体装置であってもよい。その場合にも、放熱基板21と金属板23a〜23eとフィン状部材22とが存在していれば、金属板23a〜23eの上方に搭載される半導体チップ内の半導体素子の種類を問わず、熱応力に対する接続部の信頼性を維持しつつ、放熱機能の向上を図ることができる。   Further, the semiconductor device of the present invention is not limited to the one having a semiconductor chip on which a MOSFET or a Schottky diode is formed, and may be a semiconductor device having an IGBT, JFET or the like. Even in that case, as long as the heat dissipation substrate 21, the metal plates 23a to 23e, and the fin-like member 22 exist, regardless of the type of semiconductor element in the semiconductor chip mounted above the metal plates 23a to 23e, It is possible to improve the heat dissipation function while maintaining the reliability of the connection portion against thermal stress.

本発明の半導体装置は、MOSFET,IGBT,ダイオード,JFET等を搭載した各種機器に利用することができ、特に半導体モジュールの要素として利用することができる。   The semiconductor device of the present invention can be used for various devices equipped with MOSFETs, IGBTs, diodes, JFETs, etc., and in particular, can be used as an element of a semiconductor module.

実施の形態における半導体装置の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the semiconductor device in embodiment. 実施の形態における半導体チップの縦断面図である。It is a longitudinal cross-sectional view of the semiconductor chip in embodiment. 実施の形態における半導体装置の上面図である。It is a top view of a semiconductor device in an embodiment. 実施の形態における半導体装置を含むモジュールの電気回路図である。It is an electric circuit diagram of a module including a semiconductor device in an embodiment. 実施の形態の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of embodiment. 実施の形態の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of embodiment. 従来のIGBTチップを搭載した半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which mounts the conventional IGBT chip | tip.

符号の説明Explanation of symbols

A 半導体装置
1 縦型MOSFET
2 ショットキーダイオード
11a 半導体チップ
11b 半導体チップ
13a〜13c 電気配線
14 裏面電極
15 封止部材
16 上面電極
17 リボン部材
18 ゲートパッド
19 ボンディングワイヤ
21 放熱基板
22 フィン状部材
22a 基端部
22b 基端部
23a〜23e 金属板
24 裏面側メタライズ層
26 主面側メタライズ層
30 4H−SiC基板
31 n型エピタキシャル成長層
32 pウェル領域
33 n型ソース領域
35 pコンタクト領域
38 ゲート絶縁膜
40 裏面電極
41 ソース電極
42 ゲート電極
43 シリコン酸化膜
45 p型ガードリング領域
46 ショットキー電極
A Semiconductor device 1 Vertical MOSFET
2 Schottky diode 11a Semiconductor chip 11b Semiconductor chip 13a-13c Electrical wiring 14 Back surface electrode 15 Sealing member 16 Upper surface electrode 17 Ribbon member 18 Gate pad 19 Bonding wire 21 Heat radiation substrate 22 Fin-shaped member 22a Base end portion 22b Base end portion 23a -23e Metal plate 24 Back surface side metallization layer 26 Main surface side metallization layer 30 4H-SiC substrate 31 n type epitaxial growth layer 32 p well region 33 n type source region 35 p + contact region 38 gate insulating film 40 back surface electrode 41 source electrode 42 Gate electrode 43 Silicon oxide film 45 p-type guard ring region 46 Schottky electrode

Claims (11)

半導体素子が形成された半導体チップと、主面側に前記半導体チップを実装するための実装部材群とを備えた半導体装置であって、
前記実装部材群は、
無機絶縁性材料により構成されている放熱基板と、
前記放熱基板の主面側に搭載された金属板と、
前記放熱基板の裏面側に互いに離間して固定された複数のフィン状部材と
を有している、半導体装置。
A semiconductor device comprising a semiconductor chip on which a semiconductor element is formed, and a mounting member group for mounting the semiconductor chip on the main surface side,
The mounting member group includes:
A heat dissipation substrate made of an inorganic insulating material;
A metal plate mounted on the main surface side of the heat dissipation substrate;
A semiconductor device having a plurality of fin-like members spaced apart and fixed to the back side of the heat dissipation substrate.
請求項1記載の半導体装置において、
前記実装部材群は、前記放熱基板の主面に形成された主面側メタライズ層をさらに有しており、
前記金属板は、前記主面側メタライズ層にろう付けされている、半導体装置。
The semiconductor device according to claim 1,
The mounting member group further includes a main surface side metallization layer formed on the main surface of the heat dissipation substrate,
The semiconductor device, wherein the metal plate is brazed to the main surface side metallization layer.
請求項1または2記載の半導体装置において、
前記実装部材群は、前記放熱基板の裏面に形成された裏面側メタライズ層をさらに有しており、
前記フィン状部材は、前記裏面側メタライズ層にろう付けされている、半導体装置。
The semiconductor device according to claim 1 or 2,
The mounting member group further includes a back side metallized layer formed on the back side of the heat dissipation substrate,
The semiconductor device, wherein the fin-like member is brazed to the back metallization layer.
請求項1〜3のいずれかに記載の半導体装置において、
前記金属板は、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の金属材料により構成されている、半導体装置。
The semiconductor device according to claim 1,
The said metal plate is a semiconductor device comprised with the metal material whose thermal expansion coefficient is larger than 0 (ppm / K) and below 10 (ppm / K).
請求項1〜4のいずれかに記載の半導体装置において、
前記金属板は、Cu−MoまたはCu−Wにより構成されている、半導体装置。
In the semiconductor device according to claim 1,
The said metal plate is a semiconductor device comprised by Cu-Mo or Cu-W.
請求項1〜5のいずれかに記載の半導体装置において、
前記放熱基板は、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の無機絶縁性材料により構成されている、半導体装置。
In the semiconductor device according to claim 1,
The said heat dissipation board | substrate is a semiconductor device comprised with the inorganic insulating material whose thermal expansion coefficient is larger than 0 (ppm / K) and below 10 (ppm / K).
請求項1〜6のいずれかに記載の半導体装置において、
前記放熱基板は、AlN,窒化珪素,SiCおよびそれらのうち少なくとも1つを主成分とする複合材料から選ばれた材料により構成されている、半導体装置。
In the semiconductor device according to claim 1,
The semiconductor substrate is made of a material selected from AlN, silicon nitride, SiC, and a composite material containing at least one of them as a main component.
請求項1〜7のいずれかに記載の半導体装置において、
前記放熱基板と前記金属板との熱膨張係数差は、7(ppm/K)以下である、半導体装置。
In the semiconductor device according to claim 1,
The difference in thermal expansion coefficient between the heat dissipation substrate and the metal plate is 7 (ppm / K) or less.
請求項1〜8のいずれかに記載の半導体装置において、
前記フィン状部材は、熱膨張係数が0(ppm/K)よりも大で10(ppm/K)以下の金属材料により構成されている、半導体装置。
The semiconductor device according to claim 1,
The fin-like member is a semiconductor device made of a metal material having a thermal expansion coefficient larger than 0 (ppm / K) and not larger than 10 (ppm / K).
請求項1〜8のいずれかに記載の半導体装置において、
前記フィン状部材は、Cu,Cu合金,Cu−MoおよびCu−Wから選ばれた材料により構成されている、半導体装置。
The semiconductor device according to claim 1,
The said fin-shaped member is a semiconductor device comprised with the material chosen from Cu, Cu alloy, Cu-Mo, and Cu-W.
請求項1〜10のいずれかに記載の半導体装置において、
前記半導体素子は、ワイドバンドギャップ半導体を用いたパワーデバイスである、半導体装置。
The semiconductor device according to claim 1,
The semiconductor device is a power device using a wide band gap semiconductor.
JP2007086632A 2007-03-29 2007-03-29 Semiconductor device Pending JP2008244394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086632A JP2008244394A (en) 2007-03-29 2007-03-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086632A JP2008244394A (en) 2007-03-29 2007-03-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008244394A true JP2008244394A (en) 2008-10-09

Family

ID=39915313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086632A Pending JP2008244394A (en) 2007-03-29 2007-03-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008244394A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103418A (en) * 2008-10-27 2010-05-06 Furukawa-Sky Aluminum Corp Heatsink having louver, and assembling method therefor
WO2011021690A1 (en) * 2009-08-20 2011-02-24 日本電気株式会社 Semiconductor device having power supply-side metal reinforcing member and ground-side metal reinforcing member insulated from each other
JPWO2010055763A1 (en) * 2008-11-13 2012-04-12 住友電気工業株式会社 Element forming member, element manufacturing method, and element
US20120306086A1 (en) * 2011-06-01 2012-12-06 Sumitomo Electric Industries, Ltd. Semiconductor device and wiring substrate
JP2015088653A (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Semiconductor device
JP2016096344A (en) * 2009-11-02 2016-05-26 トランスフォーム インコーポレーテッド Package configuration for low EMI circuit
JP2017228811A (en) * 2017-10-10 2017-12-28 三菱電機株式会社 Semiconductor device
WO2023127525A1 (en) * 2021-12-28 2023-07-06 京セラ株式会社 Cooler and power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107166A (en) * 1994-10-06 1996-04-23 Mitsubishi Materials Corp Heat dissipating fin
JP2001298136A (en) * 2000-04-17 2001-10-26 Sumitomo Metal Electronics Devices Inc Heat sink and wiring board with the heat sink
JP2002269392A (en) * 2001-03-13 2002-09-20 Yoshiharu Azuma Purchase agent supporting server using internet
JP2006303100A (en) * 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107166A (en) * 1994-10-06 1996-04-23 Mitsubishi Materials Corp Heat dissipating fin
JP2001298136A (en) * 2000-04-17 2001-10-26 Sumitomo Metal Electronics Devices Inc Heat sink and wiring board with the heat sink
JP2002269392A (en) * 2001-03-13 2002-09-20 Yoshiharu Azuma Purchase agent supporting server using internet
JP2006303100A (en) * 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Semiconductor device and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103418A (en) * 2008-10-27 2010-05-06 Furukawa-Sky Aluminum Corp Heatsink having louver, and assembling method therefor
JPWO2010055763A1 (en) * 2008-11-13 2012-04-12 住友電気工業株式会社 Element forming member, element manufacturing method, and element
CN102473689B (en) * 2009-08-20 2014-09-17 日本电气株式会社 Semiconductor device having power supply-side metal reinforcing member and ground-side metal reinforcing member insulated from each other
CN102473689A (en) * 2009-08-20 2012-05-23 日本电气株式会社 Semiconductor device having power supply-side metal reinforcing member and ground-side metal reinforcing member insulated from each other
US8547705B2 (en) 2009-08-20 2013-10-01 Nec Corporation Semiconductor device having power supply-side and ground-side metal reinforcing members insulated from each other
WO2011021690A1 (en) * 2009-08-20 2011-02-24 日本電気株式会社 Semiconductor device having power supply-side metal reinforcing member and ground-side metal reinforcing member insulated from each other
JP2016096344A (en) * 2009-11-02 2016-05-26 トランスフォーム インコーポレーテッド Package configuration for low EMI circuit
US20120306086A1 (en) * 2011-06-01 2012-12-06 Sumitomo Electric Industries, Ltd. Semiconductor device and wiring substrate
WO2012165045A1 (en) * 2011-06-01 2012-12-06 住友電気工業株式会社 Semiconductor device and wiring substrate
JP2012253125A (en) * 2011-06-01 2012-12-20 Sumitomo Electric Ind Ltd Semiconductor device and wiring board
CN103534801A (en) * 2011-06-01 2014-01-22 住友电气工业株式会社 Semiconductor device and wiring substrate
JP2015088653A (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Semiconductor device
US9633918B2 (en) 2013-10-31 2017-04-25 Mitsubishi Electric Corporation Semiconductor device
JP2017228811A (en) * 2017-10-10 2017-12-28 三菱電機株式会社 Semiconductor device
WO2023127525A1 (en) * 2021-12-28 2023-07-06 京セラ株式会社 Cooler and power conversion device

Similar Documents

Publication Publication Date Title
US7671467B2 (en) Power semiconductor module
JP5692377B2 (en) Semiconductor unit and semiconductor device
US9099426B2 (en) Trench-assisted thermoelectric isothermalization of power switching chips
US6831351B2 (en) Semiconductor device with semiconductor chip formed by using wide gap semiconductor as base material
JP2008244394A (en) Semiconductor device
WO2015064232A1 (en) Semiconductor module
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP4803241B2 (en) Semiconductor module
JP5538653B2 (en) Heat sink and semiconductor device including the heat sink
JPWO2005024941A1 (en) Semiconductor device
JP2012175070A (en) Semiconductor package
JP2013197560A (en) Power semiconductor module
JP2021141220A (en) Semiconductor module
KR20190137086A (en) Circuit cooled on two sides
US7663220B2 (en) Semiconductor device module structure
JP2022065238A (en) Semiconductor device
JP7163583B2 (en) semiconductor equipment
JP7428019B2 (en) semiconductor module
JP5566354B2 (en) Power semiconductor switch and power conversion device
JP2009117701A (en) Power module
JP2007329164A (en) Semiconductor device
JP2007184366A (en) Semiconductor device
JP2007129150A (en) Semiconductor device
JP7261602B2 (en) Semiconductor device and power conversion device
JP4667723B2 (en) Power module substrate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121107