JP2008244172A - Divided substrate and manufacturing method thereof, and infrared detector - Google Patents

Divided substrate and manufacturing method thereof, and infrared detector Download PDF

Info

Publication number
JP2008244172A
JP2008244172A JP2007083021A JP2007083021A JP2008244172A JP 2008244172 A JP2008244172 A JP 2008244172A JP 2007083021 A JP2007083021 A JP 2007083021A JP 2007083021 A JP2007083021 A JP 2007083021A JP 2008244172 A JP2008244172 A JP 2008244172A
Authority
JP
Japan
Prior art keywords
substrate
metal sheet
resin
individual
dimensionally shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083021A
Other languages
Japanese (ja)
Other versions
JP4996302B2 (en
Inventor
Makoto Sato
信 佐藤
Yoshiharu Sanagawa
佳治 佐名川
Masaya Hirata
雅也 平田
Michihiko Ueda
充彦 植田
Sadayuki Sumi
貞幸 角
Hiroshi Harada
宏 原田
Naoyuki Nishikawa
尚之 西川
Tomohiro Uetsu
智宏 上津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007083021A priority Critical patent/JP4996302B2/en
Publication of JP2008244172A publication Critical patent/JP2008244172A/en
Application granted granted Critical
Publication of JP4996302B2 publication Critical patent/JP4996302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable high-density design, where a circuit component buried in a resin substrate is arranged near a three-dimensional shape section, and to prevent wrinkles from occurring in a metal layer. <P>SOLUTION: In a preforming process, a press mold 4 is used to form one portion of a metal sheet 69 becoming the foundation of the metal layer 68 in a shape corresponding to the three-dimensional shape section. In a lamination process, a resin substrate 67 and the metal sheet 69 preformed by a forming process are laminated onto a main substrate 66 to which the circuit component 8 is mounted to form a laminated substrate 60. In a press process, presswork is performed by allowing the press mold 4 to come into contact with a surface at the side of the metal sheet 69 of the laminated substrate 60, thus forming the three-dimensional shape section 6a at the forming section 4a, and burying the circuit component 8 in the resin substrate 67. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、個片基板の製造方法、個片基板、赤外線検出器に関するものである。   The present invention relates to an individual substrate manufacturing method, an individual substrate, and an infrared detector.

従来から、半導体素子等の実装部品が実装される個片基板6として、図8(c)に示すように一表面(図8(c)の上面)に樹脂基板(たとえば、エポキシ樹脂基板)67が積層された主基板66を有し、樹脂基板67における主基板66と反対側の一表面に金属層68(たとえば、回路パターン68aを構成する)が形成され当該一表面側に凹部からなる立体形状部6aが形成されたものが提供されている。図8(c)の個片基板6では、主基板66における樹脂基板67側の一表面に回路部品8が実装され、この回路部品8を樹脂基板67のうち主基板66の厚み方向において立体形状部6aと重ならない部分に埋設している。   Conventionally, as an individual substrate 6 on which mounting components such as semiconductor elements are mounted, a resin substrate (for example, an epoxy resin substrate) 67 on one surface (upper surface of FIG. 8C) as shown in FIG. 8C. Is a three-dimensional structure in which a metal layer 68 (for example, constituting a circuit pattern 68a) is formed on one surface of the resin substrate 67 opposite to the main substrate 66, and a concave portion is formed on the one surface side. The thing in which the shape part 6a was formed is provided. In the individual substrate 6 of FIG. 8C, the circuit component 8 is mounted on one surface of the main substrate 66 on the resin substrate 67 side, and the circuit component 8 is three-dimensionally formed in the thickness direction of the main substrate 66 of the resin substrate 67. It is embedded in the portion that does not overlap the portion 6a.

この種の個片基板6の製造方法としては、図8(a)に示す一表面側に回路部品8が実装された主基板66と樹脂基板67と金属層68の基礎となる金属シート(たとえば、銅箔)69とを積層した積層基板60を形成する積層工程と、図8(b)に示すように積層基板60(主基板66と樹脂基板67と金属シート69)を熱圧着成形するとともに前記立体形状部6aを成型するプレス工程とを有する製造方法が提案されている。回路部品8はプレス工程において樹脂基板67に埋設される。ここにおいて、プレス工程で用いられるプレス金型4は、積層基板60との当接部位に個片基板6の立体形状部6aに対応する形状の凸部からなる成型部4aを有し、この成型部4aによりプレス工程において積層基板60に立体形状部6aを成型する。この製造方法では、プレス工程において積層基板60の熱圧着成形と立体形状部6aの成型、さらに樹脂基板67への回路部品8の埋設とを同時に行うことができ、積層基板60の熱圧着成形と立体形状部6aの成型とをそれぞれ別工程で行う場合に比べて工数を少なくすることができる(たとえば特許文献1参照)。特許文献1に記載の発明では、プレス工程の後、金属層68(金属シート69)にエッチング処理を施すことにより回路パターン68aが形成される。ただし、回路パターン68aは個片基板6に形成された金属層68の用途の一例に過ぎず、たとえば金属層68を電磁シールドとして用いることも提案されている(たとえば特許文献2参照)。   As a method for manufacturing this kind of individual substrate 6, a metal sheet (for example, a base substrate 66, a resin substrate 67, and a metal layer 68 on which a circuit component 8 is mounted on one surface side shown in FIG. , A copper foil) 69 and a lamination process for forming the laminated substrate 60, and as shown in FIG. 8B, the laminated substrate 60 (the main substrate 66, the resin substrate 67, and the metal sheet 69) is thermocompression-molded. There has been proposed a manufacturing method including a pressing step for molding the three-dimensionally shaped portion 6a. The circuit component 8 is embedded in the resin substrate 67 in the pressing process. Here, the press die 4 used in the pressing step has a molding portion 4a formed of a convex portion having a shape corresponding to the three-dimensional shape portion 6a of the individual substrate 6 at a contact portion with the laminated substrate 60. The three-dimensionally shaped portion 6a is formed on the laminated substrate 60 in the pressing process by the portion 4a. In this manufacturing method, the thermocompression molding of the laminated substrate 60, the molding of the three-dimensionally shaped portion 6a, and the embedding of the circuit component 8 in the resin substrate 67 can be simultaneously performed in the pressing process. The number of man-hours can be reduced as compared with the case where the molding of the three-dimensional shape portion 6a is performed in separate steps (see, for example, Patent Document 1). In the invention described in Patent Document 1, the circuit pattern 68a is formed by performing an etching process on the metal layer 68 (metal sheet 69) after the pressing step. However, the circuit pattern 68a is merely an example of the use of the metal layer 68 formed on the individual substrate 6, and for example, it has been proposed to use the metal layer 68 as an electromagnetic shield (see, for example, Patent Document 2).

ところで、上述した個片基板6の製造方法では、1回のプレス工程で複数の個片基板6を同時に形成する(所謂、多数個取り)ことが一般的である。そのため、図9(a)に示すように積層基板60(主基板66と樹脂基板67と金属シート69)としては個片基板6を複数取ることが可能な大きさのものが用いられるとともに、プレス工程においては複数の成型部4aが配列されたプレス金型4が用いられ、1枚の積層基板60に対して複数の立体形状部6aが同時に成型される。そして、プレス工程の後の切出工程において積層基板60から個々の個片基板6が切り出される。   By the way, in the manufacturing method of the individual substrate 6 described above, it is general to form a plurality of individual substrates 6 at the same time in one press process (so-called multiple-cavity). For this reason, as shown in FIG. 9A, the laminated substrate 60 (the main substrate 66, the resin substrate 67, and the metal sheet 69) has a size that allows a plurality of individual substrates 6 to be taken, and is pressed. In the process, a press die 4 in which a plurality of molding parts 4 a are arranged is used, and a plurality of three-dimensionally shaped parts 6 a are molded simultaneously on one laminated substrate 60. And in the cutting process after a press process, the individual board | substrate 6 is cut out from the laminated substrate 60. FIG.

なお、上述の製造方法で製造される個片基板6の一例として、立体形状部6a側の一表面に実装部品が実装される実装領域を備え、立体形状部6aの少なくとも一部が実装領域に形成されるものでは、立体形状部6aによって実装部品と樹脂基板67との間に空隙が形成されるので、実装部品と樹脂基板67との間の熱絶縁を図ることができる。そこで、この個片基板6をたとえば赤外線を検出する赤外線検出器に用いる場合には、実装領域に実装される実装部品として赤外線の受光量の変化を電圧信号に変換して出力する焦電素子を用い、実装領域において焦電素子の検知部に対応する位置に熱絶縁用の凹部からなる立体形状部6aを形成することにより、焦電素子の感度向上を図ることが考えられる。
特開2007−59844号公報(第0027−0031段落、図6) 特開2007−59846号公報(第0012段落)
In addition, as an example of the individual substrate 6 manufactured by the above-described manufacturing method, a mounting region in which mounting components are mounted on one surface of the three-dimensional shape portion 6a is provided, and at least a part of the three-dimensional shape portion 6a is in the mounting region. In the formed structure, a gap is formed between the mounting component and the resin substrate 67 by the three-dimensionally shaped portion 6a, so that thermal insulation between the mounting component and the resin substrate 67 can be achieved. Therefore, when this single substrate 6 is used for, for example, an infrared detector that detects infrared rays, a pyroelectric element that converts a change in the amount of received infrared light into a voltage signal and outputs it as a mounting component mounted in the mounting region. It is conceivable to improve the sensitivity of the pyroelectric element by forming the three-dimensionally shaped portion 6a formed of a heat insulating recess at a position corresponding to the detection part of the pyroelectric element in the mounting region.
JP 2007-59844 (paragraph 0027-0031, FIG. 6) JP 2007-59846 A (paragraph 0012)

ところで、上述した個片基板6の製造方法では、プレス工程においてプレス金型4の成型部4aが金属シート69を引き伸ばしながら立体形状部6aを成型するので、金属シート69における成型部4aの先端面との当接部位に周囲の金属シート69が引っ張られることにより、図9(b)に示すように金属シート69の一部と成型部4aの表面との間に隙間が生じ、立体形状部6aが成型部4aの形状に倣わず立体形状部6aの開口面が成型部4aの基端部の断面に比べて大きくなってしまうことがある。その結果、樹脂基板67に埋設された回路部品8と立体形状部6aとが近接配置されていると、図9(c)のように回路部品8と立体形状部6aの金属層68とが接触してしまう可能性がある。そのため、樹脂基板67に埋設された回路部品8と立体形状部6aとが近接配置されるような高密度な設計はできない。また、金属シート69のうち成型部4aとの間に隙間を生じる部分にしわが発生し、たとえばプレス工程後に金属層68をパターニングすることで回路パターン68aを形成する場合に断線の原因となることもある。   By the way, in the manufacturing method of the individual substrate 6 described above, since the molding portion 4a of the press die 4 molds the three-dimensional shape portion 6a while stretching the metal sheet 69 in the pressing step, the front end surface of the molding portion 4a in the metal sheet 69 When the surrounding metal sheet 69 is pulled at the contact portion with the surface, a gap is created between a part of the metal sheet 69 and the surface of the molded part 4a as shown in FIG. However, it does not follow the shape of the molded part 4a, and the opening surface of the three-dimensionally shaped part 6a may become larger than the cross section of the base end part of the molded part 4a. As a result, when the circuit component 8 embedded in the resin substrate 67 and the three-dimensionally shaped portion 6a are arranged close to each other, the circuit component 8 and the metal layer 68 of the three-dimensionally shaped portion 6a contact each other as shown in FIG. There is a possibility that. Therefore, a high-density design in which the circuit component 8 embedded in the resin substrate 67 and the three-dimensionally shaped portion 6a are arranged close to each other is not possible. Further, a wrinkle is generated in a portion of the metal sheet 69 that creates a gap with the molding portion 4a, and may cause disconnection when the circuit pattern 68a is formed by patterning the metal layer 68 after the pressing process, for example. is there.

本発明は上記事由に鑑みて為されたものであって、樹脂基板に埋設された回路部品と立体形状部とが近接配置されるような高密度な設計が可能で且つ金属層にしわを生じない個片基板の製造方法、個片基板、高感度化および信頼性の向上を図れる赤外線検出器を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and it is possible to design a high density such that circuit components embedded in a resin substrate and a three-dimensionally shaped portion are arranged close to each other, and the metal layer is wrinkled. It is an object of the present invention to provide a method for manufacturing an individual substrate, an individual substrate, and an infrared detector capable of improving sensitivity and improving reliability.

請求項1の発明は、一表面に樹脂基板が積層された主基板を有し、樹脂基板における主基板と反対の一表面に金属層が形成され当該一表面側に凹部からなる立体形状部が形成されるとともに、主基板に実装された回路部品が樹脂基板のうち主基板の厚み方向において立体形状部と重ならない部分に埋設された個片基板の製造方法であって、回路部品が実装された主基板に樹脂基板および金属層の基礎となる金属シートを積層することで積層基板を形成する積層工程と、個片基板の立体形状部に対応する形状の凸部からなる成型部を具備するプレス金型を積層基板の金属シート側の表面に当接させてプレス加工を行うことにより、成型部で立体形状部を成型するとともに樹脂基板に回路部品を埋設するプレス工程とを有し、積層工程より前に、金属シートの一部を立体形状部に対応する形状に成型するプレフォーミング工程を有することを特徴とする。   The invention of claim 1 has a main substrate in which a resin substrate is laminated on one surface, a metal layer is formed on one surface opposite to the main substrate in the resin substrate, and a three-dimensionally shaped portion including a concave portion on the one surface side. A method of manufacturing an individual substrate in which a circuit component mounted on a main substrate is embedded in a portion of the resin substrate that does not overlap with the three-dimensionally shaped portion in the thickness direction of the main substrate. A lamination step of forming a laminated substrate by laminating a resin substrate and a metal sheet serving as a basis for the metal layer on the main substrate, and a molding portion including a convex portion having a shape corresponding to the three-dimensional shape portion of the individual substrate The pressing mold is brought into contact with the surface of the laminated substrate on the metal sheet side to perform press processing, thereby forming a three-dimensional shape portion at a molding portion and embedding a circuit component in a resin substrate, and laminating Before the process, It characterized by having a pre-forming step of molding a portion of the genera sheet in a shape corresponding to the three-dimensional shape portion.

この発明によれば、積層工程より前に、金属シートの一部を立体形状部に対応する形状に成型するプレフォーミング工程を有するので、プレス工程において金属シートにおける成型部の先端面との当接部位に周囲の金属シートが引っ張られることはなく、金属シートの一部と成型部の表面との間に隙間が生じて立体形状部の開口面が成型部の基端部の断面に比べて大きくなってしまうことはない。したがって、成型部の形状に倣った立体形状部を成型することができ、立体形状部に近接する回路部品と立体形状部の金属層との接触を回避することができるので、樹脂基板に埋設された回路部品と立体形状部とが近接配置されるような高密度な設計が可能となる。また、金属シートと成型部との間に隙間が生じないので、金属層にしわを生じることもない。   According to the present invention, since there is a pre-forming step for forming a part of the metal sheet into a shape corresponding to the three-dimensional shape portion before the laminating step, contact with the tip surface of the forming portion in the metal sheet in the pressing step The surrounding metal sheet is not pulled at the site, and a gap is created between a part of the metal sheet and the surface of the molded part, and the opening surface of the three-dimensionally shaped part is larger than the cross section of the base end part of the molded part It will never be. Therefore, it is possible to mold a three-dimensional shape portion that follows the shape of the molding portion, and it is possible to avoid contact between the circuit component adjacent to the three-dimensional shape portion and the metal layer of the three-dimensional shape portion. Thus, a high-density design is possible in which the circuit components and the three-dimensionally shaped portion are arranged close to each other. Further, since no gap is generated between the metal sheet and the molded part, the metal layer is not wrinkled.

請求項2の発明は、請求項1の発明において、前記プレフォーミング工程において前記プレス工程と共通の前記プレス金型を使用し、前記プレフォーミング工程の後に前記金属シートを前記プレス金型から外すことなく前記プレス工程を行うことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the pre-forming step uses the same press die as the press step, and the metal sheet is removed from the press die after the pre-forming step. And performing the pressing step.

この発明によれば、プレフォーミング工程からプレス工程にかけて金属シートをプレス金型から外すことによる金属シートのスプリングバックが生じないので、プレフォーミング工程において成型された金属シートの形状を維持したままプレス工程を行うことができ、結果的に、プレス工程において成型される立体形状部の精度が向上し、立体形状部に近接する回路部品と立体形状部の金属層との接触を確実に回避することができる。   According to the present invention, since the metal sheet is not spring-backed by removing the metal sheet from the press mold from the pre-forming process to the pressing process, the pressing process while maintaining the shape of the metal sheet molded in the pre-forming process. As a result, the accuracy of the three-dimensional shape portion molded in the pressing process is improved, and it is possible to reliably avoid contact between the circuit component adjacent to the three-dimensional shape portion and the metal layer of the three-dimensional shape portion. it can.

請求項3の発明は、請求項1または請求項2の発明において、前記プレフォーミング工程より前に、前記金属シートを焼なますことで軟化させる焼鈍工程を有することを特徴とする。   The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, it has an annealing step of softening the metal sheet by annealing before the preforming step.

この発明によれば、プレフォーミング工程の前に金属シートが軟化するので、プレフォーミング工程において金属シートが伸びやすくなり、金属シートの一部を引き伸ばしながら立体形状部に対応する形状に成型する際に金属シートが破れにくくなる。   According to the present invention, since the metal sheet is softened before the pre-forming step, the metal sheet is easily stretched in the pre-forming step, and when forming into a shape corresponding to the three-dimensional shape portion while stretching a part of the metal sheet. The metal sheet is difficult to tear.

請求項4の発明は、請求項1ないし請求項3のいずれかの発明において、前記プレス金型は、前記成型部のうち前記プレス工程において前記積層基板に最初に当接する先端面と当該先端面に隣接する側面との間の角部がアール形状に形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the press die includes a front end surface that first contacts the laminated substrate in the pressing step in the molding portion and the front end surface. The corner between the side surfaces adjacent to each other is formed in a round shape.

この発明によれば、成型部のうち積層基板に最初に当接する先端面と当該先端面に隣接する側面との間の角部が尖っている場合に比べて、積層基板において前記角部が当接する部位に応力集中が発生しにくくなるので、プレス工程時に金属シートが破れにくくなる。   According to the present invention, compared to the case where the corner portion between the tip surface of the molded portion that first contacts the laminated substrate and the side surface adjacent to the tip surface is sharp, the corner portion in the multilayer substrate is abutted. Since stress concentration is less likely to occur at the contact area, the metal sheet is less likely to be broken during the pressing process.

請求項5の発明は、請求項1ないし請求項4のいずれか1項に記載の個片基板の製造方法によって製造された個片基板であって、前記立体形状部側の一表面に実装部品が実装される実装領域を備え、前記立体形状部は、少なくとも一部が実装領域に形成されることにより実装部品と前記樹脂基板との間に熱絶縁用の空隙を形成する凹部からなることを特徴とする。   The invention of claim 5 is an individual substrate manufactured by the method for manufacturing an individual substrate according to any one of claims 1 to 4, wherein the component is mounted on one surface of the three-dimensionally shaped portion side. The three-dimensionally shaped portion is formed of a recess that forms a thermal insulation gap between the mounting component and the resin substrate by forming at least a part in the mounting region. Features.

この発明によれば、立体形状部に近接する回路部品と立体形状部の金属層との接触を回避することができるので、立体形状部によって実装部品と樹脂基板との間の熱絶縁をとりながらも、回路部品と立体形状部とが近接配置されるような高密度な設計が可能となる。   According to the present invention, contact between the circuit component adjacent to the three-dimensional shape portion and the metal layer of the three-dimensional shape portion can be avoided, so that heat insulation between the mounting component and the resin substrate is taken by the three-dimensional shape portion. In addition, a high-density design is possible in which the circuit component and the three-dimensionally shaped portion are arranged close to each other.

請求項6の発明は、請求項5記載の個片基板と、前記実装部品として前記実装領域に実装される焦電素子とを備え、前記立体形状部は、前記実装領域において焦電素子の検知部に対応する位置に形成されていることを特徴とする。   A sixth aspect of the invention includes the individual substrate according to the fifth aspect of the invention and a pyroelectric element mounted on the mounting area as the mounting component, and the three-dimensional shape portion detects the pyroelectric element in the mounting area. It is formed in the position corresponding to a part.

この発明によれば、焦電素子の検知部と樹脂基板との間の熱絶縁をとることができるので、焦電素子の感度が高くなる。しかも、立体形状部に近接する回路部品と立体形状部の金属層との接触を回避できるので、たとえば金属層をパターニングして回路パターンを形成する場合に、回路パターンと回路部品との短絡を防止でき、信頼性の向上を図れる。   According to this invention, since the thermal insulation between the detection part of the pyroelectric element and the resin substrate can be taken, the sensitivity of the pyroelectric element is increased. In addition, since contact between the circuit component adjacent to the three-dimensional shape portion and the metal layer of the three-dimensional shape portion can be avoided, for example, when a circuit pattern is formed by patterning the metal layer, a short circuit between the circuit pattern and the circuit component is prevented. And improve the reliability.

請求項1の発明は、積層工程より前に、金属シートの一部を立体形状部に対応する形状に成型するプレフォーミング工程を有するので、樹脂基板に埋設された回路部品と立体形状部とが近接配置されるような高密度な設計が可能で且つ金属層にしわを生じないという効果がある。   Since the invention of claim 1 has a preforming step of molding a part of the metal sheet into a shape corresponding to the three-dimensional shape portion before the laminating step, the circuit component embedded in the resin substrate and the three-dimensional shape portion are provided. A high density design is possible such that the metal layers are arranged close to each other, and there is an effect that the metal layer is not wrinkled.

請求項6の発明は、焦電素子の感度向上および信頼性の向上を図れるという効果がある。   The invention of claim 6 has the effect of improving the sensitivity and reliability of the pyroelectric element.

以下の各実施形態では、赤外線を検出する赤外線検出器に用いる個片基板の製造方法を例示するが、本発明の個片基板の製造方法は、赤外線検出器に用いる個片基板に限らず、一表面に樹脂基板が積層された主基板を有し、樹脂基板における主基板と反対の一表面に金属層が形成され当該一表面側に凹部からなる立体形状部が形成されるとともに、主基板に実装された回路部品が樹脂基板のうち主基板の厚み方向において立体形状部と重ならない部分に埋設された構成の様々な個片基板の製造方法として用いることができる。   In each of the following embodiments, a method for manufacturing an individual substrate used for an infrared detector that detects infrared rays is illustrated, but the method for manufacturing an individual substrate of the present invention is not limited to an individual substrate used for an infrared detector, A main substrate having a resin substrate laminated on one surface, a metal layer is formed on one surface of the resin substrate opposite to the main substrate, and a three-dimensionally shaped portion including a recess is formed on the one surface side. Can be used as a method for manufacturing various individual substrates having a structure in which the circuit component mounted on the resin substrate is embedded in a portion of the resin substrate that does not overlap with the three-dimensionally shaped portion in the thickness direction of the main substrate.

(実施形態1)
以下、本実施形態で例示する赤外線検出器の構成について図2および図3を参照して説明する。
(Embodiment 1)
Hereinafter, the configuration of the infrared detector exemplified in this embodiment will be described with reference to FIGS.

本実施形態の赤外線検出器は、赤外線の受光量の変化を電圧信号として出力する焦電素子1を個片基板6に実装した回路ブロック10と、回路ブロック10を収納するパッケージ2とを備えている。回路ブロック10には、少なくとも焦電素子1の出力を信号処理する信号処理回路が形成されている。   The infrared detector according to the present embodiment includes a circuit block 10 on which a pyroelectric element 1 that outputs a change in the amount of received infrared light as a voltage signal is mounted on an individual substrate 6, and a package 2 that houses the circuit block 10. Yes. The circuit block 10 is formed with a signal processing circuit that processes at least the output of the pyroelectric element 1.

パッケージ2は、金属製であって円盤状に形成されたステム21と、金属製であって後面が開放された有底円筒状に形成されたキャップ22とを有し、キャップ22の後面をステム21で閉塞する形に組み立てられる。ステム21には絶縁材料からなるスペーサ7を介して回路ブロック10が実装され、キャップ22は、ステム21との間に回路ブロック10を収納する空間を形成するようにステム21に固着される。ここで、ステム21には回路ブロック10と電気的に接続される複数本(ここでは3本)の端子ピン25が挿通されており、パッケージ2の外部空間から回路ブロック10に対する電気的接続を可能としてある。なお、スペーサ7と回路ブロック10とステム21とは接着剤により固着される。   The package 2 has a stem 21 made of a metal and formed in a disc shape, and a cap 22 made of a metal and formed in a bottomed cylindrical shape with an open rear surface. The rear surface of the cap 22 is a stem. 21 is assembled into a closed shape. The circuit block 10 is mounted on the stem 21 via a spacer 7 made of an insulating material, and the cap 22 is fixed to the stem 21 so as to form a space for housing the circuit block 10 between the stem 21. Here, a plurality (three in this case) of terminal pins 25 that are electrically connected to the circuit block 10 are inserted into the stem 21 so that electrical connection to the circuit block 10 can be made from the external space of the package 2. It is as. The spacer 7, the circuit block 10, and the stem 21 are fixed by an adhesive.

キャップ22のうち焦電素子1の前方に位置する前壁には、矩形状(ここでは正方形状)の窓部2aが形成されており、焦電素子1の受光面(前面)に赤外線を集光する赤外線レンズ3が、キャップ22の内側に窓部2aを覆う形で配設されている。ステム21は、上述の各端子ピン25それぞれが挿通される複数の端子用孔21bが厚み方向に貫設されており、各端子ピン25が端子用孔21bに挿通された状態で封止部24により封止される。本実施形態ではキャップ22およびステム21は鋼板から形成されており、ステム21の周部に形成されたフランジ部21cに対して、キャップ22の後端縁から外方に延設された鍔部22cを溶接により封着してある。   A rectangular (here, square) window portion 2 a is formed on the front wall of the cap 22 located in front of the pyroelectric element 1, and infrared rays are collected on the light receiving surface (front surface) of the pyroelectric element 1. An infrared lens 3 that emits light is disposed inside the cap 22 so as to cover the window portion 2a. The stem 21 has a plurality of terminal holes 21b through which the terminal pins 25 are inserted in the thickness direction, and the sealing portion 24 in a state where the terminal pins 25 are inserted into the terminal holes 21b. Is sealed. In the present embodiment, the cap 22 and the stem 21 are made of steel plates, and the flange portion 22c that extends outward from the rear end edge of the cap 22 with respect to the flange portion 21c formed on the peripheral portion of the stem 21. Is sealed by welding.

ところで、回路ブロック10の個片基板6は、ガラスエポキシなどからなり信号処理回路等の構成要素であるIC63やチップ状電子部品64が実装される回路基板62と、ガラスエポキシなどからなり回路基板62と共に信号処理回路等の回路を形成する主基板66と、回路基板62および主基板66の間に積層された樹脂層65と、主基板66における樹脂層65と反対側の一表面に積層される樹脂基板67と、樹脂基板67における主基板66と反対側の一表面に積層される金属層68とで構成されており、回路基板62、樹脂層65および樹脂基板67、金属層68は、後述する個片基板6の製造方法を用いて主基板66に一体的に積層されるように形成される。ここにおいて、回路基板62および主基板66はチップ状電子部品64が実装された状態で樹脂層65を挟んで成型されることにより、チップ状電子部品64を樹脂層65に埋設した状態で樹脂層65と共に所謂部品内蔵基板からなる多層回路板を構成する。つまり、本実施形態の個片基板6は、樹脂基板67および金属層68を多層回路板に積層することにより構成されている。   By the way, the individual substrate 6 of the circuit block 10 is made of glass epoxy or the like, and a circuit board 62 on which an IC 63 or a chip-like electronic component 64 which is a component such as a signal processing circuit is mounted, and a circuit board 62 made of glass epoxy or the like. In addition, a main substrate 66 that forms a circuit such as a signal processing circuit, a resin layer 65 laminated between the circuit substrate 62 and the main substrate 66, and one surface of the main substrate 66 opposite to the resin layer 65 are laminated. A resin substrate 67 and a metal layer 68 laminated on one surface of the resin substrate 67 opposite to the main substrate 66 are configured. The circuit board 62, the resin layer 65, the resin substrate 67, and the metal layer 68 are described later. The individual substrate 6 is formed so as to be integrally laminated on the main substrate 66 by using the manufacturing method of the individual substrate 6. Here, the circuit board 62 and the main board 66 are molded with the resin layer 65 sandwiched between the chip-like electronic components 64 mounted thereon, so that the resin layer 65 is embedded in the resin layer 65. A multilayer circuit board composed of a so-called component-embedded substrate is formed together with 65. That is, the individual substrate 6 of this embodiment is configured by laminating the resin substrate 67 and the metal layer 68 on the multilayer circuit board.

なお、回路基板62は、図3における下面側にIC63がフリップチップ実装され(または、図示しないがIC63をダイボンディング後、ワイヤボンディングにて接続し樹脂封止してもよい)、上面側に複数のチップ状電子部品64が半田リフローにより実装されている。なお、本実施形態の赤外線検出器は、人体から放射される赤外線を検出することで人の動きを検知する用途に用いるものであり、IC63は、焦電素子1の所定周波数帯域(たとえば、0.1〜10Hz程度)の出力を増幅する増幅回路(バンドパスアンプ)や増幅回路の後段のウインドウコンパレータなどが集積化されている。   In the circuit board 62, the IC 63 is flip-chip mounted on the lower surface side in FIG. 3 (or, although not shown, the IC 63 may be connected by wire bonding after die bonding and resin-sealed), and plural on the upper surface side. The chip-shaped electronic component 64 is mounted by solder reflow. The infrared detector of the present embodiment is used for detecting the movement of a person by detecting infrared rays radiated from the human body. The IC 63 is a predetermined frequency band (for example, 0) of the pyroelectric element 1. An amplifier circuit (bandpass amplifier) that amplifies the output of .about 1 to 10 Hz, a window comparator at the subsequent stage of the amplifier circuit, and the like are integrated.

焦電素子1は、個片基板6のうち樹脂基板67において金属層68が積層された上記一表面の実装領域67aに実装されるものであって、個片基板6の実装領域67aのうち焦電素子1の検知部に対応する部位には、焦電素子1の検知部と樹脂基板67との間に熱絶縁用の空隙を形成する形の凹部からなる立体形状部6aが形成されている。この立体形状部6aを設けたことにより、焦電素子1の検知部と樹脂基板67との間の熱絶縁をとることができ、焦電素子1の感度が高くなる。ここでは、立体形状部6a(凹部)は平面視が長円状に形成されており、個片基板6の上記一表面における立体形状部6aの短径方向の両側は焦電素子1の両端部を支持する支持部として機能する。この支持部には、焦電素子1の両端部に形成されている電極(図示せず)を接続するパッド68bが形成されている。   The pyroelectric element 1 is mounted on the mounting area 67 a on the one surface where the metal layer 68 is laminated on the resin substrate 67 of the individual substrate 6, and the pyroelectric element 1 is focused on the mounting area 67 a of the individual substrate 6. In a portion corresponding to the detection portion of the electric element 1, a three-dimensional shape portion 6 a is formed that includes a concave portion that forms a gap for thermal insulation between the detection portion of the pyroelectric element 1 and the resin substrate 67. . By providing the three-dimensionally shaped portion 6a, thermal insulation between the detecting portion of the pyroelectric element 1 and the resin substrate 67 can be taken, and the sensitivity of the pyroelectric element 1 is increased. Here, the three-dimensionally shaped portion 6 a (concave portion) is formed in an oval shape in plan view, and both sides of the three-dimensionally shaped portion 6 a on the one surface of the individual substrate 6 in the short diameter direction are both end portions of the pyroelectric element 1. It functions as a support part that supports Pads 68b for connecting electrodes (not shown) formed at both ends of the pyroelectric element 1 are formed on the support portion.

さらに、主基板66における樹脂基板67側の一表面には回路部品8(図1参照)が実装されており、この回路部品8は樹脂基板67のうち主基板66の厚み方向において立体形状部6aと重ならない部分に埋設される。図2,3では回路部品8の図示を省略する。   Further, the circuit component 8 (see FIG. 1) is mounted on one surface of the main substrate 66 on the resin substrate 67 side, and the circuit component 8 is a three-dimensionally shaped portion 6a in the thickness direction of the main substrate 66 of the resin substrate 67. It is buried in the part that does not overlap. 2 and 3, the circuit component 8 is not shown.

回路ブロック10は、回路基板62、樹脂層65、主基板66、樹脂基板67のそれぞれに、上述の端子ピン25が挿通されるスルーホール62b,65b,66b,67bが厚み方向に貫設されており、焦電素子1と信号処理回路とが端子ピン25を介して電気的に接続されるようになっている。なお、本実施形態では、回路基板62、樹脂層65、主基板66、樹脂基板67を積層し、これらの厚み方向に貫通する貫通孔を形成する1回の孔あけ加工でスルーホール62b,65b,66b,67bを形成しており、これにより各スルーホール62b,65b,66b,67bを個別に形成する場合に比べて製造工程の簡略化を図れ、回路ブロック10内の電気的接続が容易に行える。   In the circuit block 10, through holes 62 b, 65 b, 66 b, 67 b through which the terminal pins 25 are inserted are provided through the circuit board 62, the resin layer 65, the main board 66, and the resin board 67 in the thickness direction. The pyroelectric element 1 and the signal processing circuit are electrically connected through the terminal pin 25. In this embodiment, the circuit board 62, the resin layer 65, the main board 66, and the resin board 67 are stacked, and through holes 62b and 65b are formed by a single drilling process that forms a through hole penetrating in the thickness direction. , 66b, 67b are formed so that the manufacturing process can be simplified and electrical connection within the circuit block 10 can be facilitated as compared with the case where the through holes 62b, 65b, 66b, 67b are individually formed. Yes.

樹脂基板67の上記一表面に形成された金属層68は、上述したパッド68bを構成するとともに、パッド68bに電気的に接続されたパターン部68cを構成している。以下では、樹脂基板67の上記一表面に金属層68から形成されたパッド68bやパターン部68cを回路パターン68aと称する。   The metal layer 68 formed on the one surface of the resin substrate 67 constitutes the above-described pad 68b and the pattern portion 68c electrically connected to the pad 68b. Hereinafter, the pads 68b and the pattern portions 68c formed from the metal layer 68 on the one surface of the resin substrate 67 are referred to as circuit patterns 68a.

上述の3本の端子ピン25は、1本が給電用の端子ピン25(25a)、他の1本が信号出力用の端子ピン25(25b)、残りの1本がグランド用の端子ピン25(25c)である。ここで、端子ピン25a,25bを封止する封止部24,24(24a,24b)は、絶縁性を有する封着用のガラスにより形成されており、端子ピン25cを封着する封止部24(24c)は、金属材料により形成されている。要するに、端子ピン25a,25bにおいては金属製のステム21と電気的に絶縁されているのに対し、グランド用の端子ピン25cにおいてはステム21と同電位に設定されている。   Of the above-described three terminal pins 25, one is a power supply terminal pin 25 (25a), the other one is a signal output terminal pin 25 (25b), and the other one is a ground terminal pin 25. (25c). Here, the sealing portions 24 and 24 (24a and 24b) for sealing the terminal pins 25a and 25b are formed of insulating sealing glass, and the sealing portion 24 for sealing the terminal pins 25c. (24c) is formed of a metal material. In short, the terminal pins 25a and 25b are electrically insulated from the metal stem 21, whereas the ground terminal pin 25c is set to the same potential as the stem 21.

上述した構成の赤外線検出器を組み立てる際には、回路ブロック10をステム21にスペーサ7を介して実装した後に、赤外線レンズ3が固着されたキャップ22の鍔部22cとステム21のフランジ部21cとを溶接することにより、密封された金属製のパッケージ2内に回路ブロック10を収納すればよい。なお、パッケージ2は所謂CANパッケージであり、外来ノイズに対するシールド効果を高めるとともに、気密性の向上による耐候性の向上を図ることができる。また、個片基板6に実装される実装部品は、上述した焦電素子1に限るものではなく、たとえばサーミスタ型の赤外線検出素子、サーモパイル型の赤外線検出素子、抵抗ボロメータ型の赤外線検出素子などのように、赤外線受光量の変化を電気信号変化に変換できるものであればよい。   When assembling the infrared detector having the above-described configuration, after mounting the circuit block 10 on the stem 21 via the spacer 7, the flange portion 22c of the cap 22 and the flange portion 21c of the stem 21 to which the infrared lens 3 is fixed. The circuit block 10 may be housed in the sealed metal package 2 by welding. The package 2 is a so-called CAN package, which can enhance the shielding effect against external noise and improve the weather resistance by improving the airtightness. Further, the mounting components mounted on the individual substrate 6 are not limited to the pyroelectric element 1 described above. For example, thermistor type infrared detection element, thermopile type infrared detection element, resistance bolometer type infrared detection element, etc. As long as the change in the amount of received infrared light can be converted into a change in the electrical signal, it is sufficient.

次に、上述した赤外線検出器で用いる個片基板6の製造方法について図1を参照して説明する。ここでは、生産性を向上させるために従来例と同様に1回のプレス工程で複数の個片基板6を同時に形成する(所謂、多数個取り)方法を採用している。なお、図1では、回路基板62および樹脂層65の図示を省略している。   Next, a method for manufacturing the individual substrate 6 used in the above-described infrared detector will be described with reference to FIG. Here, in order to improve productivity, a method of simultaneously forming a plurality of individual substrates 6 in a single pressing step (so-called multi-cavity) is adopted as in the conventional example. In FIG. 1, the circuit board 62 and the resin layer 65 are not shown.

まず、回路基板62にチップ状電子部品64を実装するとともに主基板66に回路部品8を実装して信号処理回路等の回路を形成する。また、図1(a)に示すようにプレス金型4を用いて、上述の金属層68の基礎となる金属シート69(たとえば、厚みが18μm程度の銅箔)の一部を立体形状部6aに対応する形状に成型する(以下、プレフォーミング工程と称する)。プレフォーミング工程にて用いるプレス金型4は、図1(a)に示すように金属シート69の表面との当接部位に、個片基板6の立体形状部6a(ここでは、熱絶縁用の凹部)に対応する形状(ここでは、平面視が長円状)の凸部からなる成型部4aを有し、この成型部4aにより立体形状部6aに対応する形状を金属シート69の一部に成型する。ここにおいて、プレス金型4は、成型部4aに対応する凹部からなる雌側成型部4a’を有する雌型4’と共に用いられ、プレス金型4における成型部4aの形成された面(以下、成型面4bと称する)と、雌型4’における雌側成型部4a’が形成された面(以下、雌側成形面4b’と称する)との間に、図1(b)のように金属シート69を挟み込むことにより金属シート69を成型する。つまり、プレフォーミング工程においては、金属シート69が雌型4’の雌側成型面4b’とプレス金型4の成形面4bとの間に配置され、この状態でプレス加工が行われることにより、図1(c)に示すように金属シート69の一部が立体形状部6aに対応した形状に成型される。本実施形態では、1回のプレス工程で複数の個片基板6を同時に形成するために、金属シート69として個片基板6を複数取ることができる大きさのものが用いられるとともに、上記成型面4bに同形状の複数の成型部4aが配列されたプレス金型4、上記雌側成型面4b’に同形状の複数の雌側成型部4a’が配列された雌型4’が用いられる。ここでは、一例として複数の成型部4aが格子点状に形成されることで成型面4bに等間隔で成型部4aが整列されたプレス金型4を使用する。   First, the chip-like electronic component 64 is mounted on the circuit board 62 and the circuit component 8 is mounted on the main board 66 to form a circuit such as a signal processing circuit. Further, as shown in FIG. 1 (a), by using a press die 4, a part of a metal sheet 69 (for example, a copper foil having a thickness of about 18 μm) as a basis of the above-described metal layer 68 is transferred to the three-dimensionally shaped portion 6a. (Hereinafter referred to as a pre-forming step). As shown in FIG. 1A, the press die 4 used in the pre-forming process has a three-dimensional shape portion 6a (here, for heat insulation) of the individual substrate 6 at a contact portion with the surface of the metal sheet 69. A molded portion 4a formed of a convex portion having a shape corresponding to the concave portion (here, the plan view is an oval shape), and the shape corresponding to the three-dimensional shape portion 6a is formed into a part of the metal sheet 69 by the molded portion 4a. Mold. Here, the press die 4 is used together with a female die 4 ′ having a female side molding portion 4a ′ composed of a recess corresponding to the molding portion 4a, and the surface of the press die 4 on which the molding portion 4a is formed (hereinafter referred to as “the molding die 4a”). (Referred to as molding surface 4b) and a surface (hereinafter referred to as female side molding surface 4b ') in which female side molding part 4a' is formed in female die 4 'as shown in FIG. The metal sheet 69 is molded by sandwiching the sheet 69. That is, in the preforming process, the metal sheet 69 is disposed between the female side molding surface 4b ′ of the female die 4 ′ and the molding surface 4b of the press die 4, and press working is performed in this state. As shown in FIG.1 (c), a part of metal sheet 69 is shape | molded by the shape corresponding to the solid-shaped part 6a. In the present embodiment, in order to simultaneously form a plurality of individual substrates 6 in a single pressing step, a metal sheet 69 having a size capable of taking a plurality of individual substrates 6 is used, and the molding surface A press die 4 in which a plurality of molding parts 4a having the same shape are arranged on 4b and a female mold 4 'in which a plurality of female side molding parts 4a' having the same shape are arranged on the female side molding surface 4b 'are used. Here, as an example, a press die 4 is used in which a plurality of molding portions 4a are formed in a lattice point shape so that the molding portions 4a are aligned at equal intervals on the molding surface 4b.

その後、回路基板62と樹脂層65と主基板66とを積層し、さらに樹脂基板67を主基板66の表面に積層し、上述のプレフォーミング工程で予め成型された金属シート69を樹脂基板67の表面に積層することで、図1(d)に示す位置関係となるように回路基板62と樹脂層65と主基板66と樹脂基板67と金属シート69とを積層した積層基板60を形成する(以下、積層工程と称する)。ここで、積層基板60としては個片基板6を複数取ることができる大きさのものが用いられる。なお、本実施形態では矩形板状の積層基板60を形成している。また、本実施形態では、比較的高い伸び率と引っ張り強度をもち常温では強靭性があって破れにくいBステージ状態の樹脂シートを重ねたものをそれぞれ樹脂層65および樹脂基板67として用いている。樹脂シートとしては、たとえば厚みが10〜1000μm程度で、エポキシ樹脂等の熱硬化性樹脂にシリカ等の無機フィラーを高充填(たとえば60〜95wt%程度)したエポキシ樹脂シートのような有機グリーンシートを用いることができる。要するに、回路基板62と主基板66との間に樹脂シートを複数枚(たとえば13枚)重ねて積層することにより樹脂層65を形成し、主基板66に樹脂シートを複数枚(たとえば3枚)重ねて積層することにより樹脂基板67を形成する。   Thereafter, the circuit board 62, the resin layer 65, and the main board 66 are laminated, the resin board 67 is further laminated on the surface of the main board 66, and the metal sheet 69 pre-formed in the above-described preforming process is attached to the resin board 67. By laminating on the surface, a laminated substrate 60 in which the circuit board 62, the resin layer 65, the main substrate 66, the resin substrate 67, and the metal sheet 69 are laminated so as to have the positional relationship shown in FIG. Hereinafter, it is referred to as a lamination process). Here, as the laminated substrate 60, a substrate having a size capable of obtaining a plurality of individual substrates 6 is used. In the present embodiment, a rectangular plate-shaped laminated substrate 60 is formed. Further, in the present embodiment, the resin layer 65 and the resin substrate 67 are formed by stacking B-stage resin sheets that have a relatively high elongation rate and tensile strength and are tough at room temperature and are not easily torn. The resin sheet is, for example, an organic green sheet such as an epoxy resin sheet having a thickness of about 10 to 1000 μm and a thermosetting resin such as an epoxy resin highly filled with an inorganic filler such as silica (for example, about 60 to 95 wt%). Can be used. In short, a plurality of resin sheets (for example, 13 sheets) are stacked between the circuit board 62 and the main board 66 to form a resin layer 65, and a plurality of resin sheets (for example, three sheets) are formed on the main board 66. A resin substrate 67 is formed by overlapping the layers.

そして、積層工程で形成された積層基板60上にプレス金型4を配置した状態で、樹脂シートを軟化させて真空雰囲気中でプレス金型4に圧力をかけることにより積層基板60の熱圧着成形を行い、さらに所定の温度で樹脂シートをCステージ状態まで硬化させる(以下、プレス工程と称する)。プレス工程にて用いるプレス金型4は、プレフォーミング工程で用いるプレス金型4(雄型)と共通であって、図1(d)に示すように成型部4aにより積層基板60に立体形状部6aを成型する。つまり、プレス工程においては、プレス金型4が成型部4aの形成された成型面4bを積層基板60の金属シート69側の表面に突き合わせるように積層基板60上に配置され、この状態でプレス加工が行われることで、積層基板60には成型部4aにより立体形状部6aが成型される。さらに、プレス工程においては積層基板60の熱圧着成形(つまり、回路基板62、樹脂層65、主基板66、樹脂基板67、金属層68の一体化)が行われるので、このとき、主基板66に実装されている回路部品8が樹脂基板67に埋設される。その結果、図1(e)に示すようにプレス工程において積層基板60の熱圧着成形と立体形状部6aの成型と、さらに樹脂基板67への回路部品8の埋設とを同時に行うことができ、工数を比較的少なくすることができる。ここにおいて、回路基板62と主基板66とプレス金型4とは、それぞれの四隅に形成された透孔(図示せず)にピン(図示せず)が挿通されることによって主基板66の厚み方向に直交する面内で位置合わせされた状態でプレス加工される。回路部品8は樹脂基板67のうち主基板66の厚み方向において立体形状部6aと重ならない部分に埋設される。また、上述の熱圧着成形の条件は適宜設定可能であるが、たとえば圧力を0.2〜5MPa、温度を100〜150℃、時間を60〜600秒とすればよい。さらに、Cステージ状態まで硬化させるため、温度を150〜200℃、時間を10〜180分にして硬化させる。   And in the state which has arrange | positioned the press metal mold | die 4 on the laminated substrate 60 formed at the lamination process, the resin sheet is softened and pressure is applied to the press metal mold | die 4 in a vacuum atmosphere, and the thermocompression molding of the laminated substrate 60 is carried out. Further, the resin sheet is cured to a C stage state at a predetermined temperature (hereinafter referred to as a pressing step). The press mold 4 used in the pressing process is the same as the press mold 4 (male mold) used in the pre-forming process. As shown in FIG. 6a is molded. That is, in the pressing process, the press mold 4 is arranged on the laminated substrate 60 so that the molding surface 4b on which the molding part 4a is formed is abutted against the surface of the laminated substrate 60 on the metal sheet 69 side. By performing the processing, the three-dimensional shape portion 6a is formed on the laminated substrate 60 by the forming portion 4a. Furthermore, in the pressing process, the laminated substrate 60 is thermocompression-bonded (that is, the circuit substrate 62, the resin layer 65, the main substrate 66, the resin substrate 67, and the metal layer 68 are integrated). The circuit component 8 mounted on the resin substrate 67 is embedded in the resin substrate 67. As a result, as shown in FIG. 1 (e), the thermocompression molding of the laminated substrate 60 and the molding of the three-dimensionally shaped portion 6 a and the embedding of the circuit component 8 in the resin substrate 67 can be performed simultaneously in the pressing process. Man-hours can be relatively reduced. Here, the circuit board 62, the main board 66, and the press mold 4 are formed by inserting pins (not shown) into through holes (not shown) formed at the four corners of the circuit board 62, the main board 66, and the press die 4. Pressing is performed in a state of being aligned in a plane orthogonal to the direction. The circuit component 8 is embedded in a portion of the resin substrate 67 that does not overlap the three-dimensional shape portion 6 a in the thickness direction of the main substrate 66. The conditions for the thermocompression molding described above can be set as appropriate. For example, the pressure may be 0.2 to 5 MPa, the temperature may be 100 to 150 ° C., and the time may be 60 to 600 seconds. Furthermore, in order to cure to the C stage state, the temperature is set to 150 to 200 ° C. and the time is set to 10 to 180 minutes.

また、プレス工程後の回路形成工程において、プレス工程で一体化された積層基板60に対してスルーホール62b,65b,66b,67bやビアホールを形成するとともに、スルーホール62b,65b,66b,67b内やビアホール内に導電路を形成し、さらに金属層68をパターニングすることで金属層68から上述した回路パターン68aを形成する。具体的には、金属層68において回路パターン68aとなる部分をレジスト(図示せず)で被覆し、金属層68にエッチング処理を施すことにより金属層68のうち回路パターン68a以外の不要な部分(立体形状部6aの金属層68を含む)をエッチング除去する。その後、レジストを除去すれば、樹脂基板67の一表面に回路パターン68aが形成されることとなる。その後、切出工程において積層基板60から個々の個片基板6が切り出される。   In the circuit forming process after the pressing process, through holes 62b, 65b, 66b, 67b and via holes are formed in the laminated substrate 60 integrated in the pressing process, and the through holes 62b, 65b, 66b, 67b are formed. In addition, a conductive path is formed in the via hole, and the metal layer 68 is patterned to form the circuit pattern 68a described above from the metal layer 68. Specifically, a portion of the metal layer 68 that becomes the circuit pattern 68a is covered with a resist (not shown), and the metal layer 68 is subjected to an etching process, whereby an unnecessary portion of the metal layer 68 other than the circuit pattern 68a ( The metal layer 68 of the three-dimensional shape portion 6a is removed by etching. Thereafter, if the resist is removed, a circuit pattern 68 a is formed on one surface of the resin substrate 67. Thereafter, the individual substrate 6 is cut out from the laminated substrate 60 in the cutting step.

以上説明した個片基板6の製造方法によれば、積層工程より前に、金属シート69の一部を立体形状部6aに対応する形状に予め成型するプレフォーミング工程を有するので、プレス工程において金属シート69における成型部4aの先端面との当接部位に周囲の金属シート69が引っ張られることはなく、金属シート69の一部と成型部4aの表面との間に隙間が生じて立体形状部6aの開口面が成型部4aの基端部の断面に比べて大きくなってしまうことはない。したがって、成型部4aの形状に倣った立体形状部6aを成型することができ、立体形状部6aに近接する回路部品8と立体形状部6aの金属層68との接触を回避することができるので、樹脂基板67に埋設された回路部品8と立体形状部6aとが近接配置されるような高密度な設計が可能となる。また、金属シート69と成型部4aとの間に隙間が生じないので、金属層68にしわを生じることもない。   According to the manufacturing method of the individual substrate 6 described above, since there is a pre-forming step in which a part of the metal sheet 69 is pre-formed into a shape corresponding to the three-dimensional shape portion 6a before the laminating step, The surrounding metal sheet 69 is not pulled at the contact portion of the sheet 69 with the tip surface of the molded part 4a, and a gap is generated between a part of the metal sheet 69 and the surface of the molded part 4a, thereby forming a three-dimensionally shaped part. The opening surface of 6a does not become larger than the cross section of the base end portion of the molded portion 4a. Therefore, the three-dimensionally shaped part 6a can be molded following the shape of the molded part 4a, and contact between the circuit component 8 adjacent to the three-dimensionally shaped part 6a and the metal layer 68 of the three-dimensionally shaped part 6a can be avoided. In addition, a high-density design is possible in which the circuit component 8 embedded in the resin substrate 67 and the three-dimensionally shaped portion 6a are arranged close to each other. Further, since no gap is generated between the metal sheet 69 and the molded part 4a, the metal layer 68 is not wrinkled.

ところで、本実施形態ではプレフォーミング工程とプレス工程とで共通のプレス金型4(雄型)を用いているが、プレフォーミング工程とプレス工程とで個別のプレス金型4を用いるようにしてもよい。ただし、プレフォーミング工程とプレス工程とで個別のプレス金型4を用いる場合には、図4(a)、(b)に示すようにプレフォーミング工程の後でプレフォーミング工程用のプレス金型4から金属シート69を外す必要がある。ここにおいて、図5(a)、(b)に示すようにプレフォーミング用のプレス金型4から金属シート69を外す際に、金属シート69にスプリングバックが発生して金属シート69が変形することがある。そして、金属シート69にスプリングバックが発生した状態で図4(c)、(d)に示すようにプレス工程が実行されると、図5(c)に示すように立体形状部6aの形状にスプリングバックによる変形後の金属シート69の形状が反映され、立体形状部6aの成型の精度が低下する可能性がある。   By the way, in the present embodiment, a common press die 4 (male die) is used in the pre-forming step and the press step, but individual press dies 4 may be used in the pre-forming step and the press step. Good. However, when separate press dies 4 are used in the pre-forming process and the press process, as shown in FIGS. 4A and 4B, the press dies 4 for the pre-forming process after the pre-forming process. It is necessary to remove the metal sheet 69 from. Here, as shown in FIGS. 5A and 5B, when the metal sheet 69 is removed from the pre-forming press die 4, a spring back is generated in the metal sheet 69 and the metal sheet 69 is deformed. There is. When the pressing process is executed as shown in FIGS. 4C and 4D in a state where the spring back is generated in the metal sheet 69, the shape of the three-dimensional shape portion 6a is obtained as shown in FIG. 5C. The shape of the metal sheet 69 after being deformed by the spring back is reflected, and there is a possibility that the accuracy of molding the three-dimensionally shaped portion 6a is lowered.

これに対して、本実施形態ではプレフォーミング工程とプレス工程とで共通のプレス金型4を用い、プレフォーミング工程の後に金属シート69をプレス金型4から外すことなくプレス工程に移行するようにしている。したがって、金属シート69をプレス金型4から外す際の金属シート69のスプリングバックが生じないので、プレフォーミング工程において成型された金属シート69の形状を維持したままプレス工程を行うことができ、結果的に、プレフォーミング工程とプレス工程とで個別のプレス金型4を用いる上記製造方法に比較して、プレス工程にて成型される立体形状部6aの成型の精度が向上する。   On the other hand, in the present embodiment, a common press die 4 is used in the pre-forming step and the press step, and the metal sheet 69 is moved to the press step without removing it from the press die 4 after the pre-forming step. ing. Therefore, since the spring back of the metal sheet 69 does not occur when the metal sheet 69 is removed from the press die 4, the pressing process can be performed while maintaining the shape of the metal sheet 69 formed in the pre-forming process. In particular, compared to the above manufacturing method using separate press dies 4 in the pre-forming process and the press process, the accuracy of molding of the three-dimensional shape portion 6a molded in the press process is improved.

(実施形態2)
本実施形態で示す個片基板6の製造方法は、実施形態1で説明した個片基板6の製造方法と基本部分は同じであって、プレフォーミング工程あるいはプレス工程において金属シート69が破れにくくなるようにした点が実施形態1と相違する。なお、実施形態1と同一の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The manufacturing method of the individual substrate 6 shown in the present embodiment is the same as the manufacturing method of the individual substrate 6 described in the first embodiment, and the metal sheet 69 is hardly broken in the pre-forming process or the pressing process. This is different from the first embodiment. In addition, the same code | symbol is attached | subjected to the component same as Embodiment 1, and description is abbreviate | omitted suitably.

ところで、立体形状部6aのアスペクト比(ここでは、深さ/短径)が比較的大きい場合には、プレフォーミング工程においてプレス金型4の成型部4aが金属シート69を引き伸ばしながら成型する際に、金属シート69の伸び量が大きく、図6(b)に示す比較例のように立体形状部6aに対応する部位で金属シート69が破れてしまう可能性がある。金属シート69が破れると、プレス工程において金属シート69の破れたところから樹脂基板67の樹脂が滲み出て金属層68の表面に付着するなどの不具合を生じることがある。これに対して、本実施形態では以下の方法により金属シート69を破れにくくしている。   By the way, when the aspect ratio (here, depth / minor axis) of the three-dimensionally shaped portion 6a is relatively large, when the molding portion 4a of the press mold 4 molds while stretching the metal sheet 69 in the pre-forming process. The elongation amount of the metal sheet 69 is large, and there is a possibility that the metal sheet 69 is torn at a portion corresponding to the three-dimensionally shaped portion 6a as in the comparative example shown in FIG. If the metal sheet 69 is torn, there may be a problem that the resin of the resin substrate 67 oozes out and adheres to the surface of the metal layer 68 from where the metal sheet 69 is torn in the pressing process. On the other hand, in the present embodiment, the metal sheet 69 is hardly broken by the following method.

すなわち、本実施形態で示す個片基板6の製造方法は、プレフォーミング工程より前に金属シート69を焼なますことで軟化させる焼鈍工程を有する。具体的には、焼鈍工程において金属シート69を適当な温度に加熱し、その後徐冷して金属シート69の再結晶化を行うことにより金属シート69を軟化させる。一例として、金属シート69として銅箔を用いる場合には、銅箔の再結晶温度付近の温度(たとえば130〜250℃)で金属シート69を1時間以上(たとえば1.5時間)加熱することで、金属シート69を軟化させることができる。このようにプレフォーミング工程前に金属シート69を軟化させておくと、プレフォーミング工程において金属シート69が伸びやすくなって金属シート69が破れにくくなる。たとえば、焼なまし前において破れない範囲での伸び率が5%程度の金属シート69を用いる場合、金属シート69の焼なましを行わなければ、プレフォーミング工程において金属シート69が破れてしまうことがあるが、本実施形態では焼なますことで上記金属シート69の破れない範囲での伸び率を20%程度まで向上させることができるので図6(a)に示すように金属シート69の破れを防止することができる。   That is, the manufacturing method of the individual substrate 6 shown in the present embodiment includes an annealing process in which the metal sheet 69 is softened by annealing before the preforming process. Specifically, the metal sheet 69 is softened by heating the metal sheet 69 to an appropriate temperature in the annealing step and then gradually cooling the metal sheet 69 to recrystallize. As an example, when a copper foil is used as the metal sheet 69, the metal sheet 69 is heated at a temperature near the recrystallization temperature of the copper foil (for example, 130 to 250 ° C.) for 1 hour or longer (for example, 1.5 hours). The metal sheet 69 can be softened. In this way, if the metal sheet 69 is softened before the pre-forming process, the metal sheet 69 is easily stretched in the pre-forming process, and the metal sheet 69 is hardly broken. For example, when using a metal sheet 69 having an elongation rate of about 5% within a range not torn before annealing, the metal sheet 69 may be torn in the pre-forming step unless the metal sheet 69 is annealed. However, in this embodiment, the elongation within a range where the metal sheet 69 is not broken can be improved to about 20% by annealing, so that the metal sheet 69 is broken as shown in FIG. Can be prevented.

また、本実施形態の他の例として、図7(a)に示すように成型部4aのうちプレス工程において積層基板60に最初に当接する一面と当該一面に隣接する他面との間の角部4dがアール形状に面取りされているプレス金型4を用いるようにしてもよい。要するに、成型面4bから突出した成型部4aの先端面が成型部4aのうちで積層基板60に最初に当接する一面となるから、前記先端面と当該先端面に隣接する成型部4aの側面との間の角部4dが積層基板60側に凸となる曲面状に形成されたプレス金型4を使用してプレス工程を行う。ここでは、一例として曲率半径が0.05mm以上のアール形状とする。この方法では、成型部4aのうち積層基板60に最初に当接する一面と当該一面に隣接する他面との間の角部4dが尖っている場合に比べて、図7(b)に示すように積層基板60において前記角部4dが当接する部位に応力集中が発生しにくくなるので、プレス工程時に金属シート69が破れにくくなる。さらにプレフォーミング工程においても、同一のプレス金型4を用いることで金属シート69が破れにくくなる。   As another example of the present embodiment, as shown in FIG. 7A, a corner between one surface of the molded portion 4a that first contacts the laminated substrate 60 in the pressing step and another surface adjacent to the one surface. You may make it use the press die 4 in which the part 4d is chamfered by the round shape. In short, since the tip surface of the molding part 4a protruding from the molding surface 4b becomes one surface of the molding part 4a that first contacts the laminated substrate 60, the tip surface and the side surface of the molding part 4a adjacent to the tip surface are A pressing process is performed using a pressing die 4 formed in a curved shape in which the corners 4d between them are convex toward the laminated substrate 60 side. Here, as an example, a round shape having a curvature radius of 0.05 mm or more is used. In this method, as shown in FIG. 7B, compared to a case where the corner 4d between one surface of the molded portion 4a that first contacts the laminated substrate 60 and the other surface adjacent to the one surface is sharp. In addition, stress concentration is unlikely to occur in the portion of the laminated substrate 60 where the corner 4d abuts, so that the metal sheet 69 is not easily torn during the pressing process. Furthermore, in the pre-forming process, the metal sheet 69 is hardly broken by using the same press die 4.

ところで、上述した各実施形態では、回路基板62と樹脂層65と主基板66と樹脂基板67と金属シート69(金属層68)とを積層したものを積層基板60としたが、この構成の積層基板60に限るものではなく、少なくとも主基板66の(回路部品8側の)一表面に樹脂基板67および金属シート69が積層された積層基板60であれば本発明の製造方法を適用して個片基板6を製造することができる。   By the way, in each embodiment mentioned above, what laminated | stacked the circuit board 62, the resin layer 65, the main board | substrate 66, the resin board | substrate 67, and the metal sheet 69 (metal layer 68) was used as the laminated substrate 60, However The present invention is not limited to the substrate 60, and can be applied by applying the manufacturing method of the present invention as long as it is a laminated substrate 60 in which a resin substrate 67 and a metal sheet 69 are laminated on at least one surface (on the circuit component 8 side) of the main substrate 66. The single substrate 6 can be manufactured.

本発明の実施形態1の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate board | substrate of Embodiment 1 of this invention. 同上の赤外線検出器を示し、(a)は概略平面図、(b)は概略断面図である。The infrared detector same as the above is shown, (a) is a schematic plan view, and (b) is a schematic sectional view. 同上の赤外線検出器を示す概略分解斜視図である。It is a schematic exploded perspective view which shows an infrared detector same as the above. 同上の比較例を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the comparative example same as the above. (a)は図4(a)の要部Aの拡大図、(b)は図4(b)の要部Bの拡大図、(c)は図4(d)の要部Cの拡大図である。4A is an enlarged view of the main part A of FIG. 4A, FIG. 4B is an enlarged view of the main part B of FIG. 4B, and FIG. 4C is an enlarged view of the main part C of FIG. It is. (a)は本発明の実施形態2の個片基板の製造方法を示す要部の概略断面図、(b)は比較例の要部の概略断面図である。(A) is a schematic sectional drawing of the principal part which shows the manufacturing method of the separate board | substrate of Embodiment 2 of this invention, (b) is a schematic sectional drawing of the principal part of a comparative example. (a)は同上の他の例で用いるプレス金型の要部の概略断面図、(b)は(a)のプレス金型で形成される立体形状部の概略断面図である。(A) is a schematic sectional drawing of the principal part of the press metal mold | die used by the other example same as the above, (b) is a schematic sectional drawing of the solid-shaped part formed with the press metal mold | die of (a). 従来例の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate substrate of a prior art example. 他の従来例の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate substrate of another prior art example.

符号の説明Explanation of symbols

1 焦電素子
4 プレス金型
4a 成型部
4d 角部
6 個片基板
6a 立体形状部
8 回路部品
60 積層基板
66 主基板
67 樹脂基板
67a 実装領域
68 金属層
69 金属シート
DESCRIPTION OF SYMBOLS 1 Pyroelectric element 4 Press die 4a Molding part 4d Corner | gear part 6 Piece | segmentation board 6a Three-dimensional shape part 8 Circuit component 60 Laminated board 66 Main board 67 Resin board | substrate 67a Mounting area 68 Metal layer 69 Metal sheet

Claims (6)

一表面に樹脂基板が積層された主基板を有し、樹脂基板における主基板と反対の一表面に金属層が形成され当該一表面側に凹部からなる立体形状部が形成されるとともに、主基板に実装された回路部品が樹脂基板のうち主基板の厚み方向において立体形状部と重ならない部分に埋設された個片基板の製造方法であって、回路部品が実装された主基板に樹脂基板および金属層の基礎となる金属シートを積層することで積層基板を形成する積層工程と、個片基板の立体形状部に対応する形状の凸部からなる成型部を具備するプレス金型を積層基板の金属シート側の表面に当接させてプレス加工を行うことにより、成型部で立体形状部を成型するとともに樹脂基板に回路部品を埋設するプレス工程とを有し、積層工程より前に、金属シートの一部を立体形状部に対応する形状に成型するプレフォーミング工程を有することを特徴とする個片基板の製造方法。   A main substrate having a resin substrate laminated on one surface, a metal layer is formed on one surface of the resin substrate opposite to the main substrate, and a three-dimensionally shaped portion including a recess is formed on the one surface side. A circuit board mounted on the main board on which the circuit component is mounted is embedded in a portion of the resin board that does not overlap with the three-dimensionally shaped portion in the thickness direction of the main board. A laminating process for forming a laminated substrate by laminating metal sheets that serve as a basis for the metal layer, and a press mold having a molding part composed of convex portions corresponding to the three-dimensional shape part of the individual substrate A pressing process for forming a three-dimensionally shaped part at a molding part and embedding a circuit component in a resin substrate by pressing the metal sheet in contact with the surface of the metal sheet. Part of Method for producing individual substrates characterized by having a pre-forming step of molding into a shape corresponding to the body-shaped portion. 前記プレフォーミング工程において前記プレス工程と共通の前記プレス金型を使用し、前記プレフォーミング工程の後に前記金属シートを前記プレス金型から外すことなく前記プレス工程を行うことを特徴とする請求項1記載の個片基板の製造方法。   2. The pre-forming step uses the same pressing die as the pressing step, and the pressing step is performed without removing the metal sheet from the pressing die after the pre-forming step. The manufacturing method of the separate board | substrate of description. 前記プレフォーミング工程より前に、前記金属シートを焼なますことで軟化させる焼鈍工程を有することを特徴とする請求項1または請求項2記載の個片基板の製造方法。   3. The method of manufacturing an individual substrate according to claim 1, further comprising an annealing step of softening the metal sheet by annealing before the preforming step. 前記プレス金型は、前記成型部のうち前記プレス工程において前記積層基板に最初に当接する先端面と当該先端面に隣接する側面との間の角部がアール形状に形成されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の個片基板の製造方法。   The press mold is characterized in that a corner between a tip surface that first contacts the laminated substrate in the pressing step and a side surface adjacent to the tip surface in the pressing step is formed in a round shape. The method for manufacturing an individual substrate according to any one of claims 1 to 3. 請求項1ないし請求項4のいずれか1項に記載の個片基板の製造方法によって製造された個片基板であって、前記立体形状部側の一表面に実装部品が実装される実装領域を備え、前記立体形状部は、少なくとも一部が実装領域に形成されることにより実装部品と前記樹脂基板との間に熱絶縁用の空隙を形成する凹部からなることを特徴とする個片基板。   5. An individual substrate manufactured by the method for manufacturing an individual substrate according to claim 1, wherein a mounting region in which a mounting component is mounted on one surface of the three-dimensionally shaped portion side. And the three-dimensionally shaped portion includes a concave portion that forms a gap for thermal insulation between the mounted component and the resin substrate by forming at least a part in the mounting region. 請求項5記載の個片基板と、前記実装部品として前記実装領域に実装される焦電素子とを備え、前記立体形状部は、前記実装領域において焦電素子の検知部に対応する位置に形成されていることを特徴とする赤外線検出器。
6. The individual board according to claim 5, and a pyroelectric element mounted on the mounting area as the mounting component, wherein the three-dimensionally shaped part is formed at a position corresponding to the detection part of the pyroelectric element in the mounting area. Infrared detector characterized by being made.
JP2007083021A 2007-03-27 2007-03-27 Individual substrate manufacturing method, individual substrate, infrared detector Expired - Fee Related JP4996302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083021A JP4996302B2 (en) 2007-03-27 2007-03-27 Individual substrate manufacturing method, individual substrate, infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083021A JP4996302B2 (en) 2007-03-27 2007-03-27 Individual substrate manufacturing method, individual substrate, infrared detector

Publications (2)

Publication Number Publication Date
JP2008244172A true JP2008244172A (en) 2008-10-09
JP4996302B2 JP4996302B2 (en) 2012-08-08

Family

ID=39915140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083021A Expired - Fee Related JP4996302B2 (en) 2007-03-27 2007-03-27 Individual substrate manufacturing method, individual substrate, infrared detector

Country Status (1)

Country Link
JP (1) JP4996302B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100454A (en) * 1983-11-05 1985-06-04 Matsushita Electric Works Ltd Manufacture of printed circuit board
JPS62206739A (en) * 1986-03-05 1987-09-11 Sony Corp Manufacture of color-selection mechanism in cathode-ray tube
JPH0252128U (en) * 1988-10-05 1990-04-13
JPH09266368A (en) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp Microwave circuit board manufacturing method
JPH10163595A (en) * 1996-12-03 1998-06-19 Toshiba Corp Printed wiring board, electronic apparatus having the printed wiring board and manufacture of printed wiring board
JP2005254262A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk Working method for metallic plate with small springback
JP2005285841A (en) * 2004-03-26 2005-10-13 Kawaguchiko Seimitsu Co Ltd Process for producing three-dimensional microwave transmission circuit, and three-dimensional microwave transmission circuit board produced using process
JP2007035689A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Method of manufacturing electronic component built-in substrate
JP2007059846A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Projecting and recessed multilayer circuit board module and its production process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100454A (en) * 1983-11-05 1985-06-04 Matsushita Electric Works Ltd Manufacture of printed circuit board
JPS62206739A (en) * 1986-03-05 1987-09-11 Sony Corp Manufacture of color-selection mechanism in cathode-ray tube
JPH0252128U (en) * 1988-10-05 1990-04-13
JPH09266368A (en) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp Microwave circuit board manufacturing method
JPH10163595A (en) * 1996-12-03 1998-06-19 Toshiba Corp Printed wiring board, electronic apparatus having the printed wiring board and manufacture of printed wiring board
JP2005254262A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk Working method for metallic plate with small springback
JP2005285841A (en) * 2004-03-26 2005-10-13 Kawaguchiko Seimitsu Co Ltd Process for producing three-dimensional microwave transmission circuit, and three-dimensional microwave transmission circuit board produced using process
JP2007035689A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Method of manufacturing electronic component built-in substrate
JP2007059846A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Projecting and recessed multilayer circuit board module and its production process

Also Published As

Publication number Publication date
JP4996302B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP6193510B2 (en) Lead frame, semiconductor device, lead frame manufacturing method, and semiconductor device manufacturing method
KR101229142B1 (en) Semiconductor device and microphone
US20160044798A1 (en) Method of manufacturing resin multilayer substrate
JP4438558B2 (en) RFID tag manufacturing method
KR101253401B1 (en) Method of manufacturing for bonding pad
JP4655017B2 (en) Acoustic sensor
JP4524570B2 (en) Semiconductor device
US9159676B2 (en) Semiconductor module
JP2007158044A (en) Lid and semiconductor device
JP4996302B2 (en) Individual substrate manufacturing method, individual substrate, infrared detector
JP5423621B2 (en) Circuit board terminal connection structure
JP5001695B2 (en) Individual substrate manufacturing method, individual substrate, infrared detector
JP2005191146A (en) Method of manufacturing hybrid integrated circuit device
JP2004280503A (en) Combination ic card
JP2008244171A (en) Divided substrate and manufacturing method thereof, and infrared detector
JP2001358263A (en) Semiconductor device and method of forming circuit of the same
JP2012182207A (en) Lead frame for led element and method for manufacturing the same
JP5983523B2 (en) Multilayer substrate, electronic device using the same, and method for manufacturing electronic device
JP2008244170A (en) Divided substrate and manufacturing method thereof, and infrared detector
US20030071353A1 (en) Semiconductor device
EP4371033A1 (en) Lead-frame, card body of a smart card, smart card, and method of forming a smart card
CN109075156B (en) Electronic unit
JP2017117995A (en) Electronic apparatus
US20140369014A1 (en) Wiring board
CN114628988A (en) Semiconductor package header, method for manufacturing the same, and semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees