JP2008244170A - Divided substrate and manufacturing method thereof, and infrared detector - Google Patents

Divided substrate and manufacturing method thereof, and infrared detector Download PDF

Info

Publication number
JP2008244170A
JP2008244170A JP2007083019A JP2007083019A JP2008244170A JP 2008244170 A JP2008244170 A JP 2008244170A JP 2007083019 A JP2007083019 A JP 2007083019A JP 2007083019 A JP2007083019 A JP 2007083019A JP 2008244170 A JP2008244170 A JP 2008244170A
Authority
JP
Japan
Prior art keywords
substrate
resin
resin layer
laminated
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007083019A
Other languages
Japanese (ja)
Inventor
Makoto Sato
信 佐藤
Yoshiharu Sanagawa
佳治 佐名川
Masaya Hirata
雅也 平田
Michihiko Ueda
充彦 植田
Sadayuki Sumi
貞幸 角
Hiromitsu Takashita
博光 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007083019A priority Critical patent/JP2008244170A/en
Publication of JP2008244170A publication Critical patent/JP2008244170A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a main substrate from being deformed by applying press force appropriate for canceling stress generated in the main substrate from a formation section to the main substrate. <P>SOLUTION: A method of manufacturing a divided substrate includes a lamination process and a press process. In the lamination process, at least a resin substrate 67 is laminated on one surface of the main substrate 66, and a circuit board 62, where a resin layer 65 and a circuit component 63 are packaged at the side of the resin layer 65, is laminated on the other surface of the main substrate 66, thus forming a multilayer board 60. In the press process, presswork is performed by bringing a press die 4 having a formation section 4a comprising a projection in a shape corresponding to a three-dimensional shape section 6a in the divided substrate 6 into contact with a surface at the side of the resin substrate 67 in the multilayer board 60, thus forming the three-dimensional shape section 6a comprising a recess at the formation section 4a and burying the circuit component 63 into a prescribed region at least partially overlapping with the three-dimensional shape section 6a in the thickness direction of the main substrate 66 in the resin layer 65. A press die 4 is used that has the formation section 4a with the same height dimension h1 as a thickness dimension t1 in the resin substrate 67. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、個片基板の製造方法、個片基板、赤外線検出器に関するものである。   The present invention relates to an individual substrate manufacturing method, an individual substrate, and an infrared detector.

従来から、半導体素子等の実装部品が実装される個片基板6として、図4に示すように一表面(図4の上面)に樹脂基板67(たとえば、エポキシ樹脂基板)が積層された主基板66を有し、樹脂基板67における主基板66と反対側の一表面に凹部からなる立体形状部6aが形成されたものが提供されている。なお、図4の例では主基板66の両面に電子部品64’が実装され、樹脂基板67の前記一表面に金属層68(たとえば、回路パターン68aを構成する)が形成されている。   Conventionally, as a single substrate 6 on which mounting components such as semiconductor elements are mounted, a main substrate in which a resin substrate 67 (for example, an epoxy resin substrate) is laminated on one surface (upper surface in FIG. 4) as shown in FIG. 66, in which a three-dimensionally shaped portion 6a formed of a concave portion is formed on one surface of the resin substrate 67 opposite to the main substrate 66. In the example of FIG. 4, electronic components 64 ′ are mounted on both surfaces of the main substrate 66, and a metal layer 68 (for example, constituting a circuit pattern 68 a) is formed on the one surface of the resin substrate 67.

この種の個片基板6の製造方法としては、主基板66の一表面に樹脂基板67を積層するとともに樹脂基板67の一表面にたとえば銅箔からなり金属層68の基礎となる金属シート69を積層することで、図5(a)に示す位置関係となるように主基板66と樹脂基板67と金属シート69とを積層した積層基板60を形成する積層工程と、図5(b)に示すように積層基板60(主基板66と樹脂基板67と金属シート69)を熱圧着成形するとともに前記立体形状部6aを成型するプレス工程とを有する製造方法が提案されている。ここにおいて、プレス工程で用いられるプレス金型4は、積層基板60との当接部位に個片基板6の立体形状部6aに対応する形状の凸部からなる成型部4aを有し、この成型部4aによりプレス工程において積層基板60に立体形状部6aを成型する。ここで、プレス金型4の成型部4aの高さ寸法h0は、樹脂基板67に形成する立体形状部6aの深さ寸法に応じて設定されるので、通常、樹脂基板67の厚み寸法t0よりも小さく(低く)設定される(h0<t0)。この製造方法では、プレス工程において積層基板60の熱圧着成形と立体形状部6aの成型とを同時に行うことができ、積層基板60の熱圧着成形と立体形状部6aの成型とをそれぞれ別工程で行う場合に比べて工数を少なくすることができる(たとえば特許文献1参照)。特許文献1に記載の発明では、プレス工程の後、金属層68(金属シート69)にエッチング処理を施すことにより回路パターン68aが形成される。   As a method for manufacturing this kind of individual substrate 6, a resin substrate 67 is laminated on one surface of a main substrate 66, and a metal sheet 69 made of, for example, copper foil and serving as a basis for a metal layer 68 is formed on one surface of the resin substrate 67. By laminating, a laminating step of forming a laminated substrate 60 in which the main substrate 66, the resin substrate 67, and the metal sheet 69 are laminated so as to have the positional relationship shown in FIG. 5A, and shown in FIG. 5B. Thus, there has been proposed a manufacturing method including a press process for forming the three-dimensionally shaped portion 6a while thermocompression-molding the laminated substrate 60 (the main substrate 66, the resin substrate 67, and the metal sheet 69). Here, the press die 4 used in the pressing step has a molding portion 4a formed of a convex portion having a shape corresponding to the three-dimensional shape portion 6a of the individual substrate 6 at a contact portion with the laminated substrate 60. The three-dimensionally shaped portion 6a is formed on the laminated substrate 60 in the pressing process by the portion 4a. Here, since the height dimension h0 of the molding part 4a of the press mold 4 is set according to the depth dimension of the three-dimensionally shaped part 6a formed on the resin substrate 67, the thickness dimension t0 of the resin substrate 67 is usually set. Is also set to be small (low) (h0 <t0). In this manufacturing method, the thermocompression molding of the laminated substrate 60 and the molding of the three-dimensionally shaped portion 6a can be simultaneously performed in the pressing process, and the thermocompression molding of the laminated substrate 60 and the molding of the three-dimensionally shaped portion 6a are performed in separate processes. The number of man-hours can be reduced as compared with the case of performing (see, for example, Patent Document 1). In the invention described in Patent Document 1, the circuit pattern 68a is formed by performing an etching process on the metal layer 68 (metal sheet 69) after the pressing step.

ところで、近年では、個片基板6として上述した主基板66における樹脂基板67と反対側の他表面に樹脂層65が積層され、この樹脂層65のうちで主基板66の厚み方向において立体形状部6aと少なくとも一部が重なる所定領域に回路部品63(図6参照)が埋設された個片基板6が提案されている。この種の個片基板6においては、主基板66の厚み方向において立体形状部6aと回路部品63の少なくとも一部が重なるから、主基板66の厚み方向に直交する面内での小型化を図ることができる。   Incidentally, in recent years, a resin layer 65 is laminated on the other surface of the main substrate 66 opposite to the resin substrate 67 as the individual substrate 6, and the three-dimensionally shaped portion in the thickness direction of the main substrate 66 among the resin layers 65. There has been proposed an individual substrate 6 in which a circuit component 63 (see FIG. 6) is embedded in a predetermined region at least partially overlapping 6a. In this kind of individual substrate 6, at least a part of the three-dimensionally shaped portion 6 a and the circuit component 63 overlaps in the thickness direction of the main substrate 66, so that downsizing in a plane orthogonal to the thickness direction of the main substrate 66 is achieved. be able to.

樹脂層65の前記所定領域に回路部品63が埋設された個片基板6を製造するに当たっては、積層工程において、上述した主基板66と樹脂基板67と金属シート69に加え、主基板66の他表面側に樹脂層65を積層するとともに、図6(a)に示すように回路部品63が実装された回路基板62を樹脂層65における主基板66と反対側の表面に回路部品63の実装面を樹脂層65側に向けて積層し、図6(b)のようにプレス工程において回路部品63を樹脂層65内に埋設する。この製造方法では、プレス工程において積層基板60(主基板66と樹脂基板67と金属シート69と樹脂層65と回路基板62)の熱圧着成形と立体形状部6aの成型と、さらに樹脂層65への回路部品63の埋設とを同時に行うことができる。   In manufacturing the individual substrate 6 in which the circuit component 63 is embedded in the predetermined region of the resin layer 65, in addition to the main substrate 66, the resin substrate 67, and the metal sheet 69 described above, The resin layer 65 is laminated on the front surface side, and the circuit board 62 on which the circuit component 63 is mounted is mounted on the surface of the resin layer 65 opposite to the main board 66 as shown in FIG. Are laminated toward the resin layer 65 side, and the circuit component 63 is embedded in the resin layer 65 in the pressing step as shown in FIG. In this manufacturing method, the laminated substrate 60 (the main substrate 66, the resin substrate 67, the metal sheet 69, the resin layer 65, and the circuit substrate 62) is subjected to thermocompression bonding, the formation of the three-dimensional shape portion 6a, and further to the resin layer 65 in the pressing step. The circuit component 63 can be embedded at the same time.

なお、上述の製造方法で製造される個片基板6の一例として、立体形状部6a側の一表面に実装部品が実装される実装領域を備え、立体形状部6aの少なくとも一部が実装領域に形成されるものでは、立体形状部6aによって実装部品と樹脂基板67との間に空隙が形成されるので、実装部品と樹脂基板67との間の熱絶縁を図ることができる。そこで、この個片基板6をたとえば赤外線を検出する赤外線検出器に用いる場合には、実装領域に実装される実装部品として赤外線の受光量の変化を電圧信号に変換して出力する焦電素子を用い、実装領域において焦電素子の検知部に対応する位置に熱絶縁用の凹部からなる立体形状部6aを形成することにより、焦電素子の感度向上を図ることが考えられる。
特開2007−59844号公報(第0012−0020段落、図1−2)
In addition, as an example of the individual substrate 6 manufactured by the above-described manufacturing method, a mounting region in which mounting components are mounted on one surface of the three-dimensional shape portion 6a is provided, and at least a part of the three-dimensional shape portion 6a is in the mounting region. In the formed structure, a gap is formed between the mounting component and the resin substrate 67 by the three-dimensionally shaped portion 6a, so that thermal insulation between the mounting component and the resin substrate 67 can be achieved. Therefore, when this single substrate 6 is used for, for example, an infrared detector that detects infrared rays, a pyroelectric element that converts a change in the amount of received infrared light into a voltage signal and outputs it as a mounting component mounted in the mounting region. It is conceivable to improve the sensitivity of the pyroelectric element by forming a three-dimensionally shaped portion 6a formed of a concave portion for thermal insulation at a position corresponding to the detecting portion of the pyroelectric element in the mounting area.
JP 2007-59844 A (paragraph 0012-0020, FIG. 1-2)

ところで、樹脂層65に回路部品63が埋設された個片基板6の上記製造方法では、プレス工程において樹脂層65に回路部品63が埋設される際に、主基板66が樹脂層65を介して回路部品63に押圧されることにより主基板66に応力が発生するので、主基板66の変形を防止するために、この応力を打ち消す押圧力を主基板66に対して樹脂層65と反対側から印加する必要がある。   By the way, in the manufacturing method of the individual substrate 6 in which the circuit component 63 is embedded in the resin layer 65, the main substrate 66 is interposed through the resin layer 65 when the circuit component 63 is embedded in the resin layer 65 in the pressing process. Since the stress is generated in the main board 66 by being pressed by the circuit component 63, in order to prevent the deformation of the main board 66, the pressing force for canceling the stress is applied to the main board 66 from the side opposite to the resin layer 65. It is necessary to apply.

しかし、上述したようにプレス金型4の成型部4aの高さ寸法h0は樹脂基板67の厚み寸法t0よりも小さく(h0<t0)設定されているので、プレス加工を行った図6(b)の状態で成型部4aと主基板66との間に樹脂基板67が介在し、樹脂基板67が緩衝材となることで成型部4aから主基板66に対して主基板66に発生した上記応力を打ち消す適正な押圧力を印加することができない。つまり、成型部4aから主基板66に印加される押圧力が樹脂基板67で緩和されてしまうため、適正な押圧力を主基板66に対して樹脂層65と反対側から印加することができず、図6(b)、(c)に示すように主基板66の変形を生じることがある(図6(b)、(c)では変形前の主基板66を2点鎖線で示す)。主基板66が変形すると、主基板66や回路部品63が損傷するなどの不具合を生じる可能性がある。   However, since the height dimension h0 of the molding part 4a of the press die 4 is set smaller than the thickness dimension t0 of the resin substrate 67 (h0 <t0) as described above, FIG. ), The resin substrate 67 is interposed between the molded portion 4a and the main substrate 66, and the resin substrate 67 serves as a cushioning material, so that the stress generated on the main substrate 66 from the molded portion 4a to the main substrate 66. It is not possible to apply an appropriate pressing force that cancels. That is, the pressing force applied to the main substrate 66 from the molding portion 4a is relieved by the resin substrate 67, so that an appropriate pressing force cannot be applied to the main substrate 66 from the side opposite to the resin layer 65. 6 (b) and 6 (c), the main substrate 66 may be deformed (in FIGS. 6 (b) and 6 (c), the main substrate 66 before deformation is indicated by a two-dot chain line). If the main board 66 is deformed, there is a possibility that a malfunction such as damage to the main board 66 or the circuit component 63 may occur.

本発明は上記事由に鑑みて為されたものであって、主基板の変形を防止することができる個片基板の製造方法、個片基板、高感度化および信頼性の向上を図れる赤外線検出器を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and an individual substrate manufacturing method capable of preventing deformation of a main substrate, an individual substrate, an infrared detector capable of increasing sensitivity and improving reliability. The purpose is to provide.

請求項1の発明は、一表面に樹脂基板が積層され他表面に樹脂層が積層された主基板を有し、樹脂基板における主基板と反対側の一表面に凹部からなる立体形状部が形成され、樹脂層のうち主基板の厚み方向において立体形状部と少なくとも一部が重なる所定領域に回路部品が埋設された個片基板の製造方法であって、樹脂層の主基板とは反対側の表面に積層される回路基板と主基板とのいずれか一方に実装された回路部品が樹脂層に接触するように、主基板に少なくとも樹脂基板および樹脂層を積層することで積層基板を形成する積層工程と、個片基板の立体形状部に対応する形状の凸部からなる成型部を具備するプレス金型を積層基板の樹脂基板側の表面に当接させてプレス加工を行うことにより、成型部で立体形状部を成型するとともに樹脂層の前記所定領域に回路部品を埋設するプレス工程とを有し、プレス金型として、樹脂基板の厚み寸法と同じ高さ寸法の成型部を具備するものを用いることを特徴とする。   The invention of claim 1 has a main substrate in which a resin substrate is laminated on one surface and a resin layer is laminated on the other surface, and a three-dimensionally shaped portion including a recess is formed on one surface of the resin substrate opposite to the main substrate. A method of manufacturing an individual substrate in which circuit components are embedded in a predetermined region of the resin layer that overlaps at least partly with the three-dimensionally shaped portion in the thickness direction of the main substrate, the resin layer being opposite to the main substrate Laminate that forms a multilayer substrate by laminating at least a resin substrate and a resin layer on the main substrate so that circuit components mounted on either the circuit substrate or the main substrate laminated on the surface are in contact with the resin layer A molding part is formed by bringing a press mold having a molding part composed of a convex part having a shape corresponding to the process and a three-dimensional part of the individual substrate into contact with the surface of the laminated substrate on the resin substrate side. With the three-dimensional shape part And a pressing step of burying the circuit component in the predetermined region of the resin layer, as a press mold, characterized by using those having a molding portion having the same height as the thickness of the resin substrate.

この発明によれば、プレス金型として、樹脂基板の厚み寸法と同じ高さ寸法の成型部を具備するものを用いるので、プレス加工を行った状態でプレス金型の成型部と主基板との間に樹脂基板が介在することはなく、成型部から主基板に印加される押圧力が樹脂基板で緩和されてしまうことはない。ここで、回路部品は樹脂層のうち主基板の厚み方向において立体形状部と少なくとも一部が重なる所定領域に埋設されるので、成型部からの押圧力は主基板のうち前記所定領域に対応する部分に対して印加されることになる。したがって、プレス工程において樹脂層の所定領域に回路部品が埋設される際に、主基板が樹脂層を介して回路部品に押圧されることにより主基板のうち前記所定領域に対応する部分に応力が発生しても、主基板に発生した応力を打ち消す適正な押圧力を成型部から主基板に印加することができ、主基板の変形を防止することができる。   According to the present invention, as the press mold, one having a molding part having the same height as the thickness dimension of the resin substrate is used. Therefore, in the state where the press process is performed, the molding part of the press mold and the main substrate There is no intervening resin substrate, and the pressing force applied from the molding part to the main substrate is not relaxed by the resin substrate. Here, since the circuit component is embedded in a predetermined region of the resin layer at least partially overlapping the three-dimensionally shaped portion in the thickness direction of the main substrate, the pressing force from the molding portion corresponds to the predetermined region of the main substrate. Will be applied to the part. Therefore, when a circuit component is embedded in a predetermined region of the resin layer in the pressing process, stress is applied to a portion of the main substrate corresponding to the predetermined region by pressing the main substrate against the circuit component through the resin layer. Even if it occurs, an appropriate pressing force that cancels the stress generated in the main substrate can be applied to the main substrate from the molding portion, and deformation of the main substrate can be prevented.

請求項2の発明は、請求項1記載の個片基板の製造方法によって製造された個片基板であって、前記立体形状部側の一表面に実装部品が実装される実装領域を備え、前記立体形状部は、少なくとも一部が実装領域に形成されることにより実装部品と前記樹脂基板との間に熱絶縁用の空隙を形成する凹部からなることを特徴とする。   The invention according to claim 2 is an individual substrate manufactured by the method for manufacturing an individual substrate according to claim 1, and includes a mounting region in which a mounting component is mounted on one surface of the three-dimensionally shaped portion side, The three-dimensionally shaped portion is formed of a concave portion that forms a thermal insulation gap between the mounted component and the resin substrate by being at least partially formed in the mounting region.

この発明によれば、主基板の厚み方向において前記所定領域と重なる位置に立体形状部を形成しても主基板の変形を防止することができるので、主基板の厚み方向において前記所定領域と重なる位置を避けることなく、実装部品と樹脂基板との間の熱絶縁をとるために最適な位置に立体形状部を形成することができる。   According to the present invention, since the deformation of the main substrate can be prevented even if the three-dimensionally shaped portion is formed at a position overlapping the predetermined region in the thickness direction of the main substrate, it overlaps with the predetermined region in the thickness direction of the main substrate. Without avoiding the position, the three-dimensionally shaped portion can be formed at an optimum position for thermal insulation between the mounting component and the resin substrate.

請求項3の発明は、請求項2記載の個片基板と、前記実装部品として前記実装領域に実装される焦電素子とを備え、前記立体形状部は、前記実装領域において焦電素子の検知部に対応する位置に形成されていることを特徴とする。   A third aspect of the invention includes the individual substrate according to the second aspect of the invention and a pyroelectric element mounted on the mounting area as the mounting component, and the three-dimensional shape portion detects the pyroelectric element in the mounting area. It is formed in the position corresponding to a part.

この発明によれば、焦電素子の検知部と樹脂基板との間の熱絶縁をとることができるので、焦電素子の感度が高くなる。しかも、主基板の変形が防止されているので、主基板の変形による主基板や回路部品の損傷等の不具合を回避でき、信頼性の向上を図れる。   According to this invention, since the thermal insulation between the detection part of the pyroelectric element and the resin substrate can be taken, the sensitivity of the pyroelectric element is increased. In addition, since deformation of the main board is prevented, problems such as damage to the main board and circuit components due to deformation of the main board can be avoided, and reliability can be improved.

請求項1の発明は、プレス金型として樹脂基板の厚み寸法と同じ高さ寸法の成型部を具備するものを用いることにより、主基板の変形を防止できるという効果がある。   The invention according to claim 1 has an effect that the deformation of the main substrate can be prevented by using a press die having a molding portion having the same height as the thickness of the resin substrate.

請求項3の発明は、焦電素子の感度向上および信頼性の向上を図れるという効果がある。   The invention of claim 3 has the effect of improving the sensitivity and reliability of the pyroelectric element.

以下の実施形態では、赤外線を検出する赤外線検出器に用いる個片基板の製造方法を例示するが、本発明の個片基板の製造方法は、赤外線検出器に用いる個片基板に限らず、一表面に樹脂基板が積層され他表面に樹脂層が積層された主基板を有し、樹脂基板における主基板と反対側の一表面に凹部からなる立体形状部が形成され、樹脂層のうち主基板の厚み方向において立体形状部と少なくとも一部が重なる所定領域に回路部品が埋設された構成の様々な個片基板の製造方法として用いることができる。   In the following embodiments, a method for manufacturing an individual substrate used for an infrared detector that detects infrared light is illustrated. However, the method for manufacturing an individual substrate according to the present invention is not limited to an individual substrate used for an infrared detector. A main substrate having a resin substrate laminated on the surface and a resin layer laminated on the other surface, and a three-dimensionally shaped portion formed of a concave portion is formed on one surface of the resin substrate opposite to the main substrate. It can be used as a manufacturing method of various individual substrates having a configuration in which circuit components are embedded in a predetermined region at least partially overlapping the three-dimensionally shaped portion in the thickness direction.

以下、本実施形態で例示する赤外線検出器の構成について図2および図3を参照して説明する。   Hereinafter, the configuration of the infrared detector exemplified in this embodiment will be described with reference to FIGS.

本実施形態の赤外線検出器は、赤外線の受光量の変化を電圧信号として出力する焦電素子1を個片基板6に実装した回路ブロック10と、回路ブロック10を収納するパッケージ2とを備えている。回路ブロック10には、少なくとも焦電素子1の出力を信号処理する信号処理回路が形成されている。   The infrared detector according to the present embodiment includes a circuit block 10 on which a pyroelectric element 1 that outputs a change in the amount of received infrared light as a voltage signal is mounted on an individual substrate 6, and a package 2 that houses the circuit block 10. Yes. The circuit block 10 is formed with a signal processing circuit that processes at least the output of the pyroelectric element 1.

パッケージ2は、金属製であって円盤状に形成されたステム21と、金属製であって後面が開放された有底円筒状に形成されたキャップ22とを有し、キャップ22の後面をステム21で閉塞する形に組み立てられる。ステム21には絶縁材料からなるスペーサ7を介して回路ブロック10が実装され、キャップ22は、ステム21との間に回路ブロック10を収納する空間を形成するようにステム21に固着される。ここで、ステム21には回路ブロック10と電気的に接続される複数本(ここでは3本)の端子ピン25が挿通されており、パッケージ2の外部空間から回路ブロック10に対する電気的接続を可能としてある。なお、スペーサ7と回路ブロック10とステム21とは接着剤により固着される。   The package 2 has a stem 21 made of a metal and formed in a disc shape, and a cap 22 made of a metal and formed in a bottomed cylindrical shape with an open rear surface. The rear surface of the cap 22 is a stem. 21 is assembled into a closed shape. The circuit block 10 is mounted on the stem 21 via a spacer 7 made of an insulating material, and the cap 22 is fixed to the stem 21 so as to form a space for housing the circuit block 10 between the stem 21. Here, a plurality (three in this case) of terminal pins 25 that are electrically connected to the circuit block 10 are inserted into the stem 21 so that electrical connection to the circuit block 10 can be made from the external space of the package 2. It is as. The spacer 7, the circuit block 10, and the stem 21 are fixed by an adhesive.

キャップ22のうち焦電素子1の前方に位置する前壁には、矩形状(ここでは正方形状)の窓部2aが形成されており、焦電素子1の受光面(前面)に赤外線を集光する赤外線レンズ3が、キャップ22の内側に窓部2aを覆う形で配設されている。ステム21は、上述の各端子ピン25それぞれが挿通される複数の端子用孔21bが厚み方向に貫設されており、各端子ピン25が端子用孔21bに挿通された状態で封止部24により封止される。本実施形態ではキャップ22およびステム21は鋼板から形成されており、ステム21の周部に形成されたフランジ部21cに対して、キャップ22の後端縁から外方に延設された鍔部22cを溶接により封着してある。   A rectangular (here, square) window portion 2 a is formed on the front wall of the cap 22 located in front of the pyroelectric element 1, and infrared rays are collected on the light receiving surface (front surface) of the pyroelectric element 1. An infrared lens 3 that emits light is disposed inside the cap 22 so as to cover the window portion 2a. The stem 21 has a plurality of terminal holes 21b through which the terminal pins 25 are inserted in the thickness direction, and the sealing portion 24 in a state where the terminal pins 25 are inserted into the terminal holes 21b. Is sealed. In the present embodiment, the cap 22 and the stem 21 are made of steel plates, and the flange portion 22c that extends outward from the rear end edge of the cap 22 with respect to the flange portion 21c formed on the peripheral portion of the stem 21. Is sealed by welding.

ところで、回路ブロック10の個片基板6は、ガラスエポキシなどからなり信号処理回路等の構成要素であるICやチップ状電子部品64が実装される回路基板62と、ガラスエポキシなどからなり回路基板62と共に信号処理回路等の回路を形成する主基板66と、回路基板62および主基板66の間に積層された樹脂層65と、主基板66における樹脂層65と反対側の一表面に積層される樹脂基板67と、樹脂基板67における主基板66と反対側の一表面に積層される金属層68とで構成されており、回路基板62、樹脂層65および樹脂基板67、金属層68は、後述する個片基板6の製造方法を用いて主基板66に一体的に積層されるように形成される。ここにおいて、回路基板62および主基板66は回路部品63である上述のICが実装された状態で樹脂層65を挟んで成型されることにより、回路部品63を樹脂層65に埋設した状態で樹脂層65と共に所謂部品内蔵基板からなる多層回路板を構成する。つまり、本実施形態の個片基板6は、樹脂基板67および金属層68を多層回路板に積層することにより構成されている。   By the way, the individual board 6 of the circuit block 10 is made of glass epoxy or the like, and a circuit board 62 on which an IC or chip-shaped electronic component 64 that is a component of a signal processing circuit or the like is mounted; In addition, a main substrate 66 that forms a circuit such as a signal processing circuit, a resin layer 65 laminated between the circuit substrate 62 and the main substrate 66, and one surface of the main substrate 66 opposite to the resin layer 65 are laminated. A resin substrate 67 and a metal layer 68 laminated on one surface of the resin substrate 67 opposite to the main substrate 66 are configured. The circuit board 62, the resin layer 65, the resin substrate 67, and the metal layer 68 are described later. The individual substrate 6 is formed so as to be integrally laminated on the main substrate 66 by using the manufacturing method of the individual substrate 6. Here, the circuit board 62 and the main board 66 are molded with the resin layer 65 sandwiched in a state where the above-described IC as the circuit component 63 is mounted, so that the resin is obtained with the circuit component 63 embedded in the resin layer 65. A multilayer circuit board composed of a so-called component-embedded substrate is formed together with the layer 65. That is, the individual substrate 6 of this embodiment is configured by laminating the resin substrate 67 and the metal layer 68 on the multilayer circuit board.

なお、回路基板62は、図3における上面側に回路部品63がフリップチップ実装され、下面側に複数のチップ状電子部品64が半田リフローにより実装されている。なお、本実施形態の赤外線検出器は、人体から放射される赤外線を検出することで人の動きを検知する用途に用いるものであり、回路部品63(IC)は、焦電素子1の所定周波数帯域(たとえば、0.1〜10Hz程度)の出力を増幅する増幅回路(バンドパスアンプ)や増幅回路の後段のウインドウコンパレータなどが集積化されている。   In the circuit board 62, the circuit component 63 is flip-chip mounted on the upper surface side in FIG. 3, and a plurality of chip-shaped electronic components 64 are mounted on the lower surface side by solder reflow. In addition, the infrared detector of this embodiment is used for the use which detects the motion of a person by detecting the infrared rays radiated | emitted from a human body, and the circuit component 63 (IC) is the predetermined frequency of the pyroelectric element 1. An amplifier circuit (bandpass amplifier) that amplifies the output of a band (for example, about 0.1 to 10 Hz), a window comparator at the subsequent stage of the amplifier circuit, and the like are integrated.

焦電素子1は、個片基板6のうち樹脂基板67において金属層68が積層された上記一表面の実装領域67aに実装されるものであって、個片基板6の実装領域67aのうち焦電素子1の検知部に対応する部位には、焦電素子1の検知部と樹脂基板67との間に熱絶縁用の空隙を形成する形の凹部からなる立体形状部6aが形成されている。この立体形状部6aを設けたことにより、焦電素子1の検知部と樹脂基板67との間の熱絶縁をとることができ、焦電素子1の感度が高くなる。ここでは、立体形状部6a(凹部)は平面視が長円状に形成されており、個片基板6の上記一表面における立体形状部6aの短径方向の両側は焦電素子1の両端部を支持する支持部として機能する。この支持部には、焦電素子1の両端部に形成されている電極(図示せず)を接続するパッド68bが形成されている。ここにおいて、上述した回路部品63は、樹脂層65のうち主基板66の厚み方向において立体形状部6aと少なくとも一部が重なる所定領域に埋設されている。   The pyroelectric element 1 is mounted on the mounting area 67 a on the one surface where the metal layer 68 is laminated on the resin substrate 67 of the individual substrate 6, and the pyroelectric element 1 is focused on the mounting area 67 a of the individual substrate 6. In a portion corresponding to the detection portion of the electric element 1, a three-dimensional shape portion 6 a is formed that includes a concave portion that forms a gap for thermal insulation between the detection portion of the pyroelectric element 1 and the resin substrate 67. . By providing the three-dimensionally shaped portion 6a, thermal insulation between the detecting portion of the pyroelectric element 1 and the resin substrate 67 can be taken, and the sensitivity of the pyroelectric element 1 is increased. Here, the three-dimensionally shaped portion 6 a (concave portion) is formed in an oval shape in plan view, and both sides of the three-dimensionally shaped portion 6 a on the one surface of the individual substrate 6 in the short diameter direction are both end portions of the pyroelectric element 1. It functions as a support part that supports Pads 68b for connecting electrodes (not shown) formed at both ends of the pyroelectric element 1 are formed on the support portion. Here, the circuit component 63 described above is embedded in a predetermined region of the resin layer 65 that at least partially overlaps the three-dimensionally shaped portion 6 a in the thickness direction of the main substrate 66.

回路ブロック10は、回路基板62、樹脂層65、主基板66、樹脂基板67のそれぞれに、上述の端子ピン25が挿通されるスルーホール62b,65b,66b,67bが厚み方向に貫設されており、焦電素子1と信号処理回路とが端子ピン25を介して電気的に接続されるようになっている。なお、本実施形態では、回路基板62、樹脂層65、主基板66、樹脂基板67を積層し、これらの厚み方向に貫通する貫通孔を形成する1回の孔あけ加工でスルーホール62b,65b,66b,67bを形成しており、これにより各スルーホール62b,65b,66b,67bを個別に形成する場合に比べて製造工程の簡略化を図れ、回路ブロック10内の電気的接続が容易に行える。   In the circuit block 10, through holes 62 b, 65 b, 66 b, 67 b through which the terminal pins 25 are inserted are provided through the circuit board 62, the resin layer 65, the main board 66, and the resin board 67 in the thickness direction. The pyroelectric element 1 and the signal processing circuit are electrically connected through the terminal pin 25. In this embodiment, the circuit board 62, the resin layer 65, the main board 66, and the resin board 67 are stacked, and through holes 62b and 65b are formed by a single drilling process that forms a through hole penetrating in the thickness direction. , 66b, 67b are formed so that the manufacturing process can be simplified and electrical connection within the circuit block 10 can be facilitated as compared with the case where the through holes 62b, 65b, 66b, 67b are individually formed. Yes.

樹脂基板67の上記一表面に形成された金属層68は、上述したパッド68bを構成するとともに、パッド68bに電気的に接続されたパターン部68cを構成している。以下では、樹脂基板67の上記一表面に金属層68から形成されたパッド68bやパターン部68cを回路パターン68aと称する。   The metal layer 68 formed on the one surface of the resin substrate 67 constitutes the above-described pad 68b and the pattern portion 68c electrically connected to the pad 68b. Hereinafter, the pads 68b and the pattern portions 68c formed from the metal layer 68 on the one surface of the resin substrate 67 are referred to as circuit patterns 68a.

上述の3本の端子ピン25は、1本が給電用の端子ピン25(25a)、他の1本が信号出力用の端子ピン25(25b)、残りの1本がグランド用の端子ピン25(25c)である。ここで、端子ピン25a,25bを封止する封止部24,24(24a,24b)は、絶縁性を有する封着用のガラスにより形成されており、端子ピン25cを封着する封止部24(24c)は、金属材料により形成されている。要するに、端子ピン25a,25bにおいては金属製のステム21と電気的に絶縁されているのに対し、グランド用の端子ピン25cにおいてはステム21と同電位に設定されている。   Of the above-described three terminal pins 25, one is a power supply terminal pin 25 (25a), the other one is a signal output terminal pin 25 (25b), and the other one is a ground terminal pin 25. (25c). Here, the sealing portions 24 and 24 (24a and 24b) for sealing the terminal pins 25a and 25b are formed of insulating sealing glass, and the sealing portion 24 for sealing the terminal pins 25c. (24c) is formed of a metal material. In short, the terminal pins 25a and 25b are electrically insulated from the metal stem 21, whereas the ground terminal pin 25c is set to the same potential as the stem 21.

上述した構成の赤外線検出器を組み立てる際には、回路ブロック10をステム21にスペーサ7を介して実装した後に、赤外線レンズ3が固着されたキャップ22の鍔部22cとステム21のフランジ部21cとを溶接することにより、密封された金属製のパッケージ2内に回路ブロック10を収納すればよい。なお、パッケージ2は所謂CANパッケージであり、外来ノイズに対するシールド効果を高めるとともに、気密性の向上による耐候性の向上を図ることができる。また、個片基板6に実装される実装部品は、上述した焦電素子1に限るものではなく、たとえばサーミスタ型の赤外線検出素子、サーモパイル型の赤外線検出素子、抵抗ボロメータ型の赤外線検出素子などのように、赤外線受光量の変化を電気信号変化に変換できるものであればよい。   When assembling the infrared detector having the above-described configuration, after mounting the circuit block 10 on the stem 21 via the spacer 7, the flange portion 22c of the cap 22 and the flange portion 21c of the stem 21 to which the infrared lens 3 is fixed. The circuit block 10 may be housed in the sealed metal package 2 by welding. The package 2 is a so-called CAN package, which can enhance the shielding effect against external noise and improve the weather resistance by improving the airtightness. Further, the mounting components mounted on the individual substrate 6 are not limited to the pyroelectric element 1 described above. For example, thermistor type infrared detection element, thermopile type infrared detection element, resistance bolometer type infrared detection element, etc. As long as the change in the amount of received infrared light can be converted into a change in the electrical signal, it is sufficient.

次に、上述した赤外線検出器で用いる個片基板6の製造方法について図1を参照して説明する。   Next, a method for manufacturing the individual substrate 6 used in the above-described infrared detector will be described with reference to FIG.

まず、回路基板62に回路部品63を実装するとともに回路基板62および主基板66に必要な回路パターンを形成する。この状態で、回路基板62と樹脂層65と主基板66とを積層し、さらに樹脂基板67を主基板66の表面に積層し、上述の金属層68の基礎となる金属シート69(たとえば、厚みが18μm程度の銅箔)を樹脂基板67の表面に積層することで、図1(a)に示す位置関係となるように回路基板62と樹脂層65と主基板66と樹脂基板67と金属シート69とを積層した積層基板60を形成する(以下、積層工程と称する)。このとき、回路基板62は回路部品63を実装した実装面を樹脂層65側に向けて積層される。また、本実施形態では、比較的高い伸び率と引っ張り強度をもち常温では強靭性があって破れにくいBステージ状態の樹脂シートを重ねたものをそれぞれ樹脂層65および樹脂基板67として用いている。樹脂シートとしては、たとえば厚みが10〜1000μm程度で、エポキシ樹脂等の熱硬化性樹脂にシリカ等の無機フィラーを高充填(たとえば60〜95wt%程度)したエポキシ樹脂シートのような有機グリーンシートを用いることができる。要するに、回路基板62および主基板66の間に樹脂シートを複数枚(たとえば13枚)重ねて積層することにより樹脂層65を形成し、主基板66に樹脂シートを複数枚(たとえば3枚)重ねて積層することにより樹脂基板67を形成する。なお、本実施形態では矩形板状の積層基板60を形成している。   First, circuit components 63 are mounted on the circuit board 62 and necessary circuit patterns are formed on the circuit board 62 and the main board 66. In this state, the circuit board 62, the resin layer 65, and the main board 66 are laminated, and the resin board 67 is further laminated on the surface of the main board 66, and a metal sheet 69 (for example, thickness) serving as the basis of the metal layer 68 described above. Is laminated on the surface of the resin substrate 67, so that the circuit substrate 62, the resin layer 65, the main substrate 66, the resin substrate 67, and the metal sheet have the positional relationship shown in FIG. A laminated substrate 60 laminated with 69 is formed (hereinafter referred to as a lamination process). At this time, the circuit board 62 is laminated with the mounting surface on which the circuit component 63 is mounted facing the resin layer 65 side. Further, in the present embodiment, the resin layer 65 and the resin substrate 67 are formed by stacking B-stage resin sheets that have a relatively high elongation rate and tensile strength and are tough at room temperature and are not easily torn. The resin sheet is, for example, an organic green sheet such as an epoxy resin sheet having a thickness of about 10 to 1000 μm and a thermosetting resin such as an epoxy resin highly filled with an inorganic filler such as silica (for example, about 60 to 95 wt%). Can be used. In short, a plurality of resin sheets (for example, 13 sheets) are stacked between the circuit board 62 and the main board 66 to form a resin layer 65, and a plurality of (for example, three) resin sheets are stacked on the main board 66. The resin substrate 67 is formed by stacking. In the present embodiment, a rectangular plate-shaped laminated substrate 60 is formed.

そして、図1(b)に示すように積層工程で形成された積層基板60上にプレス金型4を配置した状態で、樹脂シートを軟化させて真空雰囲気中でプレス金型4に圧力をかけることにより積層基板60の熱圧着成形を行い、さらに所定の温度で樹脂シートをCステージ状態まで硬化させる(以下、プレス工程と称する)。プレス工程にて用いるプレス金型4は、図1(a)に示すように積層基板60の金属シート69側の表面との当接部位に、個片基板6の立体形状部6a(ここでは、熱絶縁用の凹部)に対応する形状(ここでは、平面視が長円状)の凸部からなる成型部4aを有し、この成型部4aによりプレス工程において積層基板60に立体形状部6aを成型する。つまり、プレス工程においては、プレス金型4が成型部4aの形成された面(以下、成型面4bと称する)を積層基板60の金属シート69側の表面に突き合わせるように積層基板60上に配置され、この状態でプレス加工が行われることで、積層基板60には成型部4aにより立体形状部6aが成型される。さらに、プレス工程においては積層基板60の熱圧着成形(つまり、回路基板62、樹脂層65、主基板66、樹脂基板67、金属層68の一体化)が行われるので、このとき、回路基板62に実装されている回路部品63が樹脂層65に埋設される。その結果、図1(c)に示すようにプレス工程において積層基板60の熱圧着成形と立体形状部6aの成型と、さらに樹脂層65への回路部品63の埋設とを同時に行うことができ、工数を比較的少なくすることができる。ここにおいて、回路部品63が樹脂層65のうち主基板66の厚み方向において立体形状部6aと少なくとも一部が重なる所定領域に埋設されるように、回路基板62と主基板66とプレス金型4とは主基板66の厚み方向に直交する面内で互いに位置合わせされた状態でプレス加工される。なお、上述の熱圧着成形の条件は適宜設定可能であるが、たとえば圧力を0.2〜5MPa、温度を100〜150℃、時間を60〜600秒とすればよい。さらに、Cステージ状態まで硬化させるため、温度を150〜200℃、時間を10〜180分にして硬化させる。   Then, as shown in FIG. 1B, in a state where the press die 4 is arranged on the laminated substrate 60 formed in the lamination step, the resin sheet is softened and pressure is applied to the press die 4 in a vacuum atmosphere. Thus, the thermocompression molding of the laminated substrate 60 is performed, and the resin sheet is further cured to a C stage state at a predetermined temperature (hereinafter referred to as a pressing step). As shown in FIG. 1A, the press die 4 used in the pressing step is in a contact portion with the surface on the metal sheet 69 side of the multilayer substrate 60, and the three-dimensional shape portion 6a (here, It has a molding part 4a formed of a convex part corresponding to the concave part for thermal insulation (here, the plan view is an ellipse), and this molding part 4a allows the three-dimensional part 6a to be formed on the laminated substrate 60 in the pressing process. Mold. In other words, in the pressing process, the press mold 4 is placed on the laminated substrate 60 so that the surface on which the molding part 4a is formed (hereinafter referred to as the molding surface 4b) is abutted against the surface of the laminated substrate 60 on the metal sheet 69 side. The three-dimensionally shaped portion 6a is molded on the laminated substrate 60 by the molded portion 4a by being placed and pressed in this state. Further, in the pressing process, thermocompression molding (that is, integration of the circuit board 62, the resin layer 65, the main board 66, the resin board 67, and the metal layer 68) of the laminated board 60 is performed. The circuit component 63 mounted on the resin layer 65 is embedded in the resin layer 65. As a result, as shown in FIG. 1C, the thermocompression molding of the laminated substrate 60 and the molding of the three-dimensionally shaped portion 6a and the embedding of the circuit component 63 in the resin layer 65 can be simultaneously performed in the pressing process. Man-hours can be relatively reduced. Here, the circuit board 62, the main board 66, and the press die 4 are embedded so that the circuit component 63 is embedded in a predetermined region of the resin layer 65 that at least partially overlaps the three-dimensional shape portion 6 a in the thickness direction of the main board 66. Are pressed in a state of being aligned with each other in a plane orthogonal to the thickness direction of the main substrate 66. The conditions for the thermocompression molding described above can be set as appropriate. For example, the pressure may be 0.2 to 5 MPa, the temperature may be 100 to 150 ° C., and the time may be 60 to 600 seconds. Furthermore, in order to cure to the C stage state, the temperature is set to 150 to 200 ° C. and the time is set to 10 to 180 minutes.

ところで、本実施形態では、プレス工程で用いるプレス金型4として、樹脂基板67の厚み寸法t1と同じ高さ寸法h1を有する成型部4aを具備したプレス金型4を採用している(h1=t1)。つまり、本実施形態ではBステージ状態の樹脂シートを重ねたものを樹脂基板67として用いているので、樹脂基板67として主基板66に重ねて積層された複数枚(たとえば3枚)の樹脂シートの合計の厚み寸法t1と同じ高さ寸法h1の成型部4aを具備するプレス金型4を用いる。これにより、図1(b)に示すようにプレス加工を行った状態で成型部4aと主基板66との間に樹脂基板67が介在することはない。本実施形態では、樹脂基板67に金属シート69が積層されているので、成型部4aが主基板66に直接当接することはないものの、成型部4aと主基板66との間に介在する金属シート69が樹脂基板67のように緩衝材となることはなく、成型部4aからの押圧力は金属シート69で緩和されることなく主基板66に印加されることになる。   By the way, in this embodiment, the press die 4 provided with the molding part 4a which has the same height dimension h1 as the thickness dimension t1 of the resin substrate 67 is employ | adopted as the press die 4 used at a press process (h1 = t1). In other words, in the present embodiment, a B-stage resin sheet is used as the resin substrate 67, so that a plurality of (for example, three) resin sheets stacked on the main substrate 66 as the resin substrate 67 are stacked. A press die 4 having a molding part 4a having the same height dimension h1 as the total thickness dimension t1 is used. Thereby, as shown in FIG. 1B, the resin substrate 67 does not intervene between the molded portion 4a and the main substrate 66 in a state where the pressing is performed. In the present embodiment, since the metal sheet 69 is laminated on the resin substrate 67, the molded portion 4a does not directly contact the main substrate 66, but the metal sheet interposed between the molded portion 4a and the main substrate 66. 69 does not serve as a buffer material like the resin substrate 67, and the pressing force from the molding portion 4a is applied to the main substrate 66 without being relaxed by the metal sheet 69.

また、プレス工程後の回路形成工程において、プレス工程で一体化された積層基板60に対してスルーホール62b,65b,66b,67bやビアホールを形成するとともに、スルーホール62b,65b,66b,67b内やビアホール内に導電路を形成し、さらに金属層68をパターニングすることで金属層68から上述した回路パターン68aを形成する。具体的には、金属層68において回路パターン68aとなる部分をレジスト(図示せず)で被覆し、金属層68にエッチング処理を施すことにより金属層68のうち回路パターン68a以外の不要な部分(立体形状部6aの金属層68を含む)をエッチング除去する。その後、レジストを除去すれば、樹脂基板67の一表面に回路パターン68aが形成されることとなる。   In the circuit forming process after the pressing process, through holes 62b, 65b, 66b, 67b and via holes are formed in the laminated substrate 60 integrated in the pressing process, and the through holes 62b, 65b, 66b, 67b are formed. In addition, a conductive path is formed in the via hole, and the metal layer 68 is patterned to form the circuit pattern 68a described above from the metal layer 68. Specifically, a portion of the metal layer 68 that becomes the circuit pattern 68a is covered with a resist (not shown), and the metal layer 68 is subjected to an etching process, whereby an unnecessary portion of the metal layer 68 other than the circuit pattern 68a ( The metal layer 68 of the three-dimensional shape portion 6a is removed by etching. Thereafter, if the resist is removed, a circuit pattern 68 a is formed on one surface of the resin substrate 67.

さらにまた、本実施形態では、生産性を向上させるために1回のプレス工程で複数の個片基板6を同時に形成する(所謂、多数個取り)方法を採用している。具体的には、積層基板60として個片基板6を複数取ることのできる大きさのものを用い、さらに、上記成型面4bに同形状の複数の成型部4aが配列されたプレス金型4を用いる。ここでは、一例として複数の成型部4aが格子点状に形成されることで成型面4bに等間隔で成型部4aが整列されたプレス金型4を使用する。プレス工程においては、回路基板62と主基板66とプレス金型4とは、それぞれの四隅に形成された透孔(図示せず)にピン(図示せず)が挿通されることによって互いに位置合わせされる。そして、回路形成工程の後の切出工程において積層基板60から個々の個片基板6が切り出される。   Furthermore, in this embodiment, in order to improve productivity, a method of simultaneously forming a plurality of individual substrates 6 in a single pressing process (so-called multi-cavity) is adopted. Specifically, a laminate mold 60 having a size that allows a plurality of individual substrates 6 to be taken is used, and a press die 4 in which a plurality of molding parts 4a having the same shape are arranged on the molding surface 4b is used. Use. Here, as an example, a press die 4 is used in which a plurality of molding portions 4a are formed in a lattice point shape so that the molding portions 4a are aligned at equal intervals on the molding surface 4b. In the pressing process, the circuit board 62, the main board 66, and the press mold 4 are aligned with each other by inserting pins (not shown) into through holes (not shown) formed at the four corners. Is done. Then, the individual substrate 6 is cut out from the laminated substrate 60 in the cutting step after the circuit forming step.

以上説明した個片基板6の製造方法によれば、プレス金型4として樹脂基板67の厚み寸法t1と同じ高さ寸法h1の成型部4aを具備するものを用いるので、プレス加工を行った状態でプレス金型4の成型部4aと主基板66との間に樹脂基板67が介在することはなく、成型部4aから主基板66に印加される押圧力が樹脂基板67で緩和されてしまうことはない。ここで、回路部品63は樹脂層65のうち主基板66の厚み方向において立体形状部6aと少なくとも一部が重なる所定領域に埋設されるので、成型部4aからの押圧力は主基板66のうち前記所定領域に対応する部分に印加されることになる。したがって、プレス工程において樹脂層65の所定領域に回路部品63が埋設される際に、主基板66が樹脂層65を介して回路部品63に押圧されることにより主基板66のうち前記所定領域に対応する部分に応力が発生しても、この応力を打ち消す適正な押圧力を成型部4aから主基板66に対して印加することができ、主基板66の変形を防止することができる。   According to the manufacturing method of the individual substrate 6 described above, since the press die 4 having the molding part 4a having the same height dimension h1 as the thickness dimension t1 of the resin substrate 67 is used, the state in which the pressing process is performed Thus, the resin substrate 67 is not interposed between the molding part 4a of the press mold 4 and the main substrate 66, and the pressing force applied to the main substrate 66 from the molding part 4a is relaxed by the resin substrate 67. There is no. Here, since the circuit component 63 is embedded in a predetermined region of the resin layer 65 that at least partially overlaps the three-dimensionally shaped portion 6 a in the thickness direction of the main substrate 66, the pressing force from the molding portion 4 a is out of the main substrate 66. It is applied to a portion corresponding to the predetermined area. Therefore, when the circuit component 63 is embedded in a predetermined region of the resin layer 65 in the pressing step, the main substrate 66 is pressed against the circuit component 63 through the resin layer 65, whereby the predetermined region of the main substrate 66 is placed in the predetermined region. Even if a stress is generated in the corresponding portion, an appropriate pressing force for canceling the stress can be applied from the molding portion 4a to the main substrate 66, and deformation of the main substrate 66 can be prevented.

ところで、上述した実施形態では、回路基板62と樹脂層65と主基板66と樹脂基板67と金属シート69(金属層68)とを積層したものを積層基板60としたが、この構成の積層基板60に限るものではなく、少なくとも主基板66の一表面に樹脂基板67が積層され他表面に樹脂層65が積層された積層基板60であれば本発明の製造方法を適用して個片基板6を製造することができる。たとえば金属シート69がない場合でも、プレス金型4として樹脂基板67の厚み寸法t1と同じ高さ寸法h1の成型部4aを具備したものを用いることにより、成型部4aが主基板66に直接当接し、成型部4aから主基板66に適正な押圧力を印加することができる。また、本実施形態では、回路基板62に実装された回路部品63が樹脂層65に接触するように積層工程において主基板66に樹脂層65および回路基板62を積層することで回路基板62に実装された回路部品63を樹脂層65の前記所定領域に埋設するようにしているが、この例に限らず、主基板66の前記他表面(樹脂層65側)に回路部品63を実装し、この(主基板66に実装された)回路部品63を樹脂層65に埋設するようにしてもよく、この場合には回路基板62を省略してもよい。   In the above-described embodiment, the laminated substrate 60 is formed by laminating the circuit board 62, the resin layer 65, the main substrate 66, the resin substrate 67, and the metal sheet 69 (metal layer 68). However, the present invention is not limited to 60, and the individual substrate 6 can be applied by applying the manufacturing method of the present invention to the laminated substrate 60 in which the resin substrate 67 is laminated on at least one surface of the main substrate 66 and the resin layer 65 is laminated on the other surface. Can be manufactured. For example, even when there is no metal sheet 69, the molding part 4 a directly contacts the main substrate 66 by using the press die 4 having the molding part 4 a having the same height dimension h 1 as the thickness dimension t 1 of the resin substrate 67. The proper pressing force can be applied to the main substrate 66 from the molding portion 4a. In this embodiment, the circuit component 63 mounted on the circuit board 62 is mounted on the circuit board 62 by stacking the resin layer 65 and the circuit board 62 on the main board 66 in the stacking process so that the circuit component 63 contacts the resin layer 65. However, the circuit component 63 is mounted on the other surface (resin layer 65 side) of the main board 66, and the circuit component 63 is embedded in the predetermined region of the resin layer 65. The circuit component 63 (mounted on the main board 66) may be embedded in the resin layer 65. In this case, the circuit board 62 may be omitted.

さらにまた、上記実施形態では、回路基板62の図3における上面側に回路部品63、下面側に複数のチップ状電子部品64を実装した例を示したが、回路設計を変更して、回路基板62の下面側に回路部品63をフリップチップ実装し(または、図示しないが回路部品63をダイボンディング後、ワイヤボンディングにて接続し樹脂封止してもよい)、回路基板62の上面側に複数のチップ状電子部品64が半田リフローにより実装されるようにしてもよい。この場合、樹脂層65のうち主基板66の厚み方向において立体形状部6aと少なくとも一部が重なる所定領域には、上記実施形態のICからなる回路部品63に代えて複数のチップ状電子部品64が回路部品として埋設されることとなる。したがって、プレス工程において樹脂層65の所定領域にチップ状電子部品64が埋設される際に、主基板66が樹脂層65を介してチップ状電子部品64に押圧されることにより主基板66のうち前記所定領域に対応する部分に応力が発生するものの、この応力を打ち消す適正な押圧力を成型部4aから主基板66に対して印加することができるので、主基板66の変形を防止することができる。   Furthermore, in the above-described embodiment, the example in which the circuit component 63 is mounted on the upper surface side of the circuit board 62 in FIG. 3 and the plurality of chip-like electronic components 64 is mounted on the lower surface side is shown. A circuit component 63 is flip-chip mounted on the lower surface side of 62 (or, although not shown, the circuit component 63 may be die-bonded and then connected by wire bonding and resin-sealed). The chip-shaped electronic component 64 may be mounted by solder reflow. In this case, a plurality of chip-like electronic components 64 are provided in a predetermined region of the resin layer 65 that at least partially overlaps the three-dimensional shape portion 6a in the thickness direction of the main substrate 66, instead of the circuit component 63 made of the IC of the above embodiment. Is embedded as a circuit component. Therefore, when the chip-shaped electronic component 64 is embedded in a predetermined region of the resin layer 65 in the pressing process, the main substrate 66 is pressed against the chip-shaped electronic component 64 through the resin layer 65, so that Although a stress is generated in a portion corresponding to the predetermined region, an appropriate pressing force for canceling the stress can be applied from the molding portion 4a to the main substrate 66, so that the deformation of the main substrate 66 can be prevented. it can.

本発明の実施形態の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate board | substrate of embodiment of this invention. 同上の赤外線検出器を示し、(a)は概略平面図、(b)は概略断面図である。The infrared detector same as the above is shown, (a) is a schematic plan view, and (b) is a schematic sectional view. 同上の赤外線検出器を示す概略分解斜視図である。It is a schematic exploded perspective view which shows an infrared detector same as the above. 従来例の個片基板を示す概略断面図である。It is a schematic sectional drawing which shows the separate board | substrate of a prior art example. 同上の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate board | substrate same as the above. 他の従来例の個片基板の製造方法を示す要部の工程断面図である。It is process sectional drawing of the principal part which shows the manufacturing method of the separate substrate of another prior art example.

符号の説明Explanation of symbols

1 焦電素子
4 プレス金型
4a 成型部
6 個片基板
6a 立体形状部
60 積層基板
62 回路基板
63 回路部品
65 樹脂層
66 主基板
67 樹脂基板
67a 実装領域
h1 成型部の高さ寸法
t1 樹脂基板の厚み寸法
DESCRIPTION OF SYMBOLS 1 Pyroelectric element 4 Press die 4a Molding part 6 Piece board 6a Three-dimensional shape part 60 Laminated board 62 Circuit board 63 Circuit component 65 Resin layer 66 Main board 67 Resin board 67a Mounting area h1 Height dimension of molding part t1 Resin board Thickness dimension

Claims (3)

一表面に樹脂基板が積層され他表面に樹脂層が積層された主基板を有し、樹脂基板における主基板と反対側の一表面に凹部からなる立体形状部が形成され、樹脂層のうち主基板の厚み方向において立体形状部と少なくとも一部が重なる所定領域に回路部品が埋設された個片基板の製造方法であって、樹脂層の主基板とは反対側の表面に積層される回路基板と主基板とのいずれか一方に実装された回路部品が樹脂層に接触するように、主基板に少なくとも樹脂基板および樹脂層を積層することで積層基板を形成する積層工程と、個片基板の立体形状部に対応する形状の凸部からなる成型部を具備するプレス金型を積層基板の樹脂基板側の表面に当接させてプレス加工を行うことにより、成型部で立体形状部を成型するとともに樹脂層の前記所定領域に回路部品を埋設するプレス工程とを有し、プレス金型として、樹脂基板の厚み寸法と同じ高さ寸法の成型部を具備するものを用いることを特徴とする個片基板の製造方法。   It has a main substrate with a resin substrate laminated on one surface and a resin layer laminated on the other surface, and a three-dimensionally shaped part consisting of recesses is formed on one surface of the resin substrate opposite to the main substrate. A circuit board manufacturing method in which circuit components are embedded in a predetermined region at least partially overlapping with a three-dimensionally shaped portion in the thickness direction of the board, the circuit board being laminated on the surface of the resin layer opposite to the main board A laminating step of laminating at least a resin substrate and a resin layer on the main substrate so that a circuit component mounted on one of the main substrate and the main substrate contacts the resin layer; Forming the three-dimensional shape portion at the molding portion by pressing a press mold having a molding portion having a shape corresponding to the three-dimensional shape portion against the surface of the laminated substrate on the resin substrate side. Together with the predetermined resin layer And a pressing step of burying the circuit component to pass, as a press mold method of manufacturing a single-piece substrates characterized by using those having a molding portion having the same height as the thickness of the resin substrate. 請求項1記載の個片基板の製造方法によって製造された個片基板であって、前記立体形状部側の一表面に実装部品が実装される実装領域を備え、前記立体形状部は、少なくとも一部が実装領域に形成されることにより実装部品と前記樹脂基板との間に熱絶縁用の空隙を形成する凹部からなることを特徴とする個片基板。   An individual substrate manufactured by the method for manufacturing an individual substrate according to claim 1, further comprising a mounting region on which a mounting component is mounted on one surface of the three-dimensional shape portion side, wherein the three-dimensional shape portion includes at least one An individual substrate comprising: a recess formed in a mounting region to form a thermal insulation gap between the mounting component and the resin substrate. 請求項2記載の個片基板と、前記実装部品として前記実装領域に実装される焦電素子とを備え、前記立体形状部は、前記実装領域において焦電素子の検知部に対応する位置に形成されていることを特徴とする赤外線検出器。
A solid substrate according to claim 2 and a pyroelectric element mounted on the mounting area as the mounting component, wherein the three-dimensionally shaped portion is formed at a position corresponding to the detection part of the pyroelectric element in the mounting area. Infrared detector characterized by being made.
JP2007083019A 2007-03-27 2007-03-27 Divided substrate and manufacturing method thereof, and infrared detector Withdrawn JP2008244170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083019A JP2008244170A (en) 2007-03-27 2007-03-27 Divided substrate and manufacturing method thereof, and infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083019A JP2008244170A (en) 2007-03-27 2007-03-27 Divided substrate and manufacturing method thereof, and infrared detector

Publications (1)

Publication Number Publication Date
JP2008244170A true JP2008244170A (en) 2008-10-09

Family

ID=39915138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083019A Withdrawn JP2008244170A (en) 2007-03-27 2007-03-27 Divided substrate and manufacturing method thereof, and infrared detector

Country Status (1)

Country Link
JP (1) JP2008244170A (en)

Similar Documents

Publication Publication Date Title
JP5763682B2 (en) Miniaturized electrical device including MEMS and ASIC and method for manufacturing the same
JP5296894B2 (en) Package carrier and manufacturing method thereof
KR101229142B1 (en) Semiconductor device and microphone
KR101602537B1 (en) Package for high-frequency semiconductor and high-frequency semiconductor device
US20050189622A1 (en) Packaged acoustic and electromagnetic transducer chips
JP6105087B2 (en) Overmolded device with MEMS parts and manufacturing method
JP4655017B2 (en) Acoustic sensor
JP4989139B2 (en) Infrared detector
JP2005191146A (en) Method of manufacturing hybrid integrated circuit device
KR20130047756A (en) Optoelectronic semi-conductor component
JP2008244170A (en) Divided substrate and manufacturing method thereof, and infrared detector
JP2008277954A (en) Package device
JP2008244171A (en) Divided substrate and manufacturing method thereof, and infrared detector
JP5921090B2 (en) Semiconductor device
JP5001695B2 (en) Individual substrate manufacturing method, individual substrate, infrared detector
JP4996302B2 (en) Individual substrate manufacturing method, individual substrate, infrared detector
JP4472481B2 (en) Semiconductor device, method of manufacturing the same, and stacked semiconductor device
JP5054337B2 (en) Infrared detector and manufacturing method thereof
JP4088633B2 (en) Cavity structure for optical device and optical device
JP4989138B2 (en) Infrared detector
JP5825854B2 (en) Semiconductor device
JP2007042702A (en) Semiconductor device
EP4371033A1 (en) Lead-frame, card body of a smart card, smart card, and method of forming a smart card
JP2011014615A (en) Sensor device and manufacturing method thereof
JP2005262353A (en) Electronic part and method of manufacturing electronic part

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601