JP2008241382A - Measuring method of alkaline component concentration in sample water - Google Patents

Measuring method of alkaline component concentration in sample water Download PDF

Info

Publication number
JP2008241382A
JP2008241382A JP2007080604A JP2007080604A JP2008241382A JP 2008241382 A JP2008241382 A JP 2008241382A JP 2007080604 A JP2007080604 A JP 2007080604A JP 2007080604 A JP2007080604 A JP 2007080604A JP 2008241382 A JP2008241382 A JP 2008241382A
Authority
JP
Japan
Prior art keywords
water
reducing agent
alkali component
residual chlorine
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007080604A
Other languages
Japanese (ja)
Other versions
JP5141066B2 (en
Inventor
Hiroyuki Mitsumoto
洋幸 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Miura Protec Co Ltd
Original Assignee
Miura Co Ltd
Miura Protec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Miura Protec Co Ltd filed Critical Miura Co Ltd
Priority to JP2007080604A priority Critical patent/JP5141066B2/en
Publication of JP2008241382A publication Critical patent/JP2008241382A/en
Application granted granted Critical
Publication of JP5141066B2 publication Critical patent/JP5141066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of accurately measuring the alkaline component concentration in sample water without being affected by residual chlorine. <P>SOLUTION: A coloring pigment, a pH adjustor, and a reducing agent discoloring with variation of underwater hydrogen ion concentration are added to the sample water, and the absorbance of the obtained added liquid is detected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料水中のアルカリ成分濃度の測定方法に関する。   The present invention relates to a method for measuring an alkali component concentration in sample water.

ボイラなどの冷熱機器類への給水ラインにおいては、水質管理の指標の一つとして酸消費量(pH4.8)が用いられている。酸消費量(pH4.8)は、水に溶解している炭酸水素塩、炭酸塩、りん酸塩、水酸化物などのアルカリ成分をpH4.8に中和するのに要した酸の量からもとのアルカリ成分の量を計算し、それを炭酸カルシウム(CaCO)に換算して、試料水1リットルあたりのmg数で表したものである。 In a water supply line to a cooling / heating device such as a boiler, acid consumption (pH 4.8) is used as one of water quality management indexes. The acid consumption (pH 4.8) is determined from the amount of acid required to neutralize alkaline components such as bicarbonate, carbonate, phosphate, and hydroxide dissolved in water to pH 4.8. The amount of the original alkali component is calculated, converted to calcium carbonate (CaCO 3 ), and expressed in mg per liter of sample water.

従来から、酸消費量(pH4.8)は、酸による滴定により求める公定法が一般的に用いられている。しかし、この方法では、酸を用いて滴定を行うため、測定に手間がかかり、また酸の濃度管理も確実に行う必要があるという問題がある。   Conventionally, an official method for obtaining acid consumption (pH 4.8) by titration with an acid is generally used. However, in this method, since titration is performed using an acid, there is a problem that measurement is troublesome and the concentration control of the acid needs to be performed reliably.

そこで、酸による滴定を行わずに酸消費量(pH4.8)を求める方法として、あらかじめ酸消費量(pH4.8)が既知の標準液にブロモフェノールブルー(またはその塩)を含む指示薬を添加し、得られた添加液について590nmの吸光度を測定して酸消費量(pH4.8)と吸光度との関係を表した検量線を作成し、次いで酸消費量(pH4.8)未知の試料水に前記指示薬を添加し、得られた添加液について上記と同様に吸光度を測定し、前記検量線に基づいて試料水中の酸消費量(pH4.8)を求める方法が提案されている(特許文献1参照)。   Therefore, as a method for obtaining acid consumption (pH 4.8) without performing titration with acid, an indicator containing bromophenol blue (or its salt) is added to a standard solution with known acid consumption (pH 4.8) in advance. Then, the absorbance at 590 nm was measured for the obtained additive solution to prepare a calibration curve representing the relationship between the acid consumption (pH 4.8) and the absorbance, and then the acid consumption (pH 4.8) unknown sample water A method has been proposed in which the above-mentioned indicator is added, the absorbance of the obtained additive solution is measured in the same manner as described above, and the acid consumption (pH 4.8) in the sample water is determined based on the calibration curve (Patent Document) 1).

特開2001−356118号公報JP 2001-356118 A

しかし、本発明者の検討によれば、特許文献1に記載の方法では、試料水中に残留塩素が含まれていると、残留塩素が指示薬を酸化し、残留塩素が存在しないときに比べて添加液の吸光度が低くなるので、酸消費量(pH4.8)が正確に測定できないことが分かった。   However, according to the study by the present inventor, in the method described in Patent Document 1, when residual chlorine is contained in the sample water, the residual chlorine oxidizes the indicator and is added compared to when no residual chlorine is present. It was found that the acid consumption (pH 4.8) could not be measured accurately because the absorbance of the liquid was low.

本発明は上記事情に鑑みてなされたものであり、その目的は、残留塩素の影響を受けずに試料水中のアルカリ成分濃度を正確に測定する方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the method of measuring the alkali component density | concentration in sample water correctly, without being received to the influence of residual chlorine.

本発明者は、残留塩素を含む試料水に還元剤を添加すれば、上記課題が解決できることを見出し、本発明を完成した。   The present inventor has found that the above problem can be solved by adding a reducing agent to sample water containing residual chlorine, and has completed the present invention.

すなわち、本発明の要旨は以下のとおりである。
〔1〕 試料水に対して、水中の水素イオン濃度の変化に伴って変色する発色色素,pH調整剤及び還元剤を添加し、得られた添加液の吸光度を検出することを特徴とする、試料水中のアルカリ成分濃度の測定方法、
〔2〕 所定のアルカリ成分濃度を有する標準水と所定の残留塩素濃度を有する残留塩素含有水とをそれぞれ所定容量混合してなる試験水に対して、発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加して得られる添加液と、前記残留塩素含有水に代えて純水を用いてなる対照水に対して、前記還元剤に代えて純水を用いてなる組成物を添加して得られる添加液について、測定波長における吸光度を検出し、
前記吸光度に基づいて前記試験水を構成する標準水中のアルカリ成分濃度と前記対照水を構成する標準水中のアルカリ成分濃度を算出し、
両者のアルカリ成分濃度が実質的に同じ場合、試料水に対して前記発色色素,前記pH調整剤及び前記還元剤を混合して1液とした組成物を添加することを特徴とする、前記〔1〕記載の方法、
〔3〕 1液型の組成物中に含まれる還元剤が、アスコルビン酸,ハイドロサルファイト,ロンガリット,チオ尿素,塩化ヒドロキシルアンモニウム,L−システイン及びチオ硫酸からなる群より選ばれる1種以上である、前記〔2〕記載の方法、
〔4〕 所定のアルカリ成分濃度を有する標準水と所定の残留塩素濃度を有する残留塩素含有水とをそれぞれ所定容量混合してなる試験水に対して、発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加して得られる添加液と、前記残留塩素含有水に代えて純水を用いてなる対照水に対して、前記還元剤に代えて純水を用いてなる組成物を添加して得られる添加液の測定波長における吸光度を検出し、
前記吸光度に基づいて前記試験水を構成する標準水中のアルカリ成分濃度と前記対照水を構成する標準水中のアルカリ成分濃度を算出し、
両者のアルカリ成分濃度が異なる場合、試料水に対してあらかじめ前記還元剤を添加し、次いで前記発色色素及び前記pH調整剤を混合して1液とした組成物を添加することを特徴とする、前記〔1〕記載の方法、
〔5〕 試料水に対してあらかじめ添加される還元剤が、グルコース,亜硫酸水素ナトリウム,亜硫酸ナトリウム,メタ重亜硫酸ナトリウム、亜硝酸ナトリウム,硫酸ヒドラジン,ヒドロキノン,ジエタノールアミン,2−アミノ−2−メチルプロパノール及びメチルエチルケトオキシムからなる群より選ばれる1種以上である、前記〔4〕記載の方法、
〔6〕 発色色素がメチルオレンジであり、アルカリ成分濃度が酸消費量(pH4.8)である、前記〔1〕〜〔5〕のいずれか記載の方法、
〔7〕 前記〔1〕〜〔6〕のいずれか記載の方法に用いられ、発色色素,pH調整剤または還元剤のうち、少なくとも1種以上の試薬を備える試薬キット。
That is, the gist of the present invention is as follows.
[1] It is characterized by adding a coloring pigment, a pH adjusting agent and a reducing agent that change color with changes in the hydrogen ion concentration in the water to the sample water, and detecting the absorbance of the obtained additive liquid. Measurement method of alkali component concentration in sample water,
[2] Mixing coloring dye, pH adjuster and reducing agent into test water prepared by mixing standard water having a predetermined alkaline component concentration and residual chlorine-containing water having a predetermined residual chlorine concentration. In contrast to the additive liquid obtained by adding the composition as one liquid and the control water using pure water instead of the residual chlorine-containing water, pure water is used instead of the reducing agent. For the additive solution obtained by adding the composition, the absorbance at the measurement wavelength is detected,
Calculate the alkali component concentration in the standard water constituting the test water and the alkali component concentration in the standard water constituting the control water based on the absorbance,
When the alkali component concentrations of both are substantially the same, the composition containing the coloring dye, the pH adjusting agent, and the reducing agent mixed with the sample water to form one liquid is added. 1] The method according to
[3] The reducing agent contained in the one-component composition is at least one selected from the group consisting of ascorbic acid, hydrosulfite, longalite, thiourea, hydroxylammonium chloride, L-cysteine, and thiosulfuric acid. The method according to [2] above,
[4] Mixing a coloring dye, a pH adjusting agent and a reducing agent with test water obtained by mixing a predetermined volume of standard water having a predetermined alkali component concentration and residual chlorine-containing water having a predetermined residual chlorine concentration. In contrast to the additive liquid obtained by adding the composition as one liquid and the control water using pure water instead of the residual chlorine-containing water, pure water is used instead of the reducing agent. Detect the absorbance at the measurement wavelength of the additive liquid obtained by adding the composition,
Calculate the alkali component concentration in the standard water constituting the test water and the alkali component concentration in the standard water constituting the control water based on the absorbance,
When the alkali component concentrations of the two are different, the reducing agent is added in advance to the sample water, and then the composition that is mixed with the coloring dye and the pH adjuster to form one liquid is added. The method according to [1] above,
[5] The reducing agent added in advance to the sample water is glucose, sodium bisulfite, sodium sulfite, sodium metabisulfite, sodium nitrite, hydrazine sulfate, hydroquinone, diethanolamine, 2-amino-2-methylpropanol, and The method according to [4] above, which is one or more selected from the group consisting of methyl ethyl ketoxime,
[6] The method according to any one of [1] to [5], wherein the coloring dye is methyl orange, and the alkali component concentration is acid consumption (pH 4.8),
[7] A reagent kit that is used in the method according to any one of [1] to [6] and includes at least one reagent among a coloring dye, a pH adjuster, and a reducing agent.

本発明によれば、試料水に対して、水中の水素イオン濃度の変化に伴って変色する発色色素,pH調整剤及び還元剤を添加し、得られた添加液の吸光度を検出するので、残留塩素の影響を受けずに試料水中のアルカリ成分濃度を正確に測定することができる。   According to the present invention, a coloring pigment, a pH adjusting agent, and a reducing agent that change color with changes in the hydrogen ion concentration in the water are added to the sample water, and the absorbance of the resulting additive solution is detected. The alkali component concentration in the sample water can be accurately measured without being affected by chlorine.

本発明では、試料水中のアルカリ成分濃度の測定にあたり、試料水に対して、水中の水素イオン濃度の変化に伴って変色する発色色素,pH調整剤及び還元剤を添加し、得られた添加液の吸光度を検出する。これにより、残留塩素の影響を受けずに試料水中のアルカリ成分濃度を正確に測定することができる。   In the present invention, when measuring the alkali component concentration in the sample water, a coloring dye, a pH adjusting agent, and a reducing agent that change color with a change in the hydrogen ion concentration in the water are added to the sample water, and the obtained additive solution The absorbance of is detected. Thereby, the alkali component density | concentration in sample water can be measured correctly, without receiving to the influence of residual chlorine.

本発明において試料水とは、ボイラなどの冷熱機器類への給水ラインから採取され、水質管理用にアルカリ成分濃度の測定のために用いられる水をいう。また、アルカリ成分濃度とは、酸消費量(pH4.8)または酸消費量(pH8.3)のいずれかをいう。酸消費量(pH4.8)は上記で定義したものである。また、酸消費量(pH8.3)とは、水に溶解している炭酸水素塩、炭酸塩、リン酸塩、水酸化物などのアルカリ成分をpH8.3に中和するのに要した酸の量からもとのアルカリ成分の量を計算し、それを炭酸カルシウム(CaCO)に換算して、試料水1リットルあたりのmg数で表したものである。 In the present invention, the sample water refers to water collected from a water supply line to a cooling / heating device such as a boiler and used for measuring the concentration of alkali components for water quality management. The alkali component concentration refers to either acid consumption (pH 4.8) or acid consumption (pH 8.3). The acid consumption (pH 4.8) is as defined above. The acid consumption (pH 8.3) is the acid required to neutralize alkaline components such as bicarbonate, carbonate, phosphate and hydroxide dissolved in water to pH 8.3. The amount of the original alkali component is calculated from the amount of the sample, converted to calcium carbonate (CaCO 3 ), and expressed in mg per liter of sample water.

水中の水素イオン濃度の変化に伴って変色する発色色素(以下、単に「発色色素」という場合がある)とは、pH4.8またはpH8.3付近で変色するpH指示薬をいう。試料水中の酸消費量(pH4.8)を測定する場合、例えば、メチルオレンジ,メチルレッド,ブロモフェノールブルー,テトラブロモフェノールブルー,ブロモクレゾールグリーン,クロロフェノールレッドなどを例示することができる。また、試料水中の酸消費量(pH8.3)を測定する場合、例えば、フェノールフタレイン,チモールブルー,クレゾールレッド,ブロモチモールブルーなどを例示することができる。   A coloring pigment that changes color with changes in the hydrogen ion concentration in water (hereinafter sometimes simply referred to as “coloring pigment”) refers to a pH indicator that changes color near pH 4.8 or pH 8.3. When measuring the acid consumption (pH 4.8) in the sample water, for example, methyl orange, methyl red, bromophenol blue, tetrabromophenol blue, bromocresol green, chlorophenol red and the like can be exemplified. Moreover, when measuring the acid consumption (pH 8.3) in sample water, a phenolphthalein, thymol blue, cresol red, bromothymol blue etc. can be illustrated, for example.

pH調整剤は、試料水に添加された発色試薬が変色しやすいpH条件に設定するために用いられるものであり、対象とするアルカリ成分濃度及び発色試薬の種類に応じて公知のものが使用される。酸消費量(pH4.8)を測定する場合、例えば、フタル酸塩、塩酸、リン酸、リン酸塩、グリシン、クエン酸、クエン酸塩、コハク酸、コハク酸塩、酒石酸、酒石酸塩、酢酸、酢酸塩、塩化ナトリウム、塩化カリウム、乳酸,乳酸塩などを例示することができ、これらは単独で又は2種以上を混合して使用することができる。酸消費量(pH8.3)を測定する場合、例えば、水酸化ナトリウム、水酸化カリウム、ほう酸、ほう酸塩、クエン酸塩、リン酸塩、炭酸塩、トリス(ヒドロキシメチル)アミノメタン、塩化ナトリウム、塩化カリウム,アミン類などを例示することができ、これらは単独で又は2種以上を混合して使用することができる。   The pH adjusting agent is used for setting the pH condition that the coloring reagent added to the sample water is likely to be discolored, and a known one is used according to the target alkali component concentration and the type of the coloring reagent. The When measuring acid consumption (pH 4.8), for example, phthalate, hydrochloric acid, phosphoric acid, phosphate, glycine, citric acid, citrate, succinic acid, succinate, tartaric acid, tartrate, acetic acid , Acetate, sodium chloride, potassium chloride, lactic acid, lactate and the like can be exemplified, and these can be used alone or in admixture of two or more. When measuring acid consumption (pH 8.3), for example, sodium hydroxide, potassium hydroxide, boric acid, borate, citrate, phosphate, carbonate, tris (hydroxymethyl) aminomethane, sodium chloride, Examples include potassium chloride and amines, and these can be used alone or in admixture of two or more.

還元剤は、公知の還元剤のうち、測定するpH領域又は、試料水のpH領域で残留塩素を還元できるものであれば特に限定されない。本発明に適用可能な還元剤としては、例えば、アスコルビン酸,ハイドロサルファイト,ロンガリット,チオ尿素,塩化ヒドロキシルアンモニウム,L−システイン,チオ硫酸,グルコース,亜硫酸水素ナトリウム,亜硫酸ナトリウム,メタ重亜硫酸ナトリウム,亜硝酸ナトリウム,硫酸ヒドラジン,ヒドロキノン,ジエタノールアミン,2−アミノ−2−メチルプロパノール,メチルエチルケトオキシムなどを例示することができ、これらは単独で又は2種以上を混合して使用することができる。   The reducing agent is not particularly limited as long as it can reduce residual chlorine in a pH range to be measured or a pH range of sample water among known reducing agents. Examples of the reducing agent applicable to the present invention include ascorbic acid, hydrosulfite, longalite, thiourea, hydroxylammonium chloride, L-cysteine, thiosulfate, glucose, sodium bisulfite, sodium sulfite, sodium metabisulfite, Examples thereof include sodium nitrite, hydrazine sulfate, hydroquinone, diethanolamine, 2-amino-2-methylpropanol, and methyl ethyl ketoxime, and these can be used alone or in admixture of two or more.

以下、試料水中のアルカリ成分濃度の測定原理について説明する。試料水中のアルカリ成分には緩衝能力があり、アルカリ成分濃度の異なる所定容量の試料水に対して所定濃度の発色色素及び所定濃度のpH調整剤をそれぞれ所定容量添加すると、得られる添加液のpHは試料水中のアルカリ成分濃度に対応してそれぞれ異なる値を示す。また、発色色素は添加液のpHに応じて異なる形状の吸収スペクトルを示す。そこで、本発明では、アルカリ成分濃度の異なる所定容量の標準液に対して所定濃度の発色色素及び所定濃度のpH調整剤をそれぞれ所定容量添加し、上記標準液中のアルカリ成分濃度と得られた添加液の所定波長における吸光度との関係を示す検量線を作成し、該検量線を作成したときと実質的に同条件でアルカリ成分濃度未知の試料水に対して発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加し、得られた添加液の吸光度を測定し、上記検量線に基づいて試料水中のアルカリ成分濃度を定量している。   Hereinafter, the measurement principle of the alkali component concentration in the sample water will be described. The alkaline component in the sample water has a buffering capacity. When a predetermined volume of color developing dye and a predetermined concentration of pH adjusting agent are added to a predetermined volume of sample water having different alkali component concentrations, the pH of the resulting additive solution is obtained. Indicates different values corresponding to the alkali component concentration in the sample water. Further, the coloring dye exhibits absorption spectra having different shapes depending on the pH of the additive solution. Therefore, in the present invention, a predetermined concentration of color developing dye and a predetermined concentration of pH adjusting agent are respectively added to a predetermined volume of a standard solution having a different alkali component concentration to obtain the alkali component concentration in the standard solution. Create a calibration curve that shows the relationship with the absorbance of the added solution at the specified wavelength, and develop the coloring dye, pH adjuster, and reduction for sample water with unknown alkali component concentration under the same conditions as when the calibration curve was created. A composition that is mixed with an agent to form one solution is added, the absorbance of the obtained additive solution is measured, and the alkali component concentration in the sample water is quantified based on the calibration curve.

標準液のアルカリ成分の濃度範囲は限定されず、通常は、300mg/リットル以下の濃度のものを用いることができる。また、検量線作成時の測定波長についても任意の波長を選択しうるが、測定精度を上げるため、分解能に優れる波長、すなわち、添加液のpHの違いにより吸光度が鋭敏に変化する波長を用いることが好ましい。このことを図4及び図5を用いて具体的に説明する。図4は、酸消費量(pH4.8)を測定対象とし、メチルオレンジを発色色素(変色領域及び色調はpH3.1(赤)〜4.4(黄))として、酸消費量(pH4.8)が0〜117.8mg/リットルの6種類の標準液に対して表1に示す試薬I〔試薬1(pH調整剤)と試薬2(発色試薬)とを混合して1液とした組成物〕を添加し、得られた添加液のうち2種類の添加液(0mg/リットル,117.8mg/リットル)について吸収スペクトルを示したものである。図5は、上記で得られた添加液の吸収スペクトルのうち、420nm及び525nmの吸光度と標準液の酸消費量(pH4.8)との関係を示す検量線である。   The concentration range of the alkali component of the standard solution is not limited, and usually a concentration of 300 mg / liter or less can be used. In addition, any wavelength can be selected as the measurement wavelength when creating the calibration curve, but in order to increase measurement accuracy, use a wavelength with excellent resolution, that is, a wavelength whose absorbance changes sharply due to the difference in pH of the additive solution. Is preferred. This will be specifically described with reference to FIGS. FIG. 4 shows acid consumption (pH 4.8) as a measurement target, methyl orange as a coloring dye (discoloration region and color tone: pH 3.1 (red) to 4.4 (yellow)), and acid consumption (pH 4. 8) A composition in which reagent I [reagent 1 (pH adjusting agent) and reagent 2 (coloring reagent) shown in Table 1 were mixed to form one liquid with six types of standard solutions of 0 to 117.8 mg / liter. The absorption spectrum is shown for two types of additive liquids (0 mg / liter, 117.8 mg / liter) among the obtained additive liquids. FIG. 5 is a calibration curve showing the relationship between the absorbance at 420 nm and 525 nm and the acid consumption (pH 4.8) of the standard solution in the absorption spectrum of the additive solution obtained above.

図4のうち、スペクトルIは酸消費量(pH4.8)が0mg/リットルの標準液について得られた添加液の吸収スペクトル、スペクトルIIは酸消費量(pH4.8)が117.8mg/リットルの標準液について得られた添加液の吸収スペクトルである。図4より、標準液の酸消費量(pH4.8)が高くなるほど、400〜470nmの吸光度が増加し、470〜570nmが低下することが分かる。そして、図5より、420nmを測定波長とした場合、傾きが右上がりの検量線となり、一方、525nmを測定波長とした場合、傾きが右下がりの検量線となる。図5の場合、525nmを測定波長とする検量線の方が傾きが大きいので、測定精度を上げるには420nmよりは525nmの方が適しているといえる。   In FIG. 4, spectrum I is the absorption spectrum of the additive solution obtained for the standard solution having an acid consumption (pH 4.8) of 0 mg / liter, and spectrum II is 117.8 mg / liter of the acid consumption (pH 4.8). Is an absorption spectrum of the additive solution obtained for the standard solution. FIG. 4 shows that as the acid consumption of the standard solution (pH 4.8) increases, the absorbance at 400 to 470 nm increases and the 470 to 570 nm decreases. From FIG. 5, when 420 nm is the measurement wavelength, the calibration curve has an upward slope, while when 525 nm is the measurement wavelength, the calibration curve has a downward slope. In the case of FIG. 5, the calibration curve having a measurement wavelength of 525 nm has a larger slope, so that it can be said that 525 nm is more suitable than 420 nm in order to increase the measurement accuracy.

また、本発明では、試料水中のアルカリ成分濃度を正確に測定するため、所定のアルカリ成分濃度を有する標準水と所定の残留塩素濃度を有する残留塩素含有水とをそれぞれ所定容量混合してなる試験水に対して、発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加して得られる添加液と、上記残留塩素含有水に代えて純水を用いてなる対照水に対して、上記還元剤に代えて純水を用いてなる組成物を添加して得られる添加液について、測定波長における吸光度を検出し、上記吸光度に基づいて上記試験水を構成する標準水中のアルカリ成分濃度と上記対照水を構成する標準水中のアルカリ成分濃度を算出し、両者のアルカリ成分濃度が実質的に同じといえるか否かで、還元剤の添加方法を変えることができる。   Further, in the present invention, in order to accurately measure the alkali component concentration in the sample water, a test in which a predetermined volume of standard water having a predetermined alkali component concentration and residual chlorine-containing water having a predetermined residual chlorine concentration are mixed. An additive solution obtained by adding a composition obtained by mixing a coloring dye, a pH adjusting agent and a reducing agent into water to form one solution, and control water using pure water instead of the residual chlorine-containing water On the other hand, for an additive solution obtained by adding a composition using pure water instead of the reducing agent, the absorbance at the measurement wavelength is detected, and the standard water constituting the test water is based on the absorbance. The method of adding the reducing agent can be changed depending on whether the alkali component concentration and the alkali component concentration in the standard water constituting the control water are calculated and the alkali component concentrations of both are substantially the same.

ここで、標準水とは、上記標準液のうち、任意に選択された所定のアルカリ成分濃度を有するものをいう。残留塩素含有水とは、次亜塩素酸ナトリウムを純水で溶解したものをいい、上記標準水に添加して得られる試験水中に通常0.5〜10ppmの範囲で含まれるように調製される。また、「両者のアルカリ成分濃度が実質的に同じ」とは、対照水を構成する標準水中のアルカリ成分濃度と、試験水を構成する標準水中のアルカリ成分濃度とを対比して、前者を基準としたときに後者が相対誤差5%未満の値を示す場合をいう。   Here, the standard water refers to the standard solution having a predetermined alkali component concentration selected arbitrarily. Residual chlorine-containing water is obtained by dissolving sodium hypochlorite with pure water, and is prepared so that it is usually contained in the range of 0.5 to 10 ppm in the test water obtained by adding to the standard water. . In addition, “the alkali component concentration of both is substantially the same” means that the concentration of the alkali component in the standard water composing the control water is compared with the concentration of the alkali component in the standard water composing the test water. The latter shows a value with a relative error of less than 5%.

上記の試験の結果、試験水を構成する標準水中のアルカリ成分濃度が対照水を構成する標準水中のアルカリ成分濃度と実質的に同じ場合、試料水に対して、あらかじめ還元剤を添加し、次いで発色色素及びpH調整剤を混合して1液とした組成物を添加してもよいし、還元剤,発色色素及びpH調整剤を混合して1液とした組成物を添加してもよい。後者の方法を採用する場合、上記3種類の試薬を同時に添加できるので、添加操作が簡易になり好ましい。   As a result of the above test, when the alkali component concentration in the standard water constituting the test water is substantially the same as the alkali component concentration in the standard water constituting the control water, a reducing agent is added in advance to the sample water, and then A composition that is a mixture of a coloring dye and a pH adjusting agent may be added, or a composition that is a mixture of a reducing agent, a coloring dye and a pH adjusting agent may be added. When the latter method is adopted, the above three types of reagents can be added simultaneously, which is preferable because the addition operation is simplified.

還元剤,発色色素及びpH調整剤を混合して1液の組成物として添加する場合に適用可能な還元剤は、上記に例示した還元剤の中では、アスコルビン酸,ハイドロサルファイト,ロンガリット,チオ尿素,塩化ヒドロキシルアンモニウム,L−システイン及びチオ硫酸が該当する。   Among the reducing agents exemplified above, as the reducing agent applicable when mixing a reducing agent, a coloring dye and a pH adjusting agent and adding them as a one-component composition, ascorbic acid, hydrosulfite, longalite, thio Urea, hydroxylammonium chloride, L-cysteine and thiosulfuric acid are relevant.

一方、上記の試験の結果、試験水を構成する標準水中のアルカリ成分濃度が対照水を構成する標準水中のアルカリ成分濃度と実質的に同じといえない場合(すなわち、異なる場合)、この原因としては以下の3つが考えられる。(1)還元剤がpH調整後のpH領域で残留塩素を還元できない。(2)還元剤がpH調整を妨害してしまう。(3)上記(1)と(2)の両者である。上記(1)の場合、試料水に対して、あらかじめ還元剤を添加し、次いで発色色素及びpH調整剤を混合して1液とした組成物を添加しなければならない。「試験水を構成する標準水中のアルカリ成分濃度が対照水を構成する標準水中のアルカリ成分濃度のアルカリ成分濃度が異なる場合」とは、対照水を構成する標準水中のアルカリ成分濃度と、試験水を構成する標準水中のアルカリ成分濃度とを対比して、前者を基準としたときに後者が相対誤差5%以上の値を示す場合をいう。   On the other hand, as a result of the above test, when the alkali component concentration in the standard water constituting the test water is not substantially the same as the alkali component concentration in the standard water constituting the control water (that is, different), The following three are conceivable. (1) The reducing agent cannot reduce residual chlorine in the pH range after pH adjustment. (2) The reducing agent interferes with pH adjustment. (3) Both (1) and (2) above. In the case of (1) above, it is necessary to add a reducing agent to the sample water in advance, and then add a composition in which the coloring dye and the pH adjusting agent are mixed to form one solution. "When the alkali component concentration in the standard water composing the test water is different from the alkali component concentration in the standard water composing the control water" means that the alkali component concentration in the standard water composing the control water and the test water Is compared with the concentration of alkali components in the standard water that constitutes the above, and the latter shows a relative error of 5% or more with respect to the former.

上記の如く、還元剤を先入れする場合に適用可能な還元剤は、上記に例示した還元剤の中では、グルコース,亜硫酸水素ナトリウム,亜硫酸ナトリウム,メタ重亜硫酸ナトリウム,亜硝酸ナトリウム,硫酸ヒドラジン,ヒドロキノン,ジエタノールアミン,2−アミノ−2−メチルプロパノール,メチルエチルケトオキシムが該当する。   As described above, the reducing agents applicable when the reducing agent is added in advance include glucose, sodium bisulfite, sodium sulfite, sodium metabisulfite, sodium nitrite, hydrazine sulfate, among the reducing agents exemplified above. Hydroquinone, diethanolamine, 2-amino-2-methylpropanol and methyl ethyl ketoxime are applicable.

上述のように還元剤を先入れした場合、該還元剤が試料水中の残留塩素と反応して試料水のpH領域で残留塩素を還元可能である。また、上記還元剤がアミン類の場合、試料水中の残留塩素と反応して結合塩素を形成すると推測されるので、残留塩素の影響を受けずに試料水中のアルカリ成分濃度を測定することができる。この場合、上述したようにアルカリ成分のみを含有する標準液ではなく、アルカリ成分と還元剤を含有する標準液を用いて作成した検量線を用いれば、試料水中のアルカリ成分濃度を正確に測定することができる。   When the reducing agent is introduced in advance as described above, the reducing agent reacts with the residual chlorine in the sample water and can reduce the residual chlorine in the pH region of the sample water. Further, when the reducing agent is an amine, it is presumed that it reacts with residual chlorine in the sample water to form bound chlorine, so the concentration of alkali components in the sample water can be measured without being affected by the residual chlorine. . In this case, if the calibration curve created using the standard solution containing the alkali component and the reducing agent is used instead of the standard solution containing only the alkali component as described above, the alkali component concentration in the sample water is accurately measured. be able to.

また、上記(2)のように還元剤がpH調整を妨害する場合、発色色素,pH調整剤及び還元剤を使用した組成物で予め、検量線を作成すればよい。   When the reducing agent interferes with pH adjustment as described in (2) above, a calibration curve may be prepared in advance using a composition using a coloring dye, pH adjusting agent, and reducing agent.

本発明は、上述した本発明の方法により試料水中のアルカリ成分濃度を測定するための試薬キットをも包含する。該キットとしては、上記発色色素,上記pH調整剤または上記還元剤のうち、少なくとも1種以上の試薬を備えていればよい。上記各試薬を複数備える場合、上記各試薬をそれぞれ別個に備えていてもよいし、各試薬を混合した形態(例えば、発色色素とpH調整剤とを混合した組成物として)で備えていてもよい。   The present invention also includes a reagent kit for measuring the alkali component concentration in sample water by the method of the present invention described above. The kit may include at least one reagent among the coloring dye, the pH adjuster, or the reducing agent. When a plurality of each of the above reagents are provided, each of the above reagents may be provided separately, or may be provided in a form in which each reagent is mixed (for example, as a composition in which a coloring dye and a pH adjusting agent are mixed). Good.

以下、試験例などにより本発明をさらに詳しく説明するが、本発明はこれらによりなんら限定されるものではない。本実施例において、酸消費量(pH4.8)の単位として表示したppmはmg/リットルを意味する。   Hereinafter, the present invention will be described in more detail with reference to test examples and the like, but the present invention is not limited thereto. In this example, ppm expressed as a unit of acid consumption (pH 4.8) means mg / liter.

1.検量線の作成
839.4mgの炭酸水素ナトリウム(NaHCO)に純水を加え1リットルの水溶液を調製した(以下、この水溶液を「I溶液」という)。50ミリリットルのI溶液に1/50N 硫酸をpH4.8になるまで滴下し、消費された酸の量からI溶液中のアルカリ成分の量を計算し、それをCaCO量に換算した。結果、I溶液中の酸消費量(pH4.8)は494ppmと算出された。
1. Preparation of calibration curve Pure water was added to 839.4 mg of sodium bicarbonate (NaHCO 3 ) to prepare a 1 liter aqueous solution (hereinafter, this aqueous solution is referred to as “I solution”). 1 / 50N sulfuric acid was added dropwise to 50 ml of the I solution until the pH reached 4.8, and the amount of the alkaline component in the I solution was calculated from the amount of the consumed acid, which was converted to the amount of CaCO 3 . As a result, the acid consumption (pH 4.8) in the solution I was calculated to be 494 ppm.

I溶液を純水で希釈し、酸消費量(pH4.8)が0ppm,10.4ppm,29.6ppm,56.3ppm,86.9ppm及び117.8ppmの標準液を調製するとともに、表1に示す試薬I〔試薬1(pH調整剤)と試薬2(発色試薬)とを混合して1液とした組成物〕を調製した。各標準液10ミリリットルに対して試薬Iを4.6ミリリットル添加し、室温で1分間静置させた後、得られた添加液のうち、4ミリリットルを分光光度計用セルに移した。上記セルを分光光度計(株式会社日立製作所製U−2010,石英セル長:10mm)にセットし、室温下、525nmの吸光度を測定した。横軸に各標準液の酸消費量(pH4.8)、縦軸に吸光度をとって得られた測定値をプロットし、検量線を作成した。図1に結果を示す。図1より、検量線は右下がりの直線を示した。   The solution I was diluted with pure water to prepare standard solutions with acid consumption (pH 4.8) of 0 ppm, 10.4 ppm, 29.6 ppm, 56.3 ppm, 86.9 ppm and 117.8 ppm. Reagent I shown below [a composition in which reagent 1 (pH adjusting agent) and reagent 2 (coloring reagent) were mixed to form one solution] was prepared. After 4.6 ml of reagent I was added to 10 ml of each standard solution and allowed to stand at room temperature for 1 minute, 4 ml of the obtained additive solution was transferred to a spectrophotometer cell. The cell was set in a spectrophotometer (U-2010 manufactured by Hitachi, Ltd., quartz cell length: 10 mm), and the absorbance at 525 nm was measured at room temperature. A calibration curve was prepared by plotting the acid consumption (pH 4.8) of each standard solution on the horizontal axis and the measured value obtained by taking the absorbance on the vertical axis. The results are shown in FIG. From FIG. 1, the calibration curve showed a straight line that descends to the right.

Figure 2008241382
Figure 2008241382

2.還元剤の添加効果の確認
標準水(上記標準液のうち、酸消費量(pH4.8)が56.3ppmのもの)、残留塩素含有水(濃度138.6ppm,次亜塩素酸ナトリウムを純水で希釈して調製したもの)及び表2に示す試薬II〔試薬1(pH調整剤),試薬2(発色試薬)及び還元剤を混合して1液とした組成物〕を用いて、還元剤の添加により残留塩素の影響を受けずに試験水を構成する標準水中の酸消費量(pH4.8)が正確に測定できるか否か調べた。具体的には、標準水10ミリリットルに対して残留塩素含有水を0.08ミリリットル添加して試験水を調製し(試験水中、残留塩素濃度は1.1ppm)、次いで試薬IIを4.6ミリリットル添加した。そして、室温で1分間静置させた後、得られた添加液のうち、4ミリリットルを分光光度計用セルに移した。次いで、上記セルを分光光度計(株式会社日立製作所製U−2010,石英セル長:10mm)にセットし、室温下、波長350〜650nmの吸収スペクトルを測定した。このように、上記還元剤を含む試薬IIを用いた試験区(全部で17個)を、以下、「還元剤添加区」という。また、還元剤及び残留塩素含有水に代えて純水を用いたこと以外は上記還元剤添加区と同様の試験区(以下、この試験区を「ブランク」という)及び還元剤に代えて純水を用いたこと以外は上記還元剤添加区と同様の試験区(以下、この試験区を「対策なし」という)を用いて各添加液の吸収スペクトルを測定した。図2に吸収スペクトルを示すとともに、以下に上記各試験区の測定に用いた試薬と容量を示す。
2. Confirmation of reducing agent addition effect Standard water (of the above standard solution, acid consumption (pH 4.8) is 56.3 ppm), residual chlorine-containing water (concentration 138.6 ppm, pure sodium hypochlorite) And a reagent II shown in Table 2 (a composition in which reagent 1 (pH adjusting agent), reagent 2 (coloring reagent) and reducing agent are mixed to form one liquid)] It was investigated whether or not the acid consumption (pH 4.8) in the standard water constituting the test water could be accurately measured without being influenced by residual chlorine. Specifically, 0.08 ml of residual chlorine-containing water is added to 10 ml of standard water to prepare test water (residual chlorine concentration is 1.1 ppm in test water), and then reagent II is 4.6 ml. Added. And after leaving still at room temperature for 1 minute, 4 milliliters of the obtained addition liquid was moved to the cell for spectrophotometers. Subsequently, the cell was set in a spectrophotometer (U-2010, manufactured by Hitachi, Ltd., quartz cell length: 10 mm), and an absorption spectrum at a wavelength of 350 to 650 nm was measured at room temperature. Thus, the test group using the reagent II containing the reducing agent (17 in total) is hereinafter referred to as “reducing agent addition group”. Also, pure water instead of the reducing agent and residual chlorine-containing water except that pure water was used instead of the reducing agent-added section (hereinafter referred to as “blank”) and reducing agent. The absorption spectrum of each additive solution was measured using a test group similar to the above-mentioned reducing agent addition group (hereinafter, this test group is referred to as “no countermeasure”) except that the above was used. FIG. 2 shows the absorption spectrum, and the reagents and capacities used for the measurement in each test section are shown below.

Figure 2008241382
Figure 2008241382

<還元剤添加区>
標準水 10 ml
残留塩素含有水 0.08 ml
試薬II(試薬1:試薬2:還元剤(0.1 wt%)=80:12:1(容量比)) 4.6 ml
<Reducing agent added section>
Standard water 10 ml
Residual chlorine-containing water 0.08 ml
Reagent II (Reagent 1: Reagent 2: Reducing agent (0.1 wt%) = 80: 12: 1 (volume ratio)) 4.6 ml

<ブランク>
標準水 10 ml
純水 0.08 ml
試薬IIa(試薬1:試薬2:純水=80:12:1(容量比)) 4.6 ml
<Blank>
Standard water 10 ml
Pure water 0.08 ml
Reagent IIa (Reagent 1: Reagent 2: Pure water = 80: 12: 1 (volume ratio)) 4.6 ml

<対策なし>
標準水 10 ml
残留塩素含有水 0.08 ml
試薬IIa(試薬1:試薬2:純水=80:12:1(容量比)) 4.6 ml
<No measures>
Standard water 10 ml
Residual chlorine-containing water 0.08 ml
Reagent IIa (Reagent 1: Reagent 2: Pure water = 80: 12: 1 (volume ratio)) 4.6 ml

図2のうち、525nmにおける各試験区の吸光度と上記「1.検量線の作成」で得られた検量線とから、各試験区で用いた標準水中の酸消費量(pH4.8)を算出した。そして、「ブランク」で用いた標準水中の酸消費量(pH4.8)を基準として、各試験区で用いた標準水中の酸消費量(pH4.8)を相対誤差(%)で表示した。表3に結果を示す。   In FIG. 2, the acid consumption (pH 4.8) in the standard water used in each test section is calculated from the absorbance of each test section at 525 nm and the calibration curve obtained in “1. did. Then, based on the acid consumption (pH 4.8) in standard water used in “Blank”, the acid consumption (pH 4.8) in standard water used in each test section was displayed as a relative error (%). Table 3 shows the results.

Figure 2008241382
Figure 2008241382

表3のうち、標準水中の酸消費量(pH4.8)について「ブランク」と「対策なし」とを比べると、「ブランク」が56.4ppmであるのに対し、「対策なし」は72.7ppmを示した。これは、「対策なし」では、添加された発色色素(メチルオレンジ)の一部が試験水(標準水+残留塩素含有水)中の残留塩素により酸化されたため、残留塩素を含有しない対照水(標準水+純水)を用いたときの吸光度(すなわち、「ブランク」の吸光度)よりも低くなったためである。すなわち、上記試験水中の残留塩素の影響により、「対策なし」では、酸消費量(pH4.8)が高い側に誤判定したものである。   In Table 3, when comparing “blank” and “no countermeasure” for acid consumption (pH 4.8) in standard water, “blank” is 56.4 ppm, whereas “no countermeasure” is 72. 7 ppm was indicated. This is because, in the case of “without countermeasures”, a part of the added coloring pigment (methyl orange) was oxidized by residual chlorine in the test water (standard water + residual chlorine-containing water). This is because the absorbance was lower than when standard water + pure water was used (that is, the absorbance of “blank”). That is, due to the influence of residual chlorine in the test water, “no countermeasure” is a misjudgment to the higher acid consumption (pH 4.8) side.

また、還元剤添加区では、「ブランク」とほぼ同じ酸消費量(pH4.8)(相対誤差5%未満)を示したものもあれば、「ブランク」と異なる酸消費量(pH4.8)(相対誤差5%以上)を示し、「対策なし」に近い酸消費量(pH4.8)を示したものもあった。このうち、アスコルビン酸,ハイドロサルファイト,ロンガリット,チオ尿素,塩化ヒドロキシルアンモニウム,チオ硫酸またはL−システインを還元剤として添加した場合は、「ブランク」とほぼ同じ酸消費量(pH4.8)を示した。また、図2より、上記7種類の還元剤添加区とブランクとはほぼ同じ吸収スペクトルを示した。このことから、上記7種類の還元剤は、1液組成物(すなわち、試薬II)として用いた場合、試験水中の残留塩素がメチルオレンジを酸化する前に還元剤を酸化するので(すなわち、還元剤が残留塩素を還元するので)、残留塩素の影響を受けることなく酸消費量(pH4.8)を正確に測定できることが分かった。   In addition, in the reducing agent-added section, some acid consumption (pH 4.8) (relative error less than 5%) is almost the same as that of “Blank”, and acid consumption (pH 4.8) different from “Blank”. Some showed (relative error 5% or more) and acid consumption (pH 4.8) close to “no countermeasure”. Of these, when ascorbic acid, hydrosulfite, Rongalite, thiourea, hydroxylammonium chloride, thiosulfuric acid or L-cysteine is added as a reducing agent, the acid consumption (pH 4.8) is almost the same as “Blank”. It was. Moreover, from FIG. 2, the seven types of reducing agent addition sections and the blank showed substantially the same absorption spectrum. Therefore, when the above seven kinds of reducing agents are used as a one-component composition (ie, reagent II), residual chlorine in the test water oxidizes the reducing agent before oxidizing the methyl orange (ie, reducing). It was found that the acid consumption (pH 4.8) can be accurately measured without being affected by residual chlorine (because the agent reduces residual chlorine).

3.ジエタノールアミンの添加方法の検討
上記「2.還元剤の添加効果の確認」において、「ブランク」と異なる酸消費量(pH4.8)を示した還元剤添加区のうち、ジエタノールアミン添加区について、ジエタノールアミンの添加方法を変えることで、残留塩素の影響を受けることなく標準水中のMアルカリ濃度の測定ができるか否か検討した。検討にあたっては、上記「2.還元剤の添加効果の確認」で用いた標準水と残留塩素含有水を使用し、還元剤はジエタノールアミン(0.1wt%水溶液)を使用した。具体的には、標準水10ミリリットルに対して残留塩素含有水を0.08ミリリットル添加して試験水を調製し、次いでジエタノールアミンを50マイクロリットル添加し、1分間撹拌した後、表1に示す試薬Iを4.6ミリリットル添加した。室温で1分間静置させた後、得られた添加液のうち、4ミリリットルを分光光度計用セルに移した。次いで、上記セルを分光光度計(株式会社日立製作所製U−2010,石英セル長:10mm)にセットし、室温下、波長350〜650nmの吸収スペクトルを測定した。このように、ジエタノールアミンを試薬Iよりも先に添加する試験区を、以下、「DEA先入れ区」という。
3. Examination of addition method of diethanolamine In the above-mentioned “2. Confirmation of addition effect of reducing agent”, among the reducing agent addition groups showing acid consumption (pH 4.8) different from “blank”, the diethanolamine addition group It was examined whether the M alkali concentration in standard water could be measured without being affected by residual chlorine by changing the addition method. In the study, the standard water and residual chlorine-containing water used in “2. Confirmation of addition effect of reducing agent” were used, and diethanolamine (0.1 wt% aqueous solution) was used as the reducing agent. Specifically, 0.08 ml of residual chlorine-containing water is added to 10 ml of standard water to prepare test water, and then 50 microliters of diethanolamine is added, stirred for 1 minute, and then the reagents shown in Table 1 4.6 ml of I was added. After allowing to stand at room temperature for 1 minute, 4 ml of the resulting additive solution was transferred to a spectrophotometer cell. Subsequently, the cell was set in a spectrophotometer (U-2010, manufactured by Hitachi, Ltd., quartz cell length: 10 mm), and an absorption spectrum at a wavelength of 350 to 650 nm was measured at room temperature. In this manner, the test group in which diethanolamine is added before the reagent I is hereinafter referred to as “DEA first-in group”.

また、残留塩素含有水に代えて純水を用いたこと以外は上記DEA先入れ区と同様の試験区(以下、この試験区を「DEA先入れ区(ブランク)」という),ジエタノールアミンを先入れすることに代えて表2に示す試薬IIとして(すなわち、1液の組成物として)ジエタノールアミンを添加したこと以外は上記DEA先入れ区と同様の試験区(以下、この試験区を「DEA混合区」という)及び残留塩素含有水に代えて純水を用いたこと以外は上記DEA混合区と同様の試験区(以下、この試験区を「DEA混合区(ブランク)」という)を用いて吸収スペクトルを測定した。図3に各添加液の吸収スペクトルを示すとともに、以下に上記各試験区の測定に用いた試薬と容量を示す。なお、図3では、比較のため、図2の「ブランク」と「対策なし」の吸収スペクトルも併記した。   In addition, a test zone similar to the above-mentioned DEA first-in zone (hereinafter referred to as “DEA first-in zone (blank))” except that pure water was used instead of residual chlorine-containing water, and diethanolamine was pre-filled Instead of the above, the test section similar to the above-mentioned DEA pre-injection section except that diethanolamine was added as the reagent II shown in Table 2 (that is, as a one-component composition) (hereinafter, this test section is referred to as “DEA mixed section”). )) And absorption spectrum using a test zone similar to the above-mentioned DEA mixed zone (hereinafter referred to as “DEA mixed zone (blank))” except that pure water was used instead of residual chlorine-containing water. Was measured. FIG. 3 shows the absorption spectrum of each additive solution, and the reagents and capacities used for the measurement of each test section are shown below. In FIG. 3, the absorption spectrum of “blank” and “no countermeasure” in FIG. 2 are also shown for comparison.

<DEA先入れ区>
標準水 10 ml
残留塩素含有水 0.08 ml
還元剤(0.1 wt%) 50 μl
試薬I(試薬1:試薬2=80:12 (容量比)) 4.6 ml
<DEA first-in ward>
Standard water 10 ml
Residual chlorine-containing water 0.08 ml
Reducing agent (0.1 wt%) 50 μl
Reagent I (Reagent 1: Reagent 2 = 80: 12 (volume ratio)) 4.6 ml

<DEA先入れ区(ブランク)>
標準水 10 ml
純水 0.08 ml
還元剤(0.1 wt%) 50 μl
試薬I(試薬1:試薬2=80:12 (容量比)) 4.6 ml
<DEA first-in ward (blank)>
Standard water 10 ml
Pure water 0.08 ml
Reducing agent (0.1 wt%) 50 μl
Reagent I (Reagent 1: Reagent 2 = 80: 12 (volume ratio)) 4.6 ml

<DEA混合区>
標準水 10 ml
残留塩素含有水 0.08 ml
試薬II(試薬1:試薬2:還元剤(0.1 wt%)=80:12:1(容量比)) 4.6 ml
<DEA mixed district>
Standard water 10 ml
Residual chlorine-containing water 0.08 ml
Reagent II (Reagent 1: Reagent 2: Reducing agent (0.1 wt%) = 80: 12: 1 (volume ratio)) 4.6 ml

<DEA混合区(ブランク)>
標準水 10 ml
純水 0.08 ml
試薬II(試薬1:試薬2:還元剤(0.1 wt%)=80:12:1(容量比)) 4.6 ml
<DEA mixed section (blank)>
Standard water 10 ml
Pure water 0.08 ml
Reagent II (Reagent 1: Reagent 2: Reducing agent (0.1 wt%) = 80: 12: 1 (volume ratio)) 4.6 ml

図3より、DEA先入れ区とDEA先入れ区(ブランク)の吸収スペクトルがほぼ一致したのに対し、DEA混合区とDEA混合区(ブランク)の吸収スペクトルは一致しなかった。このことから、ジエタノールアミンを先入れした場合、ジエタノールアミンが残留塩素と反応して結合塩素を形成するため、残留塩素の影響を受けることなく標準水中の酸消費量(pH4.8)の測定を行えることが分かった。しかし、DEA先入れ区の吸収スペクトルは「ブランク」の吸収スペクトルとかなり形状が異なっていた。これは、ジエタノールアミンが添加液のpHを増加させているためと推測される。   From FIG. 3, the absorption spectra of the DEA first-in-zone and the DEA first-in-zone (blank) almost matched, whereas the DEA-mixed zone and the DEA-mixed zone (blank) did not match. From this, when diethanolamine is put in first, diethanolamine reacts with residual chlorine to form bound chlorine, so that acid consumption (pH 4.8) in standard water can be measured without being affected by residual chlorine. I understood. However, the absorption spectrum of the DEA first-in-zone was significantly different from the “blank” absorption spectrum. This is presumably because diethanolamine increases the pH of the additive solution.

この点については、上記「1.検量線の作成」において、各標準液(10ミリリットル)に、試薬I(4.6ミリリットル)とジエタノールアミン(50マイクロリットル)を添加した添加液を用いた検量線を使用するようにすればよい。このことは、上記「2.還元剤の添加効果の確認」において、「ブランク」と異なる酸消費量(pH4.8)を示したジエタノールアミン添加区以外の還元剤添加区についても同様にいえる。   Regarding this point, a calibration curve using an additive solution obtained by adding reagent I (4.6 ml) and diethanolamine (50 microliters) to each standard solution (10 ml) in “1. Should be used. The same can be said for the reducing agent addition section other than the diethanolamine addition section showing an acid consumption (pH 4.8) different from “blank” in “2. Confirmation of addition effect of reducing agent”.

本発明は、試料水中のアルカリ成分濃度を簡易に測定し得る測定方法として広く利用することができる。   The present invention can be widely used as a measurement method capable of easily measuring the alkali component concentration in sample water.

酸消費量(pH4.8)が0〜117.8ppmの6種類の標準液に対して表1に示す試薬Iを添加して得られた添加液の吸収スペクトルのうち、525nmの吸光度と標準液の酸消費量(pH4.8)との関係を示す検量線である。Among the absorption spectra of the additive solutions obtained by adding Reagent I shown in Table 1 to six standard solutions having an acid consumption (pH 4.8) of 0 to 117.8 ppm, the absorbance at 525 nm and the standard solution Is a calibration curve showing the relationship with the acid consumption (pH 4.8). 標準水と残留塩素含有水を混合した試験水に対して表2に示す試薬II(各種還元剤を含有する)を添加して得られた添加液の吸収スペクトルである。It is an absorption spectrum of an additive solution obtained by adding Reagent II (containing various reducing agents) shown in Table 2 to test water obtained by mixing standard water and residual chlorine-containing water. 標準水と残留塩素含有水を混合した試験水に対してジエタノールアミン(還元剤)を種々の態様で添加して得られた添加液の吸収スペクトルである。It is an absorption spectrum of an additive solution obtained by adding diethanolamine (reducing agent) in various modes to test water in which standard water and residual chlorine-containing water are mixed. 酸消費量(pH4.8)の異なる2種類の標準液に対して表1に示す試薬Iを添加して得られた添加液の吸収スペクトルである。It is an absorption spectrum of the addition liquid obtained by adding the reagent I shown in Table 1 with respect to two types of standard solutions from which acid consumption (pH 4.8) differs. 酸消費量(pH4.8)の異なる6種類の標準液に対して表1に示す試薬Iを添加して得られた添加液の吸収スペクトルのうち、420nm及び525nmの吸光度と標準液の酸消費量(pH4.8)との関係を示す検量線である。Among the absorption spectra of the additive solutions obtained by adding Reagent I shown in Table 1 to six types of standard solutions with different acid consumption (pH 4.8), the absorbance at 420 nm and 525 nm and the acid consumption of the standard solution It is a calibration curve showing the relationship with the amount (pH 4.8).

Claims (7)

試料水に対して、水中の水素イオン濃度の変化に伴って変色する発色色素,pH調整剤及び還元剤を添加し、得られた添加液の吸光度を検出することを特徴とする、試料水中のアルカリ成分濃度の測定方法。   A coloring pigment, a pH adjusting agent, and a reducing agent that change color as the hydrogen ion concentration in the water changes are added to the sample water, and the absorbance of the resulting additive solution is detected. Measuring method of alkali component concentration. 所定のアルカリ成分濃度を有する標準水と所定の残留塩素濃度を有する残留塩素含有水とをそれぞれ所定容量混合してなる試験水に対して、発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加して得られる添加液と、前記残留塩素含有水に代えて純水を用いてなる対照水に対して、前記還元剤に代えて純水を用いてなる組成物を添加して得られる添加液について、測定波長における吸光度を検出し、
前記吸光度に基づいて前記試験水を構成する標準水中のアルカリ成分濃度と前記対照水を構成する標準水中のアルカリ成分濃度を算出し、
両者のアルカリ成分濃度が実質的に同じ場合、試料水に対して前記発色色素,前記pH調整剤及び前記還元剤を混合して1液とした組成物を添加することを特徴とする、請求項1記載の方法。
The test water formed by mixing a predetermined volume of standard water having a predetermined alkali component concentration and residual chlorine-containing water having a predetermined residual chlorine concentration is mixed with a coloring dye, a pH adjusting agent, and a reducing agent. In contrast to an additive liquid obtained by adding a liquid composition and control water using pure water instead of the residual chlorine-containing water, a composition using pure water instead of the reducing agent For the additive solution obtained by adding, the absorbance at the measurement wavelength is detected,
Calculate the alkali component concentration in the standard water constituting the test water and the alkali component concentration in the standard water constituting the control water based on the absorbance,
The composition comprising a mixture of the coloring dye, the pH adjusting agent and the reducing agent in a sample water when the alkali component concentrations of the two are substantially the same is added. The method according to 1.
1液型の組成物中に含まれる還元剤が、アスコルビン酸,ハイドロサルファイト,ロンガリット,チオ尿素,塩化ヒドロキシルアンモニウム,L−システイン及びチオ硫酸からなる群より選ばれる1種以上である、請求項2記載の方法。   The reducing agent contained in the one-component composition is at least one selected from the group consisting of ascorbic acid, hydrosulfite, longalite, thiourea, hydroxylammonium chloride, L-cysteine, and thiosulfuric acid. 2. The method according to 2. 所定のアルカリ成分濃度を有する標準水と所定の残留塩素濃度を有する残留塩素含有水とをそれぞれ所定容量混合してなる試験水に対して、発色色素,pH調整剤及び還元剤を混合して1液とした組成物を添加して得られる添加液と、前記残留塩素含有水に代えて純水を用いてなる対照水に対して、前記還元剤に代えて純水を用いてなる組成物を添加して得られる添加液の測定波長における吸光度を検出し、
前記吸光度に基づいて前記試験水を構成する標準水中のアルカリ成分濃度と前記対照水を構成する標準水中のアルカリ成分濃度を算出し、
両者のアルカリ成分濃度が異なる場合、試料水に対してあらかじめ前記還元剤を添加し、次いで前記発色色素及び前記pH調整剤を混合して1液とした組成物を添加することを特徴とする、請求項1記載の方法。
The test water formed by mixing a predetermined volume of standard water having a predetermined alkali component concentration and residual chlorine-containing water having a predetermined residual chlorine concentration is mixed with a coloring dye, a pH adjusting agent, and a reducing agent. In contrast to an additive liquid obtained by adding a liquid composition and control water using pure water instead of the residual chlorine-containing water, a composition using pure water instead of the reducing agent Detect the absorbance at the measurement wavelength of the additive solution obtained by adding,
Calculate the alkali component concentration in the standard water constituting the test water and the alkali component concentration in the standard water constituting the control water based on the absorbance,
When the alkali component concentrations of the two are different, the reducing agent is added in advance to the sample water, and then the composition that is mixed with the coloring dye and the pH adjuster to form one liquid is added. The method of claim 1.
試料水に対してあらかじめ添加される還元剤が、グルコース,亜硫酸水素ナトリウム,亜硫酸ナトリウム,メタ重亜硫酸ナトリウム、亜硝酸ナトリウム,硫酸ヒドラジン,ヒドロキノン,ジエタノールアミン,2−アミノ−2−メチルプロパノール及びメチルエチルケトオキシムからなる群より選ばれる1種以上である、請求項4記載の方法。   Reducing agents added in advance to the sample water are glucose, sodium hydrogen sulfite, sodium sulfite, sodium metabisulfite, sodium nitrite, hydrazine sulfate, hydroquinone, diethanolamine, 2-amino-2-methylpropanol and methyl ethyl ketoxime. The method of Claim 4 which is 1 or more types chosen from the group which consists of. 発色色素がメチルオレンジであり、アルカリ成分濃度が酸消費量(pH4.8)である、請求項1〜5のいずれか記載の方法。   The method according to any one of claims 1 to 5, wherein the coloring dye is methyl orange and the alkali component concentration is acid consumption (pH 4.8). 請求項1〜6のいずれか記載の方法に用いられ、発色色素,pH調整剤または還元剤のうち、少なくとも1種以上の試薬を備える試薬キット。   A reagent kit that is used in the method according to any one of claims 1 to 6 and comprises at least one reagent among a coloring dye, a pH adjuster, and a reducing agent.
JP2007080604A 2007-03-27 2007-03-27 Method for measuring alkali component concentration in sample water Expired - Fee Related JP5141066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080604A JP5141066B2 (en) 2007-03-27 2007-03-27 Method for measuring alkali component concentration in sample water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080604A JP5141066B2 (en) 2007-03-27 2007-03-27 Method for measuring alkali component concentration in sample water

Publications (2)

Publication Number Publication Date
JP2008241382A true JP2008241382A (en) 2008-10-09
JP5141066B2 JP5141066B2 (en) 2013-02-13

Family

ID=39912924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080604A Expired - Fee Related JP5141066B2 (en) 2007-03-27 2007-03-27 Method for measuring alkali component concentration in sample water

Country Status (1)

Country Link
JP (1) JP5141066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212028A (en) * 2015-05-13 2016-12-15 三菱マテリアル株式会社 Concentration measurement device, concentration measurement method and control program
CN111912800A (en) * 2020-08-11 2020-11-10 深圳市泛邦建设工程咨询有限公司 Method for detecting low-concentration ammonia nitrogen in drinking water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218461A (en) * 1989-10-16 1991-09-26 Osaka Prefecture Continuous analysis apparatus for trihalomethane
JPH1164323A (en) * 1997-08-27 1999-03-05 Miura Co Ltd Hardness indicator
JP2001356118A (en) * 2000-06-15 2001-12-26 Miura Co Ltd Indicator for m alkalinity measurement
JP2005283401A (en) * 2004-03-30 2005-10-13 Miura Co Ltd Hardness measuring reagent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218461A (en) * 1989-10-16 1991-09-26 Osaka Prefecture Continuous analysis apparatus for trihalomethane
JPH1164323A (en) * 1997-08-27 1999-03-05 Miura Co Ltd Hardness indicator
JP2001356118A (en) * 2000-06-15 2001-12-26 Miura Co Ltd Indicator for m alkalinity measurement
JP2005283401A (en) * 2004-03-30 2005-10-13 Miura Co Ltd Hardness measuring reagent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212028A (en) * 2015-05-13 2016-12-15 三菱マテリアル株式会社 Concentration measurement device, concentration measurement method and control program
CN111912800A (en) * 2020-08-11 2020-11-10 深圳市泛邦建设工程咨询有限公司 Method for detecting low-concentration ammonia nitrogen in drinking water
CN111912800B (en) * 2020-08-11 2023-07-18 深圳市泛邦建设工程咨询有限公司 Method for detecting low-concentration ammonia nitrogen in drinking water

Also Published As

Publication number Publication date
JP5141066B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
RU2013124970A (en) METHOD AND DEVICE FOR DETERMINING SYSTEM PARAMETERS IN ORDER TO REDUCE CORROSION IN THE INSTALLATION OF PRIMARY OIL TREATMENT
CN104483311A (en) Indicator for simultaneous measurement of calcium, barium and magnesium in silicon-calcium-barium-magnesium by adopting EDTA titration method
CN101806715B (en) Variable-volume microfluidic chip for colorimetric assay
CA2806491A1 (en) Simultaneous determination of multiple analytes in industrial water system
ES2628313T3 (en) Composition of lithium reagent, and method and device for determining the amount of lithium ion using the same
WO2009123069A1 (en) Method for preparing calibrating reagent, calibrating reagent, and method for calibrating blood component measuring device using said calibrating reagent
JP5141066B2 (en) Method for measuring alkali component concentration in sample water
JP4222327B2 (en) Reagent for hardness measurement
CN103018183A (en) Kit and method used for monitoring hexavalent chromium online
JP2005283392A (en) Hardness measuring reagent
EP2567215B1 (en) Colorimetric analytical method
KR20150070081A (en) Total nitrogen and total phosphorus measuring device which has low measurement error and which is easy to make maintenance
AU2011250650A1 (en) Analysis reagents and method
US11378566B2 (en) Method for determining ammonium
CA2582002A1 (en) Composition for measuring concentration of residual chlorine
JP4151023B2 (en) Calcium measuring reagent and measuring method
JP2019535006A5 (en)
CN102156126B (en) Method and kit for detecting carbon dioxide bonding force
JP2006284206A (en) Reagent for judging iron component, presence judging method of iron component and concentration measuring method of iron component
US20170108481A1 (en) Acetate complexes and methods for acetate quantification
JP4179207B2 (en) Reagent for hardness measurement
CN100498291C (en) Beryllium determination solution and colorimetric determination tube therefor
CA1335251C (en) Quantitative determination of phosphorus
CN110108685A (en) Using graphene quantum dot as the method for fluorescence probe detection of alkaline phosphatase concentration
US20230358671A1 (en) Method for determining ammonium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees