JPH03218461A - Continuous analysis apparatus for trihalomethane - Google Patents

Continuous analysis apparatus for trihalomethane

Info

Publication number
JPH03218461A
JPH03218461A JP27745290A JP27745290A JPH03218461A JP H03218461 A JPH03218461 A JP H03218461A JP 27745290 A JP27745290 A JP 27745290A JP 27745290 A JP27745290 A JP 27745290A JP H03218461 A JPH03218461 A JP H03218461A
Authority
JP
Japan
Prior art keywords
solution
section
trihalomethane
acid amide
nicotinic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27745290A
Other languages
Japanese (ja)
Other versions
JPH0812186B2 (en
Inventor
Akio Osumi
大住 旦生
Yoshiharu Tanaka
良春 田中
Koji Kawakami
幸次 川上
Hiroshi Hoshikawa
星川 寛
Masaru Kono
勝 河野
Haruo Ito
晴夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Prefecture
Original Assignee
Fuji Electric Co Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Prefecture filed Critical Fuji Electric Co Ltd
Publication of JPH03218461A publication Critical patent/JPH03218461A/en
Publication of JPH0812186B2 publication Critical patent/JPH0812186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make stable and rapid measurement with good reproducibility and high sensitivity by bringing a soln. mixed with a sample liquid of trihalomethane into contact with a carrier soln. mixed with nicotinic acid amide and NaOH via a microporous membrane. CONSTITUTION:The carrier soln. mixed 5A with the nicotinic acid amide and NaOH is sent to the the inner side of the tube of a separator 2. On the other hand, the 2nd soln. mixed 5B with the sample liquid contg. the trihalomethane and a sodium sulfite soln. or hydrazine sulfate is sent to the outer side of a separator 2 but these two solns. do not mix as the tube consisting of the microporous membrane is made of 'Teflon(R)' and has water repellency. However, the trihalomethane in the 2nd soln. has high volatility and, therefore, diffuses in the form of gas into the micropores. This gas penetrates into the carrier soln. and forms a fluorescent condensate by reacting with the nicotinic acid amide in the presence of the NaOH. The carrier soln. is then cooled 6 to about 10 to 30 deg.C to prevent the degradation in sensitivity by the temp. extinction of the fluorescence. After bubbles are removed, the fluorescent condensate is fluorescently detected and determined in a detecting section 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は溶液中の低沸点有機塩素化合物であるトリハ
ロメタンの分析装置に係り、特にトリハロメタンを安定
に分析することが可能な連続分析装置に関する. 〔従来の技術〕 1972年オランダのRoomによって、ライン河の下
流にかなりの濃度の有機塩素化合物が存在しており、こ
の有機塩素化合物は、クロロホルム等のトリハロメタン
が大きな割合を占めていることが報告された.そしてさ
らに、ミシシッピー河下流域のニエーオルレアンズ地域
において、トリハロメタンを含む水道水を飲用している
人々と飲用していない人々の間に、ガンの発生率に有意
な差があるという調査結果が報告され、水道水中のトリ
ハロメタンが注目された. その後、多くの研究によって、トリハロメタンは水中の
有機化合物と疫学的安全性を確保するために使う塩素に
起因して生成することが明らかになった. このような状況の中で、わが国では1981年3月に水
道水中のトリ八口メタンの濃度の制御目標値を0.10
s+g/ 1とすることを決め、厚生省がら通達された
. このトリハロメタンの問題を解決し、安全な水を人々に
提供するには、トリ八口メタンが生成しない水処理技術
の開発が重要であると共に、正確かつ迅速にトリハロメ
タンを分析する技術の開発が必要になる. トリハロメタンは第1表に示すように比較的低沸点の物
質であるため、試料水から揮発しやすい,特に水道水中
に、他のトリハロメタン物質より多く含まれているクロ
ロホルムの沸点は、61.2℃と一番低い.また他の成
分と違ってその濃度がppbレベルで低いという特徴が
ある。従って、これらを正確に分析するためには採水一
保管一分析に至る操作には、細心の注意をはらわなけれ
ばならない. 第1表 トリハロメタンの分析法としてはヘッドスペース法,溶
媒抽出法,パージトラップ法などでトリハロメタンを分
I1濃縮してからECD付ガスクロマトグラフィーで定
量する方法が知られ、またフローインジェクシッン法で
トリハロメタンを分離してから、螢光法を用いて定量す
る方法が知られている. 〔発明が解決しようとする課題〕 しかしながらこれらの方法のうち、前者は測定に数時間
を要し時間がかかる上、回分式なので連続分析ができな
いという問題がある.さらに後者は第4図に示すように
分離部15において微孔性の膜を介してNaOH溶液で
あるキャリア溶液にトリハロメタンを含む試料液を接触
して流し、トリハロメタンをNaOF+溶液に拡散移行
させたのちニコチン酸アミド溶液を加え、反応部16に
おいてトリハロメタンとニコチン酸アミドとを反応させ
、次いで検出部18において反応生成物を藤原反応によ
り蛍光的に定量する.この際分離部15と反応部16と
は異なった恒温部17A,17Bにおいてそれぞれ60
’C90℃の一定温度に維持される.この方法は迅速に
かつ高感度にトリハロメタンを定量できる特長がある.
しかしながらこのフローインジェクシ町ン法は以下のよ
うな問題がある.すなわち11+分離部を遣過したあと
でニコチン酸アミドを加えるのでキャリア溶液とニコチ
ン酸アミド溶液の混合が不充分で安定な出力信号が得ら
れない.《2》反応部16でキャリア溶液を加温する際
に、キャリア溶液中に気泡が発生し、この気泡が螢光測
定を妨害し、安定な測定ができない. この発明は上述の点に鑑みてなされ、その目的は従来の
フローインジェクシッン法を改良し、安定かつ連続にト
リハロメタンを定量することが可能なトリハロメタンの
連続分析装置を提供することにある. 〔課題を解決するための手段〕 上述の目的はこの発明によれば第1の送液部13と、第
2の送液部14と、分離部2と、反応部4と、恒温部3
と、脱泡部7と、検出部8とを有し、第1の送液部は水
酸化ナトリウムの溶液とニコチン酸アミドの溶液とを混
合したキャリア溶液である第1の溶液を分離部に供給し
、 第2の送液部はトリハロメタンの試料液と、還元剤溶液
とを混合してなる第2の溶液を分離部に供給し、 分離部は独立に流れる前記第1の溶液と第2の溶液とを
微孔性の膜を介して接触させ、反応部は前記第1の溶液
を流すとともに前記第2の溶液より移行したトリハロメ
タンをニコチン酸アミドと反応させ、 恒温部は前記分離部と反応部を収納して両部の温度を同
一の一定温度に保持し、 脱泡部は、前記反応部において発生した第1の溶液中の
気泡を気孔性チューブを介して除去し、検出部は前記反
応部におけるトリハロメタンとニコチン酸アミドとの反
応生成物を蛍光的に検出すること、または 2)ここにおいて還元荊溶液が亜硫酸ナトリウム溶液で
あること、もしくは 3)還元剤溶液が硫酸ヒドラジン溶液であるとすること
により達成される.第1の送液部のニコチン酸アミドは
NaOHの存在下トリ八口メタン (クロロホルム1ブ
ロモジクロロメタン ジブ口モクロ口メタン,プロモホ
ルム)と反応して餐光縮合物を生ずる.これは励起光に
より螢光を発する.第2の送液部の亜硫酸ナトリウムま
たは硫酸ヒドラジンは試料液中に含まれる残留塩素を分
解する.残留塩素の存在は螢光縮合物の螢光反応を妨害
する.有機化合物に結合した塩素はアルカリ性の亜硫酸
ナトリウムによりトリハロメタンを生成するが、酸性の
硫酸ヒドラジンはトリハロメタンを生成しない.従って
原水の溶存有機物が高いかまたはトリ八口メタンの中間
体が多いときは、酸性の硫酸ヒドラジンが使用される.
第2の送液部は試料液にかえて検量線作製のための標準
溶液を切替コックを介して供給することができる.分離
部は微孔性の膜を介して、第2の溶液中のトリハロメタ
ンを第1の溶液中に拡散させる.第1と第2の溶液はそ
れぞれ独立に流れる.Ith孔性の膜は微孔性テフロン
(Dupont社商品名,以下同じ)や微孔性セラミッ
クスを用いることができる.揮発性のトリハロメタンの
ガスが水蒸気と共に、微気孔の膜を拡散する. 反応部は第2の溶液から第1の溶液に移行したトリハロ
メタンとニコチン酸アミドとの反応を完結させる.恒温
部は分離部と反応部の温度を同一の所定温度に維持する
.分離部と反応部の温度は螢光強度を左右する.共に温
度の高い方が螢光強度は高いが反応部の温度が98℃を
こえるとキャリア溶液中の溶存酸素が気化してバックグ
ラウンドノイズを増大させるため98℃が限界温度とな
る.脱泡部は気孔性のチューブからなり、キャリア溶液
が通過するに際し、キャリア溶液中の気泡が餘去される
.気孔性チューブとしてはテフロン製のものが好適に用
いられる. 検出部はトリ八口メタンとニコチン酸アミドとの反応に
よる螢光縮合物に励起光を照射し、螢光縮合物から放射
される螢光を検出定量する.励起光としては360〜3
80nmの波長が好ましく、螢光波長は450〜470
n一の範囲が望ましい.励起波長と螢光波長の分離はフ
ィルタ,回折格子等を用いて行うことができる. 〔作用〕 分離部では、ニコチン酸アミドとNaOH溶液のよく混
合した第1の溶液(キャリア溶液)にトリ八口メタンが
拡散するのでキャリア溶液とトリハロメタンとの混合は
均一に行われる. 脱泡部では、キャリア溶液中の気泡が隷かれるので気泡
に起因するみかけ上の螢光の強度増大がなくなる. 〔実施例〕 次にこの発明の実施例を図面に碁いて説明する.第1図
はこの発明の実施例に係るトリハロメタンの連続分析装
置を示す配置図である.第1の送液部13において30
〜40%濃度のニコチン酸アミド溶液と0.2〜0.4
M濃度のNaOB溶液とがそれぞれぜん動ポンブICと
IDとにより0.5 af/sin.の流量でミキシン
グコイル5^に送られる.ニコチン酸アミド溶液とNa
OH溶液とはミキシングコイル5Aによりよく混合され
キャリア溶液となって分離部2の微孔性膜よりなるチュ
ーブの内側に送られる.一方トリハロメタンを含む試料
液が10%濃度の亜硫酸ナトリウム溶液または1%濃度
の硫酸ヒドラジンとそれぞれ、ぜん動ポンプ1^.IB
により0.75d /sin.の流量でミキシングコイ
ル5Bに送られ、よく混合される.この混合により生成
した第2の溶液は分離部2の微孔性膜よりなるチューブ
の外側に送られる.分離部2の微孔性膜よりなるチュー
ブはテフロン製であり、撥水性であるので第1の溶液と
第2の溶液は混合することがない.しかし第2の溶液中
のトリハロメタンは揮発性であり、トリハロメタンのガ
スとなって、徽孔の中を拡散し、キャリア溶液中に溶け
込む.トリハロメタンはキャリア溶液中のニコチン酸ア
ミドとNaOFJの存在下に反応し、螢光縮金物を生成
する.縮合物を含むキャリア溶液は反応部4に送られ、
ここで反応を完結する.この際分離部2と反応部4は恒
温部3により95℃の一定温度に保持される.分離部2
と反応部4とは単一の恒温部で温度制御されるので装置
が簡単になる.続いてキャリア溶液は冷却部6において
10〜30℃の範囲に冷却される.これは螢光縮合物か
ら放出される螢光の温度消光による感度低下を防ぐ.キ
ャリア溶液は次いで脱泡部7に送られる.脱泡部7はテ
フロン製気孔性チューブであり孔径が1〜3pm,長さ
10〜30cmが望ましい.脱泡後キャリア溶液は検出
部8に送られ、螢光縮金物が蛍光的に検出され定量され
る.測光後キャリア溶液は背圧コイル15を経て廃棄さ
れる.検出部8の螢光信号は演算部9でデータ処理され
表示部1lで表示され、記録部12で記録される.連続
分析装置の全行程はl!lIlII部10によって制御
される. 第2図は相対螢光強度の分離部温度依存性を示す&l!
図である.反応部の温度は98℃である,分離部温度は
高い方がよいことがわかる.分離部の温度として反応部
の限界温度の98℃まで高めることができる.分離部と
反応部の温度を同一の98℃にすると、分析装置の感度
は最大になる.第3図はトリハロメタンとしてクロロホ
ルムを用いるときの検量線である.螢光強炭は試料注入
後10分で測定された。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an analyzer for trihalomethane, a low-boiling organic chlorine compound, in solution, and particularly to a continuous analyzer capable of stably analyzing trihalomethane. [Prior art] In 1972, Room of the Netherlands reported that a considerable concentration of organic chlorine compounds existed in the downstream of the Rhine River, and that trihalomethanes such as chloroform accounted for a large proportion of these organic chlorine compounds. It was done. Furthermore, a study found that there was a significant difference in cancer incidence between people who drank tap water containing trihalomethanes and those who did not drink tap water in the Niéa-Orléans region of the lower Mississippi River basin. Trihalomethanes in tap water attracted attention. Since then, many studies have shown that trihalomethanes are formed due to organic compounds in water and chlorine used to ensure epidemiological safety. Under these circumstances, in March 1981, Japan set a target value for controlling the concentration of avian methane in tap water to 0.10.
The Ministry of Health and Welfare has notified the Ministry of Health and Welfare. In order to solve this trihalomethane problem and provide safe water to people, it is important to develop water treatment technology that does not produce trihalomethane, and it is also necessary to develop technology that accurately and quickly analyzes trihalomethane. become. As shown in Table 1, trihalomethane is a substance with a relatively low boiling point, so it easily volatilizes from sample water.The boiling point of chloroform, which is contained more than other trihalomethanes in tap water, is 61.2°C. and the lowest. Also, unlike other components, its concentration is low at ppb level. Therefore, in order to analyze these accurately, extreme care must be taken during the water collection, storage, and analysis operations. Table 1 Trihalomethane analysis methods include methods such as headspace method, solvent extraction method, purge trap method, etc. to concentrate trihalomethane by 11 minutes, and then quantitative determination using ECD gas chromatography, and flow injection method. A known method is to separate trihalomethane and then quantify it using fluorescence. [Problems to be Solved by the Invention] However, among these methods, the former method requires several hours for measurement and is time-consuming, and because it is a batch method, continuous analysis is not possible. Furthermore, as shown in FIG. 4, in the separation section 15, a sample solution containing trihalomethane is allowed to flow through a microporous membrane in contact with a carrier solution, which is an NaOH solution, and the trihalomethane is diffused into the NaOF+ solution. A nicotinic acid amide solution is added, trihalomethane and nicotinic acid amide are reacted in the reaction section 16, and then the reaction product is fluorescently quantified in the detection section 18 by Fujiwara reaction. At this time, in the constant temperature sections 17A and 17B, which are different from the separation section 15 and the reaction section 16,
'C maintained at a constant temperature of 90℃. This method has the advantage of being able to quantify trihalomethanes quickly and with high sensitivity.
However, this flow injection method has the following problems. In other words, since nicotinic acid amide is added after passing through the 11+ separation section, the carrier solution and nicotinic acid amide solution are insufficiently mixed and a stable output signal cannot be obtained. <<2>> When the carrier solution is heated in the reaction section 16, bubbles are generated in the carrier solution, and these bubbles interfere with fluorescence measurement, making stable measurement impossible. This invention was made in view of the above points, and its purpose is to improve the conventional flow injection method and provide a continuous trihalomethane analyzer that can stably and continuously quantify trihalomethane. [Means for Solving the Problem] According to the present invention, the above-mentioned purpose is to provide a first liquid feeding section 13, a second liquid feeding section 14, a separation section 2, a reaction section 4, and a constant temperature section 3.
, a defoaming section 7 , and a detection section 8 , and the first liquid feeding section supplies the first solution, which is a carrier solution containing a solution of sodium hydroxide and a solution of nicotinic acid amide, to the separation section. The second liquid feeding section supplies a second solution obtained by mixing the trihalomethane sample solution and the reducing agent solution to the separation section, and the separation section allows the first solution and the second solution to flow independently. The solution is brought into contact with the solution through a microporous membrane, the reaction section allows the first solution to flow and the trihalomethane transferred from the second solution is reacted with nicotinic acid amide, and the constant temperature section is connected to the separation section. The reaction section is housed to maintain the temperature of both sections at the same constant temperature, the defoaming section removes air bubbles in the first solution generated in the reaction section via a porous tube, and the detection section Fluorescently detecting the reaction product of trihalomethane and nicotinic acid amide in the reaction section, or 2) the reducing solution is a sodium sulfite solution, or 3) the reducing agent solution is a hydrazine sulfate solution. This is achieved by Nicotinic acid amide in the first liquid feeding section reacts with triyakuchi methane (chloroform 1 bromodichloromethane dibuchi mokukuchi methane, promoform) in the presence of NaOH to produce a photocondensate. It emits fluorescence when excited by excitation light. Sodium sulfite or hydrazine sulfate in the second liquid feeding section decomposes residual chlorine contained in the sample solution. The presence of residual chlorine interferes with the fluorescent reaction of the fluorescent condensate. Chlorine bound to organic compounds produces trihalomethanes with alkaline sodium sulfite, but acidic hydrazine sulfate does not produce trihalomethanes. Therefore, acidic hydrazine sulfate is used when the raw water has high dissolved organic matter or a large amount of tri-yakuchi methane intermediates.
The second liquid supply section can supply a standard solution for preparing a calibration curve instead of the sample solution via a switching cock. The separation section diffuses trihalomethane in the second solution into the first solution via a microporous membrane. The first and second solutions flow independently. As the Ith porous membrane, microporous Teflon (trade name of DuPont, same hereinafter) or microporous ceramics can be used. Volatile trihalomethane gas diffuses through the microporous membrane together with water vapor. The reaction section completes the reaction between trihalomethane transferred from the second solution to the first solution and nicotinic acid amide. The constant temperature section maintains the temperature of the separation section and reaction section at the same predetermined temperature. The temperature of the separation section and reaction section affects the fluorescence intensity. In both cases, the higher the temperature, the higher the fluorescence intensity, but if the temperature of the reaction zone exceeds 98°C, dissolved oxygen in the carrier solution will vaporize, increasing background noise, so 98°C is the critical temperature. The defoaming section consists of a porous tube, and when the carrier solution passes through it, air bubbles in the carrier solution are removed. As the porous tube, one made of Teflon is preferably used. The detection section irradiates excitation light to a fluorescent condensate resulting from the reaction of triyakuchimethane and nicotinic acid amide, and detects and quantifies the fluorescence emitted from the fluorescent condensate. 360-3 as excitation light
The wavelength of 80 nm is preferable, and the fluorescence wavelength is 450 to 470 nm.
A range of n is desirable. The excitation wavelength and fluorescence wavelength can be separated using filters, diffraction gratings, etc. [Operation] In the separation section, the trihalomethane diffuses into the first solution (carrier solution), which is a well-mixed mixture of nicotinic acid amide and NaOH solution, so that the carrier solution and trihalomethane are uniformly mixed. In the defoaming section, the air bubbles in the carrier solution are suppressed, eliminating the apparent increase in fluorescence intensity caused by air bubbles. [Example] Next, an example of this invention will be explained with reference to the drawings. FIG. 1 is a layout diagram showing a continuous trihalomethane analyzer according to an embodiment of the present invention. 30 in the first liquid feeding section 13
~40% concentration nicotinic acid amide solution and 0.2-0.4
NaOB solution with a concentration of 0.5 af/sin. It is sent to the mixing coil 5^ at a flow rate of . Nicotinamide solution and Na
The OH solution is well mixed with the mixing coil 5A to form a carrier solution, which is sent to the inside of the tube made of a microporous membrane in the separation section 2. On the other hand, when a sample solution containing trihalomethane is mixed with a 10% concentration sodium sulfite solution or a 1% concentration hydrazine sulfate solution, the peristaltic pump 1^. IB
Therefore, 0.75d/sin. It is sent to the mixing coil 5B at a flow rate of , and mixed well. The second solution produced by this mixing is sent to the outside of the tube made of a microporous membrane in the separation section 2. The tube made of a microporous membrane in the separation section 2 is made of Teflon and is water repellent, so the first solution and the second solution do not mix. However, the trihalomethane in the second solution is volatile and becomes a trihalomethane gas that diffuses through the hole and dissolves into the carrier solution. Trihalomethane reacts with nicotinic acid amide in a carrier solution in the presence of NaOFJ to form a fluorescent metal condensate. The carrier solution containing the condensate is sent to the reaction section 4,
The reaction is completed here. At this time, the separation section 2 and the reaction section 4 are maintained at a constant temperature of 95°C by the constant temperature section 3. Separation part 2
The temperature of the reactor and reaction section 4 is controlled by a single constant temperature section, which simplifies the equipment. Subsequently, the carrier solution is cooled to a temperature in the range of 10 to 30°C in the cooling section 6. This prevents a decrease in sensitivity due to temperature quenching of the fluorescence emitted from the fluorescent condensate. The carrier solution is then sent to the defoaming section 7. The defoaming section 7 is a porous tube made of Teflon, and preferably has a pore diameter of 1 to 3 pm and a length of 10 to 30 cm. After defoaming, the carrier solution is sent to the detection section 8, where the fluorescent metal condensate is detected and quantified by fluorescence. After photometry, the carrier solution passes through a back pressure coil 15 and is discarded. The fluorescence signal from the detection section 8 is data-processed by the calculation section 9, displayed on the display section 1l, and recorded in the recording section 12. The entire process of the continuous analyzer is l! It is controlled by the lIlII unit 10. Figure 2 shows the dependence of the relative fluorescence intensity on the separation temperature.
This is a diagram. The temperature of the reaction section is 98°C, and it can be seen that the higher the temperature of the separation section, the better. The temperature of the separation section can be raised to 98°C, which is the limit temperature of the reaction section. Setting the temperature of the separation section and reaction section to the same temperature of 98°C maximizes the sensitivity of the analyzer. Figure 3 shows the calibration curve when using chloroform as trihalomethane. Fluorescence intensity was measured 10 minutes after sample injection.

第2表は水道水を測定したときの再現性を示す.5回の
繰り返し測定時の平均値は15μg/1,変動係数は5
.7冗であった.従来の装置を用いた測定値の変動係数
が8〜10%であるのに比して再現性が向上しているこ
とがわかる. 第2表 〔発明の効果〕 この発明によれば第1の送液部と、第2の送液、部と、
分離部と、反応部と、恒温部と、脱泡部と検出部とを有
し、 第1の送液部は水酸化ナトリウムの溶液とニコチン酸ア
ミドの溶液とを混合したキャリア溶液である第1の溶液
を分離部に供給し、 第2の送液部はトリハロメタンの試料液と、還元剤溶液
とを混合してなる第2の溶液を分離部に供給し、 分離部は独立に流れる前記第1の溶液と第2の溶液とを
微孔性の農を介して接触させ、反応部は前記1J!1の
溶液を流すとともに前記第2の溶液より移行したトリ八
口メタンをニコチン酸アミドと反応させ、 恒温部は前記分離部と反応部を収納して両部の温度を同
一の一定温度に保持し、 脱泡部は、前記反応部において発生した第1の溶液中の
気泡を気孔性チューブを介して除去し、検出部は前記反
応部におけるトリハロメタンとニコチン酸アミドとの反
応生成物を蛍光的に検出すること,またはこの際 2)還元剤溶液が亜硫酸ナトリウム溶液であること、も
しくは 3)還元剤溶液が硫酸ヒドラジンであるので分離部でニ
コチン酸アミドとNaOH溶液のよく混合した第1の溶
液 (キャリア溶液)にトリハロメタンが拡散し、試料
水中の残留塩素や熔存有機物の影響を受けることなくキ
ャリア溶液と試料水中のトリハロメタンとの混合が均一
に行われる.また脱池部では、キャリア溶液中の気泡が
除かれ、気泡に起因するみかけ上の螢光の強度増大がな
くなる.このようにして再現性に優れる安定な測定を高
感度でかつ迅速に行うことの可能なトリハロメタンの連
続分析装置が得られる.
Table 2 shows the reproducibility when measuring tap water. The average value of 5 repeated measurements was 15 μg/1, and the coefficient of variation was 5.
.. It was 7 years ago. It can be seen that the reproducibility is improved compared to the coefficient of variation of measured values using conventional equipment, which is 8 to 10%. Table 2 [Effects of the Invention] According to the present invention, the first liquid feeding section, the second liquid feeding section,
It has a separation section, a reaction section, a constant temperature section, a defoaming section, and a detection section, and the first liquid feeding section is a carrier solution containing a mixture of a sodium hydroxide solution and a nicotinic acid amide solution. The second solution is supplied to the separation section, and the second liquid feeding section supplies the second solution obtained by mixing the trihalomethane sample solution and the reducing agent solution to the separation section, and the separation section flows independently. The first solution and the second solution are brought into contact with each other through a microporous membrane, and the reaction section is heated to 1J! While flowing the solution of 1, the triyacchi methane transferred from the second solution is reacted with nicotinic acid amide, and the constant temperature section accommodates the separation section and the reaction section and maintains the temperature of both sections at the same constant temperature. The defoaming section removes air bubbles in the first solution generated in the reaction section through a porous tube, and the detection section detects the reaction product of trihalomethane and nicotinic acid amide in the reaction section using fluorescent light. 2) In this case, the reducing agent solution is a sodium sulfite solution, or 3) Since the reducing agent solution is hydrazine sulfate, the first solution containing a well-mixed nicotinic acid amide and NaOH solution is detected in the separation section. Trihalomethane diffuses into the carrier solution, and the carrier solution and trihalomethane in the sample water are uniformly mixed without being affected by residual chlorine or dissolved organic matter in the sample water. In addition, in the de-pooling section, air bubbles in the carrier solution are removed, eliminating the apparent increase in fluorescence intensity caused by air bubbles. In this way, a continuous trihalomethane analyzer that can perform stable measurements with high sensitivity and speed with excellent reproducibility is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係るトリハロメタンの連続
分析装置を示す配置図、第2図は螢光強度の分離部温度
依存性を示す線図、第3図はトリ八ロメタンの検量線を
示す線図、第4図は従来の装置を示す配置図である.
Fig. 1 is a layout diagram showing a continuous analysis device for trihalomethane according to an embodiment of the present invention, Fig. 2 is a diagram showing the dependence of fluorescence intensity on temperature of the separation section, and Fig. 3 is a calibration curve for trihalomethane. Figure 4 is a layout diagram showing a conventional device.

Claims (1)

【特許請求の範囲】 1)第1の送液部と、第2の送液部と、分離部と、反応
部と、恒温部と、脱泡部と、検出部とを有し、第1の送
液部は水酸化ナトリウムの溶液とニコチン酸アミドの溶
液とを混合したキャリア溶液である第1の溶液を分離部
に供給し、 第2の送液部はトリハロメタンの試料液と、還元剤溶液
とを混合してなる第2の溶液を分離部に供給し、 分離部は独立に流れる前記第1の溶液と第2の溶液とを
微孔性の膜を介して接触させ、 反応部は前記第1の溶液を流すとともに前記第2の溶液
より移行したトリハロメタンをニコチン酸アミドと反応
させ、 恒温部は前記分離部と反応部を収納して両部の温度を同
一の一定温度に保持し、 脱泡部は、前記反応部において発生した第1の溶液中の
気泡を気孔性チューブを介して除去し、検出部は前記反
応部におけるトリハロメタンとニコチン酸アミドとの反
応生成物を蛍光的に検出することを特徴とするトリハロ
メタンの連続分析装置。 2)還元剤溶液が亜硫酸ナトリウム溶液であることを特
徴とする請求項1記載のトリハロメタンの連続分析装置
。 3)還元剤溶液が硫酸ヒドラジン溶液であることを特徴
とする請求項1記載のトリハロメタンの連続分析装置。
[Claims] 1) A first liquid feeding section, a second liquid feeding section, a separation section, a reaction section, a constant temperature section, a defoaming section, and a detection section; The liquid feeding section supplies a first solution, which is a carrier solution containing a solution of sodium hydroxide and a solution of nicotinic acid amide, to the separation section, and the second liquid feeding section supplies a sample solution of trihalomethane and a reducing agent. A second solution obtained by mixing the first solution and the second solution is supplied to a separation section, the separation section contacts the independently flowing first solution and the second solution through a microporous membrane, and a reaction section While the first solution is flowing, the trihalomethane transferred from the second solution is reacted with nicotinic acid amide, and the constant temperature section houses the separation section and the reaction section and maintains the temperature of both sections at the same constant temperature. The defoaming section removes air bubbles in the first solution generated in the reaction section through a porous tube, and the detection section fluorescently detects the reaction product of trihalomethane and nicotinic acid amide in the reaction section. A continuous analyzer for trihalomethane. 2) The continuous trihalomethane analysis device according to claim 1, wherein the reducing agent solution is a sodium sulfite solution. 3) The continuous trihalomethane analysis device according to claim 1, wherein the reducing agent solution is a hydrazine sulfate solution.
JP27745290A 1989-10-16 1990-10-16 Continuous analyzer for trihalomethane Expired - Lifetime JPH0812186B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-268745 1989-10-16
JP26874589 1989-10-16

Publications (2)

Publication Number Publication Date
JPH03218461A true JPH03218461A (en) 1991-09-26
JPH0812186B2 JPH0812186B2 (en) 1996-02-07

Family

ID=17462749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27745290A Expired - Lifetime JPH0812186B2 (en) 1989-10-16 1990-10-16 Continuous analyzer for trihalomethane

Country Status (1)

Country Link
JP (1) JPH0812186B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157791A (en) * 2006-12-25 2008-07-10 Fuji Electric Water Environmental Systems Co Ltd Trihalomethane analyzer
JP2008241382A (en) * 2007-03-27 2008-10-09 Miura Co Ltd Measuring method of alkaline component concentration in sample water
JP2013092520A (en) * 2011-10-04 2013-05-16 Metawater Co Ltd Measurement method and measurement device for haloacetic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157791A (en) * 2006-12-25 2008-07-10 Fuji Electric Water Environmental Systems Co Ltd Trihalomethane analyzer
JP2008241382A (en) * 2007-03-27 2008-10-09 Miura Co Ltd Measuring method of alkaline component concentration in sample water
JP2013092520A (en) * 2011-10-04 2013-05-16 Metawater Co Ltd Measurement method and measurement device for haloacetic acid

Also Published As

Publication number Publication date
JPH0812186B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
EP0326995B1 (en) Method and apparatus for quantitative determination of trihalomethanes
US9791430B2 (en) Measurement of total organic carbon
Pasquini et al. Flow-injection determination of ammonia in Kjeldahl digests by gas diffusion and conductometry
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
Cheng et al. A review of measurement methods for peracetic acid (PAA)
JP5282204B2 (en) Formaldehyde measuring method and formaldehyde measuring device
JPH03218461A (en) Continuous analysis apparatus for trihalomethane
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
Komazaki et al. Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti (IV)–PAR–H2O2 complex
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
GB2389903A (en) Providing a gaseous product for analysis
Oshima et al. Highly sensitive determination method for total carbonate in water samples by flow injection analysis coupled with gas-diffusion separation
US20200198994A1 (en) Methods and systems for separation of chloramines in aqueous solutions
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
Rao et al. Chemiluminescence flow injection analysis of 1, 3-dichloro-5, 5-dimethylhydantoin in swimming pool water
JPH04223266A (en) Trihalomethane analyzer
JPH06288923A (en) Analyzer for silica content in water
JPH0581859B2 (en)
JPS60207057A (en) Apparatus for measuring organic carbon in water
JPH04158261A (en) Apparatus for analyzing trihalomethane
WO2022014665A1 (en) Inspection device
RU2797650C1 (en) Air formaldehyde analyzer
JPH07174753A (en) Device for determining minute nitrogen in iron and steel specimen
JPH06160370A (en) Trihalomethane forming power meter
JP4164964B2 (en) Halogen oxide detection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15