JP2016212028A - Concentration measurement device, concentration measurement method and control program - Google Patents

Concentration measurement device, concentration measurement method and control program Download PDF

Info

Publication number
JP2016212028A
JP2016212028A JP2015097874A JP2015097874A JP2016212028A JP 2016212028 A JP2016212028 A JP 2016212028A JP 2015097874 A JP2015097874 A JP 2015097874A JP 2015097874 A JP2015097874 A JP 2015097874A JP 2016212028 A JP2016212028 A JP 2016212028A
Authority
JP
Japan
Prior art keywords
concentration
measurement
sample
liquid
specific element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015097874A
Other languages
Japanese (ja)
Other versions
JP6609985B2 (en
Inventor
奏子 今井
Kanako Imai
奏子 今井
豊 林部
Yutaka Hayashibe
豊 林部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015097874A priority Critical patent/JP6609985B2/en
Publication of JP2016212028A publication Critical patent/JP2016212028A/en
Application granted granted Critical
Publication of JP6609985B2 publication Critical patent/JP6609985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentration measurement device, concentration measurement method and control program that can automatically and sequentially measure samples broad in a content concentration range of measurement object elements with constant measurement accuracy maintained.SOLUTION: A concentration measurement device, which automatically and sequentially measures concentration of specific elements, comprises: a sample liquid sampling unit that discriminates between each of a plurality of sample liquids mutually different in a content concentration range of the specific element to sample the discriminated sample liquids; a measurement liquid preparation unit that performs control so as to be an amount of injection mutually different depending upon the content concentration range of the specific element to inject a reaction sample into the sample liquid, and prepares a measurement liquid; a plurality of measurement units of which any one is selected in accordance with a content concentration range of the specific element and which measures the content concentration of the specific element to be contained in the measurement liquid prepared by the measurement liquid preparation unit; and a control unit that causes the sample liquid sampling unit, measurement liquid preparation unit and measurement unit to operate in cooperation with each other.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象元素の濃度範囲が広い試料を連続して自動的に測定可能な濃度測定装置、濃度測定方法、および制御プログラムに関する。   The present invention relates to a concentration measuring apparatus, a concentration measuring method, and a control program capable of automatically and continuously measuring a sample having a wide concentration range of an element to be measured.

例えば、工場排水などに含まれる有害元素や、河川や海水中に含まれる有害元素は、その濃度を常に連続して監視し、有害元素の濃度を規制値の範囲内に収めるように処理を行った後に放出する必要がある。   For example, the concentration of harmful elements contained in industrial wastewater, etc., and harmful elements contained in rivers and seawater are continuously monitored, and processing is performed so that the concentration of harmful elements is within the limits of regulatory values. Need to be released after a while.

こうした水質中の有害元素の1つとして、ヒ素が挙げられる。ヒ素は環境汚染元素であり、日本工業規格等において排水中等のヒ素濃度測定法が規定されている。例えば、ヒ素及びその化合物として一律に排水基準が0.1mg/L以下に定めている。こうしたヒ素の濃度分析方法として、従来からモリブデンブルー錯体を利用した吸光光度法が標準法として示されていた。また、近年ではジエチルジチオカルバミド酸銀による吸光光度法、水素化物発生原子吸光法、水素化物発生ICP発光分光法が標準的な分析方法として示されている。   One of the harmful elements in the water quality is arsenic. Arsenic is an environmental pollutant, and Japanese Industrial Standards etc. stipulate a method for measuring the concentration of arsenic in wastewater. For example, the drainage standard is uniformly set to 0.1 mg / L or less for arsenic and its compounds. As a method for analyzing the concentration of arsenic, an absorptiometric method using a molybdenum blue complex has been conventionally shown as a standard method. In recent years, spectrophotometry with silver diethyldithiocarbamate, hydride generation atomic absorption, and hydride generation ICP emission spectroscopy have been shown as standard analytical methods.

こうした含有ヒ素の濃度を常時監視するために、濃度分析を自動で行う方法として、ヒ素モリブデンブルー吸光光度法による、フローインジェクション分析法に基づいた自動分析手法が知られている(例えば、特許文献1、特許文献2を参照)。   In order to constantly monitor the concentration of such arsenic, an automatic analysis method based on a flow injection analysis method based on arsenic molybdenum blue absorptiometry is known as a method for automatically performing concentration analysis (for example, Patent Document 1). , See Patent Document 2).

特許第4075664号公報Japanese Patent No. 4075664 特許第5567950号公報Japanese Patent No. 5567950 特開2015−042940号公報Japanese Patent Laying-Open No. 2015-042940

有害元素濃度の測定対象のうち、例えば、工場排水などは有害元素の含有濃度範囲が広いことも多く、低濃度域から高濃度域に至るまで一定の精度を保って連続して測定を行う必要がある。   Among the measurement elements of toxic element concentration, for example, factory effluent often has a wide concentration range of toxic elements, and it is necessary to continuously measure with a certain degree of accuracy from the low concentration range to the high concentration range. There is.

しかしながら、特許文献1や特許文献2に記載された測定装置は、低濃度域(例えば、0.01〜1mg/L程度)のヒ素を測定する場合には所定の精度で測定を行うことができるが、1つの検出器で低濃度域から高濃度域(例えば、100mg/L以上)の幅広い濃度範囲を一定の精度を保って測定することは困難であった。   However, the measuring devices described in Patent Document 1 and Patent Document 2 can perform measurement with a predetermined accuracy when measuring arsenic in a low concentration range (for example, about 0.01 to 1 mg / L). However, it is difficult to measure a wide concentration range from a low concentration region to a high concentration region (for example, 100 mg / L or more) with a certain accuracy with a single detector.

特許文献3では、試料注入バルブの開放時間を一定に制御することによって、試料採取量を限定することが記載されているが、こうした手法では、有害元素の濃度が高濃度である場合には一定の測定精度を確保できる。しかし、試料注入バルブのループ容量はごく少量であるため、低濃度域の有害元素の測定では一定の測定精度が得られず、低濃度域から高濃度域に至るまで一定の精度を保って測定を行うことが困難であった。   In Patent Document 3, it is described that the sample collection amount is limited by controlling the opening time of the sample injection valve to be constant. However, in such a technique, when the concentration of harmful elements is high, it is constant. Measurement accuracy can be ensured. However, since the loop capacity of the sample injection valve is very small, measurement of harmful elements in the low concentration range cannot provide a certain measurement accuracy, and measurement is performed with a certain accuracy from the low concentration range to the high concentration range. It was difficult to do.

本発明は、前述した状況に鑑みてなされたものであって、測定対象元素の含有濃度範囲が広い試料を、一定の測定精度を保って連続して自動的に測定可能な濃度測定装置、濃度測定方法、および制御プログラムを提供することを目的とする。   The present invention has been made in view of the above-described situation, and is a concentration measuring device capable of automatically and continuously measuring a sample having a wide concentration range of the element to be measured while maintaining a certain measurement accuracy. An object is to provide a measurement method and a control program.

上記課題を解決するために、本発明の濃度測定装置は、特定元素の濃度を連続して自動的に測定する濃度測定装置であって、前記特定元素の含有濃度域が互いに異なる複数種の試料液をそれぞれ区別して取り込む試料液採取部と、前記特定元素の含有濃度域によって互いに異なる注入量となるように制御して前記試料液に反応試薬を注入し、測定液を形成する測定液作成部と、前記特定元素の含有濃度域に応じていずれか1つが選択され、前記測定液作成部で形成された前記測定液に含まれる前記特定元素の含有濃度を測定する複数の測定部と、前記試料液採取部、前記測定液作成部、および前記測定部を連携して動作させる制御部と、を備えたことを特徴とする。   In order to solve the above-mentioned problem, the concentration measuring apparatus of the present invention is a concentration measuring apparatus for automatically and continuously measuring the concentration of a specific element, and a plurality of types of samples having different concentration ranges of the specific element. A sample solution collecting unit for separately taking in the solution, and a measurement solution creating unit for injecting a reaction reagent into the sample solution and controlling the injection amount to be different depending on the concentration range of the specific element A plurality of measurement units that measure the content concentration of the specific element contained in the measurement liquid formed by the measurement liquid preparation unit, any one selected according to the content concentration range of the specific element, A sample solution collecting unit, the measurement solution creating unit, and a control unit for operating the measurement unit in cooperation with each other are provided.

このような構成の濃度測定装置によれば、試料液に含まれる特定元素の濃度域に応じて、試料液の注入量を増減させ、かつ特定元素の含有濃度域に応じて複数の測定部のうちいずれか1つが選択されて測定することによって、幅広い特定元素の含有濃度域の試料に対して、一定の測定精度を保って連続して自動的に測定を行うことができる。   According to the concentration measuring apparatus having such a configuration, the injection amount of the sample solution is increased / decreased according to the concentration range of the specific element contained in the sample solution, and a plurality of measurement units are added according to the concentration concentration range of the specific element. By selecting and measuring any one of them, it is possible to continuously and continuously perform measurement on samples in a wide concentration range of specific elements while maintaining a certain measurement accuracy.

前記特定元素は、As,Si,P,Geの少なくともいずれか1つであることを特徴とする。   The specific element is at least one of As, Si, P, and Ge.

前記測定部は吸光光度計であり、前記反応試薬は、酸化剤、還元剤、および発色剤を含むことを特徴とする。   The measurement unit is an absorptiometer, and the reaction reagent includes an oxidizing agent, a reducing agent, and a color former.

複数の前記測定部は、光路長が互いに異なる試料セルをそれぞれ備えた複数の吸光光度計が並列または直列に配されたものからなることを特徴とする。   The plurality of measuring units are composed of a plurality of absorptiometers each provided with sample cells having different optical path lengths arranged in parallel or in series.

前記測定液作成部を構成する輸液管に別の輸液管を接続して、洗浄液を供給する洗浄部を更に備えたことを特徴とする。   The apparatus further includes a cleaning unit that connects another infusion tube to the infusion tube that constitutes the measurement solution creating unit and supplies a cleaning solution.

本発明の制御プログラムは、前記各項記載の濃度測定装置を構成する前記制御部に記録された制御プログラムであって、前記試料液の前記特定元素の含有濃度域に応じて、前記測定液作成部における前記反応試薬に対する前記試料液の注入量を選択するステップと、 前記測定液の前記特定元素の含有濃度域に応じて、複数の前記測定部から濃度測定を行う特定の測定部を選択するステップと、を備えたことを特徴とする。   The control program of the present invention is a control program recorded in the control unit constituting the concentration measuring device according to each of the above items, wherein the measurement liquid preparation is performed according to the concentration concentration range of the specific element of the sample liquid A step of selecting an injection amount of the sample liquid with respect to the reaction reagent in a section, and a specific measurement section that performs concentration measurement from a plurality of the measurement sections according to a concentration concentration range of the specific element of the measurement liquid And a step.

本発明の濃度測定方法は、特定元素の濃度を連続して自動的に測定する濃度測定方法であって、前記特定元素の含有濃度域が互いに異なる複数種の試料液をそれぞれ区別して取り込む試料液採取工程と、前記特定元素の含有濃度域によって互いに異なる注入量となるように制御して前記試料液を反応試薬に注入し、測定液を形成する測定液作成工程と、前記測定液に含まれる前記特定元素の含有濃度を測定する測定工程と、を備えたことを特徴とする。   The concentration measurement method of the present invention is a concentration measurement method for automatically and continuously measuring the concentration of a specific element, wherein the sample solution contains a plurality of different sample solutions having different concentration ranges of the specific element. Included in the measurement liquid, a measurement liquid preparation process in which the sample liquid is injected into the reaction reagent by controlling the collection step, the injection amount to be different from each other depending on the content concentration range of the specific element, and a measurement liquid is formed And a measuring step for measuring the concentration of the specific element.

このような構成の濃度測定方法によれば、試料液に含まれる特定元素の含有濃度域に応じて、試料液の注入量を増減させて注入量を変えることによって、幅広い特定元素の濃度域の試料に対して、一定の測定精度を保って測定を行うことができる。   According to the concentration measuring method having such a configuration, by changing the injection amount by increasing / decreasing the injection amount of the sample liquid according to the concentration range of the specific element contained in the sample liquid, A sample can be measured with a certain measurement accuracy.

前記測定工程では、前記測定液の前記特定元素の含有濃度域に応じて、互いに異なる光路長で吸光度を測定することを特徴とする。   In the measurement step, the absorbance is measured with different optical path lengths according to the concentration range of the specific element in the measurement solution.

前記特定元素は、As,Si,P,Geの少なくともいずれか1つであることを特徴とする。   The specific element is at least one of As, Si, P, and Ge.

前記特定元素はAsであり、前記測定液作成工程では、酸化剤および還元剤によって試料液に含まれるAsの価数をIII価からV価に変化させ、その後、発色剤によってヒ素モリブデンブルー錯体を形成し、前記測定工程では、吸光光度法によって波長が840nm付近の吸光度を測定することを特徴とする。   The specific element is As, and in the measurement liquid preparation step, the valence of As contained in the sample liquid is changed from III to V with an oxidizing agent and a reducing agent, and then an arsenic molybdenum blue complex is formed with a color former. In the measurement step, absorbance at a wavelength of around 840 nm is measured by absorptiometry.

前記試料液におけるAsの濃度は0.008mg/L以上、6000mg/L以下の範囲であることを特徴とする。   The concentration of As in the sample solution is in the range of 0.008 mg / L to 6000 mg / L.

前記酸化剤は過マンガン酸カリウム、前記還元剤はアスコルビン酸、前記発色剤は硫酸性モリブデン酸アンモニウムおよびアスコルビン酸であることを特徴とする。   The oxidizing agent is potassium permanganate, the reducing agent is ascorbic acid, and the color former is sulfated ammonium molybdate and ascorbic acid.

前記測定液作成工程で前記酸化剤として用いる過マンガン酸カリウムを輸液管から除去する洗浄工程を更に備えたことを特徴とする。   The method further comprises a cleaning step of removing potassium permanganate used as the oxidant in the measurement liquid preparation step from the infusion tube.

本発明の濃度測定装置、濃度測定方法、および制御プログラムによれば、測定対象元素の含有濃度範囲が広い試料を、一定の測定精度を保って連続して自動的に測定することができる。   According to the concentration measuring apparatus, the concentration measuring method, and the control program of the present invention, it is possible to automatically and continuously measure a sample having a wide concentration range of the element to be measured while maintaining a certain measurement accuracy.

本発明の濃度測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the density | concentration measuring apparatus of this invention. 本発明の検証例を示すグラフである。It is a graph which shows the verification example of this invention. 本発明の検証例を示すグラフである。It is a graph which shows the verification example of this invention. 本発明の検証例を示すグラフである。It is a graph which shows the verification example of this invention. 本発明の検証例を示すグラフである。It is a graph which shows the verification example of this invention.

以下、図面を参照して、本発明の濃度測定装置、濃度測定方法、および制御プログラムについて説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の形状や寸法比率などが実際と同じであるとは限らない。   Hereinafter, a concentration measuring device, a concentration measuring method, and a control program according to the present invention will be described with reference to the drawings. Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the shape and dimensional ratio of each component are actually shown. Is not necessarily the same.

(濃度測定装置)
図1は、本発明の濃度測定装置の一例を示す概略構成図である。
本実施形態の濃度測定装置10は、吸光光度測定法によって特定元素の濃度を連続して自動的に測定する濃度測定装置(吸光光度計)である。濃度測定装置10は、大別して、試料液採取部11と、測定液作成部12と、測定部13と、これら各部の構成要素を連携して動作させる制御部14と、を備えている。制御部14は、例えば、パソコンおよびインターフェイスなどから構成され、各部の構成要素を連携して動作させるプログラムを実行する。
(Concentration measuring device)
FIG. 1 is a schematic configuration diagram showing an example of the concentration measuring apparatus of the present invention.
The concentration measuring device 10 of the present embodiment is a concentration measuring device (absorption photometer) that automatically and continuously measures the concentration of a specific element by an absorptiometry method. The concentration measuring apparatus 10 is roughly divided into a sample solution collecting unit 11, a measurement solution creating unit 12, a measuring unit 13, and a control unit 14 that operates the components of these units in cooperation with each other. The control unit 14 includes, for example, a personal computer and an interface, and executes a program that operates the components of each unit in cooperation.

試料液採取部11は、例えば、第一採液部21a、第二採液部21b、第三採液部21cの3つ採液部21と、試料選択バルブ22と、を備えている。本実施形態では、採液部21は、例えば、特定元素の含有濃度域が互いに異なる3か所の排水(試料液)を採取する場合を例示しており、特定元素としてAs濃度を測定する。   The sample liquid collection unit 11 includes, for example, three liquid collection units 21 including a first liquid collection unit 21a, a second liquid collection unit 21b, and a third liquid collection unit 21c, and a sample selection valve 22. In the present embodiment, the liquid collection unit 21 exemplifies, for example, a case where three wastewaters (sample liquids) having different specific element content concentrations are collected, and measures the As concentration as the specific element.

例えば、第一採液部21aで採取される試料液(以下、第一試料液と称する場合がある)は、Asの濃度域が1000〜6000mg/L程度である。また、第二採液部21bで採取される試料液(以下、第二試料液と称する場合がある)は、Asの濃度域が5〜30mg/Lである。また、第三採液部21cで採取される試料液(以下、第三試料液と称する場合がある)は、Asの濃度域が0〜1mg/L程度である。   For example, the sample liquid collected by the first liquid collection part 21a (hereinafter sometimes referred to as the first sample liquid) has an As concentration range of about 1000 to 6000 mg / L. Further, the sample liquid collected by the second liquid collecting part 21b (hereinafter sometimes referred to as a second sample liquid) has an As concentration range of 5 to 30 mg / L. Further, the sample liquid collected by the third liquid collection part 21c (hereinafter sometimes referred to as a third sample liquid) has an As concentration range of about 0 to 1 mg / L.

測定液作成部12は、試料注入バルブ31,32、溶液流路切替バルブ33、34、シリンジポンプ35,36、プランジャーポンプ37,38,39,41、反応コイル42,反応槽43、およびこれらを繋ぐ複数の輸液管(管路)45を備えている。また、測定液作成部12を構成する輸液管45に対して複数種類の洗浄液を供給する洗浄部46を備えている。   The measurement liquid preparation unit 12 includes sample injection valves 31, 32, solution flow path switching valves 33, 34, syringe pumps 35, 36, plunger pumps 37, 38, 39, 41, a reaction coil 42, a reaction tank 43, and these. Are provided with a plurality of infusion pipes (ducts) 45. In addition, a cleaning unit 46 that supplies a plurality of types of cleaning liquids to the infusion tube 45 that constitutes the measurement liquid preparation unit 12 is provided.

試料選択バルブ22は、試料採取時に、第一試料液、第二試料液、第三試料液の送り込みを自動で切り替え選択する。それぞれの試料は試料注入バルブ31または32を介してプランジャーポンプ39から送液されるキャリヤ−液に注入される。キャリヤ−液としては、例えば、イオン交換水が用いられる。   The sample selection valve 22 automatically switches and selects feeding of the first sample solution, the second sample solution, and the third sample solution at the time of sample collection. Each sample is injected into the carrier liquid fed from the plunger pump 39 via the sample injection valve 31 or 32. As the carrier liquid, for example, ion exchange water is used.

溶液流路切替バルブ34は、洗浄部46からシリンジポンプ35によって複数種類の洗浄液を輸液管45に導入する際の切替バルブとして機能する。液流路切替バルブ34から注入する洗浄液としては、例えば、塩酸(濃塩酸1:水4)またはイオン交換水が用いられる。   The solution flow path switching valve 34 functions as a switching valve when a plurality of types of cleaning liquids are introduced into the infusion tube 45 from the cleaning unit 46 by the syringe pump 35. For example, hydrochloric acid (concentrated hydrochloric acid 1: water 4) or ion-exchanged water is used as the cleaning liquid injected from the liquid flow path switching valve 34.

溶液流路切替バルブ33は、酸化剤または洗浄液を輸液管45に導入する際の切替バルブとして機能する。酸化剤としては、過マンガン酸カリウムが用いられる。洗浄液はプランジャーポンプ41によって溶液流路切替バルブ33に送られる。溶液流路切替バルブ33を介して送液する洗浄液としては、例えば、アスコルビン酸が用いられる。   The solution flow path switching valve 33 functions as a switching valve when introducing the oxidizing agent or the cleaning liquid into the infusion tube 45. As the oxidizing agent, potassium permanganate is used. The cleaning liquid is sent to the solution flow path switching valve 33 by the plunger pump 41. For example, ascorbic acid is used as the cleaning liquid fed through the solution flow path switching valve 33.

反応コイル42は、試料注入バルブ31、32から送られる試料液およびキャリヤ−液の混合液と、プランジャーポンプ38及び溶液流路切替バルブ33から送られる酸化剤(反応試薬)とを反応させる。また、プランジャーポンプ38は、酸化剤と反応後の試料液(キャリヤ−液希釈)に対して還元剤(反応試薬)も注入する。還元剤としては、例えば、アスコルビン酸が用いられる。   The reaction coil 42 reacts the mixed liquid of the sample liquid and the carrier liquid sent from the sample injection valves 31 and 32 and the oxidizing agent (reaction reagent) sent from the plunger pump 38 and the solution flow path switching valve 33. The plunger pump 38 also injects a reducing agent (reaction reagent) into the sample liquid (carrier-liquid dilution) after reaction with the oxidizing agent. As the reducing agent, for example, ascorbic acid is used.

反応槽43は、酸化剤および還元剤と反応後の試料液(キャリヤ−液希釈)と、プランジャーポンプ37によって注入される発色剤(反応試薬)とを反応させ、測定液を形成する。発色剤としては、例えば、モリブデン酸アンモニウムおよびアスコルビン酸など、複数種類の発色剤が用いられる。   The reaction tank 43 reacts the oxidant and the reducing agent with the sample liquid after reaction (carrier-liquid dilution) and the color former (reaction reagent) injected by the plunger pump 37 to form a measurement liquid. As the color former, for example, a plurality of kinds of color formers such as ammonium molybdate and ascorbic acid are used.

シリンジポンプ36は、プランジャーポンプ37,38,41に向けて洗浄液を注入する。シリンジポンプ36から注入する洗浄液としては、例えば、イオン交換水が用いられる。   The syringe pump 36 injects the cleaning liquid toward the plunger pumps 37, 38, and 41. As the cleaning liquid injected from the syringe pump 36, for example, ion exchange water is used.

測定部13は、複数の吸光光度計51,52を備えている。吸光光度計51,52は、赤外光、紫外光、可視光など各種の光源を用いた吸光光度計を用いることができる。吸光光度計51,52は、予め試料選択バルブ22から注入した標準液を用いて検量線データを記録しておき、この検量線データと、測定液の吸光度との比較によって、試料液に含まれるAsの濃度を算出する。吸光光度計51と吸光光度計52とは、光路長が互いに異なる試料セルをそれぞれ備えている。例えば、吸光光度計51は、光路長が20mmの試料セルを備え、吸光光度計52は、光路長が10mmの試料セルを備えている。   The measurement unit 13 includes a plurality of absorptiometers 51 and 52. As the absorptiometers 51 and 52, absorptiometers using various light sources such as infrared light, ultraviolet light, and visible light can be used. The absorptiometers 51 and 52 record calibration curve data using the standard solution injected from the sample selection valve 22 in advance, and are included in the sample solution by comparing the calibration curve data with the absorbance of the measurement solution. The concentration of As is calculated. The absorptiometer 51 and the absorptiometer 52 are provided with sample cells having different optical path lengths. For example, the absorptiometer 51 includes a sample cell having an optical path length of 20 mm, and the absorptiometer 52 includes a sample cell having an optical path length of 10 mm.

選択バルブ53は、測定を行う試料液の種類、即ち、特定元素の含有濃度域が互いに異なる第一試料液、第三試料液、第三試料液によって、吸光度の測定を行う吸光光度計51または吸光光度計52を選択し、選択された吸光光度計に向けて、それぞれの試料液から作成した測定液を注入する。こうした選択バルブ53の操作は、制御部14に記録された試料液の種類の情報に基づいて自動で行われる。   The selection valve 53 is an absorptiometer 51 that measures the absorbance of the sample liquid to be measured, that is, the first sample liquid, the third sample liquid, and the third sample liquid, in which the content concentration range of the specific element is different from each other. The absorptiometer 52 is selected, and measurement liquids created from the respective sample liquids are injected toward the selected absorptiometer. The operation of the selection valve 53 is automatically performed based on the information on the type of sample liquid recorded in the control unit 14.

または、図1の右上部の(別例)に示したように、選択バルブ53を除外して吸光光度計51、52を直列に管路で接続し、制御部14により吸光光度計51、52いずれかの応答信号を採用するかを選択するようにすることも可能である。こうした場合の実施形態では、特定元素の含有濃度域が互いに異なる第一試料液、第二試料液、第三試料液によって、吸光度の測定を行う吸光光度計51または吸光光度計52を選択し、選択された吸光光度計の応答信号のみを制御部14で記録する。吸光光度計の選択は、制御部14に記録された試料液の種類の情報に基づいて自動で行われる。   Alternatively, as shown in (another example) in the upper right part of FIG. 1, the spectrophotometers 51 and 52 are connected in series with the selection valve 53 excluded, and the absorptiometers 51 and 52 are connected by the control unit 14. It is also possible to select which one of the response signals is adopted. In an embodiment in such a case, the spectrophotometer 51 or the spectrophotometer 52 for measuring the absorbance is selected according to the first sample liquid, the second sample liquid, and the third sample liquid having different concentration ranges of the specific element, Only the response signal of the selected absorptiometer is recorded by the control unit 14. The selection of the absorptiometer is automatically performed based on the information on the type of the sample liquid recorded in the control unit 14.

このような構成の濃度測定装置によれば、試料液に含まれるAsの濃度域に応じて、試料注入バルブ31,32の開放時間を調節して試料液の注入量を増減させることによって、幅広いAsの濃度域の試料に対して、一定の測定精度を保って連続して自動的に測定を行うことができる。   According to the concentration measuring apparatus having such a configuration, by adjusting the opening time of the sample injection valves 31 and 32 according to the concentration range of As contained in the sample solution, the amount of sample solution injected can be increased or decreased. It is possible to continuously and continuously measure a sample in the As concentration range while maintaining a certain measurement accuracy.

また、試料液に含まれるAsの濃度域に応じて、光路長が互いに異なる試料セルを備えた複数の吸光光度計のうちのいずれかを選択して測定することによって、試料液のAsの濃度域に応じた適切な精度でAsの濃度を測定することを可能にする。   Further, by selecting and measuring any one of a plurality of absorptiometers provided with sample cells having different optical path lengths according to the concentration range of As contained in the sample solution, the concentration of As in the sample solution is measured. It is possible to measure the concentration of As with appropriate accuracy according to the area.

(濃度測定方法)
図1に示す濃度測定装置を用いた本発明の濃度測定方法について説明する。
本実施形態では、特定元素としてAsの含有濃度域が互いに異なる3か所の排水(試料液)をそれぞれ採取して、それぞれの試料液中のAs濃度を測定する濃度測定方法の一例を説明する。
まず、試料液採取部11を構成する第一採液部21a、第二採液部21b、第三採液部21cから、互いにAsの含有濃度域が異なる試料液をそれぞれ採取する。第一採液部21aから採取された第一試料液は、例えば、As濃度域が1000〜6000mg/L程度とされる。第二採液部21bから採取された第二試料液は、例えば、As濃度域が5〜30mg/L程度とされる。また、第三採液部21cから採取された第三試料液は、例えば、As濃度域が0〜1mg/L程度とされる。
(Concentration measurement method)
The concentration measuring method of the present invention using the concentration measuring apparatus shown in FIG. 1 will be described.
In the present embodiment, an example of a concentration measurement method for collecting three wastewaters (sample solutions) each having a different concentration range of As as a specific element and measuring the As concentration in each sample solution will be described. .
First, sample liquids having different As concentration ranges are collected from the first liquid collection part 21a, the second liquid collection part 21b, and the third liquid collection part 21c constituting the sample liquid collection part 11, respectively. The first sample liquid collected from the first liquid collection unit 21a has, for example, an As concentration range of about 1000 to 6000 mg / L. The second sample liquid collected from the second liquid collection part 21b has, for example, an As concentration range of about 5 to 30 mg / L. Further, the third sample liquid collected from the third liquid collection part 21c has, for example, an As concentration range of about 0 to 1 mg / L.

採取された試料液は測定液作成部12に送られ、試料注入バルブ31,32でキャリヤ−液となるイオン交換水に注入される。例えば、キャリヤ−液は流速1mL/minで流され、第一試料液の場合には、このキャリヤ−液に試料注入バルブ31の開放時聞を1秒間に設定することで試料液の注入量を20μLに制御し、注入する。また、第二試料液の場合には、このキャリヤ−液に試料液0.24mLを注入する。また、第三試料液の場合には、試料液2.4mLをキャリヤ−液に注入する。   The collected sample liquid is sent to the measurement liquid preparation section 12 and injected into ion exchange water as a carrier liquid by the sample injection valves 31 and 32. For example, the carrier liquid is flowed at a flow rate of 1 mL / min. In the case of the first sample liquid, the sample liquid injection amount is set to 1 second by setting the opening time of the sample injection valve 31 to this carrier liquid. Control and inject to 20 μL. In the case of the second sample solution, 0.24 mL of the sample solution is injected into this carrier solution. In the case of the third sample solution, 2.4 mL of the sample solution is injected into the carrier solution.

次に、試料液とキャリヤ−液との混合液に対して、酸化剤および還元剤を順次注入して酸化還元反応を行い、ヒ素の価数をIII価からV価に変化させる。例えば、それぞれの混合液に対して、酸化剤として過マンガン酸カリウム0.5g/L程度を1ml/minの流速で混合する。また、還元剤として、アスコルビン酸を5g/L程度を1ml/minの流速で混合する。   Next, an oxidizing agent and a reducing agent are sequentially injected into the mixed solution of the sample solution and the carrier solution to perform an oxidation-reduction reaction, thereby changing the valence of arsenic from III to V. For example, about 0.5 g / L of potassium permanganate as an oxidizing agent is mixed with each mixed solution at a flow rate of 1 ml / min. As a reducing agent, ascorbic acid is mixed at about 5 g / L at a flow rate of 1 ml / min.

次に、ヒ素の価数をV価に変化させた混合液に対して、2種類の発色剤を注入し、例えば100℃程度の温度にした反応槽43で反応させる。発色剤としては、例えば、硫酸溶解したモリブデン酸アンモニウムを16g/L程度、また、アスコルビン酸を0.4g/L程度、それぞれ注入して反応させる。これによって、ヒ素の含有濃度に応じた量のヒ素モリブデンブルー錯体が生成された測定液を得る。   Next, two kinds of color formers are injected into the mixed solution in which the arsenic valence is changed to the V valence, and the reaction is performed in the reaction tank 43 at a temperature of about 100 ° C. As the color former, for example, about 16 g / L of ammonium molybdate dissolved in sulfuric acid and about 0.4 g / L of ascorbic acid are respectively injected and reacted. As a result, a measurement liquid in which an amount of arsenic molybdenum blue complex corresponding to the concentration of arsenic is generated is obtained.

なお、測定液作成部12では、キャリヤ−液、酸化剤、還元剤、2種類の発色剤は、プランジャーポンプ37,38,39によって、例えば流速1mL/minで常に輸液管45に送り込まれている。これによって、連続して採取された試料液から、測定液が常時連続して生成される。   In the measurement liquid preparation unit 12, the carrier liquid, the oxidizing agent, the reducing agent, and the two color formers are always sent to the infusion tube 45 by the plunger pumps 37, 38, and 39, for example, at a flow rate of 1 mL / min. Yes. As a result, the measurement liquid is always generated continuously from the sample liquid collected continuously.

次に、得られた測定液が測定部13に送られ、ヒ素濃度の測定が行われる。測定にあたっては、低濃度域の第三試料液によって得られた測定液は、光路長が20mmの試料セルを備えた吸光光度計51によって吸光度が測定される。また、中濃度域の第二試料液、および高濃度域の第一試料液によって得られた測定液は、光路長が10mmの試料セルを備えた吸光光度計52によって吸光度が測定される。測定にあたっては、Asの吸光ピークである波長840nm付近の吸光度が測定される。   Next, the obtained measurement liquid is sent to the measurement unit 13 to measure the arsenic concentration. In measurement, the absorbance of the measurement liquid obtained from the third sample liquid in the low concentration region is measured by an absorptiometer 51 including a sample cell having an optical path length of 20 mm. Further, the absorbance of the measurement liquid obtained from the second sample liquid in the medium concentration range and the first sample liquid in the high concentration range is measured by the absorptiometer 52 including a sample cell having an optical path length of 10 mm. In the measurement, the absorbance near the wavelength of 840 nm, which is an absorption peak of As, is measured.

こうして測定されたそれぞれの試料液の吸光度のデータは制御部14に送られ、予め測定された標準液を用いた検量線データと比較され、それぞれの測定液のAs濃度が算出される。得られたAs濃度のデータは、制御部14に記録、蓄積される。   The absorbance data of each sample solution thus measured is sent to the control unit 14 and compared with calibration curve data using a standard solution measured in advance, and the As concentration of each measurement solution is calculated. The obtained As concentration data is recorded and accumulated in the control unit 14.

なお、こうして得られたそれぞれの測定液のAs濃度は、例えば、第一採液部21a、第二採液部21b、第三採液部21cに繋がる排液の処理設備等にフィードバックされ、As濃度が基準内に収まるように工程排水処理設備の制御に反映させることもできる。   The As concentration of each measurement liquid obtained in this way is fed back to, for example, a drainage treatment facility connected to the first liquid collection part 21a, the second liquid collection part 21b, and the third liquid collection part 21c. It can also be reflected in the control of the process wastewater treatment equipment so that the concentration falls within the standard.

一方、洗浄部46は、シリンジポンプ35によって、試料選択バルブ22、試料注入バルブ31,32、およびこれに繋がる輸液管45の残留試料の洗浄を、1回の測定完了ごとに自動で行う。例えば、具体的な洗浄方法として、塩酸(濃塩酸1:水4)をシリンジポンプ35によって注入して洗浄を行い、その後、溶液流路切替バルブ34を切替えて、イオン交換水で水洗を行う。こうした洗浄によって、工場などの工程排水液を試料液として場合に多く含まれる浮遊粒子状物質(SS)等によって、輸液管や各バルブの詰まりを防止し、自動的に連続してAs濃度を測定することを可能にする。   On the other hand, the cleaning unit 46 automatically cleans the residual sample of the sample selection valve 22, the sample injection valves 31 and 32, and the infusion tube 45 connected to the sample selection valve 22, and the infusion tube 45 connected thereto by the syringe pump 35 every time measurement is completed. For example, as a specific cleaning method, hydrochloric acid (concentrated hydrochloric acid 1: water 4) is injected by a syringe pump 35 to perform cleaning, and then the solution flow path switching valve 34 is switched to perform water cleaning with ion exchange water. Such cleaning prevents clogging of the infusion tube and each valve with suspended particulate matter (SS), which is often contained when using process wastewater from factories as a sample solution, and automatically and continuously measures the As concentration. Make it possible to do.

また、洗浄部46は、プランジャーポンプ41によって、溶液流路切替バルブ33を介して輸液管45を1回の測定完了ごとに自動で行う。具体的には、酸化剤である過マンガン酸カリウムと洗浄液となるアスコルビン酸の送り込みを、溶液流路切替バルブ33によって自動で切り替え、一回の測定が終了するたびに輸液管45の内部を自動で洗浄する。即ち、測定時には酸化剤である過マンガン酸カリウムが輸液管45に流れるように溶液流路切替バルブ33を設定し、洗浄時には、洗浄液であるアスコルビン酸が輸液管45に流れるように溶液流路切替バルブ33を設定する。これにより、過マンガン酸カリウムが試料液と混合する輸液管45において、過マンガン酸カリウムが二酸化マンガンに変化して輸液管45に詰まりが生じることを防止する。還元性のあるアスコルビン酸を洗浄剤に用いることで、二酸化マンガンを輸液管45から確実に除去することができる。   In addition, the cleaning unit 46 automatically performs the infusion tube 45 through the solution flow path switching valve 33 by the plunger pump 41 every time one measurement is completed. Specifically, the feeding of potassium permanganate, which is an oxidant, and ascorbic acid, which is a cleaning liquid, is automatically switched by the solution flow path switching valve 33, and the inside of the infusion tube 45 is automatically switched each time one measurement is completed. Wash with. That is, the solution flow path switching valve 33 is set so that potassium permanganate, which is an oxidizing agent, flows into the infusion pipe 45 during measurement, and the solution flow path is switched so that ascorbic acid, which is a cleaning liquid, flows into the infusion pipe 45, during cleaning. Valve 33 is set. Thereby, in the infusion tube 45 in which potassium permanganate is mixed with the sample solution, it is prevented that the potassium permanganate is changed to manganese dioxide and the infusion tube 45 is clogged. Manganese dioxide can be reliably removed from the infusion tube 45 by using reducing ascorbic acid as a cleaning agent.

一方、洗浄部46は、シリンジポンプ36によって、プランジャーポンプ37,38,41のそれぞれのポンプヘッドを1回の測定完了ごとに自動で行う。これはプランジャーシール保護のため、塩類析出を防止する意味で送液する。なお、洗浄液としては水を使用する。   On the other hand, the cleaning unit 46 automatically performs the pump heads of the plunger pumps 37, 38, and 41 each time one measurement is completed by the syringe pump 36. In order to protect the plunger seal, the liquid is fed to prevent salt precipitation. Water is used as the cleaning liquid.

以上のように、本発明の濃度測定方法では、試料液に含まれるAsの含有濃度域に応じて、試料注入バルブ31,32の開放時間を調節して試料液の注入量を増減させて、キャリヤ−液への注入量を変えることによって、幅広いAsの濃度域の試料に対して、一定の測定精度を保って測定を行うことができる。   As described above, according to the concentration measurement method of the present invention, the open time of the sample injection valves 31 and 32 is adjusted according to the concentration range of As contained in the sample solution to increase or decrease the injection amount of the sample solution, By changing the injection amount into the carrier liquid, it is possible to perform measurement with a certain measurement accuracy on a sample having a wide As concentration range.

また、濃度測定装置10の各部を、制御部14に記録された制御プログラムの実行によって制御し、試料液中のAsの濃度測定から、輸液管や各バルブの洗浄までを一回のルーチンとして自動的に行うことによって、試料液に含まれるAsの濃度を連続して自動的に測定することが可能になる。   In addition, each part of the concentration measuring apparatus 10 is controlled by executing a control program recorded in the control unit 14, and the process from measuring the concentration of As in the sample liquid to cleaning the infusion tube and each valve is automatically performed as one routine. By carrying out the measurement, the concentration of As contained in the sample solution can be continuously and automatically measured.

更に、また、試料液に含まれるAsの濃度域に応じて、光路長が互いに異なる試料セルを備えた複数の吸光光度計を切り替えて測定を行えば、試料液のAsの濃度域に応じた適切な精度でAsの含有濃度を測定することを可能にする。   Furthermore, if the measurement is performed by switching a plurality of absorptiometers provided with sample cells having different optical path lengths according to the concentration range of As contained in the sample solution, the measurement solution corresponds to the As concentration range of the sample solution. It makes it possible to measure the concentration of As with appropriate accuracy.

(制御プログラム)
本発明の制御プログラムは、例えば、濃度測定装置10の制御部14を構成するパソコンの記憶装置に記憶され、濃度測定装置10の動作中に実行される。制御プログラムは、試料液の特定元素、例えばAs含有濃度域に応じて、測定液作成部13における反応試薬に対する試料液の注入量を選択するステップと、測定液の特定元素の含有濃度域に応じて、並列または直列に配された複数の吸光光度計(測定部)から、濃度測定を行う特定の吸光光度計(測定部)を選択するステップと、を少なくとも備えている。
(Control program)
The control program of the present invention is stored, for example, in a storage device of a personal computer constituting the control unit 14 of the concentration measuring device 10 and is executed during the operation of the concentration measuring device 10. The control program selects the injection amount of the sample liquid into the reaction reagent in the measurement liquid preparation unit 13 according to the specific element of the sample liquid, for example, the As content concentration area, and the content concentration area of the specific element of the measurement liquid And a step of selecting a specific absorptiometer (measuring unit) that performs concentration measurement from a plurality of absorptiometers (measuring units) arranged in parallel or in series.

制御プログラムは、これらのステップを実行するために、濃度測定装置10の各バルブの切替や、吸光光度計(測定部)51,52を制御するための制御プログラムも含んでいる。   The control program also includes a control program for switching each valve of the concentration measuring apparatus 10 and controlling the absorptiometers (measurement units) 51 and 52 in order to execute these steps.

こうした制御プログラムを濃度測定装置10の制御部14で実行することによって、試料液中のAsの濃度測定から、輸液管や各バルブの洗浄までを一回のルーチンとして自動的に行い、試料液に含まれるAsの濃度を連続して自動的に測定することが可能になる。   By executing such a control program in the control unit 14 of the concentration measuring apparatus 10, the process from the measurement of the concentration of As in the sample solution to the cleaning of the infusion tube and each valve is automatically performed as a single routine. It becomes possible to automatically and continuously measure the concentration of As contained.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
上述した実施形態では、特定元素としてAsを挙げて、その濃度を測定する例を説明したが、特定元素はAsに限定されるものでは無い。例えば、特定元素として、As以外にも、Si,P,Geの少なくともいずれか1つを選択することができる。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
In the above-described embodiment, the example in which As is given as the specific element and the concentration is measured has been described. However, the specific element is not limited to As. For example, at least one of Si, P, and Ge can be selected as the specific element other than As.

一例として、Siを特定元素として、試料液中のSiの含有濃度を測定する場合には、Siを含む試料液を硫酸化した後、モリブデン酸アンモニウムおよび還元剤を加えて測定液を作成する。そして、吸光光度計を用いて波長が830nm付近のピークを測定することによって、Siの濃度の測定に適用することができる。   As an example, when measuring the Si concentration in a sample solution using Si as a specific element, after sulfating the sample solution containing Si, an ammonium molybdate and a reducing agent are added to prepare a measurement solution. And it can apply to the measurement of the density | concentration of Si by measuring the peak whose wavelength is 830 nm vicinity using an absorptiometer.

また、他の一例として、Geを特定元素として、試料液中のGeの含有濃度を測定する場合には、Geを含む試料液を硫酸化した後、モリブデン酸アンモニウムおよび還元剤を加えて測定液を作成する。そして、吸光光度計を用いて波長が830nm付近のピークを測定することによって、Geの濃度の測定に適用することができる。   As another example, when measuring the Ge concentration in a sample solution using Ge as a specific element, after sulfating the sample solution containing Ge, ammonium molybdate and a reducing agent are added to the measurement solution. Create And it can apply to the measurement of the density | concentration of Ge by measuring the peak whose wavelength is about 830 nm using an absorptiometer.

上述した実施形態では、試料液を3つの含有濃度域に分けて、それぞれキャリヤ−液に対する注入量を調節しているが、特定元素の含有濃度域の区分けは3つに限定されるものでは無い。例えば、特定元素の含有濃度域を2つにしてそれぞれ測定液を作成しても、あるいは、特定元素の含有濃度域を4つ以上にしてそれぞれ測定液を作成することもできる。   In the above-described embodiment, the sample liquid is divided into three content concentration ranges, and the injection amount to the carrier liquid is adjusted respectively. However, the classification of the specific element content concentration ranges is not limited to three. . For example, the measurement liquid can be prepared with two specific element content concentration regions, or the measurement liquid can be prepared with four or more specific element content concentration regions.

上述した実施形態では、互いに光路長が異なる試料セルをそれぞれ備えた2つの吸光光度計(測定部)を並列または直列に配置しているが、例えば、光路長を3つ以上に分けて、3つ以上の吸光光度計を並列または直列に配して、特定元素の含有濃度域に応じてこれら3つ以上の吸光光度計のうちの1つを選択して吸光度を測定する構成であってもよい。   In the embodiment described above, two absorptiometers (measuring units) each provided with sample cells having different optical path lengths are arranged in parallel or in series. For example, the optical path length is divided into three or more and 3 Even in a configuration in which two or more absorptiometers are arranged in parallel or in series, and one of these three or more absorptiometers is selected according to the content concentration range of the specific element and the absorbance is measured. Good.

本発明の濃度測定方法の効果を検証した。
図1に示す濃度測定装置を用いて、Asが0〜30mg/L含まれる試料液の測定結果について以下示す。
As濃度域が0〜1mg/Lの試料液を試料注入バルブ32から2.4mL採取する。また、As濃度域が0.2〜30mg/Lの試料液を試料注入バルブ31から0.24mL採取する。そして、それぞれの試料液を流速1mL/minのキャリヤ−液と合流させ、過マンガン酸カリウム0.5g/L、及び、アスコルビン酸5g/Lと反応させた。
次に、モリブデン酸アンモニウム16g(2M HSO)及びアスコルビン酸0.4g/Lと合流させ、100℃の反応槽でヒ素モリブデンブルー錯体を形成させ、測定液を得た。
The effect of the concentration measuring method of the present invention was verified.
The measurement results of the sample solution containing 0 to 30 mg / L of As using the concentration measuring device shown in FIG. 1 are shown below.
2.4 mL of a sample solution having an As concentration range of 0 to 1 mg / L is collected from the sample injection valve 32. Further, 0.24 mL of a sample solution having an As concentration range of 0.2 to 30 mg / L is collected from the sample injection valve 31. Each sample solution was combined with a carrier solution having a flow rate of 1 mL / min and reacted with potassium permanganate 0.5 g / L and ascorbic acid 5 g / L.
Next, 16 g (2M H 2 SO 4 ) of ammonium molybdate and 0.4 g / L of ascorbic acid were combined to form an arsenic molybdenum blue complex in a reaction vessel at 100 ° C. to obtain a measurement solution.

こうして得られた測定液を用いて、As濃度域が0〜1mg/Lの試料液から作成した測定液は、光路長が20mmの試料セルを備えた吸光光度計51で、また、As濃度域が0.2〜30mg/Lの試料液から作成した測定液は、光路長が10mmの試料セルを備えた吸光光度計52で、それぞれ波長840nmの吸光度を測定し、As濃度を定量した。   A measurement liquid prepared from a sample liquid having an As concentration range of 0 to 1 mg / L using the measurement liquid thus obtained is an absorptiometer 51 provided with a sample cell having an optical path length of 20 mm. A measurement solution prepared from a sample solution of 0.2 to 30 mg / L was measured for absorbance at a wavelength of 840 nm with an absorptiometer 52 equipped with a sample cell having an optical path length of 10 mm, and the As concentration was quantified.

検量線測定結果を図2、図3にそれぞれ示す。As標準液0.05、0.1、0.5、1(mg/L)、及びAs標準液5、10、20、30(mg/L)を測定した検量線結果の相関係数は、それぞれr=0.9996、0.9999と良好な結果であった。As標準液は、As(III)標準液を使用した。上述した試料液を本発明の濃度測定装置で測定した結果と、比較例のICP−発光分光分析法で測定した結果を図4、表1にそれぞれ示す。これらの結果から、本発明の濃度測定装置、濃度測定方法によれば、As濃度を正確に測定できることが確認された。   The calibration curve measurement results are shown in FIGS. 2 and 3, respectively. The correlation coefficient of the calibration curve results obtained by measuring As standard solution 0.05, 0.1, 0.5, 1 (mg / L) and As standard solution 5, 10, 20, 30 (mg / L) is Good results were obtained with r = 0.9996 and 0.9999, respectively. As (III) standard solution was used as the As standard solution. FIG. 4 and Table 1 show the results of measuring the above-described sample solution with the concentration measuring apparatus of the present invention and the results of measuring with the ICP-emission spectroscopic analysis method of the comparative example, respectively. From these results, it was confirmed that the As concentration can be accurately measured according to the concentration measuring apparatus and the concentration measuring method of the present invention.

Figure 2016212028
Figure 2016212028

図1に示す濃度測定装置を用いて、Asが1000〜6000mg/L含まれる試料液の測定結果について以下示す。
As濃度域が1000〜6000mg/Lの試料液を試料注入バルブ31を1秒間開くことで試料採取量を20μLに制御し、流速1mL/minのキャリヤ−液と合流後、過マンガン酸カリウム0.5g/L、及び、アスコルビン酸5g/Lと反応させた。
次に、モリブデン酸アンモニウム16g(2M HSO)及びアスコルビン酸0.4g/Lと合流させ、100℃の反応槽でヒ素モリブデンブルー錯体を形成させ、測定液を得た。
The measurement results of the sample solution containing As of 1000 to 6000 mg / L using the concentration measuring apparatus shown in FIG. 1 are shown below.
A sample solution with an As concentration range of 1000 to 6000 mg / L was controlled to 20 μL by opening the sample injection valve 31 for 1 second, and joined with a carrier solution having a flow rate of 1 mL / min. Reaction was performed with 5 g / L and ascorbic acid 5 g / L.
Next, 16 g (2M H 2 SO 4 ) of ammonium molybdate and 0.4 g / L of ascorbic acid were combined to form an arsenic molybdenum blue complex in a reaction vessel at 100 ° C. to obtain a measurement solution.

こうして得られた測定液を用いて、As濃度域が1000〜6000mg/Lの試料液から作成した測定液は、光路長が10mmの試料セルを備えた吸光光度計52で波長840nmの吸光度を測定し、As濃度を定量した。
上述した試料液を本発明の濃度測定装置で測定した結果と、比較例のICP−発光分光分析法で測定した結果を図5、表2にそれぞれ示す。これらの結果から、本発明の濃度測定装置、濃度測定方法によれば、As濃度を正確に測定できることが確認された。
Using the measurement solution thus obtained, a measurement solution prepared from a sample solution with an As concentration range of 1000 to 6000 mg / L was measured for absorbance at a wavelength of 840 nm with an absorptiometer 52 equipped with a sample cell with an optical path length of 10 mm. The As concentration was quantified.
FIG. 5 and Table 2 show the results of measuring the above-described sample solution with the concentration measuring apparatus of the present invention and the results of measuring with the ICP-emission spectroscopic analysis method of the comparative example, respectively. From these results, it was confirmed that the As concentration can be accurately measured according to the concentration measuring apparatus and the concentration measuring method of the present invention.

Figure 2016212028
Figure 2016212028

10 濃度測定装置
11 試料液採取部
12 測定部
13 制御部
51,52 吸光光度計
DESCRIPTION OF SYMBOLS 10 Concentration measuring device 11 Sample liquid collection part 12 Measurement part 13 Control part 51,52 Absorptiometer

Claims (13)

特定元素の濃度を連続して自動的に測定する濃度測定装置であって、
前記特定元素の含有濃度域が互いに異なる複数種の試料液をそれぞれ区別して取り込む試料液採取部と、
前記特定元素の含有濃度域によって互いに異なる注入量となるように制御して前記試料液に反応試薬を注入し、測定液を形成する測定液作成部と、
前記特定元素の含有濃度域に応じていずれか1つが選択され、前記測定液作成部で形成された前記測定液に含まれる前記特定元素の含有濃度を測定する複数の測定部と、
前記試料液採取部、前記測定液作成部、および前記測定部を連携して動作させる制御部と、を備えたことを特徴とする濃度測定装置。
A concentration measuring device that automatically and continuously measures the concentration of a specific element,
A sample liquid collecting unit that distinguishes and takes in plural types of sample liquids having different concentration ranges of the specific element, and
A measurement liquid preparation unit that controls the injection amount to be different from each other depending on the concentration range of the specific element, injects a reaction reagent into the sample liquid, and forms a measurement liquid;
A plurality of measurement units that measure the content concentration of the specific element contained in the measurement liquid formed by the measurement liquid preparation unit, any one selected according to the content concentration range of the specific element,
A concentration measuring apparatus comprising: the sample solution collecting unit, the measuring solution creating unit, and a control unit that operates the measuring unit in cooperation with each other.
前記特定元素は、As,Si,P,Geの少なくともいずれか1つであることを特徴とする請求項1記載の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein the specific element is at least one of As, Si, P, and Ge. 前記測定部は吸光光度計であり、前記反応試薬は、酸化剤、還元剤、および発色剤を含むことを特徴とする請求項1または2記載の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein the measurement unit is an absorptiometer, and the reaction reagent includes an oxidizing agent, a reducing agent, and a color former. 複数の前記測定部は、光路長が互いに異なる試料セルをそれぞれ備えた複数の吸光光度計が並列または直列に配されたものからなることを特徴とする請求項1ないし3いずれか一項記載の濃度測定装置。   4. The plurality of measuring units are each composed of a plurality of absorptiometers each provided with sample cells having different optical path lengths arranged in parallel or in series. 5. Concentration measuring device. 前記測定液作成部を構成する輸液管に別の輸液管を接続して、洗浄液を供給する洗浄部を更に備えたことを特徴とする請求項1ないし4いずれか一項記載の濃度測定装置。   5. The concentration measuring apparatus according to claim 1, further comprising a cleaning section that connects another infusion pipe to the infusion pipe constituting the measurement liquid preparation section and supplies a cleaning liquid. 6. 請求項1ないし5いずれか一項記載の濃度測定装置を構成する前記制御部に記録された制御プログラムであって、
前記試料液の前記特定元素の含有濃度域に応じて、前記測定液作成部における前記反応試薬に対する前記試料液の注入量を選択するステップと、
前記測定液の前記特定元素の含有濃度域に応じて、複数の前記測定部から濃度測定を行う特定の測定部を選択するステップと、
を備えたことを特徴とする制御プログラム。
A control program recorded in the control unit constituting the concentration measuring device according to any one of claims 1 to 5,
Selecting an injection amount of the sample liquid with respect to the reaction reagent in the measurement liquid preparation unit according to a concentration range of the specific element of the sample liquid;
Selecting a specific measurement unit that performs concentration measurement from a plurality of the measurement units according to the concentration concentration range of the specific element of the measurement liquid; and
A control program comprising:
特定元素の濃度を連続して自動的に測定する濃度測定方法であって、
前記特定元素の含有濃度域が互いに異なる複数種の試料液をそれぞれ区別して取り込む試料液採取工程と、
前記特定元素の含有濃度域によって互いに異なる注入量となるように制御して前記試料液を反応試薬に注入し、測定液を形成する測定液作成工程と、
前記測定液に含まれる前記特定元素の含有濃度を測定する測定工程と、を備えたことを特徴とする濃度測定方法。
A concentration measurement method for automatically and continuously measuring the concentration of a specific element,
A sample liquid collecting step for distinguishing and taking in plural types of sample liquids having different concentration ranges of the specific element from each other;
A measurement liquid preparation step of controlling the injection amount to be different from each other depending on the concentration range of the specific element, injecting the sample liquid into a reaction reagent, and forming a measurement liquid;
And a measuring step for measuring the concentration of the specific element contained in the measuring solution.
前記測定工程では、前記測定液の前記特定元素の含有濃度域に応じて、互いに異なる光路長で吸光度を測定することを特徴とする請求項7記載の濃度測定方法。   The concentration measurement method according to claim 7, wherein in the measurement step, the absorbance is measured with different optical path lengths according to a concentration range of the specific element in the measurement solution. 前記特定元素は、As,Si,P,Geの少なくともいずれか1つであることを特徴とする請求項7または8記載の濃度測定方法。   9. The concentration measuring method according to claim 7, wherein the specific element is at least one of As, Si, P, and Ge. 前記特定元素はAsであり、
前記測定液作成工程では、酸化剤および還元剤によって試料液に含まれるAsの価数をIII価からV価に変化させ、その後、発色剤によってヒ素モリブデンブルー錯体を形成し、
前記測定工程では、吸光光度法によって波長が840nm付近の吸光度を測定することを特徴とする請求項9記載の濃度測定方法。
The specific element is As;
In the measurement liquid preparation step, the valence of As contained in the sample liquid is changed from III to V with an oxidizing agent and a reducing agent, and then an arsenic molybdenum blue complex is formed with a color former.
10. The concentration measuring method according to claim 9, wherein, in the measuring step, absorbance at a wavelength of around 840 nm is measured by absorptiometry.
前記試料液におけるAsの濃度は0.008mg/L以上、6000mg/L以下の範囲であることを特徴とする請求項10記載の濃度測定方法。   The concentration measurement method according to claim 10, wherein the concentration of As in the sample solution is in a range of 0.008 mg / L to 6000 mg / L. 前記酸化剤は過マンガン酸カリウム、前記還元剤はアスコルビン酸、前記発色剤は硫酸性モリブデン酸アンモニウムおよびアスコルビン酸であることを特徴とする請求項10または11記載の濃度測定方法。   The concentration measuring method according to claim 10 or 11, wherein the oxidizing agent is potassium permanganate, the reducing agent is ascorbic acid, and the color former is sulfated ammonium molybdate and ascorbic acid. 前記測定液作成工程で前記酸化剤として用いる過マンガン酸カリウムを輸液管から除去する洗浄工程を更に備えたことを特徴とする請求項12記載の濃度測定方法。   13. The concentration measuring method according to claim 12, further comprising a washing step of removing potassium permanganate used as the oxidizing agent in the measuring solution preparation step from the infusion tube.
JP2015097874A 2015-05-13 2015-05-13 Concentration measuring device, concentration measuring method, control program Active JP6609985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015097874A JP6609985B2 (en) 2015-05-13 2015-05-13 Concentration measuring device, concentration measuring method, control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097874A JP6609985B2 (en) 2015-05-13 2015-05-13 Concentration measuring device, concentration measuring method, control program

Publications (2)

Publication Number Publication Date
JP2016212028A true JP2016212028A (en) 2016-12-15
JP6609985B2 JP6609985B2 (en) 2019-11-27

Family

ID=57552369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097874A Active JP6609985B2 (en) 2015-05-13 2015-05-13 Concentration measuring device, concentration measuring method, control program

Country Status (1)

Country Link
JP (1) JP6609985B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241987A (en) * 1998-02-24 1999-09-07 Shinko Electric Co Ltd Water quality measuring device
JP2001141733A (en) * 1999-11-12 2001-05-25 Nisshin Steel Co Ltd Device and method for automatic nitrogen concentration analysis
JP2004301609A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Measuring method and device for arsenic concentration
JP2005099014A (en) * 2003-09-03 2005-04-14 National Institute Of Advanced Industrial & Technology Phosphoric acid measuring method and apparatus of the same
US20050276724A1 (en) * 2002-05-07 2005-12-15 Ben Bremauer Apparatus for mixing and/or testing small volumes of fluids
JP2006194775A (en) * 2005-01-14 2006-07-27 Shimadzu Corp Optical path-length variable cell, absorbance-measuring method using it, and cod-measuring method and device using them
JP2008241382A (en) * 2007-03-27 2008-10-09 Miura Co Ltd Measuring method of alkaline component concentration in sample water
US20090257061A1 (en) * 2005-11-25 2009-10-15 Nils Wihlborg Optical Analyzer
JP2012058128A (en) * 2010-09-10 2012-03-22 Dowa Techno Engineering Co Ltd Method for measuring thin arsenic concentration under existence of phosphoric acid and silica ion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241987A (en) * 1998-02-24 1999-09-07 Shinko Electric Co Ltd Water quality measuring device
JP2001141733A (en) * 1999-11-12 2001-05-25 Nisshin Steel Co Ltd Device and method for automatic nitrogen concentration analysis
US20050276724A1 (en) * 2002-05-07 2005-12-15 Ben Bremauer Apparatus for mixing and/or testing small volumes of fluids
JP2004301609A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Measuring method and device for arsenic concentration
JP2005099014A (en) * 2003-09-03 2005-04-14 National Institute Of Advanced Industrial & Technology Phosphoric acid measuring method and apparatus of the same
JP2006194775A (en) * 2005-01-14 2006-07-27 Shimadzu Corp Optical path-length variable cell, absorbance-measuring method using it, and cod-measuring method and device using them
US20090257061A1 (en) * 2005-11-25 2009-10-15 Nils Wihlborg Optical Analyzer
JP2008241382A (en) * 2007-03-27 2008-10-09 Miura Co Ltd Measuring method of alkaline component concentration in sample water
JP2012058128A (en) * 2010-09-10 2012-03-22 Dowa Techno Engineering Co Ltd Method for measuring thin arsenic concentration under existence of phosphoric acid and silica ion

Also Published As

Publication number Publication date
JP6609985B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
DE102009028165B4 (en) Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
DE102011088959B4 (en) Device for degassing a liquid and use of this device in an analysis device
JP5279485B2 (en) Glycohemoglobin concentration measuring method and concentration measuring apparatus
US9278351B2 (en) Apparatus and system for measuring asphaltene content of crude oil
Zhu et al. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives
JP2009288228A (en) Method and device for automatic analysis quantitative observation
US20160041103A1 (en) Lab-on-a-chip for alkalinity analysis
CN101907558A (en) Total organic carbon online analyzer and method for analyzing total organic carbon
Šraj et al. Determination of trace levels of ammonia in marine waters using a simple environmentally-friendly ammonia (SEA) analyser
Chen et al. On-line solid phase extraction and spectrophotometric detection with flow technique for the determination of nanomolar level ammonium in seawater samples
Van Staden et al. Determination of lead (II), copper (II), zinc (II), cobalt (II), cadmium (II), iron (III), mercury (II) using sequential injection extractions
DE112019006354T5 (en) AUTOMATED SYSTEM FOR REMOTE INLINE CONCENTRATION AND HOMOGENIZATION OF EXTREMELY LOW CONCENTRATIONS IN PURE CHEMICALS
Rodríguez et al. Uranium monitoring tool for rapid analysis of environmental samples based on automated liquid-liquid microextraction
Galhardo et al. Sequential injection analysis as a tool for in situ monitoring of Fe (II), Fe (III), NO3− and NO2− in natural and waste waters
Wang et al. Development and application of a shipboard method for spectrophotometric determination of nanomolar dissolved sulfide in estuarine surface waters using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell
DE102014119547A1 (en) Apparatus and method for removing chloride from a liquid sample
Zagatto et al. Evolution of the commutation concept associated with the development of flow analysis
Lin et al. Reverse flow injection method for field determination of nitrate in estuarine and coastal waters using a custom-made linear light path flow cell and the vanadium reduction method
JP6609985B2 (en) Concentration measuring device, concentration measuring method, control program
KR100879009B1 (en) A system and method for monitoring metals and metal compounds in air and gases
CN104165954B (en) Online photodissociation-noncontact diffusion-chromatographic resolution detects total cyanogen and sulphide process
Anthemidis et al. A sequential injection lab-at-valve (SI-LAV) platform for hydride generation atomic absorption spectrometry (HG-AAS): on-line determination of inorganic arsenic
JP4431231B2 (en) Nitrogen concentration automatic analyzer and method
JP2008002916A (en) Component removing system for in-line removing specific component in sample liquid
Cerdà et al. Automatic pre-concentration and treatment for the analysis of environmental samples using non-chromatographic flow techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6609985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150