JP2008241088A - Accumulator - Google Patents

Accumulator Download PDF

Info

Publication number
JP2008241088A
JP2008241088A JP2007080495A JP2007080495A JP2008241088A JP 2008241088 A JP2008241088 A JP 2008241088A JP 2007080495 A JP2007080495 A JP 2007080495A JP 2007080495 A JP2007080495 A JP 2007080495A JP 2008241088 A JP2008241088 A JP 2008241088A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
accumulator
inner passage
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080495A
Other languages
Japanese (ja)
Inventor
Toshihiro Maruyama
智弘 丸山
Toshihiro Shinbayashi
利浩 新林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007080495A priority Critical patent/JP2008241088A/en
Publication of JP2008241088A publication Critical patent/JP2008241088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accumulator capable of sucking smoothly oil in from an oil staying initial stage, while compactifying a pressure container. <P>SOLUTION: This accumulator is provided with the pressure container 2 having an inflow port 7 for making a gas-liquid two-phase refrigerant flow in, and a discharge port 8 for discharging a gaseous refrigerant, in its upper part, and a refrigerant discharge member 3 stored in the pressure container 2, and is formed with an inner flow channel 10 and an outer flow channel 11 formed vertically penetratedly in the refrigerant discharge member 3, an upper part 10a of the inner flow channel 10 is connected to communicate with the discharge port 8, an upper part 11a of the outer flow channel 11 is connected to communicate with an inside of the pressure container 2, a lower part 10b of the inner flow channel 10 is connected to communicate with a lower part 11b of the outer flow channel 11 via an adaptor member 12, a prescribed clearance W1 is provided between a bottom part of the pressure container 2 and a bottom part of the adaptor member 12, and an oil suction port 12b is provided in the bottom part of the adaptor member 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アキュムレータに関する。   The present invention relates to an accumulator.

従来、耐圧容器内に流入した気液二相冷媒を溜めて気液分離させた後、気体冷媒を冷媒流出部材を介して容器外へ排出するようにしたアキュムレータの技術が公知になっている(特許文献1参照)。
特開2002−130871号公報
2. Description of the Related Art Conventionally, an accumulator technique in which gas-liquid two-phase refrigerant that has flowed into a pressure-resistant container is stored and separated into gas and liquid, and then the gas refrigerant is discharged out of the container through a refrigerant outflow member is known ( Patent Document 1).
JP 2002-130871 A

しかしながら、従来の発明にあっては、冷媒流出部材を略U字状の冷媒流出配管で構成した場合には耐圧容器が大径化してしまうという問題点があった。   However, in the conventional invention, when the refrigerant outflow member is constituted by a substantially U-shaped refrigerant outflow pipe, there is a problem that the pressure vessel becomes large in diameter.

一方、冷媒流出部材を筒状部材と冷媒流出配管で構成した場合には筒状部材が耐圧容器の底部に固定される、あるいは、冷媒流出配管が耐圧容器の底部に貫通配置されるため、冷媒と共に冷凍サイクル内を循環するコンプレッサの潤滑オイルのオイル吸入口を筒状部材の側方に設ける必要が生じ、この結果、オイルがある程度溜まるまで吸入できない、あるいは、オイルと液冷媒の両方をオイル吸入口から吸入してしまう虞があった。   On the other hand, when the refrigerant outflow member is composed of a cylindrical member and a refrigerant outflow pipe, the cylindrical member is fixed to the bottom of the pressure vessel, or the refrigerant outflow pipe is disposed through the bottom of the pressure vessel. In addition, it is necessary to provide an oil suction port for the lubricating oil of the compressor that circulates in the refrigeration cycle on the side of the cylindrical member. As a result, the oil cannot be sucked until the oil has accumulated to some extent, or both oil and liquid refrigerant are sucked into the oil There was a risk of inhalation from the mouth.

本発明は上記課題を解決するためになされたものであって、その目的とするところは、耐圧容器のコンパクト化を実現しつつ、オイルが溜まる初期段階からオイルをスムーズに吸入できるアキュムレータを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an accumulator capable of smoothly sucking oil from an initial stage where oil is accumulated while realizing a compact pressure vessel. That is.

本発明の請求項1記載の発明では、上部に気液二相冷媒を流入させる流入口と、気体冷媒を排出させる排出口を有する耐圧容器と、前記耐圧容器内に収容される冷媒排出部材を備え、前記冷媒排出部材に上下方向に貫通形成された内通路及び外通路を形成し、前記内通路の上部を前記排出口に連通する一方、外通路の上部を耐圧容器内に連通し、前記内通路の下部と外通路の下部とをアダプタ部材を介して連通し、前記耐圧容器の底部とアダプタ部材の底部との間に所定の隙間を設けると共に、該アダプタ部材の底部にオイル吸入口を設けたことを特徴とする。   According to the first aspect of the present invention, there is provided a pressure-resistant container having an inlet for allowing a gas-liquid two-phase refrigerant to flow into the upper part, a discharge port for discharging a gaseous refrigerant, and a refrigerant discharge member accommodated in the pressure-resistant container. And forming an inner passage and an outer passage that are vertically formed through the refrigerant discharge member. The upper portion of the inner passage communicates with the discharge port, while the upper portion of the outer passage communicates with the pressure vessel. The lower part of the inner passage communicates with the lower part of the outer passage through an adapter member, and a predetermined gap is provided between the bottom of the pressure vessel and the bottom of the adapter member, and an oil suction port is provided at the bottom of the adapter member. It is provided.

本発明の請求項1記載の発明にあっては、上部に気液二相冷媒を流入させる流入口と、気体冷媒を排出させる排出口を有する耐圧容器と、前記耐圧容器内に収容される冷媒排出部材を備え、前記冷媒排出部材に上下方向に貫通形成された内通路及び外通路を形成し、前記内通路の上部を前記排出口に連通する一方、外通路の上部を耐圧容器内に連通し、前記内通路の下部と外通路の下部とをアダプタ部材を介して連通し、前記耐圧容器の底部とアダプタ部材の底部との間に所定の隙間を設けると共に、該アダプタ部材の底部にオイル吸入口を設けたため、耐圧容器のコンパクト化を実現しつつ、オイルが溜まる初期段階からオイルをスムーズに吸入できる。   In the first aspect of the present invention, a pressure vessel having an inlet for allowing the gas-liquid two-phase refrigerant to flow into the upper portion, a discharge port for discharging the gas refrigerant, and the refrigerant accommodated in the pressure vessel. An internal passage and an external passage formed vertically through the refrigerant discharge member. The upper portion of the inner passage communicates with the discharge port, and the upper portion of the outer passage communicates with the pressure vessel. The lower portion of the inner passage communicates with the lower portion of the outer passage through an adapter member, and a predetermined gap is provided between the bottom portion of the pressure-resistant container and the bottom portion of the adapter member, and oil is provided at the bottom portion of the adapter member. Since the suction port is provided, the pressure container can be made compact and the oil can be smoothly sucked from the initial stage where the oil is accumulated.

以下、この発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、実施例1を説明する。
図1は本発明の実施例1のアキュムレータを示す断面図、図2は図1のS2−S2線における端面図、図3は本実施例1のアキュムレータの耐圧容器の底部付近の拡大断面図であり、作用を説明する図、図4は本実施例1のアキュムレータが採用される冷凍サイクルを示す図である。
Example 1 will be described below.
1 is a cross-sectional view showing an accumulator according to Embodiment 1 of the present invention, FIG. 2 is an end view taken along line S2-S2 of FIG. 1, and FIG. 3 is an enlarged cross-sectional view of the accumulator according to Embodiment 1 near the bottom of the pressure vessel. FIG. 4 is a diagram illustrating a refrigeration cycle in which the accumulator of the first embodiment is employed.

先ず、全体構成を説明する。
図1に示すように、本実施例1のアキュムレータ1は、耐圧容器2と、この耐圧容器2内に収容された冷媒排出部材3が備えられている。
First, the overall configuration will be described.
As shown in FIG. 1, the accumulator 1 according to the first embodiment includes a pressure-resistant container 2 and a refrigerant discharge member 3 accommodated in the pressure-resistant container 2.

耐圧容器2は、円筒状の筒状部4と、筒状部4の上部の内側に嵌合された状態で図外の溶接、ろう付け等により固定された上側閉塞部5と、筒状部4の下部の内側に嵌合された状態で図外の溶接、ろう付け等により固定された下側閉塞部6とから構成され、これら三者は金属製、例えばアルミニウム製となっている。   The pressure vessel 2 includes a cylindrical tubular portion 4, an upper closed portion 5 fixed by welding, brazing, etc. outside the figure in a state of being fitted inside the upper portion of the tubular portion 4, and the tubular portion 4 and a lower closing portion 6 fixed by welding, brazing, etc. (not shown), and these three members are made of metal, for example, aluminum.

筒状部4の上部には、流入口7が貫通形成されると共に、この流入口7には後述するエバポレータA5側の接続管を連通させた状態で接続するための雌螺子溝7aが形成されている。
上側閉塞部5の中心位置には、排出口8が貫通形成されると共に、この排出口8には後述する内部熱交換器A3側の接続管を連通させた状態で接続するための雌螺子溝8aが形成されている。
下側閉塞部6の中心位置には、下方へ凹設された凹部9が形成されている。
An inflow port 7 is formed through the upper portion of the tubular portion 4, and a female screw groove 7 a is formed in the inflow port 7 for connection in a state where a connection pipe on the evaporator A 5 side described later is in communication. ing.
A discharge port 8 is formed through the central position of the upper closing portion 5, and a female screw groove for connecting to the discharge port 8 in a state where a connection pipe on the side of the internal heat exchanger A <b> 3 to be described later is connected. 8a is formed.
A concave portion 9 is formed at the center position of the lower blocking portion 6 so as to be recessed downward.

冷媒排出部材3は樹脂で一体的に形成される他、上下方向に貫通形成された内通路10と外通路11が設けられ、その下部には樹脂製のアダプタ部材12が接続されている。
また、冷媒排出部材13をアルミニウムの押し出し成形等で一体的に形成する一方、同材料でアダプタ部材12をプレス成形で形成し、これら両者をろう付け圧入して取り付けることもできる。
The refrigerant discharge member 3 is integrally formed of resin, and is provided with an inner passage 10 and an outer passage 11 penetratingly formed in the vertical direction, and a resin adapter member 12 is connected to the lower portion thereof.
Alternatively, the coolant discharge member 13 may be integrally formed by extrusion molding of aluminum or the like, while the adapter member 12 may be formed of the same material by press molding, and both of them may be brazed and press-fitted.

また、図2に示すように、本実施例1の内通路10は冷媒排出部材3の中心位置に配置される一方、外通路11は2箇所の柱部13の柱部で2つに仕切られた状態で内通路10の外側に配置されている。
内通路10の上部外周は、上側閉塞部5の排出口8に臨んで形成された嵌合溝8bに嵌合された状態で図外の溶接等により固定され、これによって、冷媒排出部材3が固定支持されると共に、内通路10の上部10aが排出口8に連通されている。
一方、外通路11の上部11aは流入口7よりも高い位置で耐圧容器2内に連通されている。
In addition, as shown in FIG. 2, the inner passage 10 of the first embodiment is arranged at the center position of the refrigerant discharge member 3, while the outer passage 11 is divided into two by the pillar portions of the two pillar portions 13. In this state, it is disposed outside the inner passage 10.
The upper outer periphery of the inner passage 10 is fixed by welding or the like not shown in the figure while being fitted in a fitting groove 8b formed facing the discharge port 8 of the upper closing portion 5, whereby the refrigerant discharge member 3 is fixed. While being fixedly supported, the upper portion 10 a of the inner passage 10 is communicated with the discharge port 8.
On the other hand, the upper part 11 a of the outer passage 11 is communicated with the pressure-resistant vessel 2 at a position higher than the inlet 7.

図3に示すように、アダプタ部材12は、略有底筒状に形成される他、その上部が外通路11の下部外周に嵌合された状態で図外の接着材等により固定され、これによって、内通路10の下部10bと外通路11の下部11bとが連通されている。   As shown in FIG. 3, the adapter member 12 is formed in a substantially bottomed cylindrical shape, and is fixed by an adhesive or the like not shown in the state in which the upper portion is fitted to the lower outer periphery of the outer passage 11. Thus, the lower portion 10b of the inner passage 10 and the lower portion 11b of the outer passage 11 are communicated with each other.

また、アダプタ部材12の底部には、内通路10の中心へ向かって上方へ山状に膨出した膨出部12aが形成される共に、この膨出部12aの頂部には所定の径を有するオイル吸入口12bが設けられている。   In addition, a bulging portion 12a bulging upward in a mountain shape toward the center of the inner passage 10 is formed at the bottom of the adapter member 12, and the top of the bulging portion 12a has a predetermined diameter. An oil inlet 12b is provided.

さらに、アダプタ部材12と耐圧容器の底部、詳細には、アダプタ部材12と下側閉塞部6の凹部9との間には所定の隙間W1が形成されている。   Furthermore, a predetermined gap W <b> 1 is formed between the adapter member 12 and the bottom of the pressure vessel, specifically, between the adapter member 12 and the recess 9 of the lower closing portion 6.

従って、アダプタ部材12は冷媒排出部材3と別体で構成されているため、冷媒排出部材3との接続代(以下、アダプタ部材12の接続代と称す)を変更することにより、冷媒排出部材3を設計変更することなく所定の隙間W1を容易に変更できるようになっている。   Therefore, since the adapter member 12 is configured separately from the refrigerant discharge member 3, the refrigerant discharge member 3 is changed by changing a connection allowance with the refrigerant discharge member 3 (hereinafter referred to as a connection allowance for the adapter member 12). The predetermined gap W1 can be easily changed without changing the design.

次に、作用を説明する。
図4に示すように、このように構成されたアキュムレータ1は、コンプレッサA1、コンデンサA2、内部熱交換器A3、膨張弁A4、及びエバポレータA5が連結された一般的な車両空調用の冷凍サイクルに採用される。
また、本実施例1の冷凍サイクルは二酸化炭素を冷媒として高圧側が超臨界域(例えば冷媒温度:30℃以上、冷媒圧力:7.4MPa以上)となる所謂超臨界蒸気圧縮式冷凍サイクルであり、コンプレッサA1を駆動させる際に用いるオイルが冷媒と共に循環している。
Next, the operation will be described.
As shown in FIG. 4, the accumulator 1 configured as described above is connected to a general refrigeration cycle for vehicle air conditioning in which a compressor A1, a condenser A2, an internal heat exchanger A3, an expansion valve A4, and an evaporator A5 are connected. Adopted.
Further, the refrigeration cycle of Example 1 is a so-called supercritical vapor compression refrigeration cycle in which carbon dioxide is used as a refrigerant and the high pressure side is in a supercritical region (for example, refrigerant temperature: 30 ° C. or higher, refrigerant pressure: 7.4 MPa or higher). Oil used for driving the compressor A1 circulates together with the refrigerant.

コンプレッサA1は、エンジン等の駆動装置によって駆動し、冷媒を超臨界域まで圧縮するものである。
コンデンサA2(外部熱交換器)は、コンプレッサA1から吐出された気体冷媒を冷却するものである。
内部熱交換器A3は、アキュムレータ1からコンプレッサA1へ送られる比較的低温の冷媒と、コンデンサA2から膨張弁A4へ送られる冷媒との間で熱交換を行い熱交換率を向上させるものである。
膨張弁A4は、コンデンサA2から送出された冷媒を減圧するものである。
エバポレータA5は、膨張弁A4を通過して減圧された冷媒と冷媒通路周囲を通過する空気等から吸熱し空気等を冷却すると共に冷媒を蒸発させるものである。
The compressor A1 is driven by a driving device such as an engine, and compresses the refrigerant to the supercritical region.
The condenser A2 (external heat exchanger) cools the gaseous refrigerant discharged from the compressor A1.
The internal heat exchanger A3 exchanges heat between the relatively low-temperature refrigerant sent from the accumulator 1 to the compressor A1 and the refrigerant sent from the condenser A2 to the expansion valve A4 to improve the heat exchange rate.
The expansion valve A4 depressurizes the refrigerant sent from the capacitor A2.
The evaporator A5 absorbs heat from the refrigerant that has been decompressed through the expansion valve A4 and the air that passes around the refrigerant passage, cools the air, and evaporates the refrigerant.

そして、アキュムレータ1は、エバポレータA5において蒸発しきれなかった液冷媒を含む気液混合冷媒を気体と液体に分離して気体冷媒を内部熱交換器A4へ送る一方、液冷媒を溜めておくものである。   The accumulator 1 separates the gas-liquid mixed refrigerant containing the liquid refrigerant that could not be evaporated in the evaporator A5 into gas and liquid and sends the gas refrigerant to the internal heat exchanger A4, while storing the liquid refrigerant. is there.

以下、アキュムレータ1の作動を詳細に説明する。
先ず、エバポレータA5側の接続管から耐圧容器2内に流入した気液二相冷媒は、耐圧容器2の底部に溜まった後、気液分離する。
この際、図3に示すように、耐圧容器2の底部には、冷媒よりも比重の大きいオイル14が液冷媒15の下方に層を成して溜まる。
従って、オイル14は下方へ行くほど液冷媒15の混入が少なくなり、濃度が高くなる。
Hereinafter, the operation of the accumulator 1 will be described in detail.
First, the gas-liquid two-phase refrigerant that has flowed into the pressure-resistant container 2 from the connection pipe on the evaporator A5 side accumulates at the bottom of the pressure-resistant container 2, and then gas-liquid separates.
At this time, as shown in FIG. 3, oil 14 having a specific gravity larger than that of the refrigerant is stored in a layer below the liquid refrigerant 15 at the bottom of the pressure-resistant container 2.
Accordingly, as the oil 14 goes downward, the liquid refrigerant 15 is less mixed and the concentration becomes higher.

また、気液分離され耐圧容器2の上部に溜まった気体冷媒は、外通路11の上部11aからアダプタ部材12及び内通路10を介して排出口8に接続された内部熱交換器A3側の接続管へ排出される。
この際、図3に示すように、外通路11の下部11bからアダプタ部材12の膨出部12aに沿って内通路10へ導かれる気体冷媒(破線矢印で図示)の吸気圧力によってオイル14(実線矢印で図示)をオイル吸入口12bから吸引して気体冷媒と共にスムーズに排出できる。
Further, the gas refrigerant separated from the gas and liquid and collected in the upper portion of the pressure vessel 2 is connected to the internal heat exchanger A3 connected to the discharge port 8 from the upper portion 11a of the outer passage 11 through the adapter member 12 and the inner passage 10. Discharged into the tube.
At this time, as shown in FIG. 3, the oil 14 (solid line) is generated by the intake pressure of the gaseous refrigerant (shown by broken line arrows) guided from the lower portion 11 b of the outer passage 11 to the inner passage 10 along the bulging portion 12 a of the adapter member 12. (Shown by an arrow) can be sucked from the oil suction port 12b and smoothly discharged together with the gaseous refrigerant.

なお、冷凍サイクルの運転状況によっては、エバポレータA5側で冷媒が完全に気化する場合もあり、この際には気体冷媒が耐熱容器2内に流入し、耐圧容器の底部にはオイル14のみが溜まることとなる。   Depending on the operating condition of the refrigeration cycle, the refrigerant may completely evaporate on the evaporator A5 side. At this time, the gaseous refrigerant flows into the heat-resistant container 2, and only the oil 14 is collected at the bottom of the pressure-resistant container. It will be.

ここで、従来の発明にあっては、オイルがある程度溜まるまで吸入できない、あるいは、オイルと液冷媒の両方をオイル吸入口から吸入してしまう虞があった。   Here, in the conventional invention, there is a possibility that the oil cannot be sucked until the oil is accumulated to some extent or that both the oil and the liquid refrigerant are sucked from the oil suction port.

これに対し、本実施例1のアキュムレータ1では、アダプタ部材12の底部にオイル吸入口12bを設けているため、例えば、気液二相冷媒が勢いよく耐熱容器2内に流入した場合や、アキュムレータ1が車両振動やコンプレッサA1の共振により揺れた場合でも、オイル14に液冷媒が混入する虞がなく、高い濃度のオイル14を吸入できる。   On the other hand, in the accumulator 1 of the first embodiment, since the oil suction port 12b is provided at the bottom of the adapter member 12, for example, when the gas-liquid two-phase refrigerant vigorously flows into the heat-resistant container 2, or in the accumulator Even when 1 is shaken due to vehicle vibration or resonance of the compressor A 1, there is no possibility that liquid refrigerant is mixed into the oil 14, and high-concentration oil 14 can be sucked.

また、オイル14が溜まる初期段階から吸入でき、これにより、オイル14をコンプレッサA1へ安定して送ることができる。   Further, the oil 14 can be sucked from the initial stage where the oil 14 is accumulated, and thus the oil 14 can be stably sent to the compressor A1.

また、耐熱容器2の底部近くから吸引できるため、少ないオイル量でも冷凍サイクルを運転することができる。   Moreover, since it can attract | suck from near the bottom part of the heat-resistant container 2, a refrigerating cycle can be drive | operated even with a small oil amount.

さらに、耐熱容器2の底部に溜まるオイル14及び液冷媒15の量は、冷凍サイクルの運転状況や製品毎に異なるため、耐熱容器2の上下長さは製品毎に異なるが、本実施例1では前述したように、アダプタ部材12の接続代を変更するだけで所定の隙間W1を変更でき、冷媒排出部材3を設計変更することなく様々な上下長さの耐熱容器2に対応できる。   Furthermore, since the amount of the oil 14 and the liquid refrigerant 15 collected at the bottom of the heat-resistant container 2 varies depending on the operation state of the refrigeration cycle and each product, the vertical length of the heat-resistant container 2 varies depending on the product. As described above, the predetermined gap W1 can be changed only by changing the connection allowance of the adapter member 12, and the heat-resistant container 2 having various vertical lengths can be handled without changing the design of the refrigerant discharge member 3.

次に、効果を説明する。
以上、説明したように、本実施例1のアキュムレータ1にあっては、上部に気液二相冷媒を流入させる流入口7と、気体冷媒を排出させる排出口8を有する耐圧容器2と、耐圧容器2内に収容される冷媒排出部材3を備え、冷媒排出部材3に上下方向に貫通形成された内通路10及び外通路11を形成し、内通路10の上部10aを排出口8に連通する一方、外通路11の上部11aを耐圧容器2内に連通し、内通路10の下部10bと外通路11の下部11bとをアダプタ部材12を介して連通し、耐圧容器2の底部とアダプタ部材12の底部との間に所定の隙間W1を設けると共に、該アダプタ部材12の底部にオイル吸入口12bを設けたため、耐圧容器2のコンパクト化を実現しつつ、オイル14が溜まる初期段階からオイル14をスムーズに吸入できる。
Next, the effect will be described.
As described above, in the accumulator 1 according to the first embodiment, the pressure vessel 2 having the inlet 7 through which the gas-liquid two-phase refrigerant flows in, the outlet 8 through which the gas refrigerant is discharged, and the pressure resistance. A refrigerant discharge member 3 accommodated in the container 2 is provided, and an inner passage 10 and an outer passage 11 which are formed through the refrigerant discharge member 3 in the vertical direction are formed, and the upper portion 10a of the inner passage 10 is communicated with the discharge port 8. On the other hand, the upper portion 11a of the outer passage 11 communicates with the pressure vessel 2, the lower portion 10b of the inner passage 10 communicates with the lower portion 11b of the outer passage 11 via the adapter member 12, and the bottom portion of the pressure vessel 2 and the adapter member 12 communicate. Since a predetermined gap W1 is provided between the bottom of the adapter member 12 and an oil suction port 12b is provided at the bottom of the adapter member 12, the pressure container 2 can be made compact, and the oil 14 can be supplied from the initial stage where the oil 14 is accumulated. It can be sucked into the Meuse.

また、耐熱容器2の底部近くから吸引できるため、少ないオイル量でも冷凍サイクルを運転することができる。   Moreover, since it can attract | suck from near the bottom part of the heat-resistant container 2, a refrigerating cycle can be drive | operated even with a small oil amount.

また、外通路11の下部11bとアダプタ部材12との接続代を変更するだけで所定の隙間W1を変更でき、冷媒排出部材3を設計変更することなく様々な上下長さの異なる耐熱容器2に対応できる。   Further, the predetermined gap W1 can be changed only by changing the connection allowance between the lower portion 11b of the outer passage 11 and the adapter member 12, and the heat-dissipating container 2 having various vertical lengths can be changed without changing the design of the refrigerant discharge member 3. Yes.

また、冷媒排出部材3に内通路10と外通路11を形成したため、これらを別体で形成した場合に比べて固定ブラケット等が不要となる上、耐圧容器2の径サイズを小さくでき、コンパクト化に貢献できる。   In addition, since the inner passage 10 and the outer passage 11 are formed in the refrigerant discharge member 3, a fixing bracket or the like is not required as compared with the case where they are formed separately, and the diameter size of the pressure vessel 2 can be reduced and the size can be reduced. Can contribute.

また、アダプタ部材12の底部に内通路10の中心へ向かって上方へ山状に膨出した膨出部12aを形成する共に、この膨出部12aの頂部にオイル吸入口12bを設けたため、膨出部12aに沿って内通路10へ流れる気体冷媒の吸気圧力を利用してオイル吸入口12bからオイル14を吸引でき、スムーズなオイル14の吸入が可能となる。   In addition, since a bulging portion 12a bulging upward toward the center of the inner passage 10 is formed at the bottom of the adapter member 12, an oil suction port 12b is provided at the top of the bulging portion 12a. The oil 14 can be sucked from the oil suction port 12b using the intake pressure of the gas refrigerant flowing into the inner passage 10 along the outlet 12a, and the oil 14 can be sucked smoothly.

以下、実施例2を説明する。
本実施例2において、前記実施例1と同様の構成部材については同じ符号を付してその説明は省略し、相違点のみ詳述する。
Example 2 will be described below.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and only differences will be described in detail.

図5は本発明の実施例2のアキュムレータを示す断面図、図6は図5のS6−S6線における端面図である。   FIG. 5 is a sectional view showing an accumulator according to a second embodiment of the present invention, and FIG. 6 is an end view taken along line S6-S6 of FIG.

図5、6に示すように、本実施例2では、実施例1で説明した冷媒排出部材3の内通路10と外通路11の代わりに左右に近接して並設された内通路20と外通路21が設けられる他、オイル吸入口12bの代わりにアダプタ部材12の底部に開口されたオイル吸入口22が設けられる点が実施例1と相違する。   As shown in FIGS. 5 and 6, in the second embodiment, instead of the inner passage 10 and the outer passage 11 of the refrigerant discharge member 3 described in the first embodiment, an inner passage 20 and an outer portion arranged side by side in close proximity to the left and right In addition to the provision of the passage 21, an oil suction port 22 opened at the bottom of the adapter member 12 is provided instead of the oil suction port 12b.

従って、本実施例2では、実施例1と同様の効果を得られる。   Therefore, in the second embodiment, the same effect as in the first embodiment can be obtained.

以上、本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、本実施例で説明した各構成部材の詳細な部位の形状、材質、固定方法等は適宜設定できる。
Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included in the present invention.
For example, the detailed shape, material, fixing method, and the like of each component described in this embodiment can be set as appropriate.

また、図7に示すように、冷媒排出部材3の外通路11を内通路10の外側に複数設けても良い。   Further, as shown in FIG. 7, a plurality of outer passages 11 of the refrigerant discharge member 3 may be provided outside the inner passage 10.

本発明の実施例1のアキュムレータを示す断面図である。It is sectional drawing which shows the accumulator of Example 1 of this invention. 図1のS2−S2線における端面図である。It is an end view in the S2-S2 line of FIG. 本実施例1のアキュムレータの耐圧容器の底部付近の拡大断面図であり、作用を説明する図である。It is an expanded sectional view near the bottom part of the pressure vessel of the accumulator of the first embodiment, and is a view for explaining the operation. 本実施例1のアキュムレータが採用される冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle by which the accumulator of the present Example 1 is employ | adopted. 本発明の実施例2のアキュムレータを示す断面図である。It is sectional drawing which shows the accumulator of Example 2 of this invention. 図5のS6−S6線における端面図である。It is an end elevation in S6-S6 line of FIG. その他の実施例の冷媒排出部材を説明する断面図である。It is sectional drawing explaining the refrigerant | coolant discharge member of the other Example.

符号の説明Explanation of symbols

A1 コンプレッサ
A2 コンデンサ
A3 内部熱交換器
A4 膨張弁
A5 エバポレータ
1 アキュムレータ
2 耐圧容器
3 冷媒排出部材
4 筒状部
5 上側閉塞部
6 下側閉塞部
7 流入口
7a 雌螺子溝
8 排出口
8a 雌螺子溝
8b 嵌合溝
9 凹部
10、20 内通路
10a (内通路)の上部
10b (内通路)の下部
11、21 外通路
11a (外通路)の上部
11b (外通路)の下部
12 アダプタ部材
12a 膨出部
12b、22 オイル吸入口
13 柱部
14 オイル
15 液冷媒
A1 Compressor A2 Condenser A3 Internal heat exchanger A4 Expansion valve A5 Evaporator 1 Accumulator 2 Pressure-resistant container 3 Refrigerant discharge member 4 Cylindrical part 5 Upper closed part 6 Lower closed part 7 Inlet 7a Female screw groove 8 Outlet 8a Female screw groove 8b Fitting groove 9 Recesses 10, 20 Upper portion 10b (inner passage) upper portion 10b (inner passage) lower portion 11, 21 Outer passage 11a (outer passage) upper portion 11b (outer passage) lower portion 12 Adapter member 12a Swelling Portions 12b and 22 Oil inlet 13 Column 14 Oil 15 Liquid refrigerant

Claims (2)

上部に気液二相冷媒を流入させる流入口と、気体冷媒を排出させる排出口を有する耐圧容器と、
前記耐圧容器内に収容される冷媒排出部材を備え、
前記冷媒排出部材に上下方向に貫通形成された内通路及び外通路を形成し、
前記内通路の上部を前記排出口に連通する一方、外通路の上部を耐圧容器内に連通し、
前記内通路の下部と外通路の下部とをアダプタ部材を介して連通し、
前記耐圧容器の底部とアダプタ部材の底部との間に所定の隙間を設けると共に、該アダプタ部材の底部にオイル吸入口を設けたことを特徴とするアキュムレータ。
A pressure vessel having an inlet for allowing the gas-liquid two-phase refrigerant to flow into the upper part, and an outlet for discharging the gas refrigerant;
Comprising a refrigerant discharge member accommodated in the pressure vessel,
Forming an inner passage and an outer passage formed vertically through the refrigerant discharge member;
The upper part of the inner passage communicates with the discharge port, while the upper part of the outer passage communicates with the pressure vessel,
The lower part of the inner passage and the lower part of the outer passage are communicated via an adapter member,
An accumulator characterized in that a predetermined gap is provided between the bottom of the pressure vessel and the bottom of the adapter member, and an oil suction port is provided in the bottom of the adapter member.
請求項1記載のアキュムレータにおいて、
前記アダプタ部材の底部に内通路の中心へ向かって上方へ山状に膨出した膨出部を形成する共に、この膨出部の頂部にオイル吸入口を設けたことを特徴とするアキュムレータ。
The accumulator according to claim 1, wherein
An accumulator characterized in that a bulging portion bulging upward in a mountain shape toward the center of the inner passage is formed at the bottom of the adapter member, and an oil suction port is provided at the top of the bulging portion.
JP2007080495A 2007-03-27 2007-03-27 Accumulator Pending JP2008241088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080495A JP2008241088A (en) 2007-03-27 2007-03-27 Accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080495A JP2008241088A (en) 2007-03-27 2007-03-27 Accumulator

Publications (1)

Publication Number Publication Date
JP2008241088A true JP2008241088A (en) 2008-10-09

Family

ID=39912658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080495A Pending JP2008241088A (en) 2007-03-27 2007-03-27 Accumulator

Country Status (1)

Country Link
JP (1) JP2008241088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942306A1 (en) * 2009-02-18 2010-08-20 Valeo Systemes Thermiques ACCUMULATOR AND AIR CONDITIONING CIRCUIT
JP2013108710A (en) * 2011-11-24 2013-06-06 Fuji Koki Corp Gas liquid separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942306A1 (en) * 2009-02-18 2010-08-20 Valeo Systemes Thermiques ACCUMULATOR AND AIR CONDITIONING CIRCUIT
EP2221560A1 (en) * 2009-02-18 2010-08-25 Valeo Systèmes Thermiques Accumulator and climatisation circuit with such accumulator
JP2013108710A (en) * 2011-11-24 2013-06-06 Fuji Koki Corp Gas liquid separator

Similar Documents

Publication Publication Date Title
JP4897298B2 (en) Gas-liquid separator module
JP4259531B2 (en) Ejector type refrigeration cycle unit
US8789389B2 (en) Intermediate heat exchanger
JP2007315687A (en) Refrigerating cycle
US20080190122A1 (en) Accumulator Integration with Heat Exchanger Header
JP5497419B2 (en) Combined internal heat exchanger and accumulator
JP2008032269A (en) Accumulator
JP2006003071A (en) Heat exchanger
JP2009121804A (en) Evaporator unit
JP4899641B2 (en) Mixed fluid separator
US20120037554A1 (en) Oil Separator
JP4179092B2 (en) Heat exchanger
JP2006266570A (en) Vehicular cooling device
JP4770891B2 (en) Ejector type refrigeration cycle unit
JP2008241088A (en) Accumulator
JP2005037054A (en) Heat exchanger for refrigerant cycle device
JP2011149636A (en) Air conditioner
JP2008304097A (en) Accumulator
JP2018080862A (en) Condenser
JP2009019781A (en) Heat exchanger
WO2012101864A1 (en) Oil separator, and compressor and refrigeration cycle equipped with same
JP2010156538A (en) Combined device comprising internal heat exchanger and accumulator of air-conditioning loop
JP2011202921A (en) Evaporator unit
JP2008151374A (en) Vapor compression type refrigerating cycle
JP2007333283A (en) Vapor compression type refrigeration circuit and air conditioning system for vehicle using the circuit