JP2008241055A - Manifold valve for injecting refrigerant - Google Patents

Manifold valve for injecting refrigerant Download PDF

Info

Publication number
JP2008241055A
JP2008241055A JP2007078165A JP2007078165A JP2008241055A JP 2008241055 A JP2008241055 A JP 2008241055A JP 2007078165 A JP2007078165 A JP 2007078165A JP 2007078165 A JP2007078165 A JP 2007078165A JP 2008241055 A JP2008241055 A JP 2008241055A
Authority
JP
Japan
Prior art keywords
valve
gas
pressure
vacuum
pressure relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078165A
Other languages
Japanese (ja)
Other versions
JP5075439B2 (en
Inventor
Hiroji Maekawa
普治 前川
Suiriyou Oi
彗良 尾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neriki KK
Original Assignee
Neriki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neriki KK filed Critical Neriki KK
Priority to JP2007078165A priority Critical patent/JP5075439B2/en
Publication of JP2008241055A publication Critical patent/JP2008241055A/en
Application granted granted Critical
Publication of JP5075439B2 publication Critical patent/JP5075439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves

Landscapes

  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To protect a vacuum pump and a vacuum measuring device by inhibiting inflow of high pressure gas to the vacuum pump side while suction of the vacuum pump is permitted. <P>SOLUTION: A device connection port 3, an injection port 4 and a suction port 5 are provided on the outer surface of a housing 2. A gas supply passage 6 communicating the device connection port 3 with the injection port 4 and a vacuum suction passage 7 connecting the device connection port 3 with the suction port 5 are formed in the housing 2. The gas supply passage 6 is provided with a supply opening and closing valve 12, and the vacuum suction passage 7 is provided with a suction opening and closing valve 19 for cutting off flow of gas from the device connection port 3 to the suction port 5. A protection means P against high pressure gas is provided on the downstream side of the suction opening and closing valve 19 in the vacuum suction passage 7. The protection means P against high pressure gas is provided with at least either an excess flow preventive valve 26 or a pressure relief passage 27 to which a pressure relief valve 28 is attached. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真空ポンプで真空引きされる流路へ付設される冷媒注入用マニホールド弁に関し、さらに詳しくは、真空ポンプによる吸引を許容しながら、しかも真空ポンプや真空計測器側への高圧ガスの流入を阻止して、真空ポンプや真空計測器を保護できる、冷媒注入用マニホールド弁に関する。   The present invention relates to a refrigerant injection manifold valve attached to a flow path evacuated by a vacuum pump, and more specifically, allows a high-pressure gas to be supplied to a vacuum pump or a vacuum measuring instrument while allowing suction by the vacuum pump. The present invention relates to a refrigerant injection manifold valve that can prevent inflow and protect a vacuum pump and a vacuum measuring instrument.

空調機器などの冷媒使用機器に冷媒ガスを注入する場合、冷媒使用機器にガスボンベ等の冷媒ガス供給源が、ガス供給路を介して接続される。しかし製造工場から出荷された冷媒使用機器には、通常、窒素ガスなどの不活性ガスが内部に充填してある。また、上記のガス供給路内には空気が入っていることが多く、このガス供給路を介して冷媒ガスを注入すると、その冷媒ガスに空気が混入する問題がある。このため、上記の冷媒ガスの注入に先立って、ガス供給路内の空気や冷媒使用機器内に残存するガスを排除する必要がある。そこで従来、これらの空気やガスを排気するために、ガス供給路の中間部に冷媒注入用マニホールド弁を配置して、この冷媒注入用マニホールド弁に真空ポンプを接続したものがある(例えば、特許文献1参照)。   When the refrigerant gas is injected into the refrigerant-using device such as an air conditioner, a refrigerant gas supply source such as a gas cylinder is connected to the refrigerant-using device via a gas supply path. However, refrigerant-use equipment shipped from the manufacturing factory is usually filled with an inert gas such as nitrogen gas. In addition, air is often contained in the gas supply path, and when refrigerant gas is injected through the gas supply path, there is a problem that air is mixed into the refrigerant gas. For this reason, prior to the injection of the refrigerant gas, it is necessary to exclude air remaining in the gas supply path and gas remaining in the refrigerant-using device. Therefore, conventionally, in order to exhaust these air and gas, a refrigerant injection manifold valve is arranged in the middle of the gas supply path, and a vacuum pump is connected to the refrigerant injection manifold valve (for example, patents). Reference 1).

即ちこの従来技術の冷媒注入用マニホールド弁は、ハウジングの外面に機器接続ポートと注入ポートと吸引ポートとを備える。このハウジング内には、上記の機器接続ポートを注入ポートに連通するガス供給路と、上記の機器接続ポートを吸引ポートに連通する真空吸引路とが形成してある。そしてこの冷媒注入用マニホールド弁の、上記の機器接続ポートに冷媒使用機器が接続され、注入ポートにガスボンベ等の冷媒ガス供給源が接続され、吸引ポートに真空ポンプが接続される。   That is, this prior art refrigerant injection manifold valve includes an equipment connection port, an injection port, and a suction port on the outer surface of the housing. In this housing, there are formed a gas supply path for communicating the device connection port with the injection port, and a vacuum suction path for communicating the device connection port with the suction port. In the refrigerant injection manifold valve, a refrigerant using device is connected to the device connection port, a refrigerant gas supply source such as a gas cylinder is connected to the injection port, and a vacuum pump is connected to the suction port.

上記の冷媒注入用マニホールド弁は、次のように操作される。
最初に、ガスボンベの容器弁を閉じておき、冷媒使用機器とガス供給路と吸引ポートとを連通させた状態で、真空ポンプを駆動して真空引きを行い、冷媒使用機器の冷媒貯溜部やこれと容器弁との間の流路に残存するガスや空気を除去する。次に、上記の真空吸引路に設けられた、上記の機器接続ポートから吸引ポートへのガスの流れを遮断できる吸引用開閉弁を閉じ、ガスボンベの容器弁を開いて冷媒ガスを冷媒使用機器内へガス供給路を介して注入する。
The refrigerant injection manifold valve is operated as follows.
First, the container valve of the gas cylinder is closed, and the vacuum pump is driven to evacuate in a state where the refrigerant using device, the gas supply path, and the suction port are in communication with each other. Gas and air remaining in the flow path between the container and the container valve are removed. Next, the suction on-off valve provided in the vacuum suction path that can shut off the gas flow from the device connection port to the suction port is closed, the container valve of the gas cylinder is opened, and the refrigerant gas is moved into the refrigerant-using device. The gas is injected through the gas supply path.

特開2001−324097号公報Japanese Patent Laid-Open No. 2001-324097

上記の冷媒注入用マニホールド弁の真空吸引路は、機器接続ポートに連通しているためガス供給路を介して注入ポートとも連通している。このため、上記の真空引き処理を終了したのち、真空吸引路に設けた上記の吸引用開閉弁を過って開いた状態のままガスボンベから冷媒ガスを供給すると、この冷媒ガスが真空吸引路を介して真空ポンプ側へ流入することになる。従来の冷媒ガスには、例えば3MPa程度以下のフロン系ガスが使用されていたが、近年では、例えば10MPa以上の、高圧の炭酸ガスの使用が進められている。このため、この高圧の炭酸ガスが過って上記の真空ポンプ側へ流入すると、真空ポンプに使用されているオイルが噴出されて周囲を汚損するだけでなく、真空ポンプを破損する虞もある。   Since the vacuum suction path of the refrigerant injection manifold valve communicates with the device connection port, it communicates with the injection port via the gas supply path. For this reason, after the evacuation process is completed, if the refrigerant gas is supplied from the gas cylinder while the suction on-off valve provided in the vacuum suction path is opened, the refrigerant gas passes through the vacuum suction path. It will flow into the vacuum pump side. As conventional refrigerant gas, a fluorocarbon gas of about 3 MPa or less, for example, has been used, but in recent years, use of high-pressure carbon dioxide gas of, for example, 10 MPa or more has been promoted. For this reason, if this high-pressure carbon dioxide gas passes and flows into the vacuum pump side, not only the oil used in the vacuum pump is ejected and the surroundings are soiled but also the vacuum pump may be damaged.

また、通常、真空吸引路には真空度を計測し表示するため、真空計や連成計などの真空計測器が付設されるが、上記のように真空吸引路に高圧の炭酸ガスが過って流入すると、その炭酸ガスの流入圧力で上記の真空計測器が破損する虞がある。この真空度の計測に、例えば15MPaなどの高圧も測定できる連成計を使用することが考えられる。しかし、連成計でこのように高圧を計測させようとすると、−0.1MPa以内の真空度の目盛り間隔が極端に狭くなるので、実用上、このような高圧に耐える連成計では、真空度を明確に測定することができない。このため、上記の真空度を測定するためには、耐圧性能の低い連成計や真空計が使用されるので、上記のような高圧のガスが流入すると破損する虞が大きい。   Usually, a vacuum measuring instrument such as a vacuum gauge or a compound gauge is attached to the vacuum suction path to measure and display the degree of vacuum. However, as described above, high-pressure carbon dioxide gas is present in the vacuum suction path. If the gas flows in, the vacuum measuring instrument may be damaged by the inflow pressure of the carbon dioxide gas. For the measurement of the degree of vacuum, for example, it is conceivable to use a compound meter capable of measuring a high pressure such as 15 MPa. However, when a high pressure is measured with a compound meter in this way, the scale interval of the degree of vacuum within −0.1 MPa becomes extremely narrow. The degree cannot be measured clearly. For this reason, in order to measure the degree of vacuum, a compound gauge or a vacuum gauge having a low pressure resistance is used. Therefore, there is a high possibility that the above-described high-pressure gas is damaged.

本発明の技術的課題は上記の問題点を解消し、真空ポンプによる吸引を許容しながら、しかも吸引ポート側への高圧ガスの流入を阻止して、真空ポンプや真空計測器などを保護できる、冷媒注入用マニホールド弁を提供することにある。   The technical problem of the present invention is to eliminate the above-mentioned problems, while allowing the suction by the vacuum pump, while preventing the inflow of high-pressure gas to the suction port side, it is possible to protect the vacuum pump and vacuum measuring instrument, The object is to provide a manifold valve for refrigerant injection.

本発明は上記の課題を解決するため、例えば本発明の実施の形態を示す図1から図9に基づいて説明すると、次のように構成したものである。
即ち本発明は冷媒注入用マニホールド弁に関し、ハウジング(2)の外面に機器接続ポート(3)と注入ポート(4)と吸引ポート(5)とを備え、このハウジング(2)内に、上記の機器接続ポート(3)を注入ポート(4)に連通するガス供給路(6)と、機器接続ポート(3)を吸引ポート(5)に連通する真空吸引路(7)とを形成し、上記のガス供給路(6)に供給用開閉弁(12)を設け、上記の真空吸引路(7)に上記の機器接続ポート(3)から吸引ポート(5)へのガスの流れを遮断できる吸引用開閉弁(19)を設けた、冷媒注入用マニホールド弁であって、上記の真空吸引路(7)の吸引用開閉弁(19)より下流側に、吸引用開閉弁(19)側からの設定流量以上のガスの流れにより閉弁作動する過流防止弁(26)と、設定圧力以上のガス圧力により開弁作動する圧力逃し弁(28)を付設した圧力逃し路(27)との、少なくともいずれか一方を備える対高圧ガス用保護手段(P)を設けたことを特徴とする。
In order to solve the above-described problems, the present invention is configured as follows, for example, based on FIGS. 1 to 9 showing an embodiment of the present invention.
That is, the present invention relates to a manifold valve for refrigerant injection, and includes an equipment connection port (3), an injection port (4), and a suction port (5) on the outer surface of the housing (2). A gas supply path (6) communicating the device connection port (3) with the injection port (4) and a vacuum suction path (7) communicating the device connection port (3) with the suction port (5) are formed. The gas supply path (6) is provided with a supply opening / closing valve (12), and the vacuum suction path (7) can be used to block the gas flow from the device connection port (3) to the suction port (5). A manifold valve for refrigerant injection provided with an on-off valve (19), which is provided downstream from the on-off valve (19) for suction of the vacuum suction path (7) and from the on-off valve (19) side. An overflow prevention valve (26) that closes when the gas flow exceeds the set flow rate and a pressure relief valve (28) that opens when the gas pressure exceeds the set pressure are provided. The force relief passage (27), characterized in that a pair stored gas protection means comprising at least one (P).

冷媒使用機器に冷媒ガスを注入する場合、それに先立って、上記の機器接続ポートに接続された冷媒使用機器内の残留ガスが、吸引ポートに接続された真空ポンプにより、真空吸引路を介して真空吸引される。このとき、この真空ポンプの作動により真空吸引路を流れるガスは圧力が低く、その流量も小さいので、上記の対高圧ガス用保護手段である過流防止弁は開弁状態に維持され、上記の圧力逃し弁は閉弁状態に維持されている。   Prior to injecting refrigerant gas into the refrigerant equipment, the residual gas in the refrigerant equipment connected to the equipment connection port is evacuated through the vacuum suction path by the vacuum pump connected to the suction port. Sucked. At this time, the gas flowing through the vacuum suction path by the operation of this vacuum pump has a low pressure and its flow rate is small, so the overflow prevention valve, which is the protective means for the high-pressure gas, is maintained in the open state. The pressure relief valve is kept closed.

次いで、注入ポートに接続された冷媒ガス供給源から高圧の冷媒ガスが、ガス供給路を介して冷媒使用機器内に注入される。この冷媒ガスの注入の際、上記の真空吸引路に設けられた上記の吸引用開閉弁が過って開いたままであると、上記の高圧の冷媒ガスが、吸引用開閉弁から真空吸引路の下流側を経て上記の真空ポンプ側へ流れようとする。   Next, high-pressure refrigerant gas is injected into the refrigerant using device from the refrigerant gas supply source connected to the injection port via the gas supply path. When the refrigerant gas is injected, if the suction on-off valve provided in the vacuum suction path is still open, the high-pressure refrigerant gas is transferred from the suction on-off valve to the vacuum suction path. It tries to flow to the vacuum pump side through the downstream side.

しかし上記の真空吸引路の下流側には、対高圧ガス用保護手段が設けてあり、この対高圧ガス用保護手段が上記の過流防止弁である場合は、上記の冷媒ガスはその高い圧力により急速で且つ大きな流量で流れようとするので、この冷媒ガスの流れにより過流防止弁が閉弁作動する。これにより、この過流防止弁より下流側に接続された真空ポンプや真空計測器に、高圧の冷媒ガスが流入することが阻止される。なお、この過流防止弁は、上記の真空吸引操作時に流れるガスの流量では、閉弁作動しないように設定してある。   However, the high pressure gas protection means is provided on the downstream side of the vacuum suction path, and when the high pressure gas protection means is the overflow prevention valve, the refrigerant gas has a high pressure. Therefore, the overflow prevention valve is closed by the flow of the refrigerant gas. As a result, high-pressure refrigerant gas is prevented from flowing into the vacuum pump or vacuum measuring instrument connected to the downstream side of the overflow prevention valve. This overflow prevention valve is set so as not to be closed at the flow rate of the gas flowing during the vacuum suction operation.

また、上記の対高圧ガス用保護手段が上記の圧力逃し弁を付設した圧力逃し路である場合は、流入した冷媒ガスの高圧によりこの圧力逃し弁が開弁作動し、この高圧の冷媒ガスが圧力逃し路から外部空間へ排出される。これにより、この圧力逃し路を設けた真空吸引路内の圧力が低く抑えられ、この真空吸引路に接続された真空ポンプや真空計測器に、高い圧力が加わることが阻止される。   Further, when the protective means for the high pressure gas is a pressure relief path provided with the pressure relief valve, the pressure relief valve is opened by the high pressure of the refrigerant gas that has flowed in, and the high pressure refrigerant gas is It is discharged from the pressure relief path to the external space. As a result, the pressure in the vacuum suction path provided with this pressure relief path is kept low, and high pressure is prevented from being applied to the vacuum pump and vacuum measuring instrument connected to this vacuum suction path.

上記の対高圧ガス用保護手段は、上記の過流防止弁と圧力逃し路とのいずれか一方であってもよいが、過流防止弁と、これより下流側で分岐した圧力逃し路とで構成すると、上記の高圧の冷媒ガスを過流防止弁で遮断するとともに、この過流防止弁の作動前に下流側へ流出した高圧ガスを圧力逃し路から外部空間へ排出できるので、より好ましい。   The anti-high pressure gas protection means may be either one of the above-described overflow prevention valve and the pressure relief path, but the overflow prevention valve and the pressure relief path branched downstream from this. This configuration is more preferable because the high-pressure refrigerant gas is shut off by the overflow prevention valve, and the high-pressure gas that has flowed downstream before the operation of the overflow prevention valve can be discharged from the pressure relief path to the external space.

また、上記の対高圧ガス用保護手段は、上記の真空吸引路に配置してもよいが、上記の吸引用開閉弁より下流側の真空吸引路から真空計測路を分岐して、この真空計測路に真空計測器を接続している場合には、この真空計測路に上記の対高圧ガス用保護手段を設けてもよい。この場合、この対高圧ガス用保護手段が圧力逃し路である場合は、上記の真空吸引路と真空計測路とが連通しているので、この圧力逃し路からなる対高圧ガス用保護手段で真空吸引路に付設された真空ポンプをも保護することができる。但し、真空計測路との分岐点より下流側の真空吸引路に、過流防止弁などの別の対高圧ガス用保護手段を設けることも可能である。   The protective means for the high-pressure gas may be disposed in the vacuum suction path, but this vacuum measurement path is branched from the vacuum suction path downstream from the suction on-off valve. When a vacuum measuring instrument is connected to the path, the above-mentioned protective means for high pressure gas may be provided in the vacuum measuring path. In this case, if the protective means for high pressure gas is a pressure relief path, the vacuum suction path and the vacuum measurement path are in communication with each other. The vacuum pump attached to the suction path can also be protected. However, it is also possible to provide another means for protecting high pressure gas such as an overflow prevention valve in the vacuum suction path downstream from the branch point with the vacuum measurement path.

上記の対高圧ガス用保護手段の少なくともひとつが上記の圧力逃し路である場合、この圧力逃し路に設ける圧力逃し弁は、特定の構造のものに限定されない。例えば、上記のハウジングの外面またはこのハウジングに接続される接続部材の外面に、上記の圧力逃し路と連通するガス放出口を開口し、上記のハウジングまたは接続部材にゴム弾性材料からなる封止部材を装着して、この封止部材により上記の圧力逃し弁を構成し、この封止部材により上記のガス放出口を開放可能に閉塞することができる。この場合は圧力逃し弁を極めて簡略に構成でき、特にこの圧力逃し弁を接続部材に設けた場合は、この接続部材に予めこの圧力逃し弁を装着することで、この圧力逃し弁を冷媒注入用マニホールド弁へ極めて簡単に装着でき、好ましい。上記の封止部材としては、例えばOリングを用いることができ、この場合は封止部材を安価に入手できるので好ましい。   When at least one of the above-mentioned protective means for high-pressure gas is the above-described pressure relief passage, the pressure relief valve provided in this pressure relief passage is not limited to a specific structure. For example, a gas release port that communicates with the pressure relief passage is opened on the outer surface of the housing or the outer surface of the connecting member connected to the housing, and the sealing member made of a rubber elastic material is formed on the housing or the connecting member. , And the pressure relief valve is configured by the sealing member, and the gas discharge port can be closed openably by the sealing member. In this case, the pressure relief valve can be configured very simply. Particularly when this pressure relief valve is provided on the connecting member, the pressure relief valve is attached to the connecting member in advance so that the pressure relief valve can be used for refrigerant injection. It can be mounted on the manifold valve very easily, which is preferable. As said sealing member, an O-ring can be used, for example. In this case, the sealing member can be obtained at a low cost, which is preferable.

本発明は上記のように構成され作用することから、次の効果を奏することができる。
即ち、上記の対高圧ガス用保護手段は、真空ポンプの作動により流れるガスの圧力や流量では作動しないので、この真空ポンプにより、対象機器内や管路内などから残存ガスを確実に吸引することができる。
しかも、吸引用開閉弁を過って開いたまま冷媒ガスの充填を開始した場合に、下流側に高圧の冷媒ガスが流入しようとすると、上記の対高圧ガス用保護手段が作動する。即ち、過流防止弁が閉弁したり、圧力逃し路に付設した圧力逃し弁が開弁したりするので、上記の高圧の冷媒ガスは、真空吸引路の下流側への流入が阻止され、或いは流入した冷媒ガスが外部空間へ排出される。この結果、真空吸引路に接続された真空ポンプや真空計測器へ冷媒ガスが高圧のまま流入することを阻止して保護することができ、真空ポンプから周囲へのオイルの飛散による汚損や、これらの機器の破損を確実に防止することができる。
Since the present invention is configured and operates as described above, the following effects can be obtained.
That is, the above-mentioned protective means for high-pressure gas does not operate at the pressure or flow rate of the gas flowing by the operation of the vacuum pump, so that the residual gas can be reliably sucked from the target device or the pipe line by this vacuum pump. Can do.
In addition, when charging of the refrigerant gas is started with the suction on-off valve opened, if the high-pressure refrigerant gas flows into the downstream side, the anti-high pressure gas protection means operates. That is, the overflow prevention valve closes or the pressure relief valve attached to the pressure relief passage opens, so that the high-pressure refrigerant gas is prevented from flowing downstream of the vacuum suction passage, Alternatively, the flowing refrigerant gas is discharged to the external space. As a result, it is possible to prevent and protect the refrigerant gas from flowing into the vacuum pump or vacuum measuring instrument connected to the vacuum suction path while maintaining a high pressure. It is possible to reliably prevent damage to the equipment.

以下、本発明の実施の形態を図面に基づき説明する。
図1から図4は本発明の第1実施形態を示し、図1は冷媒注入用マニホールド弁の系統図、図2は冷媒注入用マニホールド弁の正面図、図3は冷媒注入用マニホールド弁の要部の断面図、図4は対高圧ガス用保護手段が作動した状態での図3相当図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show a first embodiment of the present invention, FIG. 1 is a system diagram of a refrigerant injection manifold valve, FIG. 2 is a front view of the refrigerant injection manifold valve, and FIG. 3 is a schematic diagram of the refrigerant injection manifold valve. FIG. 4 is a view corresponding to FIG. 3 in a state where the protective means for high pressure gas is activated.

図1と図2に示すように、この冷媒注入用マニホールド弁(1)は、ハウジング(2)の外面に機器接続ポート(3)と注入ポート(4)と吸引ポート(5)とを備える。このハウジング(2)内には、上記の機器接続ポート(3)を注入ポート(4)に連通するガス供給路(6)と、機器接続ポート(3)を吸引ポート(5)にガス供給路(6)の一部を介して連通する真空吸引路(7)とが設けてある。   As shown in FIGS. 1 and 2, the refrigerant injection manifold valve (1) includes a device connection port (3), an injection port (4), and a suction port (5) on the outer surface of the housing (2). In the housing (2), a gas supply path (6) for communicating the device connection port (3) with the injection port (4) and a gas supply path for the device connection port (3) to the suction port (5). A vacuum suction path (7) communicating with a part of (6) is provided.

上記の機器接続ポート(3)には、冷媒使用機器(8)の冷媒貯溜部が封入弁(9)を介して接続される。また上記の注入ポート(4)には、冷媒ガス供給源であるガスボンベ(10)が容器弁(11)を介して接続される。
上記のガス供給路(6)には供給用開閉弁(12)が付設してある。この供給用開閉弁(12)は図2に示す注入操作ハンドル(13)で開閉操作される。図1に示すように、この供給用開閉弁(12)と注入ポート(4)との間で、圧力計側路(14)とガス逃し路(15)とが分岐してある。この圧力計側路(14)には、例えば25MPaまでの高圧を計測できる圧力計(16)が付設してあり、ガス逃し路(15)には安全弁(17)が付設してある。
A refrigerant storage part of the refrigerant using device (8) is connected to the device connection port (3) via the sealing valve (9). A gas cylinder (10) as a refrigerant gas supply source is connected to the injection port (4) via a container valve (11).
The gas supply path (6) is provided with a supply opening / closing valve (12). The supply opening / closing valve (12) is opened / closed by an injection operation handle (13) shown in FIG. As shown in FIG. 1, a pressure gauge side passage (14) and a gas escape passage (15) are branched between the supply on-off valve (12) and the injection port (4). For example, a pressure gauge (16) capable of measuring a high pressure up to 25 MPa is attached to the pressure gauge side passage (14), and a safety valve (17) is attached to the gas escape passage (15).

上記の吸引ポート(5)には真空ポンプ(18)の吸気口(18a)が接続される。この吸引ポート(5)に連通している上記の真空吸引路(7)は、上記の供給用開閉弁(12)より上流側、即ち注入ポート(4)側で、ガス供給路(6)から分岐してある。このガス供給路(6)には、上記の真空吸引路(7)の上流側部分を介して排気路(24)が接続してあり、この排気路(24)に排気弁(25)が付設してある。
なお、この実施形態では、上記の真空吸引路(7)を供給用開閉弁(12)より上流側でガス供給路(6)から分岐したが、本発明ではこの真空吸引路を供給用開閉弁より下流側でガス供給路から分岐してもよく、或いは機器接続ポートに直接連通させてもよい。
The suction port (5) is connected to an intake port (18a) of a vacuum pump (18). The vacuum suction path (7) communicating with the suction port (5) is located upstream from the supply opening / closing valve (12), that is, on the injection port (4) side, from the gas supply path (6). It is branched. An exhaust passage (24) is connected to the gas supply passage (6) via an upstream portion of the vacuum suction passage (7), and an exhaust valve (25) is attached to the exhaust passage (24). It is.
In this embodiment, the vacuum suction path (7) is branched from the gas supply path (6) on the upstream side of the supply opening / closing valve (12). However, in the present invention, this vacuum suction path is connected to the supply opening / closing valve. It may be branched from the gas supply path further downstream, or may be directly communicated with the equipment connection port.

上記の真空吸引路(7)には、吸引用開閉弁(19)と遮断弁(20)とが設けてある。この吸引用開閉弁(19)は図2に示す吸引操作ハンドル(21)で開閉操作され、閉じ操作することで、上記の機器接続ポート(3)から吸引ポート(5)へのガスの流れを遮断することができる。一方、上記の遮断弁(20)は、上記の真空ポンプ(18)による真空引き時は開弁するが、高圧のガスが真空ポンプ(18)側へ流通しようとすると閉弁する。即ちこの遮断弁(20)は、ガス供給路(6)側から真空吸引路(7)へ流入するガス圧が、真空ポンプ(18)の耐圧性能よりも低い所定の設定圧以上に上昇すると、自動的に真空吸引路(7)を遮断し、これにより上記の真空ポンプ(18)へ高圧ガスが流入することを防止するように構成してある。   The vacuum suction path (7) is provided with a suction on-off valve (19) and a shutoff valve (20). This on-off valve (19) is opened and closed by the suction operation handle (21) shown in FIG. 2, and is closed to control the gas flow from the device connection port (3) to the suction port (5). Can be blocked. On the other hand, the shut-off valve (20) is opened when the vacuum pump (18) is evacuated, but is closed when a high-pressure gas tries to flow to the vacuum pump (18) side. That is, when the gas pressure flowing from the gas supply path (6) side to the vacuum suction path (7) rises above a predetermined set pressure lower than the pressure resistance performance of the vacuum pump (18), the shutoff valve (20) The vacuum suction path (7) is automatically shut off, thereby preventing the high pressure gas from flowing into the vacuum pump (18).

上記の吸引用開閉弁(19)と遮断弁(20)との間には、真空計測路(22)が分岐してある。この真空計測路(22)の端部には、真空計測器として例えば0〜−0.1MPaを計測できる真空計(23)が付設してある。
上記の真空計測路(22)の中間部には、対高圧ガス用保護手段(P)として過流防止弁(26)と、その下流側で分岐された圧力逃し路(27)とが設けてある。上記の過流防止弁(26)は、吸引用開閉弁(19)側から設定流量以上のガスが流れると、その過流防止弁(26)の上流側と下流側との間に生じた差圧で閉弁作動する。一方、上記の圧力逃し路(27)には、所定の設定圧力以上のガス圧力により開弁作動する圧力逃し弁(28)が付設してある。
A vacuum measurement path (22) is branched between the above-described suction on-off valve (19) and the shutoff valve (20). A vacuum gauge (23) capable of measuring, for example, 0 to -0.1 MPa is attached to the end of the vacuum measuring path (22) as a vacuum measuring instrument.
An intermediate portion of the vacuum measurement path (22) includes an overflow prevention valve (26) as a protective means (P) for high pressure gas and a pressure relief path (27) branched downstream thereof. is there. The above-described overflow prevention valve (26) has a difference generated between the upstream side and the downstream side of the overflow prevention valve (26) when a gas of a set flow rate or more flows from the suction on-off valve (19) side. The valve is closed by pressure. On the other hand, the pressure relief passage (27) is provided with a pressure relief valve (28) that is opened by a gas pressure higher than a predetermined set pressure.

次に、上記の対高圧ガス用保護手段(P)の具体的な構造を、図3と図4に基づいて説明する。
上記の冷媒注入用マニホールド弁(1)のハウジング(2)は、本体ハウジング(2a)と、これに固定された保護ハウジング部分(2b)とから構成してあり、この保護ハウジング部分(2b)内に上記の対高圧ガス用保護手段(P)が設けてある。
この保護ハウジング部分(2b)には、外表面にガス入口(29)とガス出口(30)とが設けてあり、このガス入口(29)が上記の本体ハウジング(2a)に開口された計測器接続ポート(31)へ保密状に連結され、上記のガス出口(30)に前記の真空計(23)が接続される。
Next, a specific structure of the anti-high pressure gas protection means (P) will be described with reference to FIGS.
The housing (2) of the refrigerant injection manifold valve (1) is composed of a main body housing (2a) and a protective housing part (2b) fixed to the main body housing (2a). The above-mentioned protective means (P) for high-pressure gas is provided.
The protective housing part (2b) is provided with a gas inlet (29) and a gas outlet (30) on the outer surface, and the gas inlet (29) is a measuring instrument in which the main body housing (2a) is opened. The vacuum gauge (23) is connected to the connection port (31) in a sealed manner, and the gas outlet (30) is connected to the vacuum gauge (23).

上記のガス入口(29)とガス出口(30)との間には、真空計測路(22)の中間部分が形成してあり、この真空計測路(22)に過流防止弁(26)の弁室(32)が設けてある。この過流防止弁室(32)の内面には、弁室出口側、即ちガス出口(30)側の開口周縁に過流防止弁座(33)が形成してある。この過流防止弁室(32)内には過流防止部材(34)が、過流防止弁座(33)に対し進退自在に挿入してある。上記の過流防止弁座(33)は弁室出口側に形成してあるので、この過流防止部材(34)は、弁室入口側、即ちガス入口(29)側から流入するガスにより、過流防止弁座(33)側、即ち閉弁方向に付勢される。またこの過流防止弁室(32)内には、上記の過流防止部材(34)を開弁方向に付勢する開弁ばね(35)が挿入してある。上記の流入ガスによる付勢力が小さい間は、この開弁ばね(35)の弾圧力により、過流防止部材(34)が過流防止弁座(33)から離隔した開弁状態に維持される。   An intermediate portion of the vacuum measurement path (22) is formed between the gas inlet (29) and the gas outlet (30), and an overflow prevention valve (26) is provided in the vacuum measurement path (22). A valve chamber (32) is provided. On the inner surface of the overflow prevention valve chamber (32), an overflow prevention valve seat (33) is formed on the opening periphery of the valve chamber outlet side, that is, on the gas outlet (30) side. An overflow prevention member (34) is inserted into the overflow prevention valve chamber (32) so as to be movable forward and backward with respect to the overflow prevention valve seat (33). Since the above-described overflow prevention valve seat (33) is formed on the valve chamber outlet side, this overflow prevention member (34) is formed by the gas flowing in from the valve chamber inlet side, that is, the gas inlet (29) side. It is biased toward the overflow prevention valve seat (33), that is, in the valve closing direction. Further, a valve opening spring (35) for urging the above-described overflow prevention member (34) in the valve opening direction is inserted into the overflow prevention valve chamber (32). While the urging force by the inflow gas is small, the elastic force of the valve opening spring (35) maintains the valve opening state in which the overflow prevention member (34) is separated from the overflow prevention valve seat (33). .

上記の真空計測路(22)には、上記の過流防止弁室(32)の下流側、即ちこの過流防止弁室(32)と上記のガス出口(30)との間で、上記の圧力逃し路(27)が分岐してある。この圧力逃し路(27)は、保護ハウジング部分(2b)の外面に開口したガス放出口(36)に連通してあり、この圧力逃し路(27)の中間部に圧力逃し弁(28)の弁室(37)が設けてある。この圧力逃し弁室(37)の内面には、弁室入口側、即ち真空計測路(22)側の開口周縁に圧力逃し弁座(38)が形成してある。この圧力逃し弁室(37)内には圧力逃し部材(39)が、圧力逃し弁座(38)に対し進退自在に挿入してある。上記の圧力逃し弁座(38)は弁室入口側に形成してあるので、この圧力逃し部材(39)は、弁室入口側、即ち真空計測路(22)側の圧力逃し路(27)内のガス圧力により、圧力逃し弁座(38)から離隔する方向、即ち開弁方向に付勢される。またこの圧力逃し弁室(37)内には、上記の圧力逃し部材(39)を閉弁方向に付勢する閉弁ばね(40)が挿入してある。上記の圧力逃し路(27)内のガス圧力が低い間は、この閉弁ばね(40)の弾圧力により、圧力逃し部材(39)が圧力逃し弁座(38)に当接した閉弁状態に維持される。   In the vacuum measurement path (22), the downstream side of the overflow prevention valve chamber (32), that is, between the overflow prevention valve chamber (32) and the gas outlet (30), The pressure relief passage (27) is branched. The pressure relief passage (27) communicates with a gas discharge port (36) opened on the outer surface of the protective housing part (2b), and a pressure relief valve (28) is provided at an intermediate portion of the pressure relief passage (27). A valve chamber (37) is provided. On the inner surface of the pressure relief valve chamber (37), a pressure relief valve seat (38) is formed on the periphery of the opening on the valve chamber inlet side, that is, on the vacuum measurement path (22) side. A pressure relief member (39) is inserted into the pressure relief valve chamber (37) so as to be movable forward and backward with respect to the pressure relief valve seat (38). Since the pressure relief valve seat (38) is formed on the valve chamber inlet side, the pressure relief member (39) is provided on the valve chamber inlet side, that is, the pressure relief passage (27) on the vacuum measurement path (22) side. By the gas pressure inside, it is urged in the direction away from the pressure relief valve seat (38), that is, in the valve opening direction. A valve closing spring (40) for urging the pressure relief member (39) in the valve closing direction is inserted into the pressure relief valve chamber (37). While the gas pressure in the pressure relief passage (27) is low, the valve relief state in which the pressure relief member (39) is in contact with the pressure relief valve seat (38) due to the elastic pressure of the valve closing spring (40). Maintained.

上記の冷媒注入用マニホールド弁(1)は、次のように操作される。
最初に、ガスボンベ(10)の容器弁(11)を閉じておき、上記の供給用開閉弁(12)と吸引用開閉弁(19)とを開いた状態で、上記の真空ポンプ(18)を駆動する。このとき、上記の冷媒使用機器(8)内やガス供給路(6)内に高圧ガスが残留していると、上記の真空吸引路(7)に配置した遮断弁(20)や上記の真空計測路(22)に配置した過流防止弁(26)が閉弁作動する場合がある。この場合には、上記の真空ポンプ(18)の駆動に先立って、前記の排気弁(25)を開き、ガス供給路(6)内などに残存する高圧ガスを排出したのち、この排気弁(25)を閉じて上記の真空ポンプ(18)を駆動する。
The refrigerant injection manifold valve (1) is operated as follows.
First, with the container valve (11) of the gas cylinder (10) closed, the above-described vacuum pump (18) is opened with the above-mentioned supply on-off valve (12) and suction on-off valve (19) open. To drive. At this time, if high-pressure gas remains in the refrigerant-using device (8) or the gas supply path (6), the shut-off valve (20) disposed in the vacuum suction path (7) or the vacuum The overflow prevention valve (26) arranged in the measurement path (22) may be closed. In this case, prior to driving the vacuum pump (18), the exhaust valve (25) is opened, high pressure gas remaining in the gas supply passage (6) and the like is discharged, and then the exhaust valve ( 25) is closed and the vacuum pump (18) is driven.

上記の真空ポンプ(18)の駆動により、真空吸引路(7)内や、これに連通した真空計測路(22)内が真空引きされ、上記の真空計(23)によりその真空度が計測されて表示される。このとき、上記の過流防止弁(26)の弁室(32)内は、流通するガス流量が少ないうえ、真空引きにより真空計(23)側から真空吸引路(7)側へ、即ち過流防止弁室(32)の弁室出口側から弁室入口側へガスが流れるため、過流防止部材(34)には弁室への流入ガスによる閉弁方向の付勢力が加わらず、開弁ばね(35)の弾圧力で開弁状態に維持される。   By driving the vacuum pump (18), the vacuum suction path (7) and the vacuum measurement path (22) communicating with the vacuum suction path (7) are evacuated, and the vacuum level is measured by the vacuum gauge (23). Displayed. At this time, in the valve chamber (32) of the above-described overflow prevention valve (26), the flow rate of the flowing gas is small, and from the vacuum gauge (23) side to the vacuum suction path (7) side by evacuation, that is, excess flow rate. Since the gas flows from the valve chamber outlet side of the flow prevention valve chamber (32) to the valve chamber inlet side, the overflow prevention member (34) is not opened by the urging force in the valve closing direction due to the gas flowing into the valve chamber. The valve spring (35) is kept open by the elastic pressure.

一方、上記の圧力逃し弁(28)では、上記の真空引き操作により圧力逃し路(27)内が大気圧よりも減圧されるので、この圧力逃し路(27)内の圧力と大気圧との差圧により、圧力逃し部材(39)が閉弁方向に付勢される。従って真空引き操作中のこの圧力逃し部材(39)は、この大気圧との差圧による付勢力と、上記の閉弁ばね(40)の弾圧力とにより確りと閉弁状態に維持される。   On the other hand, in the pressure relief valve (28), the pressure relief passage (27) is depressurized from the atmospheric pressure by the evacuation operation, so the pressure between the pressure relief passage (27) and the atmospheric pressure is reduced. The pressure relief member (39) is biased in the valve closing direction by the differential pressure. Therefore, the pressure relief member (39) during the evacuation operation is reliably maintained in the closed state by the biasing force due to the pressure difference from the atmospheric pressure and the elastic pressure of the valve closing spring (40).

上記の真空引き操作が完了すると、上記の吸引用開閉弁(19)を閉じて、上記の容器弁(11)を開く。これにより冷媒ガスがガスボンベ(10)から供給されて、冷媒使用機器(8)の冷媒貯溜部内へ注入される。
このとき、過って上記の吸引用開閉弁(19)が開いた状態であると、真空吸引路(7)やこれから分岐した真空計測路(22)に高圧の冷媒ガスが流入する。するとこの冷媒ガスの高圧により上記の遮断弁(20)が閉じ、真空ポンプ(18)側への冷媒ガスの流出が阻止される。
When the evacuation operation is completed, the suction on-off valve (19) is closed and the container valve (11) is opened. As a result, the refrigerant gas is supplied from the gas cylinder (10) and injected into the refrigerant reservoir of the refrigerant using device (8).
At this time, if the suction on-off valve (19) is in an open state, a high-pressure refrigerant gas flows into the vacuum suction passage (7) or the vacuum measurement passage (22) branched therefrom. Then, the shutoff valve (20) is closed by the high pressure of the refrigerant gas, and the outflow of the refrigerant gas to the vacuum pump (18) side is prevented.

一方、上記の真空計測路(22)では、上記の高圧の冷媒ガスにより上記の対高圧ガス用保護手段(P)が作動する。
即ち、上記の過流防止弁(26)に上記の冷媒ガスが流入すると、この冷媒ガスは高圧であるので過流防止弁室(32)内を高速で大量に流れようとし、過流防止部材(34)の前後に大きな差圧を生じる。この差圧は過流防止部材(34)を、上記の開弁ばね(35)の弾圧力に抗して閉弁方向へ移動させる。そして図4に示すように、この過流防止部材(34)が過流防止弁座(33)に当接すると、上記の過流防止弁室(32)内へ流入する冷媒ガスの圧力で、過流防止部材(34)が確りと閉弁状態に維持され、その後は真空計(23)側への冷媒ガスの流出が阻止される。
On the other hand, in the vacuum measurement path (22), the high-pressure refrigerant gas operates the anti-high pressure gas protection means (P).
That is, when the refrigerant gas flows into the overflow prevention valve (26), the refrigerant gas is at a high pressure, so that the refrigerant gas tries to flow in a large amount at a high speed in the overflow prevention valve chamber (32). A large differential pressure is produced before and after (34). This differential pressure moves the overflow preventing member (34) in the valve closing direction against the elastic pressure of the valve opening spring (35). As shown in FIG. 4, when the overflow prevention member (34) contacts the overflow prevention valve seat (33), the pressure of the refrigerant gas flowing into the overflow prevention valve chamber (32) The overflow prevention member (34) is securely maintained in the valve closed state, and thereafter, the refrigerant gas is prevented from flowing out to the vacuum gauge (23) side.

上記の過流防止弁(26)は、高圧の冷媒ガスが流入すると速やかに作動して閉弁するが、この閉弁作動の直前に下流側へ流出した冷媒ガスが多いと、その下流側の真空計測路(22)の内圧が高くなる。この圧力が、真空計(23)の耐圧性能より低い所定の設定圧力よりも高くなると、上記の圧力逃し弁(28)が開弁作動する。即ち、上記の真空計測路(22)の内圧が高くなると、上記の圧力逃し部材(39)がそのガス圧力に押圧され、上記の閉弁ばね(40)の弾圧力に抗して開弁方向へ移動し、図4に示すように開弁状態となる。これにより、過流防止弁(26)の下流側の真空計側路(22)内に流入した高圧の冷媒ガスが、上記の圧力逃し弁(28)を経て前記のガス放出口(36)から外部へ排出される。この結果、上記の過流防止弁(26)より下流側の真空計測路(22)の内圧が低下し、これに接続されている真空計(23)に高圧の冷媒ガスが流入することが阻止される。なお、上記のガス放出口(36)からの排気により真空計測路(23)の内圧が所定圧力以下に低下すると、上記の圧力逃し部材(39)は前記の閉弁ばね(40)の弾圧力で閉弁方向に移動し、圧力逃し弁座(38)に当接した閉弁状態に戻される。   When the high-pressure refrigerant gas flows in, the above-described overflow prevention valve (26) operates quickly and closes.However, if there is a large amount of refrigerant gas flowing downstream immediately before this valve closing operation, The internal pressure of the vacuum measurement path (22) increases. When this pressure becomes higher than a predetermined set pressure lower than the pressure resistance performance of the vacuum gauge (23), the pressure relief valve (28) is opened. That is, when the internal pressure of the vacuum measurement path (22) increases, the pressure relief member (39) is pressed against the gas pressure, and the valve opening direction against the elastic pressure of the valve closing spring (40). And the valve is opened as shown in FIG. As a result, the high-pressure refrigerant gas that has flowed into the vacuum gauge side passage (22) downstream of the overflow prevention valve (26) passes through the pressure relief valve (28) from the gas discharge port (36). It is discharged outside. As a result, the internal pressure of the vacuum measurement path (22) on the downstream side of the overflow prevention valve (26) is reduced, and high pressure refrigerant gas is prevented from flowing into the vacuum gauge (23) connected thereto. Is done. When the internal pressure of the vacuum measurement path (23) is lowered to a predetermined pressure or less by exhausting from the gas discharge port (36), the pressure relief member (39) is the elastic pressure of the valve closing spring (40). Then, the valve moves in the valve closing direction and is returned to the valve closing state in contact with the pressure relief valve seat (38).

上記のガスボンベ(10)からの冷媒ガスの注入が終了すると、上記の容器弁(11)と封入弁(9)とを閉じる。そして上記の排気弁(25)を開いてガス供給路(6)内に残存する冷媒ガスを排気したのち、機器接続ポート(3)と冷媒使用機器(8)との接続を解除して冷媒注入処理を終了する。なお、上記の排気弁(25)からの冷媒ガスの排気により、真空吸引路(7)内や真空計測路(22)の上流部分内のガス圧力が低下すると、前記の遮断弁(20)が開弁可能となり、また上記の過流防止弁(26)が開弁ばね(35)の弾圧力により開弁状態に戻される。   When the injection of the refrigerant gas from the gas cylinder (10) is completed, the container valve (11) and the sealing valve (9) are closed. Then, after opening the exhaust valve (25) to exhaust the refrigerant gas remaining in the gas supply path (6), the connection between the equipment connection port (3) and the equipment using the refrigerant (8) is released to inject the refrigerant. End the process. If the gas pressure in the vacuum suction path (7) or the upstream portion of the vacuum measurement path (22) is reduced by the exhaust of the refrigerant gas from the exhaust valve (25), the shut-off valve (20) The valve can be opened, and the overflow prevention valve (26) is returned to the open state by the elastic pressure of the valve opening spring (35).

上記の第1実施形態では、上記の圧力逃し弁室(37)内に圧力逃し部材(39)と閉弁ばね(40)とを挿入して圧力逃し弁(28)を構成した。しかし本発明に用いる圧力逃し弁は、真空吸引路や真空計測路内に流入する所定圧力以上のガスを外部へ逃すものであればよく、特定の構造のものに限定されない。   In the first embodiment, the pressure relief valve (28) is configured by inserting the pressure relief member (39) and the valve closing spring (40) into the pressure relief valve chamber (37). However, the pressure relief valve used in the present invention is not limited to a specific structure as long as it releases the gas having a predetermined pressure or higher flowing into the vacuum suction path or the vacuum measurement path to the outside.

例えば図5に示す第2実施形態では、冷媒注入用マニホールド弁(1)のハウジング(2)に真空計を接続するための接続部材(41)に圧力逃し弁(28)を設けたものである。
即ちこの第2実施形態では、上記の接続部材(41)内に真空計測路(22)を透設するとともに、この真空計測路(22)に圧力逃し路(27)を分岐してある。また、この接続部材(41)の外面には、上記の圧力逃し路(27)と連通するガス放出口(36)が開口してあり、この接続部材(41)の外面に、Oリングからなる封止部材(42)を装着してある。この封止部材(42)は上記のガス放出口(36)を開放可能に閉塞しており、この封止部材(42)により上記の圧力逃し弁(28)が構成してある。
For example, in the second embodiment shown in FIG. 5, a pressure relief valve (28) is provided on a connection member (41) for connecting a vacuum gauge to the housing (2) of the refrigerant injection manifold valve (1). .
That is, in the second embodiment, a vacuum measuring path (22) is provided through the connecting member (41), and a pressure relief path (27) is branched into the vacuum measuring path (22). A gas discharge port (36) communicating with the pressure relief passage (27) is opened on the outer surface of the connection member (41), and an O-ring is formed on the outer surface of the connection member (41). A sealing member (42) is attached. The sealing member (42) closes the gas discharge port (36) so as to be openable, and the pressure relief valve (28) is configured by the sealing member (42).

即ち、上記の封止部材(42)は、その弾性復元力によりガス放出口(36)に当接しており、これにより圧力逃し路(27)を封止している。この圧力逃し路(27)が真空引きされると、その圧力逃し路(27)の内圧と大気圧との差圧により、この封止部材(42)がガス放出口(36)に確りと押圧されて、圧力逃し路(27)が確実に封止される。   That is, the sealing member (42) is in contact with the gas discharge port (36) by its elastic restoring force, thereby sealing the pressure relief path (27). When the pressure relief passage (27) is evacuated, the sealing member (42) is firmly pressed against the gas discharge port (36) by the differential pressure between the internal pressure of the pressure relief passage (27) and the atmospheric pressure. Thus, the pressure relief path (27) is securely sealed.

一方、過って圧力逃し路(27)に高圧の冷媒ガスが流入すると、そのガス圧力により封止部材(42)がその弾性復元力に抗して外側へ押圧され、ガス放出口(36)から離隔する。これにより圧力逃し路(27)の封止が解除され、圧力逃し路(27)から高圧の冷媒ガスが外部へ排出される。そしてこの排出により圧力逃し路(27)内のガス圧力が低下すると、上記の封止部材(42)がその弾性復元力によりガス放出口(36)へ当接した状態に戻され、この圧力逃し路(27)が再び封止される。   On the other hand, when a high-pressure refrigerant gas flows into the pressure relief passage (27), the sealing member (42) is pressed outward against the elastic restoring force by the gas pressure, and the gas discharge port (36) Separate from. Thereby, the sealing of the pressure relief path (27) is released, and the high-pressure refrigerant gas is discharged to the outside from the pressure relief path (27). When the gas pressure in the pressure relief path (27) decreases due to this discharge, the sealing member (42) is returned to the state in contact with the gas discharge port (36) by its elastic restoring force, and this pressure relief The path (27) is sealed again.

図6に示す第3実施形態では、上記のOリングに代えて、ゴム弾性材料で傘状に形成した封止部材(42)を、接続部材(41)の外面に装着したものである。この封止部材(42)は、円板状の封止部(43)と軸状の係止部(44)とを備えている。一方、接続部材(41)の外面には係合穴(45)が設けてあり、その係合穴(45)の周囲に、圧力逃し路(27)と連通するガス放出口(36)が開口してある。そしてこの係合穴(45)に上記の封止部材(42)の係止部(44)が挿入されて係止される。   In the third embodiment shown in FIG. 6, instead of the O-ring, a sealing member (42) formed of a rubber elastic material in an umbrella shape is mounted on the outer surface of the connecting member (41). The sealing member (42) includes a disk-shaped sealing portion (43) and a shaft-shaped locking portion (44). On the other hand, an engagement hole (45) is provided on the outer surface of the connection member (41), and a gas discharge port (36) communicating with the pressure relief path (27) is opened around the engagement hole (45). It is. Then, the locking portion (44) of the sealing member (42) is inserted into the engagement hole (45) and locked.

上記の円板状の封止部(43)は、圧力逃し路(27)内が真空引きされているときは、大気圧によりガス放出口(36)へ密着してこれを封止している。一方、圧力逃し路(27)内に高圧の冷媒ガスが流入すると、そのガス圧力により封止部(43)がガス放出口(36)から離隔し、これにより圧力逃し路(27)内の高圧の冷媒ガスが外部空間へ排出される。排出後は、封止部材(42)の弾性復元力により、上記の封止部(43)がガス放出口(36)に当接した状態に戻る。   When the inside of the pressure relief passage (27) is evacuated, the disc-shaped sealing portion (43) is in close contact with the gas discharge port (36) by atmospheric pressure and seals it. . On the other hand, when a high-pressure refrigerant gas flows into the pressure relief passage (27), the gas pressure separates the sealing portion (43) from the gas discharge port (36), thereby causing the high-pressure refrigerant gas in the pressure relief passage (27). The refrigerant gas is discharged into the external space. After discharging, the sealing portion (43) returns to the state in contact with the gas discharge port (36) by the elastic restoring force of the sealing member (42).

上記の第2実施形態や第3実施形態では、真空計を接続するための接続部材に上記の圧力逃し弁を備える圧力逃し路を設けた。しかし本発明ではこの圧力逃し路を、真空ポンプを接続するための接続部材に設けても良く、さらには、例えば前記の計測器接続ポートをノズル状に形成するなどして、冷媒注入用マニホールド弁の本体ハウジングに設けることも可能である。   In said 2nd Embodiment and 3rd Embodiment, the pressure relief path provided with said pressure relief valve was provided in the connection member for connecting a vacuum gauge. However, in the present invention, this pressure relief passage may be provided in a connection member for connecting a vacuum pump, and further, for example, the above-mentioned measuring instrument connection port is formed in a nozzle shape, etc. It is also possible to provide the main body housing.

また上記の各実施形態では、上記の対高圧ガス用保護手段(P)を真空計測路(22)に付設する場合について説明した。しかし本発明ではこの対高圧ガス用保護手段(P)を真空吸引路(7)に付設することも可能である。
例えば図7に示す第4実施形態では、過流防止弁(26)と圧力逃し路(27)とからなる対高圧ガス用保護手段(P)を真空計測路(22)に設けるとともに、この真空計測路(22)との分岐点より下流側の真空吸引路(7)に、過流防止弁(26)と圧力逃し路(27)とからなる対高圧ガス用保護手段(P)を設け、それぞれの圧力逃し路(27)に圧力逃し弁(28)を設けたものである。なお、この実施形態のように、真空吸引路(7)に対高圧ガス用保護手段(P)を設けた場合は、前記の第1実施形態で用いた遮断弁を省略することができる。
Further, in each of the above-described embodiments, the case has been described in which the above-mentioned protective means for high pressure gas (P) is attached to the vacuum measurement path (22). However, in the present invention, the protective means (P) for the high-pressure gas can be attached to the vacuum suction path (7).
For example, in the fourth embodiment shown in FIG. 7, an anti-high pressure gas protection means (P) comprising an overflow prevention valve (26) and a pressure relief path (27) is provided in the vacuum measurement path (22), and this vacuum The vacuum suction passage (7) downstream from the branch point with the measurement passage (22) is provided with a protection means (P) for anti-high pressure gas comprising an overflow prevention valve (26) and a pressure relief passage (27), Each pressure relief passage (27) is provided with a pressure relief valve (28). Note that when the vacuum suction path (7) is provided with the protection means (P) for high-pressure gas as in this embodiment, the shutoff valve used in the first embodiment can be omitted.

また、図8に示す第5実施形態では、真空吸引路(7)と真空計測路(22)との分岐点より上流側に過流防止弁(26)を設け、この過流防止弁(26)より下流側で圧力逃し路(27)を分岐し、この圧力逃し路(27)に圧力逃し弁(28)を付設したものである。この場合、この圧力逃し弁(28)を備えた圧力逃し路(27)は、図8に示すように真空計測路(22)に設けてもよく、あるいはこれに代えて真空吸引路(7)に設けても良い。   In the fifth embodiment shown in FIG. 8, an overflow prevention valve (26) is provided upstream of the branch point between the vacuum suction path (7) and the vacuum measurement path (22). ), A pressure relief passage (27) is branched downstream, and a pressure relief valve (28) is attached to the pressure relief passage (27). In this case, the pressure relief passage (27) provided with the pressure relief valve (28) may be provided in the vacuum measurement passage (22) as shown in FIG. 8, or alternatively, the vacuum suction passage (7). May be provided.

また、上記の実施形態では、いずれも過流防止弁(26)とこれより下流側で分岐した圧力逃し路(27)とで対高圧ガス用保護手段(P)を構成した。しかし本発明では、上記の過流防止弁(26)と圧力逃し路(27)とのいずれか一方により、対高圧ガス用保護手段(P)を構成してもよい。例えば図9に示す第6実施形態では、真空計測路(22)との分岐点より下流側の真空吸引路(7)に過流防止弁(26)を設け、真空計測路(22)に圧力逃し路(27)を分岐してこの圧力逃し路(27)に圧力逃し弁(28)を付設したものである。なおこの第6実施形態のように、圧力逃し弁(28)と前記の吸引用開閉弁(19)との間に過流防止弁が配置されていない場合、高圧の冷媒ガスの流入によりこの圧力逃し弁(28)が開弁作動すると、冷媒ガスの排出を停止するには、上記の吸引用開閉弁(19)を閉弁操作する必要がある。これに対し上記の第5実施形態のように、圧力逃し弁(28)の上流側に過流防止弁(26)を備える場合には、上記の吸引用開閉弁(19)を閉弁操作しなくとも、この過流防止弁(26)が閉弁作動すると冷媒ガスの排出が停止される。   In each of the above embodiments, the anti-high pressure gas protection means (P) is configured by the overflow prevention valve (26) and the pressure relief passage (27) branched downstream from the overflow prevention valve (26). However, in the present invention, the anti-high pressure gas protection means (P) may be configured by any one of the overflow prevention valve (26) and the pressure relief path (27). For example, in the sixth embodiment shown in FIG. 9, an overflow prevention valve (26) is provided in the vacuum suction path (7) downstream from the branch point with the vacuum measurement path (22), and pressure is applied to the vacuum measurement path (22). The relief passage (27) is branched and a pressure relief valve (28) is attached to the pressure relief passage (27). As in the sixth embodiment, when no overflow prevention valve is arranged between the pressure relief valve (28) and the suction on-off valve (19), the pressure is increased by the inflow of high-pressure refrigerant gas. When the relief valve (28) is opened, in order to stop the discharge of the refrigerant gas, the suction on-off valve (19) needs to be closed. On the other hand, when the overflow prevention valve (26) is provided upstream of the pressure relief valve (28) as in the fifth embodiment, the suction on-off valve (19) is closed. If not, the discharge of the refrigerant gas is stopped when the overflow prevention valve (26) is closed.

上記の各実施形態で説明した冷媒注入用マニホールド弁や対高圧ガス用保護手段等は、本発明の技術的思想を具体化するために例示したものであり、過流防止弁や圧力逃し弁などの、形状、構造、配置等をこれらの実施形態等に限定するものではなく、本発明の特許請求の範囲内において種々の変更を加え得るものである。例えば、上記の実施形態では真空計測器として真空計を用いた場合について説明したが、本発明は真空計測器として連成計を用いてもよい。また、本発明の冷媒注入用マニホールド弁が取り扱うガスも、特定の種類のものに限定されないことはいうまでもない。   The refrigerant injection manifold valve and the high-pressure gas protection means described in each of the above-described embodiments are examples for embodying the technical idea of the present invention, such as an overflow prevention valve and a pressure relief valve. The shape, structure, arrangement, and the like are not limited to these embodiments, and various modifications can be made within the scope of the claims of the present invention. For example, in the above embodiment, the case where a vacuum gauge is used as a vacuum measuring instrument has been described. However, the present invention may use a compound gauge as a vacuum measuring instrument. Needless to say, the gas handled by the refrigerant injection manifold valve of the present invention is not limited to a specific type.

本発明の遮断弁とこれを備えた冷媒注入用マニホールド弁並びに真空ポンプは、真空ポンプによる吸引を許容しながら、しかも真空ポンプや真空計測器側への高圧ガスの流入を阻止して、真空ポンプや真空計測器を保護できるので、冷媒使用機器へ冷媒ガスを注入する場合に好適に用いられる。   The shutoff valve according to the present invention, the manifold valve for refrigerant injection and the vacuum pump provided with the shutoff valve allow the suction by the vacuum pump, and prevent the inflow of high-pressure gas to the vacuum pump or the vacuum measuring instrument side. It can be suitably used when refrigerant gas is injected into the refrigerant-using device.

本発明の第1実施形態を示す、冷媒注入用マニホールド弁の系統図である。It is a systematic diagram of a manifold valve for refrigerant injection showing a 1st embodiment of the present invention. 第1実施形態の、冷媒注入用マニホールド弁の正面図である。It is a front view of a manifold valve for refrigerant injection of a 1st embodiment. 第1実施形態の、冷媒注入用マニホールド弁の要部の断面図である。It is sectional drawing of the principal part of the manifold valve for refrigerant injection of 1st Embodiment. 第1実施形態の、対高圧ガス用保護手段が作動した状態での図3相当図である。FIG. 4 is a view corresponding to FIG. 3 in a state in which the protection means for high pressure gas of the first embodiment is activated. 第2実施形態の、接続部材の断面図である。It is sectional drawing of the connection member of 2nd Embodiment. 第3実施形態の、接続部材の断面図である。It is sectional drawing of the connection member of 3rd Embodiment. 第4実施形態の、図1相当図である。FIG. 9 is a view corresponding to FIG. 1 of a fourth embodiment. 第5実施形態の、図1相当図である。FIG. 10 is a view corresponding to FIG. 1 of a fifth embodiment. 第6実施形態の、図1相当図である。It is FIG. 1 equivalent view of 6th Embodiment.

符号の説明Explanation of symbols

1…冷媒注入用マニホールド弁
2…ハウジング
3…機器接続ポート
4…注入ポート
5…吸引ポート
6…ガス供給路
7…真空吸引路
12…供給用開閉弁
19…吸引用開閉弁
23…真空計測器(真空計)
26…過流防止弁
27…圧力逃し路
28…圧力逃し弁
36…ガス放出口
41…接続部材
42…封止部材
P…対高圧ガス用保護手段
DESCRIPTION OF SYMBOLS 1 ... Manifold valve for refrigerant | coolant injection 2 ... Housing 3 ... Equipment connection port 4 ... Injection port 5 ... Suction port 6 ... Gas supply path 7 ... Vacuum suction path
12 ... Supply on / off valve
19… Suction on / off valve
23… Vacuum measuring instrument (vacuum gauge)
26… Overflow prevention valve
27… Pressure relief passage
28… Pressure relief valve
36 ... Gas outlet
41… Connecting member
42 ... Sealing member P ... Protective means for high-pressure gas

Claims (5)

ハウジング(2)の外面に機器接続ポート(3)と注入ポート(4)と吸引ポート(5)とを備え、
このハウジング(2)内に、上記の機器接続ポート(3)を注入ポート(4)に連通するガス供給路(6)と、機器接続ポート(3)を吸引ポート(5)に連通する真空吸引路(7)とを形成し、
上記のガス供給路(6)に供給用開閉弁(12)を設け、上記の真空吸引路(7)に上記の機器接続ポート(3)から吸引ポート(5)へのガスの流れを遮断できる吸引用開閉弁(19)を設けた、冷媒注入用マニホールド弁であって、
上記の真空吸引路(7)の吸引用開閉弁(19)より下流側に、吸引用開閉弁(19)側からの設定流量以上のガスの流れにより閉弁作動する過流防止弁(26)と、設定圧力以上のガス圧力により開弁作動する圧力逃し弁(28)を付設した圧力逃し路(27)との、少なくともいずれか一方を備える対高圧ガス用保護手段(P)を設けたことを特徴とする、冷媒注入用マニホールド弁。
A device connection port (3), an injection port (4), and a suction port (5) are provided on the outer surface of the housing (2).
In this housing (2), the above-mentioned device connection port (3) communicates with the injection port (4), the gas supply path (6), and the device connection port (3) communicates with the suction port (5). Form the road (7),
The gas supply path (6) is provided with a supply on / off valve (12), and the gas flow from the device connection port (3) to the suction port (5) can be blocked in the vacuum suction path (7). A manifold valve for refrigerant injection provided with a suction on-off valve (19),
An overflow prevention valve (26) which is closed by a gas flow exceeding the set flow rate from the suction on-off valve (19) side downstream of the suction on-off valve (19) of the vacuum suction path (7). And a high pressure gas protection means (P) provided with at least one of a pressure relief path (27) provided with a pressure relief valve (28) that opens by a gas pressure higher than a set pressure. A manifold valve for injecting refrigerant.
上記の対高圧ガス用保護手段(P)が、上記の過流防止弁(26)と、これより下流側で分岐した圧力逃し路(27)とを備えた、請求項1に記載の冷媒注入用マニホールド弁。   The refrigerant injection according to claim 1, wherein the protection means (P) for the high pressure gas includes the overflow prevention valve (26) and a pressure relief passage (27) branched downstream from the overflow prevention valve (26). Manifold valve. 上記の吸引用開閉弁(19)より下流側の真空吸引路(7)から真空計測路(22)を分岐して、この真空計測路(22)に真空計測器(23)を接続し、この真空計測路(23)に上記の対高圧ガス用保護手段(P)を設けた、請求項1または請求項2に記載の冷媒注入用マニホールド弁。   The vacuum measuring path (22) is branched from the vacuum suction path (7) on the downstream side of the above-described suction on-off valve (19), and a vacuum measuring instrument (23) is connected to the vacuum measuring path (22). The manifold valve for refrigerant injection according to claim 1 or 2, wherein the protective means (P) for the high-pressure gas is provided in the vacuum measurement path (23). 上記の対高圧ガス用保護手段(P)の少なくとも一つが上記の圧力逃し路(27)であって、
上記のハウジング(2)の外面に上記の圧力逃し路(27)と連通するガス放出口(36)を開口し、
上記のハウジング(2)にゴム弾性材料からなる封止部材(42)を装着して、この封止部材(42)により上記の圧力逃し弁(28)を構成し、この封止部材(42)により上記のガス放出口(36)を開放可能に閉塞した、請求項1から3のいずれか1項に既済の冷媒注入用マニホールド弁。
At least one of the anti-high pressure gas protection means (P) is the pressure relief passage (27),
A gas discharge port (36) communicating with the pressure relief passage (27) is opened on the outer surface of the housing (2).
A sealing member (42) made of a rubber elastic material is attached to the housing (2), and the sealing member (42) constitutes the pressure relief valve (28). The sealing member (42) The already-prepared manifold valve for refrigerant injection according to any one of claims 1 to 3, wherein the gas discharge port (36) is closed so as to be openable.
上記の対高圧ガス用保護手段(P)の少なくとも一つが上記の圧力逃し路(27)であって、
上記のハウジング(2)に接続される接続部材(41)の外面に上記の圧力逃し路(27)と連通するガス放出口(36)を開口し、
上記の接続部材(41)にゴム弾性材料からなる封止部材(42)を装着して、この封止部材(42)により上記の圧力逃し弁(28)を構成し、この封止部材(42)により上記のガス放出口(36)を開放可能に閉塞した、請求項1から3のいずれか1項に既済の冷媒注入用マニホールド弁。
At least one of the anti-high pressure gas protection means (P) is the pressure relief passage (27),
A gas discharge port (36) communicating with the pressure relief passage (27) is opened on the outer surface of the connection member (41) connected to the housing (2).
A sealing member (42) made of a rubber elastic material is attached to the connecting member (41), and the sealing member (42) constitutes the pressure relief valve (28). 4. The already-prepared refrigerant injection manifold valve according to any one of claims 1 to 3, wherein the gas discharge port (36) is closed so as to be openable.
JP2007078165A 2007-03-26 2007-03-26 Manifold valve for refrigerant injection Expired - Fee Related JP5075439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078165A JP5075439B2 (en) 2007-03-26 2007-03-26 Manifold valve for refrigerant injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078165A JP5075439B2 (en) 2007-03-26 2007-03-26 Manifold valve for refrigerant injection

Publications (2)

Publication Number Publication Date
JP2008241055A true JP2008241055A (en) 2008-10-09
JP5075439B2 JP5075439B2 (en) 2012-11-21

Family

ID=39912627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078165A Expired - Fee Related JP5075439B2 (en) 2007-03-26 2007-03-26 Manifold valve for refrigerant injection

Country Status (1)

Country Link
JP (1) JP5075439B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063289A1 (en) * 2010-11-11 2012-05-18 三菱電機株式会社 Refrigeration cycle device and cooling medium filling method
CN102645062A (en) * 2012-04-18 2012-08-22 奇瑞汽车股份有限公司 Automobile air conditioning liquid filling equipment and filling method thereof
JP2014505852A (en) * 2011-01-17 2014-03-06 アロカ,ホセ アントニオ マルティネス Household appliances that can be applied to industries that cool or freeze products at the fastest speed
KR20140106380A (en) * 2011-11-25 2014-09-03 안토니오 호세 Electrical appliance that can also be used in industry for cooling or freezing products with maximum speed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574154B1 (en) 2014-02-07 2015-12-11 주식회사 진성이앤지 Method of coolant injection and Coolant supply

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727298A (en) * 1993-07-07 1995-01-27 Jatec Kk Device for charging volatile liquid and nozzle device to be used therefor
JPH08219598A (en) * 1995-02-16 1996-08-30 Pacific Ind Co Ltd Refief valve with function of charging refrigerant
JPH10197107A (en) * 1997-01-08 1998-07-31 Hitoyoshi Aizawa Method of recovering refrigerant in heat exchanger and method of re-supplying refrigerant
JPH10252568A (en) * 1997-03-14 1998-09-22 Isuzu Motors Ltd Device for preventing fuel excessive flow in compressed natural gas engine
JPH11247760A (en) * 1998-02-27 1999-09-14 Toshiba Corp Insulative gas recovering vacuum pump unit
JP2000233638A (en) * 1999-02-16 2000-08-29 Nissan Motor Co Ltd Safety device for vehicle air conditioning system
JP2005127610A (en) * 2003-10-23 2005-05-19 Fuji Heavy Ind Ltd Refrigerant recovering/filling device
JP2005282638A (en) * 2004-03-29 2005-10-13 Neriki:Kk Relief valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727298A (en) * 1993-07-07 1995-01-27 Jatec Kk Device for charging volatile liquid and nozzle device to be used therefor
JPH08219598A (en) * 1995-02-16 1996-08-30 Pacific Ind Co Ltd Refief valve with function of charging refrigerant
JPH10197107A (en) * 1997-01-08 1998-07-31 Hitoyoshi Aizawa Method of recovering refrigerant in heat exchanger and method of re-supplying refrigerant
JPH10252568A (en) * 1997-03-14 1998-09-22 Isuzu Motors Ltd Device for preventing fuel excessive flow in compressed natural gas engine
JPH11247760A (en) * 1998-02-27 1999-09-14 Toshiba Corp Insulative gas recovering vacuum pump unit
JP2000233638A (en) * 1999-02-16 2000-08-29 Nissan Motor Co Ltd Safety device for vehicle air conditioning system
JP2005127610A (en) * 2003-10-23 2005-05-19 Fuji Heavy Ind Ltd Refrigerant recovering/filling device
JP2005282638A (en) * 2004-03-29 2005-10-13 Neriki:Kk Relief valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063289A1 (en) * 2010-11-11 2012-05-18 三菱電機株式会社 Refrigeration cycle device and cooling medium filling method
JP2014505852A (en) * 2011-01-17 2014-03-06 アロカ,ホセ アントニオ マルティネス Household appliances that can be applied to industries that cool or freeze products at the fastest speed
KR20140106380A (en) * 2011-11-25 2014-09-03 안토니오 호세 Electrical appliance that can also be used in industry for cooling or freezing products with maximum speed
KR102040992B1 (en) * 2011-11-25 2019-12-05 안토니오 호세 Electrical appliance that can also be used in industry for cooling or freezing products with maximum speed
CN102645062A (en) * 2012-04-18 2012-08-22 奇瑞汽车股份有限公司 Automobile air conditioning liquid filling equipment and filling method thereof

Also Published As

Publication number Publication date
JP5075439B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5075439B2 (en) Manifold valve for refrigerant injection
CA2506606C (en) Storage tank for a cryogenic liquid and method of re-filling same
US7896022B2 (en) On-board refueling vapor recovery system with vent line check valve
JP6469645B2 (en) Effective and easy opening and closing of container valves
US20100319804A1 (en) Device for filling and distributing gas and assembly comprising such a device
KR20080041690A (en) Tank manifold assembly
US7055556B2 (en) Controlling vapor recirculation during refueling of a tank through a filler tube from a dispensing nozzle
JP2008240765A (en) Shut-off valve and manifold valve for refrigerant pouring provided with this
FR2781294A1 (en) PRESSURE REGULATING DEVICE, CORRESPONDING GAS SUPPLYING SYSTEM AND GAS SUPPLYING SYSTEM
JPH08285087A (en) Shaft seal system
US9010364B2 (en) Combination relief valve and injection fitting
WO2008078174A3 (en) Valve for filling a bottle with a liquid, and apparatus and method for filling bottles by means of the filling valve itself
JP5635813B2 (en) Check valve with built-in liquid seal prevention mechanism
EP3233552B1 (en) Hybrid motor vehicle with a hydraulic circuit comprising a very-low-pressure reservoir placed under negative pressure
US20210270213A1 (en) Leakage Diagnosis Device for Fuel Vapor Processing Apparatus
JP2007278484A (en) Overflow preventing valve
JP2007262903A (en) Dimethyl ether engine-mounted vehicle
JP2007112182A (en) Evaporating fuel discharge restraining device of fuel tank
JP3563139B2 (en) Outgassing prevention device
KR20030092281A (en) Dual fuel auto cut system in vehicle
US11231215B2 (en) Fluid material injection device
FR2996279A1 (en) VENTILATION VALVE FOR A LIQUID RESERVOIR INCLUDING ANTI-PRESSURE SAFETY.
KR20210069875A (en) evaporative gas reduction method using ELCM
JP7300111B2 (en) safety fittings
FR2700060A1 (en) System and method for controlling the level of coolant in a nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees