WO2012063289A1 - Refrigeration cycle device and cooling medium filling method - Google Patents

Refrigeration cycle device and cooling medium filling method Download PDF

Info

Publication number
WO2012063289A1
WO2012063289A1 PCT/JP2010/006614 JP2010006614W WO2012063289A1 WO 2012063289 A1 WO2012063289 A1 WO 2012063289A1 JP 2010006614 W JP2010006614 W JP 2010006614W WO 2012063289 A1 WO2012063289 A1 WO 2012063289A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
heat exchanger
heat
refrigeration cycle
Prior art date
Application number
PCT/JP2010/006614
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 森本
山下 浩司
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/006614 priority Critical patent/WO2012063289A1/en
Publication of WO2012063289A1 publication Critical patent/WO2012063289A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a refrigerant charging method applied to, for example, a building multi-air conditioner.
  • an air conditioner such as a building multi-air conditioner
  • a refrigerant is circulated between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged in a building interior, and the refrigerant radiates heat, and The air-conditioning space is cooled or heated with air that has absorbed heat and has been heated or cooled.
  • a building multi-air conditioner a plurality of indoor units are connected, and there are many cases where a stopped indoor unit and an operating indoor unit are mixed.
  • the pipe connecting the outdoor unit and the indoor unit may be up to 100 m, and the longer the pipe, the more refrigerant must be filled into the system.
  • the outdoor unit In home air conditioners (room air conditioners), the outdoor unit is filled with the refrigerant necessary for the system, so there is no need to refill the refrigerant locally.
  • the amount of refrigerant is very large, it is not possible to enclose all the refrigerant in the outdoor unit, so it is necessary to charge the refrigerant locally.
  • the amount of the refrigerant can be properly maintained, and the system performance can be maximized.
  • the valve of the outdoor unit is opened at the time of construction, the refrigerant in the outdoor unit flows into the connection pipe and the indoor unit, and the refrigerant charge port provided in the valve of the other outdoor unit, or the connection port of the valve
  • the operation of substituting the refrigerant with the gas in the indoor unit and the connecting pipe is carried out by releasing the refrigerant containing air from the gap portion formed by relaxing the connection.
  • Carbon dioxide has an extremely high refrigerant pressure as compared with the conventional refrigerant (R410A), and is about 6.4 MPa at room temperature (25 ° C.). In such a high pressure state, a method of purging air from a gap portion formed by relaxing the connection of the connection port at the time of filling the refrigerant, a large amount of carbon dioxide is ejected from the gap portion, or the refrigerant filling hose is disconnected from the connection port. There is a problem that there is a risk that it is dangerous.
  • HFO1234yf, R290, R32, etc. which are refrigerants with a low global warming potential, are flammable, work is performed in the method of purging air from gaps that are formed by relaxing the connection of the connection ports when filling the refrigerant. Since the refrigerant leaks to the surrounding area, there is still a problem that it involves danger.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus and a refrigerant charging method that can safely fill carbon dioxide or a refrigerant having a low global warming potential.
  • a refrigeration cycle apparatus includes a heat source side unit including a compressor and a heat source side heat exchanger, a usage side unit including a usage side heat exchanger, a throttle device that depressurizes the refrigerant, and the refrigerant circulates.
  • the valve body through which the flow path is penetrated is connected to a refrigerant cylinder or the like by a connecting pipe, and an intake port through which the refrigerant is drawn from the refrigerant cylinder or the like, and the refrigerant drawn from the refrigerant cylinder or the like through the intake port
  • An opening / closing device having a supply port that flows out and a purge port that discharges the refrigerant supplied from the refrigerant cylinder together with the air in the connection pipe, and at least the compressor, the heat source side heat exchange
  • the refrigeration cycle circuit in which the refrigerant, the expansion device, and the use side heat exchanger are connected by the refrigerant pipe to circulate the refrigerant, and the supply port is connected to the refrigerant pipe in the refrigeration cycle circuit
  • the valve body is in a communication state in which the suction port and the supply port communicate with each other by switching the flow path so that the refrigerant can be sealed in the refrigeration cycle circuit from the refrigerant cylinder or the
  • the purge port communicate with each other, a purge state in which the refrigerant supplied from the refrigerant cylinder or the like together with the air in the connection pipe can be discharged from the purge port, and the suction port, the supply port, and the Any of the three states of the closed state in which none of the purge ports communicate can be switched, and the refrigerant operates in a supercritical state in at least a part of the circulation path of the refrigeration cycle circuit.
  • a refrigerant such as carbon dioxide having a high operating pressure or a refrigerant having a low global warming potential can be safely filled in the refrigeration cycle circuit.
  • FIG. (Configuration of the air conditioner 100) 1 is a diagram illustrating an example of a circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the circuit configuration of the air-conditioning apparatus 100 will be described with reference to FIG. FIG. 1 shows an example in which four indoor units 300 are connected.
  • the relationship between the sizes of the constituent members is not limited to that illustrated, and may be different from the actual one.
  • the air conditioning apparatus 100 is demonstrated to an example as a refrigerating cycle apparatus, it is not limited to this, A refrigerator, a heat pump water heater, and other refrigerating cycle apparatuses may be sufficient.
  • an outdoor unit 200 on the heat source side and an indoor unit 300 on the usage side are connected by a pipe 400.
  • a pipe connected to the expansion device 302 described later of the indoor unit 300 is referred to as a pipe 400a
  • a pipe connected to a use side heat exchanger 301 described later of the indoor unit 300 is referred to as a pipe 400b.
  • the refrigerant is circulated between the outdoor unit 200 and the indoor unit 300. It is assumed that carbon dioxide (CO 2) is enclosed as a refrigerant in the refrigeration cycle circuit configured in the air conditioner 100.
  • CO 2 carbon dioxide
  • the outdoor unit 200 and the indoor unit 300 correspond to the “heat source side unit” and the “use side unit” of the present invention, respectively.
  • the outdoor unit 200 includes an accumulator 205, a compressor 201, an oil separator 202, a flow switching device 203 that is a four-way valve, and a heat source side heat exchanger 204 in order by refrigerant piping. Connected and configured.
  • the suction side of the compressor 201 and the inflow side of the oil separator 202 are connected by an oil return capillary 206.
  • an opening / closing device 207 which is a service valve for filling a refrigerant or drawing a vacuum, is provided on the low-pressure gas piping side of the outdoor unit 200.
  • an opening / closing device 207 is provided in the refrigerant pipe that connects the pipe 400 b and the flow path switching device 203.
  • the compressor 201 sucks and compresses the gas refrigerant to be brought into a high temperature and high pressure state and transports it to the refrigeration cycle circuit.
  • the compressor 201 may be composed of an inverter compressor capable of controlling capacity.
  • the oil separator 202 is provided on the discharge side of the compressor 201 and separates the refrigerant from the refrigeration oil.
  • the flow path switching device 203 is provided on the downstream side of the oil separator 202, and switches between a refrigerant flow in the heating operation mode and a refrigerant flow in the cooling operation mode.
  • the heat source side heat exchanger 204 functions as an evaporator in the heating operation mode, functions as a radiator (gas cooler) in the cooling operation mode, and is supplied with air and refrigerant supplied from a blower (not shown) such as a fan. Heat exchange is performed between the two, and the refrigerant is evaporated or condensed.
  • the accumulator 205 is provided on the suction side of the compressor 201, and surplus refrigerant due to the difference between the heating operation mode and the cooling operation mode, or a transient operation change (for example, the number of indoor units 300 operated).
  • the surplus refrigerant is stored against
  • the oil return capillary 206 returns the refrigeration oil captured by the oil separator 202 to the suction side of the compressor 201.
  • the opening / closing device 207 is a service valve for filling the refrigeration cycle circuit with a refrigerant or drawing a vacuum.
  • the indoor unit 300 is composed of four units, which are referred to as an indoor unit 300a, an indoor unit 300b, an indoor unit 300c, and an indoor unit 300d from the left side of FIG. In the case shown, it is simply referred to as the indoor unit 300. These indoor units 300a to 300d are connected in parallel as shown in FIG.
  • the indoor unit 300 is configured by connecting a use side heat exchanger 301 and an expansion device 302 in series by a refrigerant pipe.
  • the four diaphragm devices 302 shown in FIG. 1 are referred to as a diaphragm device 302a, a diaphragm device 302b, a diaphragm device 302c, and a diaphragm device 302d in accordance with the indoor units 300a to 300d, which are shown without distinction. In this case, the diaphragm device 302 is simply referred to.
  • the use-side heat exchanger 301 functions as a radiator (gas cooler) in the heating operation mode, functions as an evaporator in the cooling operation mode, and is supplied with air and refrigerant supplied from a fan (not shown) such as a fan. Heat exchange is performed between the two, and heating air or cooling air for supplying to the air-conditioning target space is generated.
  • the expansion device 302 has a function as a pressure reducing valve or an expansion valve, expands the refrigerant by depressurizing it, and can be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve. .
  • the indoor unit 300 is configured as four units, and accordingly, the use side heat exchanger 301 and the expansion device 302 are also configured as four units, but the number is limited to these numbers. It is not something.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the cooling operation mode.
  • the case where all of the indoor units 300 are driven will be described as an example.
  • the flow direction of the refrigerant is indicated by an arrow.
  • the control device (not shown) sends the refrigerant discharged from the compressor 201 and passing through the oil separator 202 to the flow path switching device 203 of the outdoor unit 200 as the heat source side heat exchanger 204.
  • the refrigerant flow path is switched so as to flow into.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 201 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 201 flows into the oil separator 202.
  • Refrigerating machine oil mixed with the gas refrigerant is separated from the gas refrigerant flowing into the oil separator 202.
  • the refrigerating machine oil separated from the gas refrigerant by the oil separator 202 is returned to the discharge side of the compressor 201 via the oil return capillary 206.
  • the gas refrigerant separated by the oil separator 202 flows into the heat source side heat exchanger 204 via the flow path switching device 203.
  • the gas refrigerant flowing into the heat source side heat exchanger 204 is heat-exchanged with the outside air supplied from a blower (not shown), and radiates heat to the outdoor air.
  • the refrigerant is carbon dioxide
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 204 flows out of the heat source-side heat exchanger 204 in a supercritical state in a temperature-decreasing state.
  • the supercritical low-temperature and high-pressure refrigerant flowing out of the heat source side heat exchanger 204 flows out of the outdoor unit 200 by flowing out of the pipe 400a.
  • the low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 300 (the indoor unit 300a to the indoor unit 300d), and flows into the expansion device 302 (the expansion device 302a to the expansion device 302d).
  • the refrigerant flowing into the expansion device 302 is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flowing out from the expansion device 302 flows into the use side heat exchanger 301 (use side heat exchanger 301a to use side heat exchanger 301d).
  • the gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 301 is subjected to heat exchange with room air supplied from a blower (not shown) to cool the room air. At this time, the gas-liquid two-phase refrigerant absorbs heat from the indoor air, and thus flows out of the use-side heat exchanger 301 as a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the use side heat exchanger 301 flows out of the indoor unit 300 by flowing out of the pipe 400b.
  • a temperature sensor is usually installed at the refrigerant outlet and outlet of the use side heat exchanger 301, and the amount of refrigerant supplied to the use side heat exchanger 301 is based on temperature information from these temperature sensors. Have been adjusted. Specifically, the control device calculates the degree of superheat (refrigerant temperature at the outflow side ⁇ refrigerant temperature at the inlet) based on the temperature information from these temperature sensors, and the degree of superheat is about 2 to 5 ° C. Thus, the opening degree of the expansion device 302 is determined, and the refrigerant supply amount to the use side heat exchanger 301 is adjusted.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 300 flows into the outdoor unit 200 again, and flows into the accumulator 205 through the flow path switching device 203.
  • the gas refrigerant flowing into the accumulator 205 is separated from the liquid refrigerant mixed in the gas refrigerant.
  • the gas refrigerant flowing out from the accumulator 205 is sucked into the compressor 201 and compressed again.
  • the liquid refrigerant basically does not flow into the accumulator 205.
  • a small amount of liquid refrigerant (dryness of about 0.95) may flow into the accumulator 205.
  • the liquid refrigerant flowing into the accumulator 205 is evaporated and sucked into the compressor 201, or sucked into the compressor 201 through an oil return hole (not shown) provided in the outlet pipe of the accumulator 205. .
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating operation mode.
  • FIG. 3 a case where all of the indoor units 300 are driven will be described as an example.
  • coolant is shown by the arrow.
  • the control device causes the flow path switching device 203 of the outdoor unit 200 to discharge the refrigerant discharged from the compressor 201 and passing through the oil separator 202 to the indoor unit 300.
  • the refrigerant flow path is switched.
  • a low-temperature and low-pressure gas refrigerant is compressed by the compressor 201 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 201 flows into the oil separator 202.
  • Refrigerating machine oil mixed with the gas refrigerant is separated from the gas refrigerant flowing into the oil separator 202.
  • the refrigerating machine oil separated from the gas refrigerant by the oil separator 202 is returned to the discharge side of the compressor 201 via the oil return capillary 206.
  • the gas refrigerant separated by the oil separator 202 flows out of the outdoor unit 200 by flowing out to the pipe 400b via the flow path switching device 203.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 300 (the indoor unit 300a to the indoor unit 300d) and is used on the use side heat exchanger 301 (the use side heat exchanger 301a to the use side heat exchanger 301d). Flow into.
  • the gas refrigerant that has flowed into the use-side heat exchanger 301 undergoes heat exchange with room air supplied from a blower (not shown), and radiates heat to the room air.
  • the refrigerant is carbon dioxide
  • the high-temperature and high-pressure gas refrigerant that has flowed into the use-side heat exchanger 301 flows out of the use-side heat exchanger 301 in a supercritical state in a temperature-decreasing state.
  • the supercritical low-temperature and high-pressure refrigerant that has flowed out of the use-side heat exchanger 301 flows into the expansion device 302 (the expansion device 302a to the expansion device 302d).
  • the refrigerant flowing into the expansion device 302 is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the expansion device 302 flows out of the indoor unit 300 by flowing out of the pipe 400a.
  • a temperature sensor and a pressure sensor are usually installed at the refrigerant outlet of the use side heat exchanger 301, and the amount of refrigerant supplied to the use side heat exchanger 301 is temperature information from the temperature sensor. And adjustment based on pressure information from the pressure sensor. Specifically, the control device uses the temperature information from the temperature sensor and the pressure information from the pressure sensor to determine the degree of supercooling (the saturation temperature converted from the detected pressure of the refrigerant on the outflow side minus the refrigerant on the outflow side). The temperature of the expansion device 302 is determined so that the degree of supercooling is about 2 to 5 ° C., and the amount of refrigerant supplied to the use-side heat exchanger 301 is adjusted.
  • the gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 204 is subjected to heat exchange with outside air supplied from a blower (not shown). At this time, the gas-liquid two-phase refrigerant absorbs heat from the outside air and becomes a gas-liquid two-phase refrigerant having a large dryness and flows out from the heat source side heat exchanger 204.
  • the gas-liquid two-phase refrigerant that has flowed into the accumulator 205 is separated from the liquid refrigerant mixed in the gas refrigerant.
  • the separated gas refrigerant flows out of the accumulator 205, is sucked into the compressor 201, and is compressed again.
  • FIG. 4 is a diagram for explaining the refrigerant charging operation to the air-conditioning apparatus 100 according to Embodiment 1 of the present invention
  • FIG. 5 is a structural diagram of the opening / closing device 207 of the air-conditioning apparatus 100.
  • movement to the air conditioning apparatus 100 is demonstrated, referring FIG.4 and FIG.5.
  • FIG. 4 shows that the other end (P side shown in FIG. 5) of the opening / closing device 207 in which one end (Q side shown in FIG. 5) is connected to the refrigerant pipe connecting the pipe 400b and the flow path switching device 203,
  • coolant via the connection pipe 209 is shown.
  • the refrigeration cycle circuit in the air conditioner 100 shown in FIG. 4 is in a state where a vacuum is drawn by a vacuum pump, and after the evacuation is completed, the switchgear 207 and the refrigerant cylinder 208 are connected.
  • the opening / closing device 207 is composed of at least a valve body 207a and four sealing materials 207b. ing.
  • the opening / closing device 207 is a so-called ball valve, and has a flow path 207c that penetrates the ball-shaped valve body 207a. By switching the direction of the flow path 207c, 3 described later It is possible to switch to one flow path state, that is, a communication state, a purge state, and a closed state.
  • the switching operation of the flow path state of the opening / closing device 207 may be performed manually by a serviceman with respect to the opening / closing device 207, or by operating an external remote control device or the like, The flow path state may be switched to the opening / closing device 207 with respect to (not shown).
  • the sealing material 207b may be formed of a material such as Teflon (registered trademark).
  • the P side of the opening / closing device 207 is connected to the connecting pipe 209, and the Q side of the opening / closing device 207 is connected to the refrigerant pipe connecting the pipe 400b and the flow path switching device 203.
  • the P-side is changed to the Q-side direction.
  • a communication channel is formed, and the refrigerant flows from the P side to the Q side.
  • the state of the opening / closing device 207 is referred to as a communication state.
  • the direction of the flow path 207c of the valve body 207a is switched from the P side to the R side so as to communicate with the P side flow path and the R side flow path.
  • a communicating flow is formed, and the refrigerant flows from the P side to the R side.
  • the state of the opening / closing device 207 is referred to as a purge state.
  • the flow rate of the circulating refrigerant may be reduced by reducing the flow path diameter than the P side and the Q side, for example, The channel diameter may be about 5 mm or less.
  • the flow path 207c of the opening / closing device 207 by rotating the flow path 207c of the opening / closing device 207 by 90 ° from the communication position, the flow path 207c does not communicate with any flow path, and the refrigerant opens and closes.
  • the device 207 cannot be conducted.
  • the state chamber of the opening / closing device 207 is referred to as a closed state.
  • the P side, Q side, and R side of the opening / closing device 207 correspond to the “suction port”, “supply port”, and “purge port” of the present invention, respectively.
  • the opening / closing device 207 When the service person fills the refrigerant in the refrigeration cycle circuit of the air conditioner 100, first, the opening / closing device 207 is closed. Next, the service person connects the refrigerant cylinder 208 to the opening / closing device 207 through the connection pipe 209, and then opens the valve of the refrigerant cylinder 208. Then, the service person switches the opening / closing device 207 to the purge state shown in FIG. In this purge state, the refrigerant flowing out from the refrigerant cylinder 208 flows through the connection pipe 209, flows into the inside from the P side of the opening / closing device 207, and is discharged from the R side through the valve body 207a.
  • the service person After sufficient air is discharged together with the refrigerant from the R side of the opening / closing device 207, the service person once brings the opening / closing device 207 into a communication state and encloses an appropriate amount of refrigerant in the refrigeration cycle circuit of the air conditioner 100. The service person encloses an appropriate amount of refrigerant in the refrigeration cycle circuit of the air conditioner 100, then closes the opening / closing device 207, and ends the refrigerant charging operation.
  • the air conditioner 100 forms a purge state as described above.
  • An openable / closable device 207 is provided in the air conditioner 100.
  • the air conditioning apparatus 100 can be provided. This is particularly effective for carbon dioxide with a high pressure.
  • a charging hose 210 may be attached to the R side of the on-off valve 207.
  • flammable refrigerants such as HFO1234yf, R32, and R290 are used
  • work handling fire such as brazing
  • the charging hose 210 is connected to the opening / closing device 207, and the refrigerant is discharged to a fire and a safe place that is not popular.
  • the charging hose 210 by connecting the charging hose 210 to the position on the R side of the opening / closing device 207, it is possible to safely perform the refrigerant charging.
  • the refrigerant is charged into the refrigeration cycle circuit of the air conditioner 100 when the air conditioner 100 is installed or when it is refilled when the refrigerant leaks. Few. Therefore, as shown in FIG. 7, a structure may be adopted in which a plug can be provided on the R side of the opening / closing device 207 with a plug 211 or the like. As described above, by attaching the plug 211 to the opening / closing device 207 during charging of the refrigerant, it is possible to suppress the occurrence of refrigerant leakage during charging of the refrigerant and refrigerant leakage when the opening / closing device 207 is opened by mistake. it can. To release air and refrigerant from the R side in the purge state, the plug 211 may be removed and the above procedure may be performed.
  • coolant with which the refrigerating cycle circuit is filled with the switchgear 207 was made into carbon dioxide, it is not limited to this, HFO1234yf, R32, R290, HC system refrigerant
  • coolants are filled. Needless to say, it can be a thing.
  • the air conditioning apparatus 100 has been described as an example of the refrigeration cycle apparatus.
  • the present invention is not limited to this, and may be a refrigeration machine, a heat pump water heater, or other refrigeration cycle apparatuses. Good.
  • the open / close device 207 which is a service valve for filling the refrigerant or drawing a vacuum, may be provided on the low-pressure gas piping side of the heat source side unit in the refrigeration cycle apparatus as described above. .
  • Embodiment 2 FIG.
  • a method (direct expansion method) in which the refrigerant is used as it is for cooling is adopted.
  • the refrigerant on the heat source side
  • a system that indirectly uses (refrigerant) is adopted. That is, the air-conditioning apparatus 101 according to Embodiment 2 transmits the cold or warm heat stored in the heat source-side refrigerant to a heat medium different from the heat source-side refrigerant, and the air-conditioning target space with the cold or hot heat stored in the heat medium. Is to be cooled or heated.
  • FIG. 8 is a schematic diagram showing an installation example of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • a refrigerant circulation circuit A that is a refrigeration cycle circuit that circulates refrigerant
  • a heat medium circulation circuit B that is a refrigeration cycle circuit that circulates a heat medium
  • the cooling operation mode or the heating operation mode can be freely selected as the operation mode for a plurality of indoor units.
  • the air conditioner according to the present embodiment includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and an outdoor unit 1 and an indoor unit 2. It has an intermediate heat medium relay 3.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 through which a refrigerant on the heat source side flows.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5 through which the heat medium flows. Then, the cold heat or heat generated by the outdoor unit 1 is transmitted to the indoor unit 2 via the heat medium relay unit 3.
  • the outdoor unit 1 is usually installed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is installed at a position where cooling air or heating air can be supplied to the indoor space 7 that is an air-conditioning target space (for example, a living room) inside the building 9, and the cooling air or heating is supplied to the indoor space 7. Supply air.
  • an air-conditioning target space for example, a living room
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Are connected by a refrigerant pipe 4 and a heat medium pipe 5, respectively, and transmit cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • the heat medium converter 3 includes a heat source side refrigerant on the outdoor unit 1 side and a heat medium (for example, water, brine (antifreeze)), brine and water on the indoor unit 2 side different from the heat source side refrigerant. Or a mixed solution of water and an additive having a high anticorrosion effect). Further, FIG.
  • the heat medium relay unit 3 is installed in a space 8 such as a back of the ceiling, which is inside the building 9 but is different from the indoor space 7. Yes. Moreover, since the heat medium converter 3 is provided close to the indoor unit 2 installed in the indoor space 7, the piping of the heat medium circulation circuit through which the heat medium circulates can be shortened. Thereby, the conveyance power of the heat medium in the heat medium circulation circuit can be reduced, and energy saving can be achieved.
  • the refrigerant pipe 4 is composed of two, and connects the outdoor unit 1 and the heat medium relay unit 3. Further, the heat medium pipe 5 also connects the heat medium converter 3 and each indoor unit 2, and is connected to each indoor unit 2 by two heat medium pipes 5.
  • each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is configured using two pipes (refrigerant pipe 4 and heat medium pipe 5). ) Is easy to install.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening, and if the waste heat can be exhausted outside the building 9 by an exhaust duct, Alternatively, when the water-cooled outdoor unit 1 is used, it may be installed inside the building 9.
  • the indoor unit 2 is a ceiling cassette type.
  • the present invention is not limited to this, and the indoor unit 2 is not directly limited to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type.
  • any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • the heat medium converter 3 shall be installed in the space 8 as shown in FIG. 8, it is not limited to this, For example, it installs in the common space etc. with an elevator etc. It may be a thing.
  • the heat medium relay unit 3 is provided close to the indoor unit 2, but is not limited thereto, and may be installed in the vicinity of the outdoor unit 1. .
  • the number of connected outdoor units 1, indoor units 2 and heat medium converters 3 is not limited to the number shown in FIG. 8, but building 9 in which the air conditioner according to Embodiment 1 is installed. The number may be determined according to the situation.
  • the air conditioning apparatus 101 is described as an example of the refrigeration cycle apparatus, but the present invention is not limited to this, and a refrigeration machine, a heat pump water heater, or other refrigeration cycle apparatus may be used.
  • FIG. 9 is an outline diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • the outdoor unit 1 and the heat medium relay unit 3 include a refrigerant circulation circuit in each of the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3.
  • the refrigerant circulation circuit A includes the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay 3, and the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium in the heat medium converter 3.
  • each of 15b it refers to a refrigerant circuit configured by connecting each device with a refrigerant pipe through which a refrigerant that performs heat exchange with a heat medium flows.
  • the refrigerant circulation circuit A includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, a switching device 17, a second refrigerant flow switching device 18, and heat between heat mediums, which will be described later.
  • the refrigerant flow path of the exchanger 15, the expansion device 16, and the accumulator 19 are connected by refrigerant piping. It is assumed that carbon dioxide is enclosed in the refrigerant circuit A as a refrigerant. Details of the connection relation of each of the above devices constituting the refrigerant circuit A will be described later.
  • the heat medium relay unit 3 and the indoor unit 2 are connected to the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3 by a heat medium circulation circuit B described later.
  • the heat medium circulation circuit B includes the heat medium pipe 5 that connects the heat medium converter 3 and each indoor unit 2, and includes the heat exchanger 15 a between the heat medium and the heat medium between the heat medium converter 3. It refers to a heat medium circuit configured by connecting each device by a heat medium pipe through which a heat medium that performs heat exchange with a refrigerant flows in each heat exchanger 15b.
  • the heat medium circulation circuit B uses a heat medium flow path of the heat exchanger 15 between heat mediums, a pump 21, a first heat medium flow switching device 22, a heat medium flow control device 25, which will be described later.
  • the side heat exchanger 26 and the second heat medium flow switching device 23 are connected by a heat medium pipe. Details of the connection relationship of each of the above devices constituting the heat medium circuit B will be described later.
  • the outdoor unit 1 and the indoor unit 2 correspond to the “heat source side unit” and the “use side unit” of the present invention, respectively.
  • the outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19, which are connected in series by a refrigerant pipe.
  • a first refrigerant flow switching device 11 such as a four-way valve
  • a heat source side heat exchanger 12 and an accumulator 19, which are connected in series by a refrigerant pipe.
  • an opening / closing device 40 that is a service valve for filling a refrigerant or drawing a vacuum is provided on the low-pressure gas piping side of the outdoor unit 1.
  • an opening / closing device 40 that is a service valve for filling a refrigerant or drawing a vacuum is provided on the low-pressure gas piping side of the outdoor unit 1.
  • an opening / closing device 40 is provided in the refrigerant pipe connecting the refrigerant pipe 4 and the heat source side heat exchanger 12.
  • the compressor 10 sucks and compresses a gas refrigerant to bring it into a high temperature and high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a refrigerant flow and a cooling operation mode (in a cooling only operation mode and a cooling main operation mode) in a heating operation mode (in a heating only operation mode and a heating main operation mode, which will be described later). ) To change the refrigerant flow.
  • the heat source side heat exchanger 12 functions as an evaporator in the heating operation mode, functions as a radiator (gas cooler) in the cooling operation mode, and is supplied with air and refrigerant supplied from a blower (not shown) such as a fan. Heat exchange between the two.
  • the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, or a transient operation change (for example, the number of operating units of the indoor unit 2 is The excessive refrigerant with respect to (change) is stored.
  • Each indoor unit 2 includes a use side heat exchanger 26.
  • the four indoor units 2 shown in FIG. 2 are referred to as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom. It shall be 2.
  • the four usage side heat exchangers 26 shown in FIG. 2 are connected to the usage side heat exchanger 26a, the usage side heat exchanger 26b, and the usage side heat exchanger 26c from below according to the indoor units 2a to 2d. And it will be referred to as a use side heat exchanger 26d, and when referred to without distinction, it is simply referred to as a use side heat exchanger 26.
  • the use-side heat exchanger 26 passes the heat medium flowing out from the heat medium converter 3 via the second heat medium flow switching device 23, and the heat medium flowing out from the indoor unit 2.
  • the heat medium pipes 5 that are circulated and flow into the heat medium flow control device 25 of the heat medium converter 3 are respectively connected by heat medium pipes.
  • the use side heat exchanger 26 functions as a radiator during heating operation and functions as a heat absorber during cooling operation, and between indoor air supplied from a fan (not shown) such as a fan and a heat medium. Heat exchange is performed to generate heating air or cooling air to be supplied to the indoor space 7.
  • the heat medium relay unit 3 includes two heat exchangers 15 between the heat mediums, two expansion devices 16, two switching devices 17, four second refrigerant flow switching devices 18, two pumps 21, and four first heats.
  • a medium flow switching device 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are provided.
  • the two intermediate heat exchangers 15 shown in FIG. 9 are referred to as an intermediate heat exchanger 15a and an intermediate heat exchanger 15b, respectively. Assume that the container 15.
  • diaphragm devices 16 shown in FIG. 9 are referred to as a diaphragm device 16a and a diaphragm device 16b, respectively.
  • two second refrigerant flow switching devices 18 connected to the heat exchanger related to heat medium 15a are respectively connected to the second refrigerant flow switching devices 18a.
  • the switching device 18a and the second refrigerant flow switching device 18b are referred to as two second refrigerant flow switching devices 18 connected to the heat exchanger related to heat medium 15b.
  • 18c and the second refrigerant flow switching device 18d are simply called the second refrigerant flow switching device 18.
  • the two pumps 21 shown in FIG. 9 are referred to as a pump 21a and a pump 21b, respectively.
  • the four first heat medium flow switching devices 22 shown in FIG. 9 are divided into the first heat medium flow switching device 22a and the first heat medium flow switching from the bottom according to the indoor units 2a to 2d.
  • the device 22b, the first heat medium flow switching device 22c, and the first heat medium flow switching device 22d are assumed.
  • the four second heat medium flow switching devices 23 shown in FIG. 9 are divided into the second heat medium flow switching device 23a and the second heat medium flow switching from the bottom according to the indoor units 2a to 2d.
  • the device 23b, the second heat medium flow switching device 23c, and the second heat medium flow switching device 23d are assumed.
  • the four heat medium flow control devices 25 shown in FIG. 9 are arranged from the bottom according to the indoor units 2a to 2d, from the bottom, the heat medium flow control device 25a, the heat medium flow control device 25b, and the heat medium flow control device 25c. In addition, the heat medium flow control device 25d is assumed.
  • the heat exchanger related to heat medium 15 functions as a radiator or an evaporator, performs heat exchange between the refrigerant and the heat medium, generates cold heat or heat generated by the outdoor unit 1 and stored in the refrigerant as a heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a in the refrigerant circuit A and the second refrigerant flow switching device 18a (and the second refrigerant flow switching device 18b). In the heating only operation mode described later, the heating medium is heated, and in the cooling only operation mode, the cooling main operation mode, and the heating main operation mode described later, the heat medium is cooled.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b in the refrigerant circuit A and the second refrigerant flow switching device 18c (and the second refrigerant flow switching device 18d).
  • the cooling only operation mode the heat medium is cooled.
  • the heating main operation mode the heating main operation mode, which will be described later, the heat medium is heated.
  • the expansion device 16 functions as a pressure reducing valve and an expansion valve in the refrigerant circuit A, and decompresses the refrigerant to expand it.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the refrigerant in the cooling operation mode, and is connected to the switchgear 17 by a refrigerant pipe.
  • the expansion device 16b is provided on the downstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the heating operation mode, and is connected to the opening / closing device 17 by a refrigerant pipe.
  • the expansion device 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
  • the opening / closing device 17 is composed of a two-way valve or the like, and opens and closes the refrigerant piping in the refrigerant circulation circuit A.
  • the opening / closing device 17 is installed in a refrigerant pipe connecting the expansion device 16 a (and the expansion device 16 b) and the refrigerant pipe 4.
  • the second refrigerant flow switching devices 18a to 18d are constituted by two-way valves or the like, and in the refrigerant circulation circuit A, the refrigerant flow is switched according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the cooling only operation mode and the cooling main operation mode, which will be described later, and is connected to the refrigerant pipe 4.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the heating main operation mode described later, and is connected to the refrigerant pipe 4 via the branch pipe 4d. ing.
  • the second refrigerant flow switching device 18c is provided on the upstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the heating only operation mode and the heating main operation mode, which will be described later, and is connected to the refrigerant pipe 4. Yes.
  • the second refrigerant flow switching device 18d is provided on the upstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the cooling main operation mode described later, and is connected to the refrigerant pipe 4 via the branch pipe 4d. ing.
  • the pump 21 circulates the heat medium in the heat medium circuit B.
  • the pump 21 a is provided in a heat medium pipe connecting the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in a heat medium pipe that connects the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the pump 21 may be constituted by a pump whose capacity can be controlled, for example.
  • the pump 21a may be provided in a heat medium pipe connecting the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22, and the pump 21b is connected to the heat exchanger related to heat medium 15b and the first heat medium flow switch 15b. It is good also as what is provided in the heat medium piping which connects 1 heat medium flow-path switching apparatus 22.
  • the first heat medium flow switching device 22 is configured by a three-way valve or the like, and in the heat medium circulation circuit B, switches the flow path of the heat medium according to the operation mode. Further, the number of the first heat medium flow switching devices 22 (four in FIG. 9) according to the number of indoor units 2 installed is provided.
  • the first heat medium flow switching device 22 includes one of the three heat transfer medium heat exchangers 15a, the other heat transfer medium heat exchanger 15b, and the other heat medium flow rate adjustment. Each is connected to the device 25.
  • the second heat medium flow switching device 23 is constituted by a three-way valve or the like, and in the heat medium circulation circuit B, switches the heat medium flow path according to the operation mode. Further, the number of second heat medium flow switching devices 23 is set according to the number of indoor units 2 installed (four in FIG. 9). Further, the second heat medium flow switching device 23 has one of the three sides to the pump 21a, the other to the pump 21b, and the other one to the heat medium pipe 5 for circulating the heat medium to the indoor unit 2. , Each connected.
  • the heat medium flow control device 25 is configured by a two-way valve or the like that can control the opening area. To do. In addition, the number of the heat medium flow control devices 25 (four in FIG. 9) according to the number of indoor units 2 installed is provided. In addition, one of the heat medium flow control devices 25 is the heat medium pipe 5 through which the heat medium flowing out from the use side heat exchanger 26 of the indoor unit 2 flows into the heat medium converter 3, and the other is the first heat medium flow path. Each is connected to the switching device 22. The heat medium flow control device 25 is installed in the heat medium piping system on the outlet side of the heat medium flow path of the use side heat exchanger 26 as described above, but is not limited to this.
  • Heat medium piping system on the inlet side of the side heat exchanger 26 (for example, the second heat medium flow switching device 23 and the heat medium flowing out of the heat medium converter 3 flows into the use side heat exchanger 26 of the indoor unit 2) It is good also as what is installed between the heat-medium piping 5 to be made.
  • the heat medium relay unit 3 includes two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36.
  • Information (temperature information and pressure information) detected by these detection devices is transmitted to a control device (not shown) that controls the operation of the air conditioner 101.
  • the control device is constituted by a microcomputer or the like, and based on these information and operation information from a remote controller or the like, the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the first refrigerant flow switching device.
  • the heat medium flow rate control device 25 controls the heat medium flow rate and the like, and implements various operation modes described later.
  • the control device may be provided for each indoor unit 2 or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the four second temperature sensors 34 shown in FIG. 2 are divided into the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature from the bottom according to the indoor units 2a to 2d.
  • the sensor 34d is assumed.
  • the two first temperature sensors 31 are the heat medium that has flowed out of the heat exchanger related to heat medium 15, that is, the heat at the heat medium outlet side of the heat exchanger related to heat medium 15.
  • the temperature of the medium is detected, and for example, it may be constituted by a thermistor or the like.
  • the 1st temperature sensor 31a is provided in the heat carrier piping in the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the heat medium pipe on the inlet side of the pump 21b.
  • the second temperature sensor 34 is provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and detects the temperature of the heat medium flowing out from the use side heat exchanger 26. For example, what is necessary is just to comprise with a thermistor etc. Further, the number of second temperature sensors 34 (four in FIG. 2) corresponding to the number of indoor units 2 installed is provided.
  • the third temperature sensor 35a is installed between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a (and the second refrigerant flow switching device 18b), and flows into the heat exchanger related to heat medium 15a. Alternatively, the temperature of the refrigerant flowing out of the heat exchanger related to heat medium 15a is detected.
  • the third temperature sensor 35b is installed between the heat exchanger related to heat medium 15a and the expansion device 16a and flows into the heat exchanger related to heat medium 15a or flows out of the heat exchanger related to heat medium 15a. The refrigerant temperature is detected.
  • the third temperature sensor 35c is installed between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18c (and the second refrigerant flow switching device 18d), and is used as the heat exchanger related to heat medium 15b. Or the temperature of the refrigerant flowing out of the heat exchanger related to heat medium 15b is detected.
  • the third temperature sensor 35d is installed between the heat exchanger related to heat medium 15b and the expansion device 16b and flows into the heat exchanger related to heat medium 15b or flows out of the heat exchanger related to heat medium 15b.
  • the refrigerant temperature is detected.
  • These third temperature sensors 35 may be composed of, for example, a thermistor.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing refrigerant is detected.
  • the control device described above controls the heat medium flow path of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, thereby using the heat medium from the heat exchangers between heat mediums 15a on the use side. It is possible to selectively control whether the heat medium flows into the heat exchanger 26 or the heat medium from the heat exchanger related to heat medium 15 b flows into the use side heat exchanger 26. In other words, the control device controls the heat medium flow paths of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, thereby allowing the inflow side flow path and the outflow side of the use side heat exchanger 26. The flow path can be selectively communicated between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium converter 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 101, the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B are heated via the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is to be exchanged.
  • the harmony device 101 can be obtained.
  • the air conditioner 101 can execute the cooling operation mode or the heating operation mode in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 101 can perform the same operation for all the indoor units 2 and can also perform different operations for each indoor unit 2.
  • a cooling only operation mode in which all of the driven indoor units 2 perform a cooling operation As an operation mode performed by the air conditioner 100, a cooling only operation mode in which all of the driven indoor units 2 perform a cooling operation, and a heating only operation mode in which all of the driven indoor units 2 perform a heating operation.
  • each operation mode will be described together with the refrigerant on the heat source side and the flow of the heat medium.
  • FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • pipes indicated by bold lines indicate pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
  • the control device sends the gas refrigerant discharged from the compressor 10 to the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11.
  • the refrigerant flow path is switched so as to flow in.
  • the control device includes the opening / closing device 17 in the open state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c in the open state, and the second refrigerant flow switching device 18b and the second refrigerant flow passage. Open / close control is performed so that the switching device 18d is closed.
  • the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control.
  • the apparatus 25d is fully closed so that the heat medium circulates between each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b. ing.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the gas refrigerant flowing into the heat source side heat exchanger 12 radiates heat to the outdoor air.
  • the refrigerant is carbon dioxide
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 12 flows out of the heat source-side heat exchanger 12 in a supercritical state in a temperature-decreasing state.
  • the supercritical high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17, and flows into the expansion device 16a and the expansion device 16b, respectively.
  • the high-pressure refrigerant flowing into the expansion device 16a and the expansion device 16b is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature low-pressure gas-liquid two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circuit B.
  • the heat medium evaporates while cooling, and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c, respectively, to the heat medium converter 3. And flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the control device makes the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b constant for the expansion device 16a.
  • the opening is controlled so that Similarly, the control device opens the expansion device 16b so that the superheat obtained as a difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant. Control the degree.
  • the cooling heat of the refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is circulated by the pump 21a and the pump 21b. It circulates in the circuit B.
  • a part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23a, and passes through the heat medium pipe 5, It flows into the indoor unit 2a.
  • the remaining part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23b and passes through the heat medium pipe 5.
  • the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
  • the heat medium flowing into the indoor unit 2a and the indoor unit 2b flows into the use side heat exchanger 26a and the use side heat exchanger 26b, respectively.
  • the indoor space 7 is cooled by the heat medium flowing into the use side heat exchanger 26a and the use side heat exchanger 26b absorbing heat from the room air.
  • the heat medium flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b flows out from the indoor unit 2a and the indoor unit 2b, respectively, and flows into the heat medium converter 3 via the heat medium pipe 5. To do.
  • the heat medium flowing into the heat medium converter 3 flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchanger 26a and It flows into the use side heat exchanger 26b.
  • the heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, respectively, via the first heat medium flow switching device 22a.
  • the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b.
  • the heat medium flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is again sucked into the pump 21a and the pump 21b, respectively.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31 a or the temperature detected by the first temperature sensor 31 b and the temperature detected by the second temperature sensor 34. Can be covered by maintaining the target value.
  • the cooling operation by the use side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the use side heat exchanger 26 is the first temperature sensor 31.
  • the number of temperature sensors can be reduced, and the system can be configured at low cost.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes indicated by bold lines indicate the pipes through which the refrigerant and the heat medium flow.
  • the flow direction of the refrigerant is indicated by solid arrows, and the direction in which the heat medium flows is indicated by broken line arrows.
  • the control device converts the gas refrigerant discharged from the compressor 10 into the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11.
  • the refrigerant flow path is switched so as to flow into the heat medium relay unit 3 without going through.
  • the control device includes the opening / closing device 17 in the open state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c in the open state, and the second refrigerant flow switching device 18b and the second refrigerant flow passage. Open / close control is performed so that the switching device 18d is closed.
  • the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control.
  • the apparatus 25d is fully closed so that the heat medium circulates between each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b. ing.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the first refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 via the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat medium relay unit 3 is branched and acts as a radiator (gas cooler) via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c. It flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b dissipates heat while heating the heat medium by dissipating heat to the heat medium circulating in the heat medium circuit B, In the supercritical state, the temperature decreases and flows out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the high-pressure refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16a and the expansion device 16b, respectively, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • This low-temperature and low-pressure gas-liquid two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12.
  • the gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 12 is vaporized while absorbing heat from the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the control device makes a subcool (supercooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the degree of opening is controlled so that the degree is constant.
  • the control device makes the subcool obtained as a difference between the value obtained by converting the pressure detected by the pressure sensor 36 into the saturation temperature and the temperature detected by the third temperature sensor 35d constant for the expansion device 16b.
  • the opening is controlled so that
  • the temperature at the intermediate position of the heat exchanger related to heat medium 15 may be used instead of the pressure sensor 36.
  • the system can be configured at low cost.
  • the heat of the refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is circulated by the pump 21a and the pump 21b. It circulates in the circuit B.
  • a part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23a, and passes through the heat medium pipe 5, It flows into the indoor unit 2a.
  • the remaining part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23b and passes through the heat medium pipe 5.
  • the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
  • the heat medium flowing into the indoor unit 2a and the indoor unit 2b flows into the use side heat exchanger 26a and the use side heat exchanger 26b, respectively. Heating of the indoor space 7 is performed by the heat medium flowing into the use side heat exchanger 26a and the use side heat exchanger 26b radiating heat to the indoor air.
  • the heat medium flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b flows out from the indoor unit 2a and the indoor unit 2b, respectively, and flows into the heat medium converter 3 via the heat medium pipe 5. To do.
  • the heat medium flowing into the heat medium converter 3 flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchanger 26a and It flows into the use side heat exchanger 26b.
  • the heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, respectively, via the first heat medium flow switching device 22a.
  • the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b.
  • the heat medium flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is again sucked into the pump 21a and the pump 21b, respectively.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31 a or the temperature detected by the first temperature sensor 31 b and the temperature detected by the second temperature sensor 34. Can be covered by maintaining the target value.
  • the heating operation by the use side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the use side heat exchanger 26 is the first temperature sensor 31.
  • the number of temperature sensors can be reduced, and the system can be configured at low cost.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • the pipes represented by bold lines indicate the pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by solid arrows, and the direction in which the heat medium flows is indicated by broken arrows.
  • the control device sends the gas refrigerant discharged from the compressor 10 to the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11.
  • the refrigerant flow path is switched so as to flow in.
  • the control device includes the expansion device 16a in a fully open state, the opening / closing device 17 in a closed state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18d in an open state, and the second refrigerant flow switching device. Opening / closing control is performed so that 18b and the second refrigerant flow switching device 18c are closed.
  • the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control.
  • the apparatus 25d is fully closed, the heat medium between the heat exchanger 15a and the use side heat exchanger 26a, and the heat medium between the heat exchanger 15b and the use side heat exchanger 26b, respectively. Is trying to circulate.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the gas refrigerant flowing into the heat source side heat exchanger 12 radiates heat to the outdoor air.
  • the refrigerant is carbon dioxide
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 12 flows out of the heat source-side heat exchanger 12 in a supercritical state in a temperature-decreasing state.
  • the supercritical high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a radiator (gas cooler) via the refrigerant pipe 4 and the second refrigerant flow switching device 18d.
  • the high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 15b dissipates heat to the heat medium circulating in the heat medium circuit B so that the heat medium is further dissipated while heating the heat medium, and the temperature is lowered. It flows out of the intermediate heat exchanger 15b.
  • the high-pressure refrigerant that has flowed out of the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates while cooling the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B, so It becomes.
  • the gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. To do.
  • the gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the control device opens the expansion device 16b so that the superheat obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Control the degree.
  • the control device has a constant subcool with respect to the expansion device 16b, which is obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d.
  • the opening degree may be controlled.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
  • the heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is circulated in the heat medium circuit B by the pump 21b.
  • the cold heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21b flows out of the heat medium converter 3 through the second heat medium flow switching device 23b, and flows into the indoor unit 2b through the heat medium pipe 5.
  • the heat medium pressurized and discharged by the pump 21a flows out of the heat medium converter 3 through the second heat medium flow switching device 23a, and flows into the indoor unit 2a through the heat medium pipe 5.
  • the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
  • the heat medium flowing into the indoor unit 2b flows into the use side heat exchanger 26b, and the heat medium flowing into the indoor unit 2a flows into the use side heat exchanger 26a.
  • the heat medium that has flowed into the use-side heat exchanger 26b radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium that has flowed into the use-side heat exchanger 26a absorbs heat from the indoor air, whereby the indoor space 7 is cooled.
  • the heat medium that has flowed out of the use side heat exchanger 26 b and whose temperature has decreased to some extent flows out of the indoor unit 2 b and flows into the heat medium converter 3 via the heat medium pipe 5.
  • the heat medium that has flowed out of the use-side heat exchanger 26 a and whose temperature has increased to some extent flows out of the indoor unit 2 a and flows into the heat medium converter 3 through the heat medium pipe 5.
  • the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26b flows into the heat medium flow control device 25b, and the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26a is the heat medium. It flows into the flow rate adjusting device 25a. At this time, the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room. It flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b and is sucked into the pump 21b again.
  • the heat medium flowing out from the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a via the first heat medium flow switching device 22a and is sucked into the pump 21a again.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, respectively.
  • a heat load and a cold load are fed into the use side heat exchanger 26.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34b on the heating side, and the second on the cooling side. It can be covered by maintaining the difference between the temperature detected by the temperature sensor 34b and the temperature detected by the first temperature sensor 31a at the target value.
  • FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • the pipes indicated by bold lines indicate the pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
  • the control device converts the gas refrigerant discharged from the compressor 10 into the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11.
  • the refrigerant flow path is switched so as to flow into the heat medium relay unit 3 without going through.
  • the control device includes a throttle device 16a in a fully open state, an opening / closing device 17 in a closed state, a second refrigerant flow switching device 18a and a second refrigerant flow switching device 18d in a closed state, and a second refrigerant flow switching device. Opening / closing control is performed so that 18b and the second refrigerant flow switching device 18c are opened.
  • the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control.
  • the apparatus 25d is fully closed, the heat medium between the heat exchanger 15a and the use side heat exchanger 26a, and the heat medium between the heat exchanger 15b and the use side heat exchanger 26b, respectively. Is trying to circulate.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the first refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 via the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b acting as a radiator (gas cooler) via the second refrigerant flow switching device 18c.
  • the high-temperature and high-pressure gas refrigerant flowing into the intermediate heat exchanger 15b radiates heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant is carbon dioxide
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 15b flows out of the heat exchanger related to heat medium 15b in a supercritical state in a temperature-decreasing state. To do.
  • the supercritical high-pressure refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16b, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a cools the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B.
  • the gas-liquid two-phase refrigerant that has flowed out of the heat exchanger related to heat medium 15 a flows out of the heat medium converter 3 via the second refrigerant flow switching device 18 b and the branch pipe 4 d, and then passes through the refrigerant pipe 4. Then, it flows into the outdoor unit 1 again.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12.
  • the gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 12 evaporates by further absorbing heat from the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the control device makes the subcool obtained as a difference between the value obtained by converting the pressure detected by the pressure sensor 36 into the saturation temperature and the temperature detected by the third temperature sensor 35b constant with respect to the expansion device 16b.
  • the opening is controlled so that The control device may be configured such that the expansion device 16b is fully opened and the subcooling is controlled by the expansion device 16a.
  • the heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium flows through the heat medium circuit B by the pump 21b.
  • the cold heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21b flows out of the heat medium converter 3 through the second heat medium flow switching device 23a, and flows into the indoor unit 2a through the heat medium pipe 5.
  • the heat medium pressurized and discharged by the pump 21a flows out of the heat medium converter 3 through the second heat medium flow switching device 23b, and flows into the indoor unit 2b through the heat medium pipe 5.
  • the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
  • the heat medium flowing into the indoor unit 2a flows into the use side heat exchanger 26a, and the heat medium flowing into the indoor unit 2b flows into the use side heat exchanger 26b.
  • the heat medium flowing into the use side heat exchanger 26a dissipates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium that has flowed into the use side heat exchanger 26b absorbs heat from the indoor air, whereby the indoor space 7 is cooled.
  • the heat medium that has flowed out of the use-side heat exchanger 26 a and whose temperature has decreased to some extent flows out of the indoor unit 2 a and flows into the heat medium converter 3 through the heat medium pipe 5.
  • the heat medium that has flowed out from the use side heat exchanger 26 b and whose temperature has risen to some extent flows out from the indoor unit 2 b, and flows into the heat medium converter 3 through the heat medium pipe 5.
  • the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26a flows into the heat medium flow control device 25a, and the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26b is the heat medium. It flows into the flow rate adjusting device 25b. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22a, and is sucked into the pump 21b again.
  • the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a via the first heat medium flow switching device 22b and is sucked into the pump 21a again.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, It flows into the use-side heat exchanger 26 having a hot load and a cold load, respectively.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34a on the heating side, and the second on the cooling side. It is possible to cover the difference between the temperature detected by the temperature sensor 34b and the temperature detected by the first temperature sensor 31a so as to maintain the target value.
  • the heat medium flow control device 25 closes the flow path.
  • the heat medium is prevented from flowing to the use side heat exchanger 26.
  • FIG. 6 since there is a heat load in the use-side heat exchanger 26a and the use-side heat exchanger 26b, a heat medium is flowing, but in the use-side heat exchanger 26c and the use-side heat exchanger 26d, the heat load is passed.
  • the corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed.
  • the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
  • the structure of the switchgear 40 installed in the air conditioner 101 according to the present embodiment is the same structure as the switchgear 207 shown in FIG. 5 installed in the air conditioner 100 according to the first embodiment.
  • the service person connects the switch tube 209 connected to the switchgear 207 and the refrigerant cylinder 208 in the first embodiment to the switchgear 40, which will be described in the first embodiment.
  • the refrigerant circulation circuit A may be filled with the refrigerant by the same procedure.
  • the air conditioner 101 is provided with the opening / closing device 40 that can form a purge state in the same manner as the opening / closing device 207 in the first embodiment, so that the refrigerant suddenly leaks or the connection pipe is disconnected. Therefore, it is possible to provide an air conditioner 101 that can significantly reduce the risk of being released in large quantities and that can safely purge the air in the connecting pipe. This is particularly effective for carbon dioxide with a high pressure.
  • a heat medium such as water or antifreeze liquid is circulated in the indoor unit 2 and the refrigerant does not circulate, so that the refrigerant leaks into the indoor space 7 and the like. Safety can be improved.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 in the present embodiment can switch a three-way flow such as a three-way valve, or a two-way flow such as an on-off valve. What is necessary is just to switch a flow path, such as combining two things which implement opening and closing of.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 in the present embodiment can change the flow rate of a three-way flow path such as a stepping motor driven mixing valve, or It is good also as what is comprised by what combined the thing which can change the flow volume of two-way flow paths, such as an electronic expansion valve. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 25 is a two-way valve
  • the heat medium flow control device 25 is not limited to this and is a control valve having a three-way flow path. You may make it install with the bypass pipe which bypasses 26.
  • the heat medium flow control device 25 may be a stepping motor driven type that can control the flow rate flowing through the flow path, or may be one in which one end of a two-way valve or a three-way valve is closed.
  • an apparatus that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 18 is shown as if it were a two-way flow switching valve, but is not limited to this, and a three-way flow switching valve. A plurality of can be used so that the refrigerant flows in the same manner. Further, for the second refrigerant flow switching device 18, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the second refrigerant flow switching device 18c and the second refrigerant flow switching device 18d are provided. Each may be replaced with a four-way valve.
  • the air conditioning apparatus 101 has been described as being capable of mixed operation of cooling and heating, the present invention is not limited to this.
  • the heat medium flow control apparatus 25 demonstrated to the example the case where it was incorporated in the heat medium converter 3, it is not limited to this, It is good also as what is incorporated in the indoor unit 2 side, Alternatively, the heat medium converter 3 and the indoor unit 2 may be installed separately.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are equipped with a blower, which often promotes condensation (heat dissipation) or evaporation (heat absorption) by blowing air.
  • a blower which often promotes condensation (heat dissipation) or evaporation (heat absorption) by blowing air.
  • the use-side heat exchanger 26 may be a panel heater using radiation or the like, and the heat-source-side heat exchanger 12 is a water-cooled type that moves heat by water or antifreeze. May be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating or absorbing heat.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • the first heat medium flow switching device 22, the second heat medium flow switching device 23, and the heat medium flow control device 25 are connected to each use side heat exchanger 26, one by one.
  • the present invention is not limited to this, and a plurality of each of the use side heat exchangers 26 may be connected.
  • the plurality of first heat medium flow switching devices 22, the second heat medium flow switching devices 23, and the heat medium flow control devices 25 connected to the same use side heat exchanger 26 are the same. It is sufficient to operate.
  • coolant with which the refrigerating cycle circuit is filled with the switchgear 40 was made into the carbon dioxide, it is not limited to this, HFO1234yf, R32, R290, HC type
  • coolants are filled. Needless to say, it can be a thing.
  • the air conditioning apparatus 101 has been described as an example of the refrigeration cycle apparatus. Good.
  • the open / close device 40 which is a service valve for filling the refrigerant or drawing a vacuum, may be provided on the low-pressure gas piping side of the heat source side unit in the refrigeration cycle apparatus. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a refrigeration cycle device and a cooling medium filling method with which carbon dioxide, a cooling medium having a low global warming potential, or the like can be safely filled. One end of an opening/closing device (207) is connected to a cooling medium pipe connecting a pipe (400b) and a flow path switching device (203), and the other end is connected via a connecting pipe (209)to a cooling medium cylinder (208) filled with a cooling medium.

Description

冷凍サイクル装置及び冷媒充填方法Refrigeration cycle apparatus and refrigerant charging method
 本発明は、例えばビル用マルチエアコン等に適用される冷凍サイクル装置及び冷媒充填方法に関するものである。 The present invention relates to a refrigeration cycle apparatus and a refrigerant charging method applied to, for example, a building multi-air conditioner.
 従来から、ビル用マルチエアコン等の空気調和装置においては、例えば、室外に配置した熱源機である室外機と建物の室内に配置した室内機との間に冷媒を循環させ、冷媒が放熱、そして、吸熱し、加熱又は冷却された空気によって空調対象空間の冷房又は暖房を実施している。このようなビル用マルチエアコンでは、複数の室内機が接続されており、停止している室内機、そして、運転している室内機が混在していることも多い。また、室外機と室内機とを接続する配管が最大100mになることもあり、配管が長くなるほど、多くの冷媒をシステム内に充填されなければならない。 Conventionally, in an air conditioner such as a building multi-air conditioner, for example, a refrigerant is circulated between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged in a building interior, and the refrigerant radiates heat, and The air-conditioning space is cooled or heated with air that has absorbed heat and has been heated or cooled. In such a building multi-air conditioner, a plurality of indoor units are connected, and there are many cases where a stopped indoor unit and an operating indoor unit are mixed. In addition, the pipe connecting the outdoor unit and the indoor unit may be up to 100 m, and the longer the pipe, the more refrigerant must be filled into the system.
 家庭用エアコン(ルームエアコン)においては、室外機にシステムに必要な冷媒を充填しているため、現地において追加で冷媒を充填する必要はない。一方、ビル用マルチエアコンにおいては、冷媒量が非常に多いため、室外機にすべての冷媒を封入することはできないため、現地での冷媒充填が必要となる。このように現地で冷媒を追加充填することによって、冷媒量を適正に維持することができ、システムの性能を最大限に発揮させることができる。 In home air conditioners (room air conditioners), the outdoor unit is filled with the refrigerant necessary for the system, so there is no need to refill the refrigerant locally. On the other hand, in a building multi-air conditioner, since the amount of refrigerant is very large, it is not possible to enclose all the refrigerant in the outdoor unit, so it is necessary to charge the refrigerant locally. Thus, by additionally filling the refrigerant locally, the amount of the refrigerant can be properly maintained, and the system performance can be maximized.
 ところで、近年、地球温暖化の観点から、地球温暖化係数が高いHFC系冷媒(例えば、R410A、R404A、R407C及びR134a等)の使用を制限する情勢があり、地球温暖化係数が小さい冷媒(例えば、二酸化炭素等)を用いた空気調和装置が提案されている。このとき、二酸化炭素をビル用マルチエアコンに冷媒として用いた場合においても、従来使用していた冷媒と同じように、現地での冷媒充填が必要となる。 By the way, in recent years, from the viewpoint of global warming, there is a situation in which the use of HFC refrigerants having a high global warming potential (for example, R410A, R404A, R407C, and R134a) is limited, and refrigerants having a low global warming potential (for example, , Carbon dioxide, etc.) have been proposed. At this time, even when carbon dioxide is used as a refrigerant in a building multi-air conditioner, on-site refrigerant charging is required in the same manner as conventionally used refrigerants.
特開2001-91112号公報(明細書の段落0006等)Japanese Patent Laid-Open No. 2001-91112 (paragraph 0006 etc. of the specification)
 特許文献1においては、施工時に室外機のバルブを開いて、室外機内の冷媒を接続配管及び室内機へ流し、もうひとつの室外機のバルブに設けられた冷媒チャージポート、又はそのバルブの接続ポートの連結を緩和してできる隙間部分より空気を含んだ冷媒を放出することによって、室内ユニット及び接続管内の気体と冷媒とを置換する操作を実施している。 In Patent Document 1, the valve of the outdoor unit is opened at the time of construction, the refrigerant in the outdoor unit flows into the connection pipe and the indoor unit, and the refrigerant charge port provided in the valve of the other outdoor unit, or the connection port of the valve The operation of substituting the refrigerant with the gas in the indoor unit and the connecting pipe is carried out by releasing the refrigerant containing air from the gap portion formed by relaxing the connection.
 二酸化炭素を冷媒として空気調和装置に適用した場合においても、前述のように、現地で冷媒を充填しなければならない。二酸化炭素は冷媒圧力が従来冷媒(R410A)に比べて非常に高く、常温(25℃)において、6.4MPa程度にもなる。このような高い圧力状態で、冷媒充填時に接続ポートの連結を緩和してできる隙間部分から空気をパージする方法は、隙間部分から大量の二酸化炭素が噴出したり、冷媒充填ホースが接続ポートから外れたりする恐れがあり、大きな危険性を伴うという問題点がある。 Even when carbon dioxide is used as a refrigerant in an air conditioner, the refrigerant must be charged locally as described above. Carbon dioxide has an extremely high refrigerant pressure as compared with the conventional refrigerant (R410A), and is about 6.4 MPa at room temperature (25 ° C.). In such a high pressure state, a method of purging air from a gap portion formed by relaxing the connection of the connection port at the time of filling the refrigerant, a large amount of carbon dioxide is ejected from the gap portion, or the refrigerant filling hose is disconnected from the connection port. There is a problem that there is a risk that it is dangerous.
 また、地球温暖化係数が小さい冷媒であるHFO1234yf、R290及びR32等は可燃性があるため、冷媒充填時に接続ポートの連結を緩和してできる隙間部分から空気をパージする方法においては、作業を行っている周辺に冷媒が漏れるため、やはり危険性を伴うという問題点がある。 In addition, since HFO1234yf, R290, R32, etc., which are refrigerants with a low global warming potential, are flammable, work is performed in the method of purging air from gaps that are formed by relaxing the connection of the connection ports when filling the refrigerant. Since the refrigerant leaks to the surrounding area, there is still a problem that it involves danger.
 本発明は、上記の課題を解決するためになされたもので、二酸化炭素又は地球温暖化係数が小さい冷媒等を安全に充填できる冷凍サイクル装置及び冷媒充填方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus and a refrigerant charging method that can safely fill carbon dioxide or a refrigerant having a low global warming potential.
 本発明に係る冷凍サイクル装置は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、利用側熱交換器を備えた利用側ユニットと、冷媒を減圧させる絞り装置と、冷媒が流通する流路が貫通された弁体と、冷媒ボンベ等と接続管によって接続し、前記冷媒ボンベ等から冷媒が吸入される吸入口と、前記冷媒ボンベ等から前記吸入口を介して吸入された冷媒を流出する供給口と、前記接続管内の空気と共に、前記冷媒ボンベ等から供給される冷媒を放出させるパージ口と、を有した開閉装置と、を備え、少なくとも、前記圧縮機、前記熱源側熱交換器、前記絞り装置及び前記利用側熱交換器が冷媒配管によって接続され、冷媒が循環する冷凍サイクル回路が形成され、前記供給口は、前記冷凍サイクル回路における冷媒配管に接続され、前記弁体は、前記流路を切り替えることによって、前記吸入口と前記供給口とが連通して、前記冷媒ボンベ等から冷媒が前記冷凍サイクル回路に封入することが可能な連通状態、前記吸入口と前記パージ口とが連通して、前記パージ口から前記接続管内の空気と共に前記冷媒ボンベ等から供給される冷媒を放出することが可能なパージ状態、並びに、前記吸入口、前記供給口及び前記パージ口がいずれも連通しない閉止状態の3つの状態のいずれかの切り替えが可能であり、冷媒は、前記冷凍サイクル回路の循環経路の少なくとも一部の経路において超臨界状態で作動するものである。 A refrigeration cycle apparatus according to the present invention includes a heat source side unit including a compressor and a heat source side heat exchanger, a usage side unit including a usage side heat exchanger, a throttle device that depressurizes the refrigerant, and the refrigerant circulates. The valve body through which the flow path is penetrated is connected to a refrigerant cylinder or the like by a connecting pipe, and an intake port through which the refrigerant is drawn from the refrigerant cylinder or the like, and the refrigerant drawn from the refrigerant cylinder or the like through the intake port An opening / closing device having a supply port that flows out and a purge port that discharges the refrigerant supplied from the refrigerant cylinder together with the air in the connection pipe, and at least the compressor, the heat source side heat exchange The refrigeration cycle circuit in which the refrigerant, the expansion device, and the use side heat exchanger are connected by the refrigerant pipe to circulate the refrigerant, and the supply port is connected to the refrigerant pipe in the refrigeration cycle circuit, The valve body is in a communication state in which the suction port and the supply port communicate with each other by switching the flow path so that the refrigerant can be sealed in the refrigeration cycle circuit from the refrigerant cylinder or the like. And the purge port communicate with each other, a purge state in which the refrigerant supplied from the refrigerant cylinder or the like together with the air in the connection pipe can be discharged from the purge port, and the suction port, the supply port, and the Any of the three states of the closed state in which none of the purge ports communicate can be switched, and the refrigerant operates in a supercritical state in at least a part of the circulation path of the refrigeration cycle circuit.
 本発明によれば、動作圧力が高い二酸化炭素又は地球温暖化係数が小さい冷媒等の冷媒を安全に冷媒を冷凍サイクル回路に充填することができる。 According to the present invention, a refrigerant such as carbon dioxide having a high operating pressure or a refrigerant having a low global warming potential can be safely filled in the refrigeration cycle circuit.
本発明の実施の形態1に係る空気調和装置100の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the air_conditioning | cooling operation mode of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating operation mode of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100への冷媒充填動作を説明する図である。It is a figure explaining the refrigerant | coolant filling operation | movement to the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の開閉装置207の構造図である。It is a structural diagram of the opening / closing device 207 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置100の回路構成の別形態を示す図である。It is a figure which shows another form of the circuit structure of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の開閉装置207の別形態の構造図である。It is a structural diagram of another form of the switching device 207 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る空気調和装置101の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置101の回路構成の一例を示す外略図である。It is an outline figure showing an example of circuit composition of air harmony device 101 concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係る空気調和装置101の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置101の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置101の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling main operation mode of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置101の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of heating main operation mode of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention.
実施の形態1.
(空気調和装置100の構成)
 図1は、本発明の実施の形態1に係る空気調和装置100の回路構成の一例を示す図である。以下、図1を参照しながら、空気調和装置100の回路構成について説明する。また、図1においては、室内機300が4台接続されている例が示されている。なお、図1を含め、以下の図面において、各構成部材の大きさの関係が図示されている通りのものに限定するものではなく、実際のものとは異なる場合がある。また、本実施の形態において、冷凍サイクル装置として空気調和装置100を例に説明するが、これに限定されるものではなく、冷凍機、ヒートポンプ給湯機その他の冷凍サイクル装置でもよい。
Embodiment 1 FIG.
(Configuration of the air conditioner 100)
1 is a diagram illustrating an example of a circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Hereinafter, the circuit configuration of the air-conditioning apparatus 100 will be described with reference to FIG. FIG. 1 shows an example in which four indoor units 300 are connected. In addition, in the following drawings including FIG. 1, the relationship between the sizes of the constituent members is not limited to that illustrated, and may be different from the actual one. Moreover, in this Embodiment, although the air conditioning apparatus 100 is demonstrated to an example as a refrigerating cycle apparatus, it is not limited to this, A refrigerator, a heat pump water heater, and other refrigerating cycle apparatuses may be sufficient.
 図1で示されるように、空気調和装置100は、熱源側である室外機200と利用側である室内機300とが、配管400によって接続されている。この配管400のうち、室内機300の後述する絞り装置302に接続される配管を、配管400aとし、室内機300の後述する利用側熱交換器301に接続される配管を、配管400bとする。この配管400によって、室外機200と室内機300との間を冷媒が流通される。この空気調和装置100内に構成される冷凍サイクル回路には、冷媒として二酸化炭素(CO2)が封入されているものとする。 As shown in FIG. 1, in the air conditioner 100, an outdoor unit 200 on the heat source side and an indoor unit 300 on the usage side are connected by a pipe 400. Among the pipes 400, a pipe connected to the expansion device 302 described later of the indoor unit 300 is referred to as a pipe 400a, and a pipe connected to a use side heat exchanger 301 described later of the indoor unit 300 is referred to as a pipe 400b. By this pipe 400, the refrigerant is circulated between the outdoor unit 200 and the indoor unit 300. It is assumed that carbon dioxide (CO 2) is enclosed as a refrigerant in the refrigeration cycle circuit configured in the air conditioner 100.
 なお、室外機200及び室内機300は、それぞれ本発明の「熱源側ユニット」及び「利用側ユニット」に相当する。 The outdoor unit 200 and the indoor unit 300 correspond to the “heat source side unit” and the “use side unit” of the present invention, respectively.
(室外機200の構成)
 室外機200は、図1で示されるように、アキュムレーター205、圧縮機201、油分離器202、四方弁である流路切替装置203、そして、熱源側熱交換器204が順次、冷媒配管によって接続されて構成されている。圧縮機201の吸込側と油分離器202の流入側とは、油戻キャピラリー206によって接続されている。また、室外機200の低圧ガス配管側には、冷媒を充填したり、真空を引いたりするためのサービス用バルブである開閉装置207が備えられている。図1においては、配管400bと流路切替装置203とを接続する冷媒配管に開閉装置207が備えられている。
(Configuration of outdoor unit 200)
As shown in FIG. 1, the outdoor unit 200 includes an accumulator 205, a compressor 201, an oil separator 202, a flow switching device 203 that is a four-way valve, and a heat source side heat exchanger 204 in order by refrigerant piping. Connected and configured. The suction side of the compressor 201 and the inflow side of the oil separator 202 are connected by an oil return capillary 206. In addition, on the low-pressure gas piping side of the outdoor unit 200, an opening / closing device 207, which is a service valve for filling a refrigerant or drawing a vacuum, is provided. In FIG. 1, an opening / closing device 207 is provided in the refrigerant pipe that connects the pipe 400 b and the flow path switching device 203.
 圧縮機201は、ガス冷媒を吸入して圧縮し高温高圧の状態にして、冷凍サイクル回路に搬送するものであり、例えば、容量制御可能なインバータ圧縮機等で構成されるものとすればよい。 The compressor 201 sucks and compresses the gas refrigerant to be brought into a high temperature and high pressure state and transports it to the refrigeration cycle circuit. For example, the compressor 201 may be composed of an inverter compressor capable of controlling capacity.
 油分離器202は、圧縮機201の吐出側に設けられており、冷媒と冷凍機油とを分離するものである The oil separator 202 is provided on the discharge side of the compressor 201 and separates the refrigerant from the refrigeration oil.
 流路切替装置203は、油分離器202の下流側に設けられており、暖房運転モード時における冷媒の流れと冷房運転モード時における冷媒の流れとを切り替えるものである。 The flow path switching device 203 is provided on the downstream side of the oil separator 202, and switches between a refrigerant flow in the heating operation mode and a refrigerant flow in the cooling operation mode.
 熱源側熱交換器204は、暖房運転モード時には蒸発器として機能し、冷房運転モード時には放熱器(ガスクーラー)として機能し、ファン等の送風機(図示せず)から供給される空気と冷媒との間で熱交換を実施し、その冷媒を蒸発又は凝縮させるものである。 The heat source side heat exchanger 204 functions as an evaporator in the heating operation mode, functions as a radiator (gas cooler) in the cooling operation mode, and is supplied with air and refrigerant supplied from a blower (not shown) such as a fan. Heat exchange is performed between the two, and the refrigerant is evaporated or condensed.
 アキュムレーター205は、圧縮機201の吸入側に設けられており、暖房運転モード時と冷房運転モード時との違いによる余剰冷媒、又は、過渡的な運転の変化(例えば、室内機300の運転台数の変化)に対する余剰冷媒を蓄えるものである。 The accumulator 205 is provided on the suction side of the compressor 201, and surplus refrigerant due to the difference between the heating operation mode and the cooling operation mode, or a transient operation change (for example, the number of indoor units 300 operated). The surplus refrigerant is stored against
 油戻キャピラリー206は、油分離器202によって捕捉された冷凍機油を圧縮機201の吸入側に戻すものである。 The oil return capillary 206 returns the refrigeration oil captured by the oil separator 202 to the suction side of the compressor 201.
 開閉装置207は、冷凍サイクル回路に冷媒を充填したり、真空を引いたりするためのサービス用バルブである。 The opening / closing device 207 is a service valve for filling the refrigeration cycle circuit with a refrigerant or drawing a vacuum.
(室内機300の構成)
 室内機300は、図1で示されるように、4台によって構成されており、図1の左側から室内機300a、室内機300b、室内機300c、そして室内機300dというものとし、それぞれを区別なく示す場合には、単に室内機300というものとする。これらの室内機300a~室内機300dは、図1で示されるように、並列に接続されている。また、室内機300は、利用側熱交換器301及び絞り装置302が冷媒配管によって直列に接続されて構成されている。ここで、図1で示される4つの利用側熱交換器301を、室内機300a~室内機300dに応じて、利用側熱交換器301a、利用側熱交換器301b、利用側熱交換器301c、そして、利用側熱交換器301dというものとし、それぞれ区別なく示す場合には、単に利用側熱交換器301というものとする。また、図1で示される4つの絞り装置302を、室内機300a~室内機300dに応じて、絞り装置302a、絞り装置302b、絞り装置302c、そして、絞り装置302dというものとし、それぞれ区別なく示す場合には、単に絞り装置302というものとする。
(Configuration of indoor unit 300)
As shown in FIG. 1, the indoor unit 300 is composed of four units, which are referred to as an indoor unit 300a, an indoor unit 300b, an indoor unit 300c, and an indoor unit 300d from the left side of FIG. In the case shown, it is simply referred to as the indoor unit 300. These indoor units 300a to 300d are connected in parallel as shown in FIG. The indoor unit 300 is configured by connecting a use side heat exchanger 301 and an expansion device 302 in series by a refrigerant pipe. Here, the four usage-side heat exchangers 301 shown in FIG. 1 are divided into a usage-side heat exchanger 301a, a usage-side heat exchanger 301b, a usage-side heat exchanger 301c, according to the indoor units 300a to 300d. And it shall be called the utilization side heat exchanger 301d, and when it shows without distinction, it shall be only called the utilization side heat exchanger 301. Further, the four diaphragm devices 302 shown in FIG. 1 are referred to as a diaphragm device 302a, a diaphragm device 302b, a diaphragm device 302c, and a diaphragm device 302d in accordance with the indoor units 300a to 300d, which are shown without distinction. In this case, the diaphragm device 302 is simply referred to.
 利用側熱交換器301は、暖房運転モード時には放熱器(ガスクーラー)として機能し、冷房運転モード時には蒸発器として機能し、ファン等の送風機(図示せず)から供給される空気と冷媒との間で熱交換を実施し、空調対象空間に供給するための暖房用空気又は冷房用空気を生成するものである。 The use-side heat exchanger 301 functions as a radiator (gas cooler) in the heating operation mode, functions as an evaporator in the cooling operation mode, and is supplied with air and refrigerant supplied from a fan (not shown) such as a fan. Heat exchange is performed between the two, and heating air or cooling air for supplying to the air-conditioning target space is generated.
 絞り装置302は、減圧弁又は膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、例えば、電子式膨張弁等で構成すればよい。 The expansion device 302 has a function as a pressure reducing valve or an expansion valve, expands the refrigerant by depressurizing it, and can be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve. .
 なお、図1で示されるように室内機300を4台として構成し、それに伴って、利用側熱交換器301及び絞り装置302もそれぞれ4台を備える構成としているが、これらの台数に限定されるものではない。 As shown in FIG. 1, the indoor unit 300 is configured as four units, and accordingly, the use side heat exchanger 301 and the expansion device 302 are also configured as four units, but the number is limited to these numbers. It is not something.
(冷房運転モード)
 図2は、本発明の実施の形態1に係る空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図2においては、室内機300の全部が駆動している場合を例に説明する。なお、図2においては、冷媒の流れ方向が矢印で示されている。
(Cooling operation mode)
FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the cooling operation mode. In FIG. 2, the case where all of the indoor units 300 are driven will be described as an example. In FIG. 2, the flow direction of the refrigerant is indicated by an arrow.
 まず、冷房運転モードにおいては、制御装置(図示せず)は、室外機200の流路切替装置203に対し、圧縮機201から吐出し油分離器202を経由した冷媒を熱源側熱交換器204へ流入させるように冷媒流路を切り替える。 First, in the cooling operation mode, the control device (not shown) sends the refrigerant discharged from the compressor 201 and passing through the oil separator 202 to the flow path switching device 203 of the outdoor unit 200 as the heat source side heat exchanger 204. The refrigerant flow path is switched so as to flow into.
 低温低圧のガス冷媒が圧縮機201によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機201から吐出された高温高圧のガス冷媒は、油分離器202へ流入する。油分離器202へ流入したガス冷媒は、そのガス冷媒に混ざっている冷凍機油が分離される。油分離器202によってガス冷媒から分離された冷凍機油は、油戻キャピラリー206を経由して、圧縮機201の吐出側に戻される。また、油分離器202によって分離されたガス冷媒は、流路切替装置203を経由して、熱源側熱交換器204へ流入する。熱源側熱交換器204へ流入したガス冷媒は、送風機(図示せず)から供給される外気と熱交換が実施され、室外空気に放熱する。このとき、冷媒は二酸化炭素であるので、熱源側熱交換器204へ流入した高温高圧のガス冷媒は、超臨界状態で、温度が低下した状態となって熱源側熱交換器204から流出する。熱源側熱交換器204から流出した超臨界状態の低温高圧の冷媒は、配管400aに流れ出ることによって、室外機200から流出する A low-temperature and low-pressure gas refrigerant is compressed by the compressor 201 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 201 flows into the oil separator 202. Refrigerating machine oil mixed with the gas refrigerant is separated from the gas refrigerant flowing into the oil separator 202. The refrigerating machine oil separated from the gas refrigerant by the oil separator 202 is returned to the discharge side of the compressor 201 via the oil return capillary 206. The gas refrigerant separated by the oil separator 202 flows into the heat source side heat exchanger 204 via the flow path switching device 203. The gas refrigerant flowing into the heat source side heat exchanger 204 is heat-exchanged with the outside air supplied from a blower (not shown), and radiates heat to the outdoor air. At this time, since the refrigerant is carbon dioxide, the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 204 flows out of the heat source-side heat exchanger 204 in a supercritical state in a temperature-decreasing state. The supercritical low-temperature and high-pressure refrigerant flowing out of the heat source side heat exchanger 204 flows out of the outdoor unit 200 by flowing out of the pipe 400a.
 室外機200から流出した低温高圧の冷媒は、室内機300(室内機300a~室内機300d)へ流入し、絞り装置302(絞り装置302a~絞り装置302d)へ流入する。絞り装置302へ流入した冷媒は、膨張及び減圧され、低温低圧の気液二相冷媒となる。絞り装置302から流出した低温低圧の気液二相冷媒は、利用側熱交換器301(利用側熱交換器301a~利用側熱交換器301d)へ流入する。利用側熱交換器301へ流入した気液二相冷媒は、送風機(図示せず)から供給される室内空気と熱交換が実施され、室内空気を冷却する。このとき、気液二相冷媒は、室内空気から吸熱することによって、低温低圧のガス冷媒となって利用側熱交換器301から流出する。利用側熱交換器301から流出した低温低圧のガス冷媒は、配管400bに流れ出ることによって、室内機300から流出する。 The low-temperature and high-pressure refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 300 (the indoor unit 300a to the indoor unit 300d), and flows into the expansion device 302 (the expansion device 302a to the expansion device 302d). The refrigerant flowing into the expansion device 302 is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant flowing out from the expansion device 302 flows into the use side heat exchanger 301 (use side heat exchanger 301a to use side heat exchanger 301d). The gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 301 is subjected to heat exchange with room air supplied from a blower (not shown) to cool the room air. At this time, the gas-liquid two-phase refrigerant absorbs heat from the indoor air, and thus flows out of the use-side heat exchanger 301 as a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the use side heat exchanger 301 flows out of the indoor unit 300 by flowing out of the pipe 400b.
 ここで、通常、利用側熱交換器301の冷媒の流出入口には、温度センサーが設置されており、利用側熱交換器301への冷媒供給量は、これらの温度センサーからの温度情報に基づいて調整されている。具体的には、制御装置が、これらの温度センサーからの温度情報に基づいて、過熱度(流出側における冷媒温度-流入口における冷媒温度)を算出し、その過熱度が2~5℃程度になるように、絞り装置302の開度を決定し、利用側熱交換器301への冷媒供給量を調整する。 Here, a temperature sensor is usually installed at the refrigerant outlet and outlet of the use side heat exchanger 301, and the amount of refrigerant supplied to the use side heat exchanger 301 is based on temperature information from these temperature sensors. Have been adjusted. Specifically, the control device calculates the degree of superheat (refrigerant temperature at the outflow side−refrigerant temperature at the inlet) based on the temperature information from these temperature sensors, and the degree of superheat is about 2 to 5 ° C. Thus, the opening degree of the expansion device 302 is determined, and the refrigerant supply amount to the use side heat exchanger 301 is adjusted.
 室内機300から流出した低温低圧のガス冷媒は、再び、室外機200へ流入し、流路切替装置203を経由して、アキュムレーター205へ流入する。アキュムレーター205へ流入したガス冷媒は、ガス冷媒に混在した液冷媒が分離される。アキュムレーター205から流出したガス冷媒は、圧縮機201へ吸入され、再度圧縮される。 The low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 300 flows into the outdoor unit 200 again, and flows into the accumulator 205 through the flow path switching device 203. The gas refrigerant flowing into the accumulator 205 is separated from the liquid refrigerant mixed in the gas refrigerant. The gas refrigerant flowing out from the accumulator 205 is sucked into the compressor 201 and compressed again.
 このような冷房運転モードにおいては、各室内機300において過熱度制御が実施されているので、基本的に液体状態の冷媒がアキュムレーター205に流れ込まない。しかしながら、過渡的な状態である場合、あるいは、停止している室内機300がある場合は、少量の液体状態の冷媒(乾き度0.95程度)がアキュムレーター205に流れ込むことがある。アキュムレーター205に流れ込んだ液冷媒は、蒸発して圧縮機201に吸引されたり、アキュムレーター205の出口配管に設けられている油戻し穴(図示省略)を介して圧縮機201に吸引されたりする。 In such a cooling operation mode, since the superheat degree control is performed in each indoor unit 300, the liquid refrigerant basically does not flow into the accumulator 205. However, in a transitional state or when there is a stopped indoor unit 300, a small amount of liquid refrigerant (dryness of about 0.95) may flow into the accumulator 205. The liquid refrigerant flowing into the accumulator 205 is evaporated and sucked into the compressor 201, or sucked into the compressor 201 through an oil return hole (not shown) provided in the outlet pipe of the accumulator 205. .
(暖房運転モード)
 図3は、本発明の実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図3においては、室内機300の全部が駆動している場合を例に説明する。なお、図3においては、冷媒の流れ方向が矢印で示されている。
(Heating operation mode)
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating operation mode. In FIG. 3, a case where all of the indoor units 300 are driven will be described as an example. In addition, in FIG. 3, the flow direction of a refrigerant | coolant is shown by the arrow.
 まず、暖房運転モードにおいては、制御装置(図示せず)は、室外機200の流路切替装置203に対し、圧縮機201から吐出し油分離器202を経由した冷媒を室内機300へ流出させるように冷媒流路を切り替える。 First, in the heating operation mode, the control device (not shown) causes the flow path switching device 203 of the outdoor unit 200 to discharge the refrigerant discharged from the compressor 201 and passing through the oil separator 202 to the indoor unit 300. Thus, the refrigerant flow path is switched.
 低温低圧のガス冷媒が圧縮機201によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機201から吐出された高温高圧のガス冷媒は、油分離器202へ流入する。油分離器202へ流入したガス冷媒は、そのガス冷媒に混ざっている冷凍機油が分離される。油分離器202によってガス冷媒から分離された冷凍機油は、油戻キャピラリー206を経由して、圧縮機201の吐出側に戻される。また、油分離器202によって分離されたガス冷媒は、流路切替装置203を経由して、配管400bに流れ出ることによって、室外機200から流出する A low-temperature and low-pressure gas refrigerant is compressed by the compressor 201 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 201 flows into the oil separator 202. Refrigerating machine oil mixed with the gas refrigerant is separated from the gas refrigerant flowing into the oil separator 202. The refrigerating machine oil separated from the gas refrigerant by the oil separator 202 is returned to the discharge side of the compressor 201 via the oil return capillary 206. Further, the gas refrigerant separated by the oil separator 202 flows out of the outdoor unit 200 by flowing out to the pipe 400b via the flow path switching device 203.
 室外機200から流出した高温高圧のガス冷媒は、室内機300(室内機300a~室内機300d)へ流入し、利用側熱交換器301(利用側熱交換器301a~利用側熱交換器301d)へ流入する。利用側熱交換器301へ流入したガス冷媒は、送風機(図示せず)から供給される室内空気と熱交換が実施され、室内空気に放熱する。このとき、冷媒は二酸化炭素であるので、利用側熱交換器301へ流入した高温高圧のガス冷媒は、超臨界状態で、温度が低下した状態となって利用側熱交換器301から流出する。利用側熱交換器301から流出した超臨界状態の低温高圧の冷媒は、絞り装置302(絞り装置302a~絞り装置302d)へ流入する。絞り装置302へ流入した冷媒は、膨張及び減圧され、低温低圧の気液二相冷媒となる。絞り装置302から流出した低温低圧の気液二相冷媒は、配管400aに流れ出ることによって、室内機300から流出する。 The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 300 (the indoor unit 300a to the indoor unit 300d) and is used on the use side heat exchanger 301 (the use side heat exchanger 301a to the use side heat exchanger 301d). Flow into. The gas refrigerant that has flowed into the use-side heat exchanger 301 undergoes heat exchange with room air supplied from a blower (not shown), and radiates heat to the room air. At this time, since the refrigerant is carbon dioxide, the high-temperature and high-pressure gas refrigerant that has flowed into the use-side heat exchanger 301 flows out of the use-side heat exchanger 301 in a supercritical state in a temperature-decreasing state. The supercritical low-temperature and high-pressure refrigerant that has flowed out of the use-side heat exchanger 301 flows into the expansion device 302 (the expansion device 302a to the expansion device 302d). The refrigerant flowing into the expansion device 302 is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the expansion device 302 flows out of the indoor unit 300 by flowing out of the pipe 400a.
 ここで、通常、利用側熱交換器301の冷媒の流出口には、温度センサー及び圧力センサーが設置されており、利用側熱交換器301への冷媒供給量は、この温度センサーからの温度情報、及び、圧力センサーからの圧力情報に基づいて調整されている。具体的には、制御装置が、この温度センサーからの温度情報、及び、圧力センサーからの圧力情報基づいて、過冷却度(流出側における冷媒の検出圧力から換算された飽和温度-流出側における冷媒温度)を算出し、その過冷却度が2~5℃程度になるように、絞り装置302の開度を決定し、利用側熱交換器301への冷媒供給量を調整する。 Here, a temperature sensor and a pressure sensor are usually installed at the refrigerant outlet of the use side heat exchanger 301, and the amount of refrigerant supplied to the use side heat exchanger 301 is temperature information from the temperature sensor. And adjustment based on pressure information from the pressure sensor. Specifically, the control device uses the temperature information from the temperature sensor and the pressure information from the pressure sensor to determine the degree of supercooling (the saturation temperature converted from the detected pressure of the refrigerant on the outflow side minus the refrigerant on the outflow side). The temperature of the expansion device 302 is determined so that the degree of supercooling is about 2 to 5 ° C., and the amount of refrigerant supplied to the use-side heat exchanger 301 is adjusted.
 室内機300から流出した低温低圧の気液二相冷媒は、再び、室外機200へ流入し、熱源側熱交換器204へ流入する。熱源側熱交換器204へ流入した気液二相冷媒は、送風機(図示せず)から供給される外気と熱交換が実施される。このとき、気液二相冷媒は、外気から吸熱することによって、乾き度の大きい状態の気液二相冷媒となって熱源側熱交換器204から流出する。熱源側熱交換器204から流出した気液二相冷媒は、流路切替装置203を経由して、アキュムレーター205へ流入する。アキュムレーター205へ流入した気液二相冷媒は、ガス冷媒に混在した液冷媒が分離される。そして、分離されたガス冷媒はアキュムレーター205から流出し、圧縮機201へ吸入され、再度圧縮される。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 300 flows into the outdoor unit 200 again and flows into the heat source side heat exchanger 204. The gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 204 is subjected to heat exchange with outside air supplied from a blower (not shown). At this time, the gas-liquid two-phase refrigerant absorbs heat from the outside air and becomes a gas-liquid two-phase refrigerant having a large dryness and flows out from the heat source side heat exchanger 204. The gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 204 flows into the accumulator 205 via the flow path switching device 203. The gas-liquid two-phase refrigerant that has flowed into the accumulator 205 is separated from the liquid refrigerant mixed in the gas refrigerant. The separated gas refrigerant flows out of the accumulator 205, is sucked into the compressor 201, and is compressed again.
(空気調和装置100への冷媒充填動作)
 図4は、本発明の実施の形態1に係る空気調和装置100への冷媒充填動作を説明する図であり、図5は、同空気調和装置100の開閉装置207の構造図である。以下、図4及び図5を参照しながら、空気調和装置100への冷媒充填動作について説明する。
(Refrigerant charging operation to the air conditioner 100)
FIG. 4 is a diagram for explaining the refrigerant charging operation to the air-conditioning apparatus 100 according to Embodiment 1 of the present invention, and FIG. 5 is a structural diagram of the opening / closing device 207 of the air-conditioning apparatus 100. Hereinafter, the refrigerant | coolant filling operation | movement to the air conditioning apparatus 100 is demonstrated, referring FIG.4 and FIG.5.
 図4は、配管400bと流路切替装置203とを接続する冷媒配管に一端(図5で示されるQ側)が接続された開閉装置207の他端(図5で示されるP側)が、接続管209を介して、冷媒が充填されている冷媒ボンベ208に接続されている図を示している。ここで、図4で示される空気調和装置100における冷凍サイクル回路は、真空ポンプによって真空が引かれた状態であるものとし、その真空引きが終了した後に、開閉装置207及び冷媒ボンベ208を、接続管209によって接続する。接続管209を開閉装置207に接続する場合、開閉装置207を後述する図5(c)で示される閉止状態にしておく。 4 shows that the other end (P side shown in FIG. 5) of the opening / closing device 207 in which one end (Q side shown in FIG. 5) is connected to the refrigerant pipe connecting the pipe 400b and the flow path switching device 203, The figure connected to the refrigerant cylinder 208 filled with the refrigerant | coolant via the connection pipe 209 is shown. Here, it is assumed that the refrigeration cycle circuit in the air conditioner 100 shown in FIG. 4 is in a state where a vacuum is drawn by a vacuum pump, and after the evacuation is completed, the switchgear 207 and the refrigerant cylinder 208 are connected. Connect by tube 209. When connecting the connecting pipe 209 to the opening / closing device 207, the opening / closing device 207 is kept in the closed state shown in FIG.
 次に、図5を参照しながら、開閉装置207の構造について説明する
 図5(a)で示されるように、開閉装置207は、少なくとも、弁体207a、及び、4つのシール材207bから構成されている。この開閉装置207は、いわゆるボールバルブと呼ばれているものであり、ボール状の弁体207aを貫通する流路207cが形成されており、この流路207cの方向を切り替えることによって、後述する3つの流路状態、すなわち、連通状態、パージ状態及び閉止状態に切り替えることができる。この開閉装置207の流路状態の切り替え動作は、サービスマンが、開閉装置207に対して、手動で実施できるものとしてもよく、あるいは、外部のリモコン装置等を操作することによって、制御装置(図示せず)に対して開閉装置207に流路状態を切り替えることができるものとしてもよい。また、開閉装置207のシール機能を強化するために、シール材207bは、テフロン(登録商標)等の素材によって形成するものとすればよい。
Next, the structure of the opening / closing device 207 will be described with reference to FIG. 5. As shown in FIG. 5 (a), the opening / closing device 207 is composed of at least a valve body 207a and four sealing materials 207b. ing. The opening / closing device 207 is a so-called ball valve, and has a flow path 207c that penetrates the ball-shaped valve body 207a. By switching the direction of the flow path 207c, 3 described later It is possible to switch to one flow path state, that is, a communication state, a purge state, and a closed state. The switching operation of the flow path state of the opening / closing device 207 may be performed manually by a serviceman with respect to the opening / closing device 207, or by operating an external remote control device or the like, The flow path state may be switched to the opening / closing device 207 with respect to (not shown). In order to enhance the sealing function of the opening / closing device 207, the sealing material 207b may be formed of a material such as Teflon (registered trademark).
 また、開閉装置207のP側が、接続管209に接続されており、開閉装置207のQ側が、配管400bと流路切替装置203とを接続する冷媒配管に接続されているものとする。 It is also assumed that the P side of the opening / closing device 207 is connected to the connecting pipe 209, and the Q side of the opening / closing device 207 is connected to the refrigerant pipe connecting the pipe 400b and the flow path switching device 203.
 図5(a)で示されるように、P側の流路及びQ側の流路と連通するように、弁体207aの流路207cの方向を切り替えることによって、P側からQ側の方向に連通する流路が形成され、冷媒は、P側からQ側の方向に流れることになる。以後、この開閉装置207の状態を、連通状態というものとする。 As shown in FIG. 5A, by switching the direction of the flow path 207c of the valve body 207a so as to communicate with the P-side flow path and the Q-side flow path, the P-side is changed to the Q-side direction. A communication channel is formed, and the refrigerant flows from the P side to the Q side. Hereinafter, the state of the opening / closing device 207 is referred to as a communication state.
 図5(b)で示されるように、P側の流路及びR側の流路と連通するように、弁体207aの流路207cの方向を切り替えることによって、P側からR側の方向に連通する流緒が形成され、冷媒は、P側からR側の方向に流れることになる。以後、この開閉装置207の状態を、パージ状態というものとする。また、開閉弁207のR側は冷媒をパージすることが目的であるため、P側及びQ側よりも流路直径を小さくすること等によって流通する冷媒の流量を小さくするものとしてよく、例えば、流路直径は5mm以下程度の大きさでよい。 As shown in FIG. 5B, the direction of the flow path 207c of the valve body 207a is switched from the P side to the R side so as to communicate with the P side flow path and the R side flow path. A communicating flow is formed, and the refrigerant flows from the P side to the R side. Hereinafter, the state of the opening / closing device 207 is referred to as a purge state. Further, since the R side of the on-off valve 207 is intended to purge the refrigerant, the flow rate of the circulating refrigerant may be reduced by reducing the flow path diameter than the P side and the Q side, for example, The channel diameter may be about 5 mm or less.
 図5(c)で示されるように、開閉装置207の流路207cを連通状態の位置から、90°回転させることによって、流路207cはどの流路にも連通しない状態となり、冷媒は、開閉装置207を導通できなくなる。以後、この開閉装置207の状態室を、閉止状態というものとする。 As shown in FIG. 5C, by rotating the flow path 207c of the opening / closing device 207 by 90 ° from the communication position, the flow path 207c does not communicate with any flow path, and the refrigerant opens and closes. The device 207 cannot be conducted. Hereinafter, the state chamber of the opening / closing device 207 is referred to as a closed state.
 なお、開閉装置207のP側、Q側及びR側は、それぞれ本発明の「吸入口」、「供給口」及び「パージ口」に相当する。 The P side, Q side, and R side of the opening / closing device 207 correspond to the “suction port”, “supply port”, and “purge port” of the present invention, respectively.
 サービスマンが、冷媒を空気調和装置100の冷凍サイクル回路に充填する場合、まず、開閉装置207を閉止状態にしておく。次に、サービスマンは、開閉装置207に冷媒ボンベ208を接続管209によって接続した後、冷媒ボンベ208のバルブを開ける。そして、サービスマンは、開閉装置207を図5(b)で示されるパージ状態に切り替える。このパージ状態にすることによって、冷媒ボンベ208から流れ出た冷媒は、接続管209を流通して、開閉装置207のP側から内部に流入し、弁体207aを経由して、R側から放出される。このとき、接続管209に残留していた空気がR側から排出され、接続管209には冷媒のみ存在することになる。開閉装置207のR側から冷媒と共に空気が十分放出された後、サービスマンは、一旦、開閉装置207を連通状態にし、適正な量の冷媒を空気調和装置100の冷凍サイクル回路に封入する。サービスマンは、適正量の冷媒を空気調和装置100の冷凍サイクル回路に封入した後、開閉装置207を閉止状態にし、冷媒充填動作を終了とする。 When the service person fills the refrigerant in the refrigeration cycle circuit of the air conditioner 100, first, the opening / closing device 207 is closed. Next, the service person connects the refrigerant cylinder 208 to the opening / closing device 207 through the connection pipe 209, and then opens the valve of the refrigerant cylinder 208. Then, the service person switches the opening / closing device 207 to the purge state shown in FIG. In this purge state, the refrigerant flowing out from the refrigerant cylinder 208 flows through the connection pipe 209, flows into the inside from the P side of the opening / closing device 207, and is discharged from the R side through the valve body 207a. The At this time, the air remaining in the connecting pipe 209 is discharged from the R side, and only the refrigerant exists in the connecting pipe 209. After sufficient air is discharged together with the refrigerant from the R side of the opening / closing device 207, the service person once brings the opening / closing device 207 into a communication state and encloses an appropriate amount of refrigerant in the refrigeration cycle circuit of the air conditioner 100. The service person encloses an appropriate amount of refrigerant in the refrigeration cycle circuit of the air conditioner 100, then closes the opening / closing device 207, and ends the refrigerant charging operation.
(実施の形態1の効果)
 従来の空気調和装置のように、接続部に隙間部分を形成させて、空気をパージする方式とは異なり、上記のように、本実施の形態に係る空気調和装置100においては、パージ状態を形成できる開閉装置207を空気調和装置100に設けている。これによって、急激に冷媒が漏れ出たり、接続管が外れ、冷媒が多量に放出されること等の危険性を大幅に低減させることができ、安全に接続管209の空気をパージすることができる空気調和装置100を提供することができる。特に、圧力の高い二酸化炭素の場合は有効である。
(Effect of Embodiment 1)
Unlike the method of purging air by forming a gap portion at the connection portion as in the conventional air conditioner, the air conditioner 100 according to the present embodiment forms a purge state as described above. An openable / closable device 207 is provided in the air conditioner 100. As a result, it is possible to greatly reduce the risk of sudden leakage of refrigerant, disconnection of the connection pipe, and release of a large amount of refrigerant, and it is possible to purge the air in the connection pipe 209 safely. The air conditioning apparatus 100 can be provided. This is particularly effective for carbon dioxide with a high pressure.
 なお、図6で示されるように、開閉弁207のR側にチャージングホース210が取り付けられる構造にしてもよい。HFO1234yf、R32及びR290等の可燃性を有する冷媒を用いた場合、サービスマンが作業を実施している付近では、ロー付け等、火を扱う作業を実施している場合もあり、冷媒を放出することは危険である。そこで、チャージングホース210を開閉装置207に接続し、火の気及び人気の無い安全な箇所に冷媒を放出させているものである。このように、開閉装置207のR側の位置にチャージングホース210を接続することによって、冷媒充填を安全に実施することが可能となる。 As shown in FIG. 6, a charging hose 210 may be attached to the R side of the on-off valve 207. When flammable refrigerants such as HFO1234yf, R32, and R290 are used, there are cases where work handling fire, such as brazing, is being carried out in the vicinity where service personnel are working, and the refrigerant is released. That is dangerous. Therefore, the charging hose 210 is connected to the opening / closing device 207, and the refrigerant is discharged to a fire and a safe place that is not popular. Thus, by connecting the charging hose 210 to the position on the R side of the opening / closing device 207, it is possible to safely perform the refrigerant charging.
 また、冷媒を空気調和装置100の冷凍サイクル回路にチャージするのは、空気調和装置100が設置された場合、又は、冷媒が漏れたときに再充填するとき等の場合であり、使用頻度としては少ない。そこで、図7で示されるように、プラグ211等によって、開閉装置207のR側に栓をできる構造にしても良い。このように、冷媒充填時はプラグ211を開閉装置207に取り付けることによって、冷媒の充填中における冷媒漏れ、及び、開閉装置207を誤って開いた場合における冷媒漏れが発生することを抑制することができる。パージ状態においてR側から空気及び冷媒を放出する場合は、プラグ211を取り外し、上記の手順を実施すればよい。 The refrigerant is charged into the refrigeration cycle circuit of the air conditioner 100 when the air conditioner 100 is installed or when it is refilled when the refrigerant leaks. Few. Therefore, as shown in FIG. 7, a structure may be adopted in which a plug can be provided on the R side of the opening / closing device 207 with a plug 211 or the like. As described above, by attaching the plug 211 to the opening / closing device 207 during charging of the refrigerant, it is possible to suppress the occurrence of refrigerant leakage during charging of the refrigerant and refrigerant leakage when the opening / closing device 207 is opened by mistake. it can. To release air and refrigerant from the R side in the purge state, the plug 211 may be removed and the above procedure may be performed.
 また、開閉装置207によって冷凍サイクル回路に充填される冷媒を二酸化炭素としたが、これに限定されるものではなく、HFO1234yf、R32、R290、HC系冷媒、それらの混合冷媒その他の冷媒を充填するものとしてもよいのは言うまでもない。 Moreover, although the refrigerant | coolant with which the refrigerating cycle circuit is filled with the switchgear 207 was made into carbon dioxide, it is not limited to this, HFO1234yf, R32, R290, HC system refrigerant | coolant, those mixed refrigerant | coolants, and other refrigerant | coolants are filled. Needless to say, it can be a thing.
 さらに、前述したように、本実施の形態においては、冷凍サイクル装置として空気調和装置100を例に説明したが、これに限定されるものではなく、冷凍機、ヒートポンプ給湯機その他の冷凍サイクル装置でもよい。この場合、冷凍サイクル装置における熱源側ユニットの低圧ガス配管側に、上記のように、冷媒を充填したり、真空を引いたりするためのサービス用バルブである開閉装置207を備えるものとすればよい。 Furthermore, as described above, in the present embodiment, the air conditioning apparatus 100 has been described as an example of the refrigeration cycle apparatus. However, the present invention is not limited to this, and may be a refrigeration machine, a heat pump water heater, or other refrigeration cycle apparatuses. Good. In this case, the open / close device 207, which is a service valve for filling the refrigerant or drawing a vacuum, may be provided on the low-pressure gas piping side of the heat source side unit in the refrigeration cycle apparatus as described above. .
実施の形態2.
 実施の形態1に係る空気調和装置100においては、冷媒をそのまま冷却に利用する方式(直膨方式)を採用しているが、実施の形態2に係る空気調和装置101においては、冷媒(熱源側冷媒)を間接的に利用する方式(間接方式)を採用している。すなわち、実施の形態2に係る空気調和装置101は、熱源側冷媒に貯えた冷熱又は温熱を、熱源側冷媒とは異なる熱媒体に伝達し、その熱媒体に貯えた冷熱又は温熱で空調対象空間を冷房又は暖房するようになっている。
Embodiment 2. FIG.
In the air conditioner 100 according to the first embodiment, a method (direct expansion method) in which the refrigerant is used as it is for cooling is adopted. However, in the air conditioner 101 according to the second embodiment, the refrigerant (on the heat source side) is used. A system that indirectly uses (refrigerant) is adopted. That is, the air-conditioning apparatus 101 according to Embodiment 2 transmits the cold or warm heat stored in the heat source-side refrigerant to a heat medium different from the heat source-side refrigerant, and the air-conditioning target space with the cold or hot heat stored in the heat medium. Is to be cooled or heated.
(空気調和装置101の構成)
 図8は、本発明の実施の形態2に係る空気調和装置101の設置例を示す概略図である。
 この空気調和装置101においては、冷媒を循環させる冷凍サイクル回路である冷媒循環回路A、及び、熱媒体を循環させる冷凍サイクル回路である熱媒体循環回路Bが構成されており、ユーザーは、1つ又は複数の室内機について、運転モードとして冷房運転モード又は暖房運転モードを自由に選択できるものである。
(Configuration of air conditioner 101)
FIG. 8 is a schematic diagram showing an installation example of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
In this air conditioner 101, a refrigerant circulation circuit A that is a refrigeration cycle circuit that circulates refrigerant and a heat medium circulation circuit B that is a refrigeration cycle circuit that circulates a heat medium are configured. Alternatively, the cooling operation mode or the heating operation mode can be freely selected as the operation mode for a plurality of indoor units.
 図8で示されるように、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1、複数台の室内機2、及び、室外機1と室内機2との間に介在する熱媒体変換機3を有している。室外機1と熱媒体変換機3とは、熱源側の冷媒が流通する冷媒配管4によって接続されている。熱媒体変換機3と室内機2とは、熱媒体が流通する熱媒体配管5によって接続されている。そして、室外機1で生成された冷熱又は温熱は、熱媒体変換機3を介して室内機2に伝達される。 As shown in FIG. 8, the air conditioner according to the present embodiment includes a single outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and an outdoor unit 1 and an indoor unit 2. It has an intermediate heat medium relay 3. The outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 through which a refrigerant on the heat source side flows. The heat medium relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5 through which the heat medium flows. Then, the cold heat or heat generated by the outdoor unit 1 is transmitted to the indoor unit 2 via the heat medium relay unit 3.
 室外機1は、通常、ビル等の建物9の外の空間(例えば、屋上等)である室外空間6に設置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。 The outdoor unit 1 is usually installed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
 室内機2は、建物9の内部の空調対象空間(例えば、居室等)である室内空間7に冷房用空気又は暖房用空気を供給可能な位置に設置され、室内空間7に冷房用空気又は暖房用空気を供給するものである。 The indoor unit 2 is installed at a position where cooling air or heating air can be supplied to the indoor space 7 that is an air-conditioning target space (for example, a living room) inside the building 9, and the cooling air or heating is supplied to the indoor space 7. Supply air.
 熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2と、それぞれ冷媒配管4及び熱媒体配管5によって接続され、室外機1から供給される冷熱又は温熱を室内機2に伝達するものである。具体的には、熱媒体変換機3は、室外機1側の熱源側冷媒と、この熱源側冷媒とは異なる室内機2側の熱媒体(例えば、水、ブライン(不凍液)、ブラインと水との混合液、又は、水と防食効果の高い添加剤との混合液等)との間で熱交換を実施する。また、図8においては、熱媒体変換機3が、建物9の内部ではあるが、室内空間7とは別の空間である天井裏等の空間8に設置されている状態を例として示されている。また、熱媒体変換機3は、室内空間7に設置された室内機2に近づけて設けられているので、熱媒体が循環する熱媒体循環回路の配管を短くすることができる。これによって、熱媒体循環回路における熱媒体の搬送動力を削減でき、省エネルギー化を図ることができる。 The heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Are connected by a refrigerant pipe 4 and a heat medium pipe 5, respectively, and transmit cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2. Specifically, the heat medium converter 3 includes a heat source side refrigerant on the outdoor unit 1 side and a heat medium (for example, water, brine (antifreeze)), brine and water on the indoor unit 2 side different from the heat source side refrigerant. Or a mixed solution of water and an additive having a high anticorrosion effect). Further, FIG. 8 shows an example in which the heat medium relay unit 3 is installed in a space 8 such as a back of the ceiling, which is inside the building 9 but is different from the indoor space 7. Yes. Moreover, since the heat medium converter 3 is provided close to the indoor unit 2 installed in the indoor space 7, the piping of the heat medium circulation circuit through which the heat medium circulates can be shortened. Thereby, the conveyance power of the heat medium in the heat medium circulation circuit can be reduced, and energy saving can be achieved.
 冷媒配管4は、2本で構成されており、室外機1と熱媒体変換機3とを接続している。また、熱媒体配管5も、熱媒体変換機3と各室内機2とを接続しており、各室内機2に対して2本の熱媒体配管5によって接続されている。このように、本実施の形態1に係る空気調和装置においては、2本の配管(冷媒配管4及び熱媒体配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。 The refrigerant pipe 4 is composed of two, and connects the outdoor unit 1 and the heat medium relay unit 3. Further, the heat medium pipe 5 also connects the heat medium converter 3 and each indoor unit 2, and is connected to each indoor unit 2 by two heat medium pipes 5. Thus, in the air conditioning apparatus according to Embodiment 1, each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is configured using two pipes (refrigerant pipe 4 and heat medium pipe 5). ) Is easy to install.
 なお、図8において、室外機1が室外空間6に設置されている場合を例が示されているが、これに限定されるものではない。例えば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば、建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合においては、建物9の内部に設置するようにしてもよい。 In addition, in FIG. 8, although the example in which the outdoor unit 1 is installed in the outdoor space 6 is shown, it is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening, and if the waste heat can be exhausted outside the building 9 by an exhaust duct, Alternatively, when the water-cooled outdoor unit 1 is used, it may be installed inside the building 9.
 また、図8において、室内機2が天井カセット型である場合を例が示されているが、これに限定されるものではなく、天井埋込型又は天井吊下式等、室内空間7に直接又はダクト等によって、暖房用空気又は冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。 8 shows an example in which the indoor unit 2 is a ceiling cassette type. However, the present invention is not limited to this, and the indoor unit 2 is not directly limited to the indoor space 7 such as a ceiling embedded type or a ceiling suspended type. Alternatively, any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
 また、熱媒体変換機3は、図8で示されるように、空間8に設置されているものとしているが、これに限定されるものではなく、例えば、エレベーター等がある共用空間等に設置するものとしてもよい。 Moreover, although the heat medium converter 3 shall be installed in the space 8 as shown in FIG. 8, it is not limited to this, For example, it installs in the common space etc. with an elevator etc. It may be a thing.
 また、熱媒体変換機3は、前述したように、室内機2に近づけて設けられているものとしているが、これに限定されるものではなく、室外機1の近傍に設置するものとしてもよい。 Further, as described above, the heat medium relay unit 3 is provided close to the indoor unit 2, but is not limited thereto, and may be installed in the vicinity of the outdoor unit 1. .
 そして、室外機1、室内機2及び熱媒体変換機3の接続台数を図8で示されている台数に限定するものではなく、本実施の形態1に係る空気調和装置が設置される建物9に応じて台数を決定するものとすればよい。 And the number of connected outdoor units 1, indoor units 2 and heat medium converters 3 is not limited to the number shown in FIG. 8, but building 9 in which the air conditioner according to Embodiment 1 is installed. The number may be determined according to the situation.
 また、図8を含め、以下の図面において、各構成部材の大きさの関係が図示されている通りのものに限定するものではなく、実際のものとは異なる場合がある。 In addition, in the following drawings including FIG. 8, the relationship between the sizes of the constituent members is not limited to that shown in the drawings, and may differ from the actual ones.
 また、本実施の形態において、冷凍サイクル装置として空気調和装置101を例に説明しているが、これに限定されるものではなく、冷凍機、ヒートポンプ給湯機その他の冷凍サイクル装置でもよい。 In the present embodiment, the air conditioning apparatus 101 is described as an example of the refrigeration cycle apparatus, but the present invention is not limited to this, and a refrigeration machine, a heat pump water heater, or other refrigeration cycle apparatus may be used.
 図9は、本発明の実施の形態2に係る空気調和装置101の回路構成の一例を示す外略図である。
 図9で示されるように、室外機1及び熱媒体変換機3は、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bそれぞれに、冷媒循環回路Aによって接続されている。ここで、冷媒循環回路Aは、室外機1と熱媒体変換機3とを接続する冷媒配管4を含め、熱媒体変換機3内において、熱媒体間熱交換器15a及び熱媒体間熱交換器15bそれぞれにおいて、熱媒体と熱交換が実施される冷媒が流通する冷媒配管によって各機器を接続して構成される冷媒回路をいう。具体的には、冷媒循環回路Aは、後述する圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を冷媒配管によって接続して構成されている。この冷媒循環回路Aには、冷媒として二酸化炭素が封入されているものとする。冷媒循環回路Aを構成する上記の各機器の接続関係の詳細は後述する。
FIG. 9 is an outline diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
As shown in FIG. 9, the outdoor unit 1 and the heat medium relay unit 3 include a refrigerant circulation circuit in each of the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected by A. Here, the refrigerant circulation circuit A includes the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay 3, and the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium in the heat medium converter 3. In each of 15b, it refers to a refrigerant circuit configured by connecting each device with a refrigerant pipe through which a refrigerant that performs heat exchange with a heat medium flows. Specifically, the refrigerant circulation circuit A includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, a switching device 17, a second refrigerant flow switching device 18, and heat between heat mediums, which will be described later. The refrigerant flow path of the exchanger 15, the expansion device 16, and the accumulator 19 are connected by refrigerant piping. It is assumed that carbon dioxide is enclosed in the refrigerant circuit A as a refrigerant. Details of the connection relation of each of the above devices constituting the refrigerant circuit A will be described later.
 また、熱媒体変換機3及び室内機2は、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bそれぞれに、後述する熱媒体循環回路Bによって接続されている。ここで、熱媒体循環回路Bは、熱媒体変換機3と各室内機2とを接続する熱媒体配管5を含め、熱媒体変換機3内において、熱媒体間熱交換器15a及び熱媒体間熱交換器15bそれぞれにおいて冷媒と熱交換が実施される熱媒体が流通する熱媒体配管によって各機器を接続して構成される熱媒体回路をいう。具体的には、熱媒体循環回路Bは、熱媒体間熱交換器15の熱媒体流路、並びに、後述するポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を熱媒体配管によって接続して構成されている。熱媒体循環回路Bを構成する上記の各機器の接続関係の詳細は後述する。 Further, the heat medium relay unit 3 and the indoor unit 2 are connected to the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3 by a heat medium circulation circuit B described later. Has been. Here, the heat medium circulation circuit B includes the heat medium pipe 5 that connects the heat medium converter 3 and each indoor unit 2, and includes the heat exchanger 15 a between the heat medium and the heat medium between the heat medium converter 3. It refers to a heat medium circuit configured by connecting each device by a heat medium pipe through which a heat medium that performs heat exchange with a refrigerant flows in each heat exchanger 15b. Specifically, the heat medium circulation circuit B uses a heat medium flow path of the heat exchanger 15 between heat mediums, a pump 21, a first heat medium flow switching device 22, a heat medium flow control device 25, which will be described later. The side heat exchanger 26 and the second heat medium flow switching device 23 are connected by a heat medium pipe. Details of the connection relationship of each of the above devices constituting the heat medium circuit B will be described later.
 なお、室外機1及び室内機2は、それぞれ本発明の「熱源側ユニット」及び「利用側ユニット」に相当する。 The outdoor unit 1 and the indoor unit 2 correspond to the “heat source side unit” and the “use side unit” of the present invention, respectively.
 以下、図9を参照しながら、室外機1、室内機2及び熱媒体変換機3の構成について詳述する。 Hereinafter, the configurations of the outdoor unit 1, the indoor unit 2, and the heat medium relay unit 3 will be described in detail with reference to FIG.
(室外機1の構成)
 室外機1は、圧縮機10、四方弁等の第1冷媒流路切替装置11、熱源側熱交換器12、及びアキュムレーター19を備えており、これらは直列に冷媒配管によって接続されている。また、室外機1の低圧ガス配管側には、冷媒を充填したり、真空を引いたりするためのサービス用バルブである開閉装置40が備えられている。図9においては、冷媒配管4と熱源側熱交換器12とを接続する冷媒配管に開閉装置40が備えられている。
(Configuration of outdoor unit 1)
The outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19, which are connected in series by a refrigerant pipe. In addition, on the low-pressure gas piping side of the outdoor unit 1, an opening / closing device 40 that is a service valve for filling a refrigerant or drawing a vacuum is provided. In FIG. 9, an opening / closing device 40 is provided in the refrigerant pipe connecting the refrigerant pipe 4 and the heat source side heat exchanger 12.
 圧縮機10は、ガス冷媒を吸入して圧縮し高温高圧の状態にするものであり、例えば、容量制御可能なインバータ圧縮機等で構成されるものとすればよい。 The compressor 10 sucks and compresses a gas refrigerant to bring it into a high temperature and high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control.
 第1冷媒流路切替装置11は、暖房運転モード時(後述する全暖房運転モード時及び暖房主体運転モード時)における冷媒の流れと冷房運転モード時(全冷房運転モード時及び冷房主体運転モード時)における冷媒の流れとを切り替えるものである。 The first refrigerant flow switching device 11 has a refrigerant flow and a cooling operation mode (in a cooling only operation mode and a cooling main operation mode) in a heating operation mode (in a heating only operation mode and a heating main operation mode, which will be described later). ) To change the refrigerant flow.
 熱源側熱交換器12は、暖房運転モード時には蒸発器として機能し、冷房運転モード時には放熱器(ガスクーラー)として機能し、ファン等の送風機(図示せず)から供給される空気と冷媒との間で熱交換を実施するものである。 The heat source side heat exchanger 12 functions as an evaporator in the heating operation mode, functions as a radiator (gas cooler) in the cooling operation mode, and is supplied with air and refrigerant supplied from a blower (not shown) such as a fan. Heat exchange between the two.
 アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、又は、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)に対する過剰な冷媒を貯留するものである。 The accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, or a transient operation change (for example, the number of operating units of the indoor unit 2 is The excessive refrigerant with respect to (change) is stored.
(室内機2の構成)
 各室内機2は、それぞれ利用側熱交換器26を備えている。ここで、図2で示される4つの室内機2を、下から室内機2a、室内機2b、室内機2c、そして、室内機2dというものとし、それぞれを区別なく示す場合には、単に室内機2というものとする。また、図2で示される4つの利用側熱交換器26を、室内機2a~室内機2dに応じて、下から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、そして、利用側熱交換器26dというものとし、それぞれ区別なく示す場合には、単に利用側熱交換器26というものとする。
(Configuration of indoor unit 2)
Each indoor unit 2 includes a use side heat exchanger 26. Here, the four indoor units 2 shown in FIG. 2 are referred to as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom. It shall be 2. In addition, the four usage side heat exchangers 26 shown in FIG. 2 are connected to the usage side heat exchanger 26a, the usage side heat exchanger 26b, and the usage side heat exchanger 26c from below according to the indoor units 2a to 2d. And it will be referred to as a use side heat exchanger 26d, and when referred to without distinction, it is simply referred to as a use side heat exchanger 26.
 利用側熱交換器26は、第2熱媒体流路切替装置23を経由して熱媒体変換機3から流出した熱媒体を流通させる熱媒体配管5、及び、室内機2から流出する熱媒体を流通させて熱媒体変換機3の熱媒体流量調整装置25に流入させる熱媒体配管5に、それぞれ熱媒体配管によって接続されている。また、利用側熱交換器26は、暖房運転時には放熱器として機能し、冷房運転時には吸熱器として機能し、ファン等の送風機(図示せず)から供給される室内空気と熱媒体との間で熱交換を実施し、室内空間7に供給するための暖房用空気又は冷房用空気を生成するものである。 The use-side heat exchanger 26 passes the heat medium flowing out from the heat medium converter 3 via the second heat medium flow switching device 23, and the heat medium flowing out from the indoor unit 2. The heat medium pipes 5 that are circulated and flow into the heat medium flow control device 25 of the heat medium converter 3 are respectively connected by heat medium pipes. The use side heat exchanger 26 functions as a radiator during heating operation and functions as a heat absorber during cooling operation, and between indoor air supplied from a fan (not shown) such as a fan and a heat medium. Heat exchange is performed to generate heating air or cooling air to be supplied to the indoor space 7.
 なお、室内機2の台数は、図8と同様に、図9で示される4台に限定するものではない。 Note that the number of indoor units 2 is not limited to the four shown in FIG. 9 as in FIG.
(熱媒体変換機3の構成)
 熱媒体変換機3は、2つの熱媒体間熱交換器15、2つの絞り装置16、2つの開閉装置17、4つの第2冷媒流路切替装置18、2つのポンプ21、4つの第1熱媒体流路切替装置22、4つの第2熱媒体流路切替装置23、及び、4つの熱媒体流量調整装置25を備えている。
(Configuration of heat medium converter 3)
The heat medium relay unit 3 includes two heat exchangers 15 between the heat mediums, two expansion devices 16, two switching devices 17, four second refrigerant flow switching devices 18, two pumps 21, and four first heats. A medium flow switching device 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are provided.
 図9で示される2つの熱媒体間熱交換器15を、それぞれ熱媒体間熱交換器15a及び熱媒体間熱交換器15bというものとし、それぞれ区別なく示す場合には、単に熱媒体間熱交換器15というものとする。 The two intermediate heat exchangers 15 shown in FIG. 9 are referred to as an intermediate heat exchanger 15a and an intermediate heat exchanger 15b, respectively. Assume that the container 15.
 また、図9で示される2つの絞り装置16を、それぞれ絞り装置16a及び絞り装置16bというものとし、それぞれ区別なく示す場合には、単に絞り装置16というものとする。 In addition, the two diaphragm devices 16 shown in FIG. 9 are referred to as a diaphragm device 16a and a diaphragm device 16b, respectively.
 また、図9で示される4つの第2冷媒流路切替装置18のうち、熱媒体間熱交換器15aに接続されている2つの第2冷媒流路切替装置18を、それぞれ第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bというものとし、そして、熱媒体間熱交換器15bに接続されている2つの第2冷媒流路切替装置18を、それぞれ第2冷媒流路切替装置18c及び第2冷媒流路切替装置18dというものとし、これらの4つをそれぞれ区別なく示す場合には、単に第2冷媒流路切替装置18というものとする。 Further, of the four second refrigerant flow switching devices 18 shown in FIG. 9, two second refrigerant flow switching devices 18 connected to the heat exchanger related to heat medium 15a are respectively connected to the second refrigerant flow switching devices 18a. The switching device 18a and the second refrigerant flow switching device 18b are referred to as two second refrigerant flow switching devices 18 connected to the heat exchanger related to heat medium 15b. 18c and the second refrigerant flow switching device 18d, and when these four are shown without distinction, they are simply called the second refrigerant flow switching device 18.
 また、図9で示される2つのポンプ21を、それぞれポンプ21a及びポンプ21bというものとし、それぞれ区別なく示す場合には、単にポンプ21というものとする。 Further, the two pumps 21 shown in FIG. 9 are referred to as a pump 21a and a pump 21b, respectively.
 また、図9で示される4つの第1熱媒体流路切替装置22を、室内機2a~室内機2dに応じて、下から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、そして、第1熱媒体流路切替装置22dというものとする。 Also, the four first heat medium flow switching devices 22 shown in FIG. 9 are divided into the first heat medium flow switching device 22a and the first heat medium flow switching from the bottom according to the indoor units 2a to 2d. The device 22b, the first heat medium flow switching device 22c, and the first heat medium flow switching device 22d are assumed.
 また、図9で示される4つの第2熱媒体流路切替装置23を、室内機2a~室内機2dに応じて、下から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、そして、第2熱媒体流路切替装置23dというものとする。 Further, the four second heat medium flow switching devices 23 shown in FIG. 9 are divided into the second heat medium flow switching device 23a and the second heat medium flow switching from the bottom according to the indoor units 2a to 2d. The device 23b, the second heat medium flow switching device 23c, and the second heat medium flow switching device 23d are assumed.
 また、図9で示される4つの熱媒体流量調整装置25を、室内機2a~室内機2dに応じて、下から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、そして、熱媒体流量調整装置25dというものとする。 Further, the four heat medium flow control devices 25 shown in FIG. 9 are arranged from the bottom according to the indoor units 2a to 2d, from the bottom, the heat medium flow control device 25a, the heat medium flow control device 25b, and the heat medium flow control device 25c. In addition, the heat medium flow control device 25d is assumed.
 熱媒体間熱交換器15は、放熱器又は蒸発器として機能し、冷媒と熱媒体との間で熱交換を実施し、室外機1で生成され、冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。このうち、熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと、第2冷媒流路切替装置18a(及び第2冷媒流路切替装置18b)との間に設けられており、後述する全暖房運転モードにおいては熱媒体の加熱に供し、後述する全冷房運転モード、冷房主体運転モード及び暖房主体運転モードにおいては、熱媒体の冷却に供するものである。そして、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと、第2冷媒流路切替装置18c(及び第2冷媒流路切替装置18d)との間に設けられており、後述する全冷房運転モードにおいては熱媒体の冷却に供し、後述する全暖房運転モード、冷房主体運転モード及び暖房主体運転モードにおいては、熱媒体の加熱に供するものである。 The heat exchanger related to heat medium 15 functions as a radiator or an evaporator, performs heat exchange between the refrigerant and the heat medium, generates cold heat or heat generated by the outdoor unit 1 and stored in the refrigerant as a heat medium. To communicate. Among these, the heat exchanger related to heat medium 15a is provided between the expansion device 16a in the refrigerant circuit A and the second refrigerant flow switching device 18a (and the second refrigerant flow switching device 18b). In the heating only operation mode described later, the heating medium is heated, and in the cooling only operation mode, the cooling main operation mode, and the heating main operation mode described later, the heat medium is cooled. The heat exchanger related to heat medium 15b is provided between the expansion device 16b in the refrigerant circuit A and the second refrigerant flow switching device 18c (and the second refrigerant flow switching device 18d). In the cooling only operation mode, the heat medium is cooled. In the heating only operation mode, the cooling main operation mode, and the heating main operation mode, which will be described later, the heat medium is heated.
 絞り装置16は、冷媒循環回路Aにおいて、減圧弁及び膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。このうち、絞り装置16aは、冷房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられ、冷媒配管によって開閉装置17に接続されている。そして、絞り装置16bは、暖房運転モード時の冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられ、冷媒配管によって開閉装置17に接続されている。また、絞り装置16は、開度が可変に制御可能なもの、例えば、電子式膨張弁等で構成するものとすればよい。 The expansion device 16 functions as a pressure reducing valve and an expansion valve in the refrigerant circuit A, and decompresses the refrigerant to expand it. Among these, the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the refrigerant in the cooling operation mode, and is connected to the switchgear 17 by a refrigerant pipe. The expansion device 16b is provided on the downstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the heating operation mode, and is connected to the opening / closing device 17 by a refrigerant pipe. Further, the expansion device 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
 開閉装置17は、二方弁等で構成されており、冷媒循環回路Aにおいて、冷媒配管を開閉するものである。開閉装置17は、絞り装置16a(及び絞り装置16b)と冷媒配管4とを接続する冷媒配管に設置されている。 The opening / closing device 17 is composed of a two-way valve or the like, and opens and closes the refrigerant piping in the refrigerant circulation circuit A. The opening / closing device 17 is installed in a refrigerant pipe connecting the expansion device 16 a (and the expansion device 16 b) and the refrigerant pipe 4.
 第2冷媒流路切替装置18a~18dは、二方弁等で構成され、冷媒循環回路Aにおいて、運転モードに応じて冷媒の流れを切り替えるものである。このうち、第2冷媒流路切替装置18aは、後述する全冷房運転モード及び冷房主体運転モード時の冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられ、冷媒配管4に接続されている。また、第2冷媒流路切替装置18bは、後述する暖房主体運転モード時の冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられ、分岐配管4dを介して冷媒配管4に接続されている。また、第2冷媒流路切替装置18cは、後述する全暖房運転モード及び暖房主体運転モード時の冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられ、冷媒配管4に接続されている。そして、第2冷媒流路切替装置18dは、後述する冷房主体運転モード時の冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられ、分岐配管4dを介して冷媒配管4に接続されている。 The second refrigerant flow switching devices 18a to 18d are constituted by two-way valves or the like, and in the refrigerant circulation circuit A, the refrigerant flow is switched according to the operation mode. Among them, the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the cooling only operation mode and the cooling main operation mode, which will be described later, and is connected to the refrigerant pipe 4. ing. The second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15a in the refrigerant flow in the heating main operation mode described later, and is connected to the refrigerant pipe 4 via the branch pipe 4d. ing. The second refrigerant flow switching device 18c is provided on the upstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the heating only operation mode and the heating main operation mode, which will be described later, and is connected to the refrigerant pipe 4. Yes. The second refrigerant flow switching device 18d is provided on the upstream side of the heat exchanger related to heat medium 15b in the refrigerant flow in the cooling main operation mode described later, and is connected to the refrigerant pipe 4 via the branch pipe 4d. ing.
 ポンプ21は、熱媒体循環回路B内において熱媒体を循環させるものである。このうち、ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23とを接続する熱媒体配管に設けられている。そして、ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23とを接続する熱媒体配管に設けられている。また、ポンプ21は、例えば、容量制御可能なポンプ等で構成するものとすればよい。
 なお、ポンプ21aは、熱媒体間熱交換器15aと第1熱媒体流路切替装置22とを接続する熱媒体配管に設けるものとしてもよく、ポンプ21bは、熱媒体間熱交換器15bと第1熱媒体流路切替装置22とを接続する熱媒体配管に設けるものとしてもよい。
The pump 21 circulates the heat medium in the heat medium circuit B. Among these, the pump 21 a is provided in a heat medium pipe connecting the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23. The pump 21 b is provided in a heat medium pipe that connects the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23. Further, the pump 21 may be constituted by a pump whose capacity can be controlled, for example.
The pump 21a may be provided in a heat medium pipe connecting the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22, and the pump 21b is connected to the heat exchanger related to heat medium 15b and the first heat medium flow switch 15b. It is good also as what is provided in the heat medium piping which connects 1 heat medium flow-path switching apparatus 22. FIG.
 第1熱媒体流路切替装置22は、三方弁等で構成されており、熱媒体循環回路Bにおいて、運転モードに応じて熱媒体の流路を切り替えるものである。また、第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(図9においては4つ)が設けられるようになっている。また、第1熱媒体流路切替装置22は、三方のうち、一方が熱媒体間熱交換器15aに、もう一方が熱媒体間熱交換器15bに、そして、残りの一方が熱媒体流量調整装置25に、それぞれ接続されている。 The first heat medium flow switching device 22 is configured by a three-way valve or the like, and in the heat medium circulation circuit B, switches the flow path of the heat medium according to the operation mode. Further, the number of the first heat medium flow switching devices 22 (four in FIG. 9) according to the number of indoor units 2 installed is provided. The first heat medium flow switching device 22 includes one of the three heat transfer medium heat exchangers 15a, the other heat transfer medium heat exchanger 15b, and the other heat medium flow rate adjustment. Each is connected to the device 25.
 第2熱媒体流路切替装置23は、三方弁等で構成されており、熱媒体循環回路Bにおいて、運転モードに応じて熱媒体の流路を切り替えるものである。また、第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(図9においては4つ)が設けられるようになっている。また、第2熱媒体流路切替装置23は、三方のうち、一方がポンプ21aに、もう一つがポンプ21bに、そして、残りの一つが熱媒体を室内機2へ流通させる熱媒体配管5に、それぞれ接続されている。 The second heat medium flow switching device 23 is constituted by a three-way valve or the like, and in the heat medium circulation circuit B, switches the heat medium flow path according to the operation mode. Further, the number of second heat medium flow switching devices 23 is set according to the number of indoor units 2 installed (four in FIG. 9). Further, the second heat medium flow switching device 23 has one of the three sides to the pump 21a, the other to the pump 21b, and the other one to the heat medium pipe 5 for circulating the heat medium to the indoor unit 2. , Each connected.
 熱媒体流量調整装置25は、開口面積を制御できる二方弁等で構成されており、熱媒体循環回路Bにおいて、利用側熱交換器26(熱媒体配管5)に流れる熱媒体の流量を制御するものである。また、熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(図9においては4つ)が設けられるようになっている。また、熱媒体流量調整装置25は、一方が室内機2の利用側熱交換器26から流出した熱媒体を熱媒体変換機3に流入させる熱媒体配管5に、他方が第1熱媒体流路切替装置22に、それぞれ接続されている。
 なお、熱媒体流量調整装置25は、上記のように利用側熱交換器26の熱媒体流路の出口側の熱媒体配管系統に設置されているが、これに限定されるものではなく、利用側熱交換器26の入口側の熱媒体配管系統(例えば、第2熱媒体流路切替装置23と、熱媒体変換機3から流出した熱媒体を室内機2の利用側熱交換器26に流入させる熱媒体配管5との間)に設置されるものとしてよい。
The heat medium flow control device 25 is configured by a two-way valve or the like that can control the opening area. To do. In addition, the number of the heat medium flow control devices 25 (four in FIG. 9) according to the number of indoor units 2 installed is provided. In addition, one of the heat medium flow control devices 25 is the heat medium pipe 5 through which the heat medium flowing out from the use side heat exchanger 26 of the indoor unit 2 flows into the heat medium converter 3, and the other is the first heat medium flow path. Each is connected to the switching device 22.
The heat medium flow control device 25 is installed in the heat medium piping system on the outlet side of the heat medium flow path of the use side heat exchanger 26 as described above, but is not limited to this. Heat medium piping system on the inlet side of the side heat exchanger 26 (for example, the second heat medium flow switching device 23 and the heat medium flowing out of the heat medium converter 3 flows into the use side heat exchanger 26 of the indoor unit 2) It is good also as what is installed between the heat-medium piping 5 to be made.
 また、熱媒体変換機3は、2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36を備えている。これらの検出装置で検出された情報(温度情報及び圧力情報)は、空気調和装置101の動作を制御する制御装置(図示せず)に送信される。制御装置は、マイコン等によって構成されており、これらの情報及びリモコン等からの操作情報に基づいて、圧縮機10の駆動周波数、送風機(図示せず)の回転数、第1冷媒流路切替装置11及び第2冷媒流路切替装置18の冷媒流路の切り替え、ポンプ21の駆動周波数、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の熱媒体流路の切り替え、熱媒体流量調整装置25の熱媒体流量等を制御し、後述する各種運転モードを実施する。
 なお、制御装置は、各室内機2毎に備えられてもよく、あるいは、室外機1又は熱媒体変換機3に設けてもよい。
Further, the heat medium relay unit 3 includes two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36. Information (temperature information and pressure information) detected by these detection devices is transmitted to a control device (not shown) that controls the operation of the air conditioner 101. The control device is constituted by a microcomputer or the like, and based on these information and operation information from a remote controller or the like, the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the first refrigerant flow switching device. 11 and switching of the refrigerant flow path of the second refrigerant flow switching device 18, switching frequency of the pump 21, switching of the heat medium flow path of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, The heat medium flow rate control device 25 controls the heat medium flow rate and the like, and implements various operation modes described later.
The control device may be provided for each indoor unit 2 or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
 図2で示される4つの第2温度センサー34を、室内機2a~室内機2dに応じて、下から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、そして、第2温度センサー34dというものとする。 The four second temperature sensors 34 shown in FIG. 2 are divided into the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature from the bottom according to the indoor units 2a to 2d. The sensor 34d is assumed.
 2つの第1温度センサー31(第1温度センサー31a及び第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の熱媒体出口側における熱媒体の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。このうち、第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管に設けられている。そして、第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管に設けられている。 The two first temperature sensors 31 (the first temperature sensor 31a and the first temperature sensor 31b) are the heat medium that has flowed out of the heat exchanger related to heat medium 15, that is, the heat at the heat medium outlet side of the heat exchanger related to heat medium 15. The temperature of the medium is detected, and for example, it may be constituted by a thermistor or the like. Among these, the 1st temperature sensor 31a is provided in the heat carrier piping in the inlet side of the pump 21a. The first temperature sensor 31b is provided in the heat medium pipe on the inlet side of the pump 21b.
 第2温度センサー34は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。また、第2温度センサー34は、室内機2の設置台数に応じた個数(図2においては4つ)が設けられるようになっている。 The second temperature sensor 34 is provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and detects the temperature of the heat medium flowing out from the use side heat exchanger 26. For example, what is necessary is just to comprise with a thermistor etc. Further, the number of second temperature sensors 34 (four in FIG. 2) corresponding to the number of indoor units 2 installed is provided.
 第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18a(及び第2冷媒流路切替装置18b)との間に設置され、熱媒体間熱交換器15aへ流入する、あるいは、熱媒体間熱交換器15aから流出する冷媒の温度を検出する。また、第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設置され、熱媒体間熱交換器15aへ流入する、あるいは、熱媒体間熱交換器15aから流出する冷媒の温度を検出する。また、第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18c(及び第2冷媒流路切替装置18d)との間に設置され、熱媒体間熱交換器15bへ流入する、あるいは、熱媒体間熱交換器15bから流出する冷媒の温度を検出する。そして、第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設置され、熱媒体間熱交換器15bへ流入する、あるいは、熱媒体間熱交換器15bから流出する冷媒の温度を検出する。これらの第3温度センサー35は、例えば、サーミスター等で構成するものとすればよい。 The third temperature sensor 35a is installed between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a (and the second refrigerant flow switching device 18b), and flows into the heat exchanger related to heat medium 15a. Alternatively, the temperature of the refrigerant flowing out of the heat exchanger related to heat medium 15a is detected. The third temperature sensor 35b is installed between the heat exchanger related to heat medium 15a and the expansion device 16a and flows into the heat exchanger related to heat medium 15a or flows out of the heat exchanger related to heat medium 15a. The refrigerant temperature is detected. The third temperature sensor 35c is installed between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18c (and the second refrigerant flow switching device 18d), and is used as the heat exchanger related to heat medium 15b. Or the temperature of the refrigerant flowing out of the heat exchanger related to heat medium 15b is detected. The third temperature sensor 35d is installed between the heat exchanger related to heat medium 15b and the expansion device 16b and flows into the heat exchanger related to heat medium 15b or flows out of the heat exchanger related to heat medium 15b. The refrigerant temperature is detected. These third temperature sensors 35 may be composed of, for example, a thermistor.
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる冷媒の圧力を検出するものである。 Similar to the installation position of the third temperature sensor 35d, the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing refrigerant is detected.
 前述の制御装置は、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の熱媒体流路を制御することによって、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかを選択制御することができる。つまり、制御装置は、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の熱媒体流路を制御することによって、利用側熱交換器26の流入側流路及び流出側流路を、熱媒体間熱交換器15a及び熱媒体間熱交換器15bとの間で選択的に連通させることができる。 The control device described above controls the heat medium flow path of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, thereby using the heat medium from the heat exchangers between heat mediums 15a on the use side. It is possible to selectively control whether the heat medium flows into the heat exchanger 26 or the heat medium from the heat exchanger related to heat medium 15 b flows into the use side heat exchanger 26. In other words, the control device controls the heat medium flow paths of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, thereby allowing the inflow side flow path and the outflow side of the use side heat exchanger 26. The flow path can be selectively communicated between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
 以上のように、空気調和装置101においては、室外機1及び熱媒体変換機3が、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、そして、熱媒体変換機3及び室内機2も、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置101においては、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して、冷媒循環回路Aを循環する冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換されるようになっている。したがって、室内機2には、水又は不凍液等の熱媒体を循環させれば、冷媒が循環することはないので、室内空間7等に冷媒が漏洩することがなく、安全性を向上させた空気調和装置101を得ることができる。 As described above, in the air conditioner 101, the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3. The heat medium converter 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 101, the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B are heated via the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is to be exchanged. Therefore, if a heat medium such as water or antifreeze is circulated in the indoor unit 2, the refrigerant will not circulate, so that the refrigerant does not leak into the indoor space 7 and the like, and the air has improved safety. The harmony device 101 can be obtained.
 次に、空気調和装置101が実施する各運転モードについて説明する。
 空気調和装置101は、各室内機2からの指示に基づいて、その室内機2で冷房運転モード又は暖房運転モードを実施することが可能になっている。つまり、空気調和装置101は、室内機2の全部で同一運転をすることができると共に、各室内機2で異なる運転をすることもできるようになっている。
Next, each operation mode performed by the air conditioning apparatus 101 will be described.
The air conditioner 101 can execute the cooling operation mode or the heating operation mode in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 101 can perform the same operation for all the indoor units 2 and can also perform different operations for each indoor unit 2.
 空気調和装置100が実施する運転モードとして、駆動している室内機2の全てが冷房運転を実施する全冷房運転モード、駆動している室内機2の全てが暖房運転を実施する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、及び、暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、熱源側の冷媒及び熱媒体の流れとともに説明する。 As an operation mode performed by the air conditioner 100, a cooling only operation mode in which all of the driven indoor units 2 perform a cooling operation, and a heating only operation mode in which all of the driven indoor units 2 perform a heating operation. There are a cooling main operation mode in which the cooling load is larger and a heating main operation mode in which the heating load is larger. Hereinafter, each operation mode will be described together with the refrigerant on the heat source side and the flow of the heat medium.
(全冷房運転モード)
 図10は、本発明の実施の形態2に係る空気調和装置101の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図10においては、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図10においては、太線で示された配管が冷媒及び熱媒体の流れる配管を示しており、冷媒の流れる方向を実線矢印で、熱媒体の流れる方向を破線矢印で示されている。
(Cooling mode only)
FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the cooling only operation mode. In FIG. 10, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. In FIG. 10, pipes indicated by bold lines indicate pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 図10で示される全冷房運転モードの場合、制御装置は、室外機1において、第1冷媒流路切替装置11に対して、圧縮機10から吐出されたガス冷媒を熱源側熱交換器12へ流入させるように冷媒流路を切り替える。また、制御装置は、開閉装置17が開状態、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18cが開状態、そして、第2冷媒流路切替装置18b及び第2冷媒流路切替装置18dが閉状態となるように開閉制御する。そして、制御装置は、熱媒体変換機3において、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと、利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。 In the cooling only operation mode shown in FIG. 10, in the outdoor unit 1, the control device sends the gas refrigerant discharged from the compressor 10 to the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11. The refrigerant flow path is switched so as to flow in. Further, the control device includes the opening / closing device 17 in the open state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c in the open state, and the second refrigerant flow switching device 18b and the second refrigerant flow passage. Open / close control is performed so that the switching device 18d is closed. Then, in the heat medium converter 3, the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control. The apparatus 25d is fully closed so that the heat medium circulates between each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b. ing.
 まず、図10を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を経由して、熱源側熱交換器12に流入する。熱源側熱交換器12に流入したガス冷媒は、室外空気に対して放熱する。このとき、冷媒は二酸化炭素であるので、熱源側熱交換器12へ流入した高温高圧のガス冷媒は、超臨界状態で、温度が低下した状態となって熱源側熱交換器12から流出する。熱源側熱交換器12から流出した超臨界状態の高圧冷媒は、室外機1から流出し、冷媒配管4を経由して、熱媒体変換機3に流入する。 First, the flow of the refrigerant in the refrigerant circuit A will be described with reference to FIG. The low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. The gas refrigerant flowing into the heat source side heat exchanger 12 radiates heat to the outdoor air. At this time, since the refrigerant is carbon dioxide, the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 12 flows out of the heat source-side heat exchanger 12 in a supercritical state in a temperature-decreasing state. The supercritical high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
 熱媒体変換機3に流入した高圧冷媒は、開閉装置17を経由した後分岐されて、絞り装置16a及び絞り装置16bにそれぞれ流入する。この絞り装置16a及び絞り装置16bに流入した高圧冷媒は、膨張及び減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することによって熱媒体を冷却しながら蒸発して、低温低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、それぞれ第2冷媒流路切替装置18a及び第2冷媒流路切替装置18cを経由して、熱媒体変換機3から流出し、冷媒配管4を経由して、再び室外機1に流入する。 The high-pressure refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17, and flows into the expansion device 16a and the expansion device 16b, respectively. The high-pressure refrigerant flowing into the expansion device 16a and the expansion device 16b is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This low-temperature low-pressure gas-liquid two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circuit B. As a result, the heat medium evaporates while cooling, and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c, respectively, to the heat medium converter 3. And flows into the outdoor unit 1 again through the refrigerant pipe 4.
 室外機1に流入したガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を経由し、圧縮機10へ再度吸入される。 The gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、制御装置は、絞り装置16aに対して、第3温度センサー35aによって検出された温度と第3温度センサー35bによって検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度を制御する。同様に、制御装置は、絞り装置16bに対して、第3温度センサー35cによって検出された温度と第3温度センサー35dによって検出された温度との差として得られるスーパーヒートが一定になるように開度を制御する。 At this time, the control device makes the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b constant for the expansion device 16a. The opening is controlled so that Similarly, the control device opens the expansion device 16b so that the superheat obtained as a difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant. Control the degree.
 次に、図10を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードにおいては、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の冷熱が熱媒体に伝達され、冷却された熱媒体がポンプ21a及びポンプ21bによって熱媒体循環回路B内を流通する。
Next, the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
In the cooling only operation mode, the cooling heat of the refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is circulated by the pump 21a and the pump 21b. It circulates in the circuit B.
 ポンプ21a及びポンプ21bによって加圧されて流出した熱媒体の一部は、第2熱媒体流路切替装置23aを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2aに流入する。ポンプ21a及びポンプ21bによって加圧されて流出した熱媒体の残りの一部は、第2熱媒体流路切替装置23bを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2bに流入する。ここで、熱媒体流量調整装置25c及び熱媒体流量調整装置25dは全閉状態となっているので、熱媒体は、第2熱媒体流路切替装置23c及び第2熱媒体流路切替装置23dを介して、それぞれ室内機2c及び室内機2dに流入することはない。 A part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23a, and passes through the heat medium pipe 5, It flows into the indoor unit 2a. The remaining part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23b and passes through the heat medium pipe 5. Flows into the indoor unit 2b. Here, since the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
 室内機2a及び室内機2bに流入した熱媒体は、それぞれ利用側熱交換器26a及び利用側熱交換器26bに流入する。利用側熱交換器26a及び利用側熱交換器26bに流入した熱媒体が室内空気から吸熱することによって、室内空間7の冷房が実施される。そして、利用側熱交換器26a及び利用側熱交換器26bから流出した熱媒体は、それぞれ室内機2a及び室内機2bから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。 The heat medium flowing into the indoor unit 2a and the indoor unit 2b flows into the use side heat exchanger 26a and the use side heat exchanger 26b, respectively. The indoor space 7 is cooled by the heat medium flowing into the use side heat exchanger 26a and the use side heat exchanger 26b absorbing heat from the room air. The heat medium flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b flows out from the indoor unit 2a and the indoor unit 2b, respectively, and flows into the heat medium converter 3 via the heat medium pipe 5. To do.
 熱媒体変換機3へ流入した熱媒体は、熱媒体流量調整装置25a及び熱媒体流量調整装置25bへ流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うために必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25aから流出した熱媒体は、第1熱媒体流路切替装置22aを経由して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bにそれぞれ流入する。また、同様に、熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22bを経由して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bにそれぞれ流入する。熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入した熱媒体は、再びそれぞれポンプ21a及びポンプ21bへ吸い込まれる。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。 The heat medium flowing into the heat medium converter 3 flows into the heat medium flow control device 25a and the heat medium flow control device 25b. At this time, the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchanger 26a and It flows into the use side heat exchanger 26b. The heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, respectively, via the first heat medium flow switching device 22a. Similarly, the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b. To do. The heat medium flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is again sucked into the pump 21a and the pump 21b, respectively. At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. In addition, the intermediate opening is set.
 また、室内空間7において必要とされる空調負荷は、第1温度センサー31aによって検出された温度又は第1温度センサー31bによって検出された温度と、第2温度センサー34によって検出された温度との差を目標値に維持することによって賄うことができる。また、本来、利用側熱交換器26による冷房動作は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31によって検出された温度とほとんど同じ温度であり、第1温度センサー31を使用することによって温度センサーの数を減らすことができ、安価にシステムを構成できる。なお、熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、あるいは、これらの平均温度を使用してもよい。 The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31 a or the temperature detected by the first temperature sensor 31 b and the temperature detected by the second temperature sensor 34. Can be covered by maintaining the target value. Originally, the cooling operation by the use side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the use side heat exchanger 26 is the first temperature sensor 31. By using the first temperature sensor 31, the number of temperature sensors can be reduced, and the system can be configured at low cost. As the outlet temperature of the heat exchanger related to heat medium 15, either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
 上記の全冷房運転モードを実施する場合、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じることによって、利用側熱交換器26へ熱媒体が流れないようにする。図10においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the above cooling only operation mode is carried out, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without the heat load. The heat medium is prevented from flowing to the use side heat exchanger 26. In FIG. 10, a heat medium is flowing because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b, but in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is passed. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
(全暖房運転モード)
 図11は、本発明の実施の形態2に係る空気調和装置101の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図11においては、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図11においては、太線で示された配管が冷媒及び熱媒体の流れる配管を示しており、冷媒の流れ方向を実線矢印で、熱媒体の流れる方向を破線矢印で示している。
(All heating operation mode)
FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the heating only operation mode. In FIG. 11, the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. In FIG. 11, the pipes indicated by bold lines indicate the pipes through which the refrigerant and the heat medium flow. The flow direction of the refrigerant is indicated by solid arrows, and the direction in which the heat medium flows is indicated by broken line arrows.
 図11で示される全暖房運転モードの場合、制御装置は、室外機1において、第1冷媒流路切替装置11に対して、圧縮機10から吐出されたガス冷媒を、熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように冷媒流路を切り替える。また、制御装置は、開閉装置17が開状態、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18cが開状態、そして、第2冷媒流路切替装置18b及び第2冷媒流路切替装置18dが閉状態となるように開閉制御する。そして、制御装置は、熱媒体変換機3において、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと、利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。 In the heating only operation mode shown in FIG. 11, in the outdoor unit 1, the control device converts the gas refrigerant discharged from the compressor 10 into the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11. The refrigerant flow path is switched so as to flow into the heat medium relay unit 3 without going through. Further, the control device includes the opening / closing device 17 in the open state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c in the open state, and the second refrigerant flow switching device 18b and the second refrigerant flow passage. Open / close control is performed so that the switching device 18d is closed. Then, in the heat medium converter 3, the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control. The apparatus 25d is fully closed so that the heat medium circulates between each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b. ing.
 まず、図11を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を経由し、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を経由して、熱媒体変換機3に流入する。 First, the flow of the refrigerant in the refrigerant circuit A will be described with reference to FIG. The low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the first refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 via the refrigerant pipe 4.
 熱媒体変換機3に流入した高温高圧のガス冷媒は、分岐されて、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18cを経由して、放熱器(ガスクーラー)として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱することによって熱媒体を加熱しながら放熱して、超臨界状態で、温度が低下した状態となって熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出する。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した高圧冷媒は、絞り装置16a及び絞り装置16bでそれぞれ膨張及び減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、開閉装置17を経由して、熱媒体変換機3から流出し、冷媒配管4を経由して、再び室外機1へ流入する。 The high-temperature and high-pressure gas refrigerant flowing into the heat medium relay unit 3 is branched and acts as a radiator (gas cooler) via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18c. It flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. The high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b dissipates heat while heating the heat medium by dissipating heat to the heat medium circulating in the heat medium circuit B, In the supercritical state, the temperature decreases and flows out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. The high-pressure refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16a and the expansion device 16b, respectively, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
 室外機1に流入した気液二相冷媒は、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した気液二相冷媒は、室外空気から吸熱しながら気化し、低温低圧のガス冷媒となる。熱源側熱交換器12から流出したガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を経由して、圧縮機10へ再度吸入される。 The gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12. The gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 12 is vaporized while absorbing heat from the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、制御装置は、絞り装置16aに対して、圧力センサー36によって検出された圧力を飽和温度に換算した値と第3温度センサー35bによって検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度を制御する。同様に、制御装置は、絞り装置16bに対して、圧力センサー36によって検出された圧力を飽和温度に換算した値と第3温度センサー35dによって検出された温度との差として得られるサブクールが一定になるように開度を制御する。 At this time, the control device makes a subcool (supercooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b. The degree of opening is controlled so that the degree is constant. Similarly, the control device makes the subcool obtained as a difference between the value obtained by converting the pressure detected by the pressure sensor 36 into the saturation temperature and the temperature detected by the third temperature sensor 35d constant for the expansion device 16b. The opening is controlled so that
 なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、この場合、安価にシステムを構成できる。 If the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36. In this case, the system can be configured at low cost.
 次に、図11を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードにおいては、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の温熱が熱媒体に伝達され、加熱された熱媒体がポンプ21a及びポンプ21bによって熱媒体循環回路B内を流通する。
Next, the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
In the heating only operation mode, the heat of the refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is circulated by the pump 21a and the pump 21b. It circulates in the circuit B.
 ポンプ21a及びポンプ21bによって加圧されて流出した熱媒体の一部は、第2熱媒体流路切替装置23aを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2aに流入する。ポンプ21a及びポンプ21bによって加圧されて流出した熱媒体の残りの一部は、第2熱媒体流路切替装置23bを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2bに流入する。ここで、熱媒体流量調整装置25c及び熱媒体流量調整装置25dは全閉状態となっているので、熱媒体は、第2熱媒体流路切替装置23c及び第2熱媒体流路切替装置23dを介して、それぞれ室内機2c及び室内機2dに流入することはない。 A part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23a, and passes through the heat medium pipe 5, It flows into the indoor unit 2a. The remaining part of the heat medium pressurized and discharged by the pump 21a and the pump 21b flows out of the heat medium converter 3 via the second heat medium flow switching device 23b and passes through the heat medium pipe 5. Flows into the indoor unit 2b. Here, since the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
 室内機2a及び室内機2bに流入した熱媒体は、それぞれ利用側熱交換器26a及び利用側熱交換器26bに流入する。利用側熱交換器26a及び利用側熱交換器26bに流入した熱媒体が室内空気に放熱することによって、室内空間7の暖房が実施される。そして、利用側熱交換器26a及び利用側熱交換器26bから流出した熱媒体は、それぞれ室内機2a及び室内機2bから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。 The heat medium flowing into the indoor unit 2a and the indoor unit 2b flows into the use side heat exchanger 26a and the use side heat exchanger 26b, respectively. Heating of the indoor space 7 is performed by the heat medium flowing into the use side heat exchanger 26a and the use side heat exchanger 26b radiating heat to the indoor air. The heat medium flowing out from the use side heat exchanger 26a and the use side heat exchanger 26b flows out from the indoor unit 2a and the indoor unit 2b, respectively, and flows into the heat medium converter 3 via the heat medium pipe 5. To do.
 熱媒体変換機3へ流入した熱媒体は、熱媒体流量調整装置25a及び熱媒体流量調整装置25bへ流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うために必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25aから流出した熱媒体は、第1熱媒体流路切替装置22aを経由して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bにそれぞれ流入する。また、同様に、熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22bを経由して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bにそれぞれ流入する。熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入した熱媒体は、再びそれぞれポンプ21a及びポンプ21bへ吸い込まれる。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。 The heat medium flowing into the heat medium converter 3 flows into the heat medium flow control device 25a and the heat medium flow control device 25b. At this time, the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchanger 26a and It flows into the use side heat exchanger 26b. The heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, respectively, via the first heat medium flow switching device 22a. Similarly, the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b. To do. The heat medium flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is again sucked into the pump 21a and the pump 21b, respectively. At this time, the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. In addition, the intermediate opening is set.
 また、室内空間7において必要とされる空調負荷は、第1温度センサー31aによって検出された温度又は第1温度センサー31bによって検出された温度と、第2温度センサー34によって検出された温度との差を目標値に維持することによって賄うことができる。また、本来、利用側熱交換器26による暖房動作は、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31によって検出された温度とほとんど同じ温度であり、第1温度センサー31を使用することによって温度センサーの数を減らすことができ、安価にシステムを構成できる。なお、熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、あるいは、これらの平均温度を使用してもよい。 The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31 a or the temperature detected by the first temperature sensor 31 b and the temperature detected by the second temperature sensor 34. Can be covered by maintaining the target value. Originally, the heating operation by the use side heat exchanger 26 should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the use side heat exchanger 26 is the first temperature sensor 31. By using the first temperature sensor 31, the number of temperature sensors can be reduced, and the system can be configured at low cost. As the outlet temperature of the heat exchanger related to heat medium 15, either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
 上記の全暖房運転モードを実施する場合、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じることによって、利用側熱交換器26へ熱媒体が流れないようにする。図11においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the above heating only operation mode is carried out, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) without a heat load. The heat medium is prevented from flowing to the use side heat exchanger 26. In FIG. 11, a heat medium is flowing because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b, but in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is passed. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
(冷房主体運転モード)
 図12は、本発明の実施の形態2に係る空気調和装置101の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図12においては、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図12においては、太線で表された配管が冷媒及び熱媒体の流れる配管を示しており、冷媒の流れる方向を実線矢印で、熱媒体の流れる方向を破線矢印で示されている。
(Cooling operation mode)
FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the cooling main operation mode. In FIG. 12, the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b. In FIG. 12, the pipes represented by bold lines indicate the pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by solid arrows, and the direction in which the heat medium flows is indicated by broken arrows.
 図12で示される冷房主体運転モードの場合、制御装置は、室外機1において、第1冷媒流路切替装置11に対して、圧縮機10から吐出されたガス冷媒を熱源側熱交換器12へ流入させるように冷媒流路を切り替える。また、制御装置は、絞り装置16aが全開状態、開閉装置17が閉状態、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18dが開状態、そして、第2冷媒流路切替装置18b及び第2冷媒流路切替装置18cが閉状態となるように開閉制御する。そして、制御装置は、熱媒体変換機3において、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、そして、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。 In the cooling main operation mode shown in FIG. 12, in the outdoor unit 1, the control device sends the gas refrigerant discharged from the compressor 10 to the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11. The refrigerant flow path is switched so as to flow in. Further, the control device includes the expansion device 16a in a fully open state, the opening / closing device 17 in a closed state, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18d in an open state, and the second refrigerant flow switching device. Opening / closing control is performed so that 18b and the second refrigerant flow switching device 18c are closed. Then, in the heat medium converter 3, the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control. The apparatus 25d is fully closed, the heat medium between the heat exchanger 15a and the use side heat exchanger 26a, and the heat medium between the heat exchanger 15b and the use side heat exchanger 26b, respectively. Is trying to circulate.
 まず、図12を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を経由して、熱源側熱交換器12に流入する。熱源側熱交換器12に流入したガス冷媒は、室外空気に対して放熱する。このとき、冷媒は二酸化炭素であるので、熱源側熱交換器12へ流入した高温高圧のガス冷媒は、超臨界状態で、温度が低下した状態となって熱源側熱交換器12から流出する。熱源側熱交換器12から流出した超臨界状態の高圧冷媒は、室外機1から流出し、冷媒配管4を経由して、熱媒体変換機3に流入する。
First, the flow of the refrigerant in the refrigerant circuit A will be described with reference to FIG.
The low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. The gas refrigerant flowing into the heat source side heat exchanger 12 radiates heat to the outdoor air. At this time, since the refrigerant is carbon dioxide, the high-temperature and high-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 12 flows out of the heat source-side heat exchanger 12 in a supercritical state in a temperature-decreasing state. The supercritical high-pressure refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
 熱媒体変換機3に流入した高圧冷媒は、冷媒配管4及び第2冷媒流路切替装置18dを経由して、放熱器(ガスクーラー)として作用する熱媒体間熱交換器15bに流入する。熱媒体間熱交換器15bに流入した高圧冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱することによって熱媒体を加熱しながらさらに放熱して、温度が低下した状態となって熱媒体間熱交換器15bから流出する。熱媒体間熱交換器15bから流出した高圧冷媒は、絞り装置16bで膨張及び減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、絞り装置16aを経由して、蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低温低圧の気液二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することによって熱媒体を冷却しながら蒸発して、低温低圧のガス冷媒となる。熱媒体間熱交換器15aから流出したガス冷媒は、第2冷媒流路切替装置18aを経由して、熱媒体変換機3から流出し、冷媒配管4を経由して、再び室外機1へ流入する。 The high-pressure refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a radiator (gas cooler) via the refrigerant pipe 4 and the second refrigerant flow switching device 18d. The high-pressure refrigerant that has flowed into the heat exchanger related to heat medium 15b dissipates heat to the heat medium circulating in the heat medium circuit B so that the heat medium is further dissipated while heating the heat medium, and the temperature is lowered. It flows out of the intermediate heat exchanger 15b. The high-pressure refrigerant that has flowed out of the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates while cooling the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B, so It becomes. The gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. To do.
 室外機1に流入したガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を経由し、圧縮機10へ再度吸入される。 The gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、制御装置は、絞り装置16bに対して、第3温度センサー35aによって検出された温度と第3温度センサー35bによって検出された温度との差として得られるスーパーヒートが一定になるように開度を制御する。
 なお、制御装置は、絞り装置16bに対して、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aによって上記のスーパーヒート又はサブクールを制御するようにしてもよい。
At this time, the control device opens the expansion device 16b so that the superheat obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Control the degree.
The control device has a constant subcool with respect to the expansion device 16b, which is obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d. Thus, the opening degree may be controlled. Alternatively, the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
 次に、図12を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードにおいては、熱媒体間熱交換器15bにおいて冷媒の温熱が熱媒体に伝えられ、加熱された熱媒体がポンプ21bによって熱媒体循環回路B内を流通する。また、冷房主体運転モードにおいては、熱媒体間熱交換器15aにおいて冷媒の冷熱が熱媒体に伝えられ、冷却された熱媒体がポンプ21aによって熱媒体循環回路B内を流通する。
Next, the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
In the cooling main operation mode, the heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is circulated in the heat medium circuit B by the pump 21b. Further, in the cooling main operation mode, the cold heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
 ポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23bを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2bに流入する。ポンプ21aで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2aに流入する。ここで、熱媒体流量調整装置25c及び熱媒体流量調整装置25dは全閉状態となっているので、熱媒体は、第2熱媒体流路切替装置23c及び第2熱媒体流路切替装置23dを介して、それぞれ室内機2c及び室内機2dに流入することはない。 The heat medium pressurized and discharged by the pump 21b flows out of the heat medium converter 3 through the second heat medium flow switching device 23b, and flows into the indoor unit 2b through the heat medium pipe 5. . The heat medium pressurized and discharged by the pump 21a flows out of the heat medium converter 3 through the second heat medium flow switching device 23a, and flows into the indoor unit 2a through the heat medium pipe 5. . Here, since the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
 室内機2bに流入した熱媒体は、利用側熱交換器26bに流入し、そして、室内機2aに流入した熱媒体は、利用側熱交換器26aに流入する。利用側熱交換器26bに流入した熱媒体は、室内空気に放熱することによって、室内空間7の暖房が実施される。一方、利用側熱交換器26aに流入した熱媒体は、室内空気から吸熱することによって、室内空間7の冷房が実施される。そして、利用側熱交換器26bから流出し、ある程度温度が低下した熱媒体は、室内機2bから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。一方、利用側熱交換器26aから流出し、ある程度温度が上昇した熱媒体は、室内機2aから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。 The heat medium flowing into the indoor unit 2b flows into the use side heat exchanger 26b, and the heat medium flowing into the indoor unit 2a flows into the use side heat exchanger 26a. The heat medium that has flowed into the use-side heat exchanger 26b radiates heat to the indoor air, thereby heating the indoor space 7. On the other hand, the heat medium that has flowed into the use-side heat exchanger 26a absorbs heat from the indoor air, whereby the indoor space 7 is cooled. Then, the heat medium that has flowed out of the use side heat exchanger 26 b and whose temperature has decreased to some extent flows out of the indoor unit 2 b and flows into the heat medium converter 3 via the heat medium pipe 5. On the other hand, the heat medium that has flowed out of the use-side heat exchanger 26 a and whose temperature has increased to some extent flows out of the indoor unit 2 a and flows into the heat medium converter 3 through the heat medium pipe 5.
 利用側熱交換器26bから熱媒体変換機3に流入した熱媒体は、熱媒体流量調整装置25bに流入し、利用側熱交換器26aから熱媒体変換機3に流入した熱媒体は、熱媒体流量調整装置25aに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22bを経由して、熱媒体間熱交換器15bに流入し、再びポンプ21bへ吸い込まれる。一方、熱媒体流量調整装置25aから流出した熱媒体は、第1熱媒体流路切替装置22aを経由して、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。上記のように、冷房主体運転モードにおいては、暖かい熱媒体及び冷たい熱媒体は、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用によって、混合することなく、それぞれ温熱負荷、そして、冷熱負荷がある利用側熱交換器26へ流入される。 The heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26b flows into the heat medium flow control device 25b, and the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26a is the heat medium. It flows into the flow rate adjusting device 25a. At this time, the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room. It flows into the use side heat exchanger 26b. The heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22b and is sucked into the pump 21b again. On the other hand, the heat medium flowing out from the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15a via the first heat medium flow switching device 22a and is sucked into the pump 21a again. As described above, in the cooling main operation mode, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, respectively. A heat load and a cold load are fed into the use side heat exchanger 26.
 また、室内空間7において必要とされる空調負荷は、暖房側においては第1温度センサー31bによって検出された温度と第2温度センサー34bによって検出された温度との差を、冷房側においては第2温度センサー34bによって検出された温度と第1温度センサー31aによって検出された温度との差を目標値に維持することによって賄うことができる。 The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34b on the heating side, and the second on the cooling side. It can be covered by maintaining the difference between the temperature detected by the temperature sensor 34b and the temperature detected by the first temperature sensor 31a at the target value.
 上記の冷房主体運転モードを実施する場合、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じることによって、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When the above cooling main operation mode is carried out, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) having no heat load. The heat medium is prevented from flowing to the use side heat exchanger 26. In FIG. 5, a heat medium flows because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b. However, in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is supplied. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
(暖房主体運転モード)
 図13は、本発明の実施の形態2に係る空気調和装置101の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図13においては、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図13においては、太線で表された配管が冷媒及び熱媒体の流れる配管を示しており、冷媒の流れる方向を実線矢印で、熱媒体の流れる方向を破線矢印で示されている。
(Heating main operation mode)
FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 101 according to Embodiment 2 of the present invention is in the heating main operation mode. In FIG. 13, the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b. In FIG. 13, the pipes indicated by bold lines indicate the pipes through which the refrigerant and the heat medium flow, and the direction in which the refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 図13で示される暖房主体運転モードの場合、制御装置は、室外機1において、第1冷媒流路切替装置11に対して、圧縮機10から吐出されたガス冷媒を、熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように冷媒流路を切り替える。また、制御装置は、絞り装置16aは全開状態、開閉装置17は閉状態、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18dが閉状態、そして、第2冷媒流路切替装置18b及び第2冷媒流路切替装置18cが開状態となるように開閉制御する。そして、制御装置は、熱媒体変換機3において、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、そして、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。 In the heating main operation mode shown in FIG. 13, in the outdoor unit 1, the control device converts the gas refrigerant discharged from the compressor 10 into the heat source side heat exchanger 12 with respect to the first refrigerant flow switching device 11. The refrigerant flow path is switched so as to flow into the heat medium relay unit 3 without going through. The control device includes a throttle device 16a in a fully open state, an opening / closing device 17 in a closed state, a second refrigerant flow switching device 18a and a second refrigerant flow switching device 18d in a closed state, and a second refrigerant flow switching device. Opening / closing control is performed so that 18b and the second refrigerant flow switching device 18c are opened. Then, in the heat medium converter 3, the control device drives the pump 21a and the pump 21b, opens the heat medium flow control device 25a and the heat medium flow control device 25b, and heat medium flow control device 25c and the heat medium flow control. The apparatus 25d is fully closed, the heat medium between the heat exchanger 15a and the use side heat exchanger 26a, and the heat medium between the heat exchanger 15b and the use side heat exchanger 26b, respectively. Is trying to circulate.
 まず、図13を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。ここで、冷媒は二酸化炭素であるので、超臨界状態のガス冷媒となる。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を経由し、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を経由して、熱媒体変換機3に流入する。
First, the flow of the refrigerant in the refrigerant circuit A will be described with reference to FIG.
The low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. Here, since the refrigerant is carbon dioxide, it becomes a gas refrigerant in a supercritical state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 via the first refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 via the refrigerant pipe 4.
 熱媒体変換機3に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置18cを経由して、放熱器(ガスクーラー)として作用する熱媒体間熱交換器15bに流入する。熱媒体間熱交換器15bに流入した高温高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱する。このとき、冷媒は二酸化炭素であるので、熱媒体間熱交換器15bへ流入した高温高圧のガス冷媒は、超臨界状態で、温度が低下した状態となって熱媒体間熱交換器15bから流出する。熱媒体間熱交換器15bから流出した超臨界状態の高圧冷媒は、絞り装置16bで膨張及び減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、絞り装置16aを経由して、蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低温低圧の気液二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することにって熱媒体を冷却する。熱媒体間熱交換器15aから流出した気液二相冷媒は、第2冷媒流路切替装置18b及び分岐配管4dを経由して、熱媒体変換機3から流出し、冷媒配管4を経由して、再び室外機1へ流入する。 The high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b acting as a radiator (gas cooler) via the second refrigerant flow switching device 18c. The high-temperature and high-pressure gas refrigerant flowing into the intermediate heat exchanger 15b radiates heat to the heat medium circulating in the heat medium circuit B. At this time, since the refrigerant is carbon dioxide, the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 15b flows out of the heat exchanger related to heat medium 15b in a supercritical state in a temperature-decreasing state. To do. The supercritical high-pressure refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded and depressurized by the expansion device 16b, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a cools the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B. The gas-liquid two-phase refrigerant that has flowed out of the heat exchanger related to heat medium 15 a flows out of the heat medium converter 3 via the second refrigerant flow switching device 18 b and the branch pipe 4 d, and then passes through the refrigerant pipe 4. Then, it flows into the outdoor unit 1 again.
 室外機1へ流入した気液二相冷媒は、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した気液二相冷媒は、室外空気からさらに吸熱することによって蒸発し、低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を経由して、圧縮機10へ再度吸入される。 The gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12. The gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 12 evaporates by further absorbing heat from the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、制御装置は、絞り装置16bに対して、圧力センサー36によって検出された圧力を飽和温度に換算した値と第3温度センサー35bによって検出された温度との差として得られるサブクールが一定になるように開度を制御する。
 なお、制御装置は、絞り装置16bを全開とし、絞り装置16aによって上記のサブクールを制御するようにしてもよい。
At this time, the control device makes the subcool obtained as a difference between the value obtained by converting the pressure detected by the pressure sensor 36 into the saturation temperature and the temperature detected by the third temperature sensor 35b constant with respect to the expansion device 16b. The opening is controlled so that
The control device may be configured such that the expansion device 16b is fully opened and the subcooling is controlled by the expansion device 16a.
 次に、図13を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードにおいては、熱媒体間熱交換器15bにおいて冷媒の温熱が熱媒体に伝えられ、加熱された熱媒体がポンプ21bによって熱媒体循環回路B内を流通する。また、暖房主体運転モードにおいては、熱媒体間熱交換器15aにおいて冷媒の冷熱が熱媒体に伝えられ、冷却された熱媒体がポンプ21aによって熱媒体循環回路B内を流通する。
Next, the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
In the heating main operation mode, the heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium flows through the heat medium circuit B by the pump 21b. Further, in the heating main operation mode, the cold heat of the refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
 ポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2aに流入する。ポンプ21aで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23bを介して、熱媒体変換機3から流出し、熱媒体配管5を経由して、室内機2bに流入する。ここで、熱媒体流量調整装置25c及び熱媒体流量調整装置25dは全閉状態となっているので、熱媒体は、第2熱媒体流路切替装置23c及び第2熱媒体流路切替装置23dを介して、それぞれ室内機2c及び室内機2dに流入することはない。 The heat medium pressurized and discharged by the pump 21b flows out of the heat medium converter 3 through the second heat medium flow switching device 23a, and flows into the indoor unit 2a through the heat medium pipe 5. . The heat medium pressurized and discharged by the pump 21a flows out of the heat medium converter 3 through the second heat medium flow switching device 23b, and flows into the indoor unit 2b through the heat medium pipe 5. . Here, since the heat medium flow control device 25c and the heat medium flow control device 25d are in a fully closed state, the heat medium passes through the second heat medium flow switching device 23c and the second heat medium flow switching device 23d. Therefore, the air does not flow into the indoor unit 2c and the indoor unit 2d, respectively.
 室内機2aに流入した熱媒体は、利用側熱交換器26aに流入し、そして、室内機2bに流入した熱媒体は、利用側熱交換器26bに流入する。利用側熱交換器26aに流入した熱媒体は、室内空気に放熱することによって、室内空間7の暖房が実施される。一方、利用側熱交換器26bに流入した熱媒体は、室内空気から吸熱することによって、室内空間7の冷房が実施される。そして、利用側熱交換器26aから流出し、ある程度温度が低下した熱媒体は、室内機2aから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。一方、利用側熱交換器26bから流出し、ある程度温度が上昇した熱媒体は、室内機2bから流出し、熱媒体配管5を経由して、熱媒体変換機3に流入する。 The heat medium flowing into the indoor unit 2a flows into the use side heat exchanger 26a, and the heat medium flowing into the indoor unit 2b flows into the use side heat exchanger 26b. The heat medium flowing into the use side heat exchanger 26a dissipates heat to the indoor air, thereby heating the indoor space 7. On the other hand, the heat medium that has flowed into the use side heat exchanger 26b absorbs heat from the indoor air, whereby the indoor space 7 is cooled. Then, the heat medium that has flowed out of the use-side heat exchanger 26 a and whose temperature has decreased to some extent flows out of the indoor unit 2 a and flows into the heat medium converter 3 through the heat medium pipe 5. On the other hand, the heat medium that has flowed out from the use side heat exchanger 26 b and whose temperature has risen to some extent flows out from the indoor unit 2 b, and flows into the heat medium converter 3 through the heat medium pipe 5.
 利用側熱交換器26aから熱媒体変換機3に流入した熱媒体は、熱媒体流量調整装置25aに流入し、利用側熱交換器26bから熱媒体変換機3に流入した熱媒体は、熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25aから流出した熱媒体は、第1熱媒体流路切替装置22aを経由して、熱媒体間熱交換器15bに流入し、再びポンプ21bへ吸い込まれる。一方、熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22bを経由して、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。上記のように、暖房主体運転モードにおいては、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ流入される。 The heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26a flows into the heat medium flow control device 25a, and the heat medium flowing into the heat medium converter 3 from the use side heat exchanger 26b is the heat medium. It flows into the flow rate adjusting device 25b. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b. The heat medium that has flowed out of the heat medium flow control device 25a flows into the heat exchanger related to heat medium 15b via the first heat medium flow switching device 22a, and is sucked into the pump 21b again. On the other hand, the heat medium flowing out from the heat medium flow control device 25b flows into the heat exchanger related to heat medium 15a via the first heat medium flow switching device 22b and is sucked into the pump 21a again. As described above, in the heating main operation mode, the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, It flows into the use-side heat exchanger 26 having a hot load and a cold load, respectively.
 また、室内空間7において必要とされる空調負荷は、暖房側においては第1温度センサー31bによって検出された温度と第2温度センサー34aによって検出された温度との差を、冷房側においては第2温度センサー34bによって検出された温度と第1温度センサー31aによって検出された温度との差を目標値に維持するように賄うことができる。 The air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34a on the heating side, and the second on the cooling side. It is possible to cover the difference between the temperature detected by the temperature sensor 34b and the temperature detected by the first temperature sensor 31a so as to maintain the target value.
 上記の暖房主体運転モードを実施する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じることによって、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26c又は利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25c又は熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。 When carrying out the above heating main operation mode, it is not necessary to flow the heat medium to the use side heat exchanger 26 (including the thermo-off) having no heat load, so the heat medium flow control device 25 closes the flow path. The heat medium is prevented from flowing to the use side heat exchanger 26. In FIG. 6, since there is a heat load in the use-side heat exchanger 26a and the use-side heat exchanger 26b, a heat medium is flowing, but in the use-side heat exchanger 26c and the use-side heat exchanger 26d, the heat load is passed. The corresponding heat medium flow control device 25c and heat medium flow control device 25d are fully closed. When a heat load is generated from the use side heat exchanger 26c or the use side heat exchanger 26d, the heat medium flow control device 25c or the heat medium flow control device 25d is opened, and the heat medium can be circulated. That's fine.
(空気調和装置101への冷媒充填動作)
 本実施の形態に係る空気調和装置101において設置された開閉装置40の構造は、実施の形態1に係る空気調和装置100において設置された図5で示される開閉装置207と同様の構造である。本実施の形態において、サービスマンは、この開閉装置40に対して、実施の形態1における開閉装置207に接続した接続管209及び冷媒ボンベ208に相当するものを接続し、実施の形態1において説明した同様の手順によって、冷媒循環回路Aに冷媒を充填するものとすればよい。
(Refrigerant charging operation to the air conditioner 101)
The structure of the switchgear 40 installed in the air conditioner 101 according to the present embodiment is the same structure as the switchgear 207 shown in FIG. 5 installed in the air conditioner 100 according to the first embodiment. In the present embodiment, the service person connects the switch tube 209 connected to the switchgear 207 and the refrigerant cylinder 208 in the first embodiment to the switchgear 40, which will be described in the first embodiment. The refrigerant circulation circuit A may be filled with the refrigerant by the same procedure.
(実施の形態2の効果)
 上記の構成のように、実施の形態1における開閉装置207と同様にパージ状態を形成できる開閉装置40を空気調和装置101に設けることによって、急激に冷媒が漏れ出たり、接続管が外れ、冷媒が多量に放出されること等の危険性を大幅に低減させることができ、安全に接続管の空気をパージすることができる空気調和装置101を提供することができる。特に、圧力の高い二酸化炭素の場合は有効である。
(Effect of Embodiment 2)
Like the above-described configuration, the air conditioner 101 is provided with the opening / closing device 40 that can form a purge state in the same manner as the opening / closing device 207 in the first embodiment, so that the refrigerant suddenly leaks or the connection pipe is disconnected. Therefore, it is possible to provide an air conditioner 101 that can significantly reduce the risk of being released in large quantities and that can safely purge the air in the connecting pipe. This is particularly effective for carbon dioxide with a high pressure.
 また、本実施の形態に係る空気調和装置101は、室内機2には、水又は不凍液等の熱媒体を循環させるようにし、冷媒が循環することはないので、室内空間7等に冷媒が漏洩することがなく、安全性を向上させることができる。 Further, in the air conditioner 101 according to the present embodiment, a heat medium such as water or antifreeze liquid is circulated in the indoor unit 2 and the refrigerant does not circulate, so that the refrigerant leaks into the indoor space 7 and the like. Safety can be improved.
 なお、本実施の形態における第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、又は、開閉弁等の二方流路の開閉を実施するものを2つ組み合わせる等、流路を切り替えられるものであればよい。 The first heat medium flow switching device 22 and the second heat medium flow switching device 23 in the present embodiment can switch a three-way flow such as a three-way valve, or a two-way flow such as an on-off valve. What is necessary is just to switch a flow path, such as combining two things which implement opening and closing of.
 また、本実施の形態における第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、又は、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせたもの等によって構成されるものとしてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。 The first heat medium flow switching device 22 and the second heat medium flow switching device 23 in the present embodiment can change the flow rate of a three-way flow path such as a stepping motor driven mixing valve, or It is good also as what is comprised by what combined the thing which can change the flow volume of two-way flow paths, such as an electronic expansion valve. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
 また、本実施の形態において、熱媒体流量調整装置25は二方弁である場合を例に説明したが、これに限定されるものではなく、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。 In the present embodiment, the case where the heat medium flow control device 25 is a two-way valve has been described as an example. However, the heat medium flow control device 25 is not limited to this and is a control valve having a three-way flow path. You may make it install with the bypass pipe which bypasses 26.
 また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁、又は、三方弁の一端を閉止したものでもよい。 The heat medium flow control device 25 may be a stepping motor driven type that can control the flow rate flowing through the flow path, or may be one in which one end of a two-way valve or a three-way valve is closed.
 また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を実施するものを用いて、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。 Further, as the heat medium flow control device 25, an apparatus that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
 また、図9で示されるように、第2冷媒流路切替装置18は、二方流路切替弁であるかのように示したが、これに限定されるものではなく、三方流路切替弁を複数個用いて、同じように冷媒が流れるように構成してもよい。また、第2冷媒流路切替装置18について、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18b、並びに、第2冷媒流路切替装置18c及び第2冷媒流路切替装置18dを、それぞれ四方弁に置換して構成するようにしてもよい。 Further, as shown in FIG. 9, the second refrigerant flow switching device 18 is shown as if it were a two-way flow switching valve, but is not limited to this, and a three-way flow switching valve. A plurality of can be used so that the refrigerant flows in the same manner. Further, for the second refrigerant flow switching device 18, the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the second refrigerant flow switching device 18c and the second refrigerant flow switching device 18d are provided. Each may be replaced with a four-way valve.
 また、本実施の形態に係る空気調和装置101は、冷房暖房の混在運転ができるものとして説明をしたが、これに限定するものではない。例えば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転モード又は暖房運転モードのいずれかしか実施できない構成であっても同様の効果を奏する。 Moreover, although the air conditioning apparatus 101 according to the present embodiment has been described as being capable of mixed operation of cooling and heating, the present invention is not limited to this. For example, there is one heat exchanger 15 between the heat medium and one expansion device 16, and a plurality of use side heat exchangers 26 and heat medium flow control devices 25 are connected in parallel to each other in the cooling operation mode or the heating operation mode. Even if it is the structure which can implement only either, there exists the same effect.
 また、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限定されるものではなく、室内機2側に内蔵されるものとしてもよく、あるいは、熱媒体変換機3及び室内機2とは別体に設置されるものとしてもよい。 Moreover, although the heat medium flow control apparatus 25 demonstrated to the example the case where it was incorporated in the heat medium converter 3, it is not limited to this, It is good also as what is incorporated in the indoor unit 2 side, Alternatively, the heat medium converter 3 and the indoor unit 2 may be installed separately.
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮(放熱)あるいは蒸発(吸熱)を促進させる場合が多いが、これに限定されるものではない。例えば、利用側熱交換器26としては、放射を利用したパネルヒーター等を用いるものとしてもよいし、熱源側熱交換器12としては、水又は不凍液等により熱を移動させる水冷式のタイプのものを用いるものとしてもよい。つまり、熱源側熱交換器12及び利用側熱交換器26は、放熱又は吸熱できる構造のものであれば種類を問わず用いることができる。 In general, the heat source side heat exchanger 12 and the use side heat exchanger 26 are equipped with a blower, which often promotes condensation (heat dissipation) or evaporation (heat absorption) by blowing air. It is not limited. For example, the use-side heat exchanger 26 may be a panel heater using radiation or the like, and the heat-source-side heat exchanger 12 is a water-cooled type that moves heat by water or antifreeze. May be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating or absorbing heat.
 また、本実施の形態においては、利用側熱交換器26(すなわち、室内機2)が4つである場合を例に説明したが、個数を特に限定するものではない。 In the present embodiment, the case where there are four use-side heat exchangers 26 (that is, indoor units 2) has been described as an example, but the number is not particularly limited.
 また、熱媒体間熱交換器15として熱媒体間熱交換器15a及び熱媒体間熱交換器15bの2つである場合を例に説明したが、これに限定されるものではなく、熱媒体を冷却又は加熱できるように構成すれば、いくつ設置してもよい。 Moreover, although the case where there are two heat exchangers 15a and 15b as the heat exchanger 15 between the heat medium has been described as an example, it is not limited to this, As long as it can be cooled or heated, any number may be installed.
 また、ポンプ21a及びポンプ21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。 Also, the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
 また、本実施の形態においては、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23及び熱媒体流量調整装置25が、各利用側熱交換器26にそれぞれ1つずつ接続されている場合を例に説明したが、これに限定されるものではなく、1つの利用側熱交換器26に対し、それぞれが複数接続されていてもよい。この場合には、同じ利用側熱交換器26に接続されている、複数の第1熱媒体流路切替装置22、第2熱媒体流路開閉装置23及び熱媒体流量調整装置25をそれぞれ同じように動作させればよい。 In the present embodiment, the first heat medium flow switching device 22, the second heat medium flow switching device 23, and the heat medium flow control device 25 are connected to each use side heat exchanger 26, one by one. However, the present invention is not limited to this, and a plurality of each of the use side heat exchangers 26 may be connected. In this case, the plurality of first heat medium flow switching devices 22, the second heat medium flow switching devices 23, and the heat medium flow control devices 25 connected to the same use side heat exchanger 26 are the same. It is sufficient to operate.
 また、開閉装置40によって冷凍サイクル回路に充填される冷媒を二酸化炭素としたが、これに限定されるものではなく、HFO1234yf、R32、R290、HC系冷媒、それらの混合冷媒その他の冷媒を充填するものとしてもよいのは言うまでもない。 Moreover, although the refrigerant | coolant with which the refrigerating cycle circuit is filled with the switchgear 40 was made into the carbon dioxide, it is not limited to this, HFO1234yf, R32, R290, HC type | system | group refrigerant | coolant, those mixed refrigerant | coolants, and other refrigerant | coolants are filled. Needless to say, it can be a thing.
 さらに、前述したように、本実施の形態においては、冷凍サイクル装置として空気調和装置101を例に説明したが、これに限定されるものではなく、冷凍機、ヒートポンプ給湯機その他の冷凍サイクル装置でもよい。この場合、冷凍サイクル装置における熱源側ユニットの低圧ガス配管側に、上記のような、冷媒を充填したり、真空を引いたりするためのサービス用バルブである開閉装置40を備えるものとすればよい。 Furthermore, as described above, in the present embodiment, the air conditioning apparatus 101 has been described as an example of the refrigeration cycle apparatus. Good. In this case, the open / close device 40, which is a service valve for filling the refrigerant or drawing a vacuum, may be provided on the low-pressure gas piping side of the heat source side unit in the refrigeration cycle apparatus. .
 1 室外機、2、2a~2d 室内機、3 熱媒体変換機、4 冷媒配管、4d 分岐配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、15、15a、15b 熱媒体間熱交換器、16、16a、16b 絞り装置、17 開閉装置、18、18a~18d 第2冷媒流路切替装置、19 アキュムレーター、21、21a、21b ポンプ、22、22a~22d 第1熱媒体流路切替装置、23、23a~23d 第2熱媒体流路切替装置、25、25a~25d 熱媒体流量調整装置、26、26a~26d 利用側熱交換器、31、31a、31b 第1温度センサー、34、34a~34d 第2温度センサー、35、35a~35d 第3温度センサー、36 圧力センサー、40 開閉装置、100 空気調和装置、101 空気調和装置、200 室外機、201 圧縮機、202 油分離器、203 流路切替装置、204 熱源側熱交換器、205 アキュムレーター、206 油戻キャピラリー、207 開閉装置、207a 弁体、207b シール材、207c 流路、208 冷媒ボンベ、209 接続管、210 チャージングホース、211 プラグ、300、300a~300d 室内機、301、301a~301d 利用側熱交換器、302、302a~302d 絞り装置、400、400a、400b 配管、A 冷媒循環回路、B 熱媒体循環回路。 1 outdoor unit, 2, 2a to 2d indoor unit, 3 heat medium converter, 4 refrigerant piping, 4d branch piping, 5 heat medium piping, 6 outdoor space, 7 indoor space, 8 space, 9 building, 10 compressor, 11 First refrigerant flow switching device, 12 Heat source side heat exchanger, 15, 15a, 15b Heat exchanger between heat medium, 16, 16a, 16b Throttle device, 17 Opening / closing device, 18, 18a-18d Second refrigerant flow switching Device, 19 accumulator, 21, 21a, 21b pump, 22, 22a-22d, first heat medium flow switching device, 23, 23a-23d, second heat medium flow switching device, 25, 25a-25d, heat medium flow rate adjustment Equipment, 26, 26a-26d Use side heat exchanger, 31, 31a, 31b First temperature sensor, 34, 34a-34d Second temperature sensor, 35, 35a- 5d 3rd temperature sensor, 36 pressure sensor, 40 switchgear, 100 air conditioner, 101 air conditioner, 200 outdoor unit, 201 compressor, 202 oil separator, 203 flow path switching device, 204 heat source side heat exchanger, 205 accumulator, 206 oil return capillary, 207 opening and closing device, 207a valve body, 207b sealing material, 207c flow path, 208 refrigerant cylinder, 209 connecting pipe, 210 charging hose, 211 plug, 300, 300a to 300d indoor unit, 301 , 301a to 301d, use side heat exchangers, 302, 302a to 302d, expansion devices, 400, 400a and 400b, piping, A refrigerant circulation circuit, and B heat medium circulation circuit.

Claims (7)

  1.  圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、
     利用側熱交換器を備えた利用側ユニットと、
     冷媒を減圧させる絞り装置と、
     冷媒が流通する流路が貫通された弁体と、冷媒ボンベ等と接続管によって接続し、前記冷媒ボンベ等から冷媒が吸入される吸入口と、前記冷媒ボンベ等から前記吸入口を介して吸入された冷媒を流出する供給口と、前記接続管内の空気と共に、前記冷媒ボンベ等から供給される冷媒を放出させるパージ口と、を有した開閉装置と、
     を備え、
     少なくとも、前記圧縮機、前記熱源側熱交換器、前記絞り装置及び前記利用側熱交換器が冷媒配管によって接続され、冷媒が循環する冷凍サイクル回路が形成され、
     前記供給口は、前記冷凍サイクル回路における冷媒配管に接続され、
     前記弁体は、前記流路を切り替えることによって、前記吸入口と前記供給口とが連通して、前記冷媒ボンベ等から冷媒が前記冷凍サイクル回路に封入することが可能な連通状態、前記吸入口と前記パージ口とが連通して、前記パージ口から前記接続管内の空気と共に前記冷媒ボンベ等から供給される冷媒を放出することが可能なパージ状態、並びに、前記吸入口、前記供給口及び前記パージ口がいずれも連通しない閉止状態の3つの状態のいずれかの切り替えが可能であり、
     冷媒は、前記冷凍サイクル回路の循環経路の少なくとも一部の経路において超臨界状態で作動する冷凍サイクル装置。
    A heat source side unit including a compressor and a heat source side heat exchanger;
    A user-side unit with a user-side heat exchanger;
    A throttle device for decompressing the refrigerant;
    A valve body through which a flow path for the refrigerant passes is connected to a refrigerant cylinder or the like through a connecting pipe, and an intake port through which the refrigerant is drawn from the refrigerant cylinder or the like, and an intake from the refrigerant cylinder or the like through the intake port An opening / closing device having a supply port through which the refrigerant flows out, and a purge port for releasing the refrigerant supplied from the refrigerant cylinder together with the air in the connection pipe;
    With
    At least the compressor, the heat source side heat exchanger, the expansion device and the use side heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle circuit in which the refrigerant circulates,
    The supply port is connected to a refrigerant pipe in the refrigeration cycle circuit,
    The valve body has a communication state in which the suction port and the supply port communicate with each other by switching the flow path so that the refrigerant can be sealed in the refrigeration cycle circuit from the refrigerant cylinder or the like. And the purge port communicate with each other, a purge state in which the refrigerant supplied from the refrigerant cylinder or the like together with the air in the connection pipe can be discharged from the purge port, and the suction port, the supply port, and the It is possible to switch to any of the three closed states where none of the purge ports communicate.
    The refrigerant is a refrigeration cycle apparatus that operates in a supercritical state in at least a part of a circulation path of the refrigeration cycle circuit.
  2.  前記供給口は、前記熱源側ユニットを構成する冷媒配管に接続された請求項1記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the supply port is connected to a refrigerant pipe constituting the heat source side unit.
  3.  前記弁体は、ボール状に形成された請求項1又は請求項2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the valve body is formed in a ball shape.
  4.  前記パージ状態における冷媒が流通する流路は、前記連通状態における冷媒が流通する流路よりも小さい請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 1, wherein a flow path through which the refrigerant in the purge state flows is smaller than a flow path through which the refrigerant in the communication state flows.
  5.  前記開閉装置の前記パージ口を塞ぐプラグを備えた請求項1~請求項4のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising a plug that closes the purge port of the switchgear.
  6.  前記冷凍サイクル回路の封入させる冷媒は、二酸化炭素である請求項1~請求項5のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the refrigerant to be sealed in the refrigeration cycle circuit is carbon dioxide.
  7.  請求項1~請求項6のいずれか一項に記載の冷凍サイクル装置が備えた前記開閉装置を前記閉止状態にする工程と、
     該開閉装置の前記吸入口に前記接続管を介して前記冷媒ボンベ等を接続する工程と、
     前記開閉装置を前記パージ状態にして、前記接続管内の空気と共に前記冷媒ボンベ等から供給させる冷媒を前記開閉装置の前記パージ口から放出させる工程と、
     前記開閉装置を前記連通状態にして、冷媒を前記冷媒ボンベ等から供給させ、前記開閉装置の前記吸入口から前記供給口まで流通させて、所定量の冷媒を前記冷凍サイクル回路に封入する工程と、
     冷媒を前記冷凍サイクル回路に封入させた後、前記開閉装置を前記閉止状態にする工程と、
     を有する冷媒充填方法。
    The step of bringing the opening and closing device provided in the refrigeration cycle apparatus according to any one of claims 1 to 6 into the closed state;
    Connecting the refrigerant cylinder or the like to the suction port of the switchgear through the connection pipe;
    Setting the open / close device to the purge state, and releasing the refrigerant supplied from the refrigerant cylinder or the like together with the air in the connection pipe from the purge port of the open / close device;
    Placing the opening / closing device in the communication state, supplying a refrigerant from the refrigerant cylinder, etc., circulating the refrigerant from the suction port to the supply port of the opening / closing device, and enclosing a predetermined amount of refrigerant in the refrigeration cycle circuit; ,
    After enclosing a refrigerant in the refrigeration cycle circuit, and placing the switchgear in the closed state;
    A refrigerant filling method having
PCT/JP2010/006614 2010-11-11 2010-11-11 Refrigeration cycle device and cooling medium filling method WO2012063289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006614 WO2012063289A1 (en) 2010-11-11 2010-11-11 Refrigeration cycle device and cooling medium filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006614 WO2012063289A1 (en) 2010-11-11 2010-11-11 Refrigeration cycle device and cooling medium filling method

Publications (1)

Publication Number Publication Date
WO2012063289A1 true WO2012063289A1 (en) 2012-05-18

Family

ID=46050474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006614 WO2012063289A1 (en) 2010-11-11 2010-11-11 Refrigeration cycle device and cooling medium filling method

Country Status (1)

Country Link
WO (1) WO2012063289A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073689A1 (en) * 2012-11-09 2014-05-15 サンデン株式会社 Vehicle air conditioner
CN104006461A (en) * 2013-02-22 2014-08-27 富士通将军股份有限公司 Air conditioner outdoor unit and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143480U (en) * 1981-03-05 1982-09-08
JPS58102076A (en) * 1981-12-14 1983-06-17 三菱重工業株式会社 Service device for refrigeration system using high boiling-point refrigerant
JPS62160277U (en) * 1986-03-31 1987-10-12
JPH01112087A (en) * 1987-10-23 1989-04-28 Giichi Ochiai Ball with stem for ball valve and ball valve employing said ball
JPH07317930A (en) * 1994-05-27 1995-12-08 Nippon P-Mac Kk Three way valve having blocking mechanism, and air-conditioning equipment
JP2003193974A (en) * 2001-12-21 2003-07-09 Sanyo Electric Co Ltd Two-stage compression refrigerating machine, and filling method for refrigerating machine oil and refrigerant
JP2008241055A (en) * 2007-03-26 2008-10-09 Neriki:Kk Manifold valve for injecting refrigerant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143480U (en) * 1981-03-05 1982-09-08
JPS58102076A (en) * 1981-12-14 1983-06-17 三菱重工業株式会社 Service device for refrigeration system using high boiling-point refrigerant
JPS62160277U (en) * 1986-03-31 1987-10-12
JPH01112087A (en) * 1987-10-23 1989-04-28 Giichi Ochiai Ball with stem for ball valve and ball valve employing said ball
JPH07317930A (en) * 1994-05-27 1995-12-08 Nippon P-Mac Kk Three way valve having blocking mechanism, and air-conditioning equipment
JP2003193974A (en) * 2001-12-21 2003-07-09 Sanyo Electric Co Ltd Two-stage compression refrigerating machine, and filling method for refrigerating machine oil and refrigerant
JP2008241055A (en) * 2007-03-26 2008-10-09 Neriki:Kk Manifold valve for injecting refrigerant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073689A1 (en) * 2012-11-09 2014-05-15 サンデン株式会社 Vehicle air conditioner
JP2014094674A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioner for vehicle
CN104853942A (en) * 2012-11-09 2015-08-19 三电控股株式会社 Vehicle air conditioner
US10421337B2 (en) 2012-11-09 2019-09-24 Sanden Holdings Corporation Vehicle air conditioner
CN104006461A (en) * 2013-02-22 2014-08-27 富士通将军股份有限公司 Air conditioner outdoor unit and air conditioner
EP2770279A1 (en) * 2013-02-22 2014-08-27 Fujitsu General Limited Air conditioner outdoor unit and air conditioner

Similar Documents

Publication Publication Date Title
JP5730335B2 (en) Air conditioner
JP5752148B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
JP5921719B2 (en) Air conditioner
WO2012104890A1 (en) Air-conditioning device
WO2011099063A1 (en) Air-conditioning device
WO2014097869A1 (en) Air-conditioning device
JP5595521B2 (en) Heat pump equipment
WO2011052042A1 (en) Air conditioning device
CN103080668B (en) Air-conditioning device
WO2011030407A1 (en) Air conditioning device
WO2012104892A1 (en) Air-conditioning device
WO2013069351A1 (en) Air-conditioning apparatus
WO2011099058A1 (en) Air-conditioning device
WO2011099056A1 (en) Air conditioner
JPWO2014083652A1 (en) Air conditioner
WO2011117922A1 (en) Air conditioning device
WO2012063289A1 (en) Refrigeration cycle device and cooling medium filling method
JP6062030B2 (en) Air conditioner
WO2015079531A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP