JP2008240908A - Oil-impegnated sintered bearing - Google Patents

Oil-impegnated sintered bearing Download PDF

Info

Publication number
JP2008240908A
JP2008240908A JP2007082397A JP2007082397A JP2008240908A JP 2008240908 A JP2008240908 A JP 2008240908A JP 2007082397 A JP2007082397 A JP 2007082397A JP 2007082397 A JP2007082397 A JP 2007082397A JP 2008240908 A JP2008240908 A JP 2008240908A
Authority
JP
Japan
Prior art keywords
bearing
diameter
sintered
oil
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007082397A
Other languages
Japanese (ja)
Inventor
Yosuke Naotsuka
洋介 猶塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007082397A priority Critical patent/JP2008240908A/en
Publication of JP2008240908A publication Critical patent/JP2008240908A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil-impregnated sintered bearing capable of alleviating concentrated stress occurring on a bearing face by avoiding local contact with a shaft and forming an excellent oil film regardless of the supported position of the shaft. <P>SOLUTION: On one side in the axial direction of the bearing face of the sintered oil retaining bearing, a first enlarged diameter face 5 is provided with the size of its inner diameter smoothly enlarging toward one end face of the sintered oil retaining bearing. On the other side in the axial direction, a second enlarged diameter face 6 is provided with the size of its inner diameter smoothly enlarging toward the other end face of the oil-impregnated sintered bearing. The bearing face is provided with a plurality of surface opening holes 8, and accompanying relative rotation of the shaft, lubricating oil retained in an inner air hole 3 oozes out from the surface opening holes 8 of the bearing face opposing an outer peripheral face of the shaft. In the first enlarged diameter face 5 positioned at one side in the axial direction of the bearing face, the percentage of the surface opening holes 8 on the surface (so called surface aperture rate) becomes gradually smaller from a cylindrical face (small diameter) toward an end face (large diameter) side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結金属からなる多孔質体に潤滑剤(潤滑油や潤滑グリースを含む)を含浸させた焼結含油軸受に関するものである。   The present invention relates to a sintered oil-impregnated bearing in which a porous body made of a sintered metal is impregnated with a lubricant (including lubricating oil and lubricating grease).

焼結含油軸受は、内周に配した軸との相対回転に伴い、内部に含浸された潤滑油が軸との摺動部に滲み出して油膜を形成し、この油膜によって軸を支持するものである。このような焼結含油軸受は、使用時の静粛性に優れ、また無給油で長期間使用可能であること等から、各種駆動機構、あるいは動力伝達機構の軸受部品として広範に使用されている。その一例として、車両のドアパネルに設けられるウィンドウガラスを開閉するためのパワーウィンドウ用動力伝達機構に組み込まれて使用される焼結含油軸受が知られている(例えば、特許文献1を参照)。   Sintered oil-impregnated bearings are those in which the lubricating oil impregnated inside exudes to the sliding part with the shaft as a result of relative rotation with the shaft arranged on the inner periphery to form an oil film, and this oil film supports the shaft It is. Such sintered oil-impregnated bearings are widely used as bearing parts of various drive mechanisms or power transmission mechanisms because they have excellent quietness during use and can be used without lubrication for a long period of time. As one example, a sintered oil-impregnated bearing used in a power window power transmission mechanism for opening and closing a window glass provided on a door panel of a vehicle is known (see, for example, Patent Document 1).

例えば、上記パワーウィンドウ用動力伝達機構の使用時、焼結含油軸受と軸との摺動部に、焼結含油軸受の内部に含浸された潤滑油が滲み出し、滲み出た潤滑油により油膜が形成される。これにより、軸が焼結含油軸受に対して油膜を介して支持され、両部材間でスムーズな摺動状態が得られる。   For example, when the power transmission mechanism for a power window is used, the lubricating oil impregnated in the sintered oil-impregnated bearing exudes into the sliding portion between the sintered oil-impregnated bearing and the shaft, and the oil film is formed by the exuded lubricating oil. It is formed. As a result, the shaft is supported on the sintered oil-impregnated bearing through the oil film, and a smooth sliding state is obtained between both members.

この種の焼結含油軸受は、通常、その内周に設けられた軸受面の内径寸法を軸方向全長にわたって一定とし、軸を軸受面の全面で摺動支持するようにしている。しかしながら、上記の動力伝達機構においては、その構造上、軸が軸線に直交する向きの荷重(せん断荷重)を受け、たわみを生じる。そのため、軸の外周面が軸受面の軸方向端部で局所的に摺動し、この摺動領域に応力集中が生じる可能性がある。この種の応力集中は、軸受面における含油焼結軸受の摩耗や、異常音の発生など焼結含油軸受に好ましくない影響を及ぼす可能性がある。   In this type of sintered oil-impregnated bearing, the inner diameter of the bearing surface provided on the inner periphery thereof is usually constant over the entire length in the axial direction, and the shaft is slidably supported over the entire surface of the bearing surface. However, in the power transmission mechanism described above, due to its structure, the shaft receives a load (shear load) in a direction perpendicular to the axis, and causes deflection. Therefore, there is a possibility that the outer peripheral surface of the shaft slides locally at the axial end portion of the bearing surface and stress concentration occurs in this sliding region. This type of stress concentration may adversely affect the sintered oil-impregnated bearing, such as wear of the oil-impregnated sintered bearing on the bearing surface and generation of abnormal noise.

例えば、特開2004−308684号公報(特許文献2)には、内周の軸方向両端に、互いに離隔する方向に拡径するテーパ状の内壁部を形成した焼結含油軸受が記載されている。このテーパ状の内壁部は、回転軸が大きなせん断荷重を受けて軸受内部で傾斜した場合、回転軸の表面がテーパ状内壁部に対して線で接触するように形成されたものであり、その傾斜角は、通常3°以下に設定される。また、テーパ状内壁部の表面に残る気孔が、中央側の内壁部の表面に残る気孔よりも少なく、かつ小さいものが開示されている。
特開2003−247548号公報 特開2004−308684号公報
For example, Japanese Unexamined Patent Application Publication No. 2004-308684 (Patent Document 2) describes a sintered oil-impregnated bearing in which tapered inner wall portions that expand in the direction away from each other are formed at both axial ends of the inner periphery. . The tapered inner wall portion is formed so that the surface of the rotating shaft is in line contact with the tapered inner wall portion when the rotating shaft is subjected to a large shear load and tilted inside the bearing. The inclination angle is usually set to 3 ° or less. Further, there is disclosed a technique in which pores remaining on the surface of the tapered inner wall portion are smaller and smaller than pores remaining on the surface of the central inner wall portion.
JP 2003-247548 A JP 2004-308684 A

しかしながら、引用文献2に開示の軸受だと、軸の傾斜角に一致する傾斜面(テーパ面)でなければ、実質的にテーパ面のみで受けることは難しく、例えば円筒面とテーパ面との境界部(角部)で受けることになるため、十分な応力緩和を図ることが難しい。   However, in the case of the bearing disclosed in the cited document 2, it is difficult to substantially receive only the tapered surface unless the inclined surface (tapered surface) matches the inclination angle of the shaft. For example, the boundary between the cylindrical surface and the tapered surface Since it is received by the part (corner part), it is difficult to achieve sufficient stress relaxation.

また、上述の如く、たわんだ状態の軸を拡径部で受ける場合、軸が拡径部の軸方向一部領域で支持されることになるため、軸受中央側で支持する場合よりも良好な油膜の形成が必要となる。   Further, as described above, when the bent shaft is received by the enlarged diameter portion, the shaft is supported in a partial region in the axial direction of the enlarged diameter portion. It is necessary to form an oil film.

特許文献2には、その表面に残る気孔を、中央側の内壁部の表面に残る気孔よりも少なく、かつ小さくして軸受中央より焼結密度を高めたテーパ状内壁部が開示されているが、これら焼結密度の差を有する構成は、軸を軸受面の中央側で受ける際、中央側からテーパ状内壁部の側に押し出された潤滑油で軸の芯ずれ(振れ)を防止することを狙ったものである。そのため、たわみを有する軸をテーパ状内壁部で受ける場合、支持領域あるいはその近傍における油の滲み出しが不十分となり、当該軸とテーパ状内壁部との間に十分な大きさの油膜を形成できない恐れがある。   Patent Document 2 discloses a tapered inner wall portion in which the pores remaining on the surface thereof are smaller than the pores remaining on the surface of the inner wall portion on the center side and are made smaller to increase the sintered density from the center of the bearing. The structure having a difference in sintered density prevents the shaft from being misaligned (runout) with the lubricating oil pushed from the center side to the tapered inner wall side when the shaft is received at the center side of the bearing surface. Is aimed at. Therefore, when a shaft having a deflection is received by the tapered inner wall portion, the oil oozes out in the supporting region or in the vicinity thereof, and an oil film having a sufficient size cannot be formed between the shaft and the tapered inner wall portion. There is a fear.

以上の事情に鑑み、本発明では、軸との局所的な接触を避けて、軸受面に生じる応力集中の緩和を図り、かつその支持位置によらず良好な油膜の形成を図り得る焼結含油軸受を提供することを技術的課題とする。   In view of the above circumstances, the present invention avoids local contact with the shaft, reduces stress concentration occurring on the bearing surface, and can form a good oil film regardless of the support position. Providing a bearing is a technical issue.

前記課題を解決するため、本発明は、焼結金属製の多孔質体でその内部気孔に潤滑流体が含浸されているもので、内周に軸受面が設けられ、軸受面の少なくとも一部が、軸受面の軸方向一端に向けて滑らかに拡径する拡径面で構成され、拡径面の表面開孔率がその大径側に向かうにつれて減少するように構成されている焼結含油軸受を提供する。   In order to solve the above-mentioned problems, the present invention is a porous body made of sintered metal, in which internal pores are impregnated with a lubricating fluid, a bearing surface is provided on the inner periphery, and at least a part of the bearing surface is provided. A sintered oil-impregnated bearing configured with a diameter-enlarged surface that smoothly expands toward one end in the axial direction of the bearing surface, and configured such that the surface area ratio of the expanded-diameter surface decreases toward the larger diameter side. I will provide a.

このように、本発明では、軸受面の少なくとも一部を、軸受面の軸方向一端に向けて滑らかに拡径する面で構成したので、軸との間で局所的に摺動接触する領域が除かれる。そのため、たわみを生じた軸を、そのたわみの如何によらず滑らかな面で受けることができ、応力集中や局所摩耗等の不具合を可及的に解消することができる。   Thus, in the present invention, since at least a part of the bearing surface is configured with a surface that smoothly expands toward one end in the axial direction of the bearing surface, there is a region that is locally in sliding contact with the shaft. Excluded. Therefore, the shaft causing the deflection can be received on a smooth surface regardless of the deflection, and problems such as stress concentration and local wear can be eliminated as much as possible.

また、併せて本発明では、拡径面の表面開孔率がその小径側から大径側に向かうにつれて減少する構成とした。この構成によれば、たわんだ状態の軸を拡径面で支持する場合、実質的に軸を支持する領域よりも小径側(軸受中央側)では潤滑油の滲み出しが良好となる。特に、軸受中央側で滲み出た潤滑油は、軸の回転に伴い生じる遠心力で実質的な支持領域へと供給される。これに対し、支持領域より軸受外側では、潤滑油の引き込み作用が抑えられるので油膜の維持が容易となる。また、潤滑油の滲み出しが少ないことから油膜形成に関与しない潤滑油の量を少なくでき、これにより潤滑油の漏れ出しを抑制することができる。以上の作用より、軸の支持位置によらず、実質的な軸受部に潤沢な油を供給して、当該軸受部における良好な油膜の形成および維持を図ることができる。また、潤滑油の利用効率あるいは循環効率を高めて、優れた軸受性能を発揮することができる。   In addition, according to the present invention, the surface area ratio of the diameter-expanded surface is reduced from the smaller diameter side toward the larger diameter side. According to this configuration, when the shaft in the bent state is supported by the diameter-expanded surface, the lubricating oil oozes better on the smaller diameter side (bearing center side) than the region that substantially supports the shaft. In particular, the lubricating oil that has oozed out on the center side of the bearing is supplied to the substantial support region by the centrifugal force generated as the shaft rotates. On the other hand, the oil film can be easily maintained because the action of the lubricating oil is suppressed outside the bearing area from the support region. Moreover, since there is little oozing-out of lubricating oil, the quantity of lubricating oil which does not participate in oil film formation can be reduced, and thereby leakage of lubricating oil can be suppressed. Due to the above-described action, abundant oil can be supplied to the substantial bearing portion regardless of the shaft support position, and a good oil film can be formed and maintained in the bearing portion. Further, it is possible to improve the utilization efficiency or the circulation efficiency of the lubricating oil and to exhibit excellent bearing performance.

上記構成の拡径面は、例えば以下の方法で形成することが可能である。すなわち、前記課題を解決するための手段として、本発明は、焼結金属製の多孔質体でその内部気孔に潤滑流体が含浸されているもので、内周に軸受面が設けられ、軸受面の少なくとも一部が、軸受面の軸方向一端に向けて滑らかに拡径する拡径面で構成される焼結含油軸受の製造方法であって、多孔質体の内周にピンを挿入すると共に、ピンの軸を多孔質体の中心軸に対して傾斜させて多孔質体の内周の一部を加圧し、かつ、ピンの円周方向への移動により、加圧領域を多孔質体の内周に沿って移動させることで、拡径面を形成する焼結含油軸受の製造方法を提供する。   The enlarged surface having the above-described configuration can be formed by, for example, the following method. That is, as a means for solving the above-mentioned problems, the present invention is a porous body made of sintered metal, in which internal pores are impregnated with a lubricating fluid, a bearing surface is provided on the inner periphery, and the bearing surface Is a method for manufacturing a sintered oil-impregnated bearing including a diameter-enlarged surface that smoothly expands toward one end in the axial direction of the bearing surface, and inserting a pin into the inner periphery of the porous body , By inclining the pin axis with respect to the central axis of the porous body to press a part of the inner periphery of the porous body, and by moving the pin in the circumferential direction, Provided is a method for manufacturing a sintered oil-impregnated bearing that forms a diameter-expanded surface by moving along an inner periphery.

上述のように、ピンを傾けて焼結多孔質体の内周を加圧すると共に、かかる加圧領域をピンの円周方向への移動で多孔質体の内周に沿って移動させることで、多孔質体の内周に、ピンの傾斜による加圧力と、ピンの回転による摩擦力とが付与される。このうち、ピンの傾斜による加圧力で当該内周面を圧し拡げることができ、かつ、ピンの回転による摩擦力で微小な開孔を潰して、あるいは比較的大きい開孔を小さくして、表面開孔率を減少させることができる。特に、ピンの回転を伴って多孔質体の内周面を圧し拡げるようにすることで、圧し拡げる量の多い大径側ほど表面開孔を多く潰すことができる。また、上述の動作を、ピンの自転を伴って行うことで、表面開孔の擦り潰し効果を一層高めることができ好適である。   As described above, the pin is tilted to pressurize the inner periphery of the sintered porous body, and the pressurizing region is moved along the inner periphery of the porous body by moving the pin in the circumferential direction. A pressure force due to the inclination of the pin and a frictional force due to the rotation of the pin are applied to the inner periphery of the porous body. Of these, the inner peripheral surface can be pressed and expanded by the pressure applied by the inclination of the pin, and the small opening can be crushed by the frictional force generated by the rotation of the pin, or the relatively large opening can be reduced, and the surface The hole area ratio can be reduced. In particular, by pressing and expanding the inner peripheral surface of the porous body with the rotation of the pin, the surface opening can be crushed more on the large diameter side where the amount of pressure expansion is larger. Moreover, it is preferable that the above-described operation is performed with the rotation of the pin, so that the effect of crushing the surface openings can be further enhanced.

拡径面は、例えばその一部又は全面を、含軸断面円弧状をなしその軸線側に膨らみをもった曲面で構成することができる。あるいは、その一部又は全面を、含軸断面テーパ状をなす面で構成することができる。このうち、断面円弧状の曲面は、例えば、上述の如くピンを傾斜させていきながら、ピンを多孔質体の内周に沿って移動させ多孔質体の内周面を圧し拡げると共に、かかる動作を当該ピンを引き抜きながら行うことで形成することができる。また、断面テーパ状をなす面であれば、上述の動作を、多孔質体を貫通する位置までピンを挿入した状態で行うことで形成することができる。なお、これら拡径面と、この拡径面に軸受中央側で隣接する面とがある場合には、これらの面を滑らかにつなげた構成とし、軸受面をその軸方向全長にわたって滑らかな形状とすることが肝要である。   For example, a part or the whole of the diameter-enlarged surface can be configured by a curved surface having an arc-shaped cross section including a shaft and bulging on the axis side. Or the one part or the whole surface can be comprised by the surface which makes an axial cross section taper shape. Of these, the curved surface having an arcuate cross-section, for example, moves the pin along the inner periphery of the porous body while inclining the pin as described above, presses and expands the inner peripheral surface of the porous body, and the operation Can be formed by pulling out the pin. Moreover, if it is a surface which makes a cross-sectional taper shape, it can form by performing the above-mentioned operation | movement in the state which inserted the pin to the position which penetrates a porous body. In addition, when there are these enlarged diameter surfaces and a surface adjacent to the enlarged diameter surface on the bearing center side, these surfaces are smoothly connected, and the bearing surface has a smooth shape over its entire axial length. It is important to do.

また、軸受面は、上述の拡径面に加え、さらに、軸受面の軸方向他端に向けて滑らかに拡径する第2の拡径面を有するものであってもよい。かかる構成によれば、当該軸受を貫通した状態の軸を回転支持する場合であっても、その傾斜方向(たわみ方向)によらず、常に何れか一方の拡径面で支持することが可能となる。   The bearing surface may have a second diameter-expanding surface that smoothly expands toward the other axial end of the bearing surface in addition to the above-described diameter-expanding surface. According to such a configuration, even when the shaft passing through the bearing is rotationally supported, it can always be supported by any one of the expanded surfaces regardless of the inclination direction (deflection direction). Become.

以上より、本発明によれば、軸との局所的な接触を避けて、軸受面に生じる応力集中の緩和を図り、かつ、その支持位置によらず良好な油膜の形成を図り得る焼結含油軸受を提供することができる。   As described above, according to the present invention, the sintered oil impregnation capable of avoiding local contact with the shaft, mitigating stress concentration generated on the bearing surface, and forming a good oil film regardless of the support position. A bearing can be provided.

以下、本発明の一実施形態を図1〜図5に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る焼結含油軸受1を示している。同図における焼結含油軸受1は円筒状の多孔質体であって、焼結金属で形成されている。また、焼結含油軸受1は多数の内部気孔3を有し、これら内部気孔3に潤滑油を含浸した構成をなす。焼結含油軸受1の内周には、軸2(同図中1点鎖線)の外周面と摺動し、軸2を回転支持するための軸受面4が設けられる。   FIG. 1 shows a sintered oil-impregnated bearing 1 according to an embodiment of the present invention. The sintered oil-impregnated bearing 1 in the figure is a cylindrical porous body and is made of sintered metal. The sintered oil-impregnated bearing 1 has a large number of internal pores 3, and the internal pores 3 are impregnated with lubricating oil. On the inner periphery of the sintered oil-impregnated bearing 1, there is provided a bearing surface 4 for slidingly supporting the shaft 2 by sliding with the outer peripheral surface of the shaft 2 (one-dot chain line in the figure).

軸受面4の軸方向一方側には、焼結含油軸受1の一端面1aに向けて滑らかに拡径する第1の拡径面5が設けられると共に、軸方向他方側には、焼結含油軸受1の他端面1bに向けて滑らかに拡径する第2の拡径面6が設けられている。第1および第2の拡径面5、6は何れも含軸断面円弧状をなし、その軸線側に膨らみをもった環状の曲面で構成されている。また、双方の拡径面5、6の間には、その中心軸を拡径面5、6の中心軸と一致させた径一定の円筒面7が設けられている。従い、この実施形態では、軸受面4は、第1の拡径面5と第2の拡径面6、およびこれら拡径面5、6をつなぐ円筒面7とで構成される。そのため、上記構成の軸受面4は、その軸方向全長にわたって滑らかにつながった形状をなす。   On one side of the bearing surface 4 in the axial direction, there is provided a first diameter-expanded surface 5 that smoothly expands toward the one end surface 1a of the sintered oil-impregnated bearing 1, and on the other side in the axial direction, a sintered oil-impregnated oil. A second diameter-expanding surface 6 that smoothly increases the diameter toward the other end surface 1 b of the bearing 1 is provided. Each of the first and second diameter-expanded surfaces 5 and 6 has an arcuate cross-sectional arc shape, and is formed of an annular curved surface having a bulge on the axis side. In addition, a cylindrical surface 7 having a constant diameter is provided between both the enlarged diameter surfaces 5 and 6, with the central axis thereof coinciding with the central axis of the enlarged diameter surfaces 5 and 6. Therefore, in this embodiment, the bearing surface 4 is composed of the first diameter-expanded surface 5 and the second diameter-expanded surface 6 and the cylindrical surface 7 that connects these diameter-expanded surfaces 5 and 6. Therefore, the bearing surface 4 having the above-described configuration has a shape that is smoothly connected over the entire axial length thereof.

図2は、図1における領域Aを拡大して示した図である。同図に示すように、軸受面4には多数の表面開孔8があり、軸2の相対回転に伴い、軸2の外周面と対向する軸受面4の表面開孔8を介して内部気孔3に保持されている潤滑油が滲み出るようになっている。また、図2に示すように、軸受面4の軸方向一方に位置する第1の拡径面5においては、表面開孔8の分布態様が、軸受中央に位置する円筒面7とは異なっている。すなわち、図2に示すように、表面開孔8の拡径面5に占める面積の割合(いわゆる表面開孔率)が、円筒面7側から端面1a側に向かうにつれて小さくなっている。また、端面1aの側に向かうにつれて表面開孔8の数が減少している。特に、比較的開孔径の小さい表面開孔8aの割合が減少している。第2の拡径面6における表面開孔8の分布態様も、第1の拡径面5と同様である。   FIG. 2 is an enlarged view of region A in FIG. As shown in the figure, the bearing surface 4 has a large number of surface apertures 8, and the internal pores through the surface apertures 8 of the bearing surface 4 facing the outer peripheral surface of the shaft 2 as the shaft 2 rotates relative to each other. The lubricating oil held in 3 oozes out. Further, as shown in FIG. 2, in the first diameter-expanded surface 5 located on one axial side of the bearing surface 4, the distribution of the surface openings 8 is different from the cylindrical surface 7 located in the center of the bearing. Yes. That is, as shown in FIG. 2, the ratio of the area occupied by the surface opening 8 to the diameter-expanded surface 5 (so-called surface opening ratio) decreases from the cylindrical surface 7 side toward the end surface 1 a side. Moreover, the number of the surface apertures 8 is decreasing toward the end surface 1a side. In particular, the ratio of the surface openings 8a having a relatively small opening diameter is reduced. The distribution mode of the surface apertures 8 on the second enlarged diameter surface 6 is also the same as that of the first enlarged diameter surface 5.

上記構成の焼結含油軸受1において、軸2の相対回転に伴い、内部気孔3に保持された潤滑油が表面開孔8を介して軸受面4上に滲み出す。これにより、軸2と焼結含油軸受1との間に潤滑油の膜が形成され、この潤滑油膜を介して軸2が回転自在に支持される。図1中、1点鎖線に示すように、軸2の回転軸が焼結含油軸受1の中心軸と平行である場合、軸2は、軸受面4のうち軸方向中央に位置する円筒面7上に滲み出た潤滑油の膜により回転支持される。   In the sintered oil-impregnated bearing 1 having the above-described configuration, the lubricating oil retained in the internal pores 3 oozes out onto the bearing surface 4 through the surface openings 8 with the relative rotation of the shaft 2. As a result, a lubricating oil film is formed between the shaft 2 and the sintered oil-impregnated bearing 1, and the shaft 2 is rotatably supported via the lubricating oil film. In FIG. 1, when the rotation axis of the shaft 2 is parallel to the central axis of the sintered oil-impregnated bearing 1, the shaft 2 is a cylindrical surface 7 positioned at the center in the axial direction of the bearing surface 4. It is rotationally supported by a lubricating oil film that oozes out.

また、図示は省略するが、軸2の回転軸が焼結含油軸受1の中心軸に対して傾いた状態である場合、軸2は、軸受面4のうち、その軸方向端部に向かうにつれて滑らかに拡径する第1の拡径面5と第2の拡径面6とによって支持される。そのため、軸2の傾斜の程度によらず、軸受面4と軸2とが局所的に摺動接触する事態を避けて、良好かつ安定した摺動支持を実現することができる。   Moreover, although illustration is abbreviate | omitted, when the rotating shaft of the axis | shaft 2 is in the state inclined with respect to the center axis | shaft of the sintered oil-impregnated bearing 1, the axis | shaft 2 goes to the axial direction edge part among the bearing surfaces 4. It is supported by the first expanded surface 5 and the second expanded surface 6 that expand smoothly. For this reason, regardless of the degree of inclination of the shaft 2, it is possible to avoid a situation in which the bearing surface 4 and the shaft 2 are in sliding contact with each other and to realize good and stable sliding support.

また、この実施形態では、拡径面5、6の表面開孔率が各々の小径側から大径側に向かうにつれて減少するように構成した。かかる構成によれば、拡径面5、6でたわみを有する軸2を支持する場合であっても、実質的に軸2を支持する領域より軸受中央側(円筒面7の側)では潤滑油の滲み出しが良好となり、かつ滲み出た潤滑油を、軸2の回転に伴い生じる遠心力で支持領域へと積極的に供給することができる。その一方で、軸受外側では潤滑油の引き込みが少ないため、実質的な支持領域において油膜の形成を良好に図ることができる。また、当該支持領域より軸受外側(端面1a、1bの側)では、潤滑油の滲み出しが少ないことから、潤滑油の漏れ出しを可及的に抑えることができる。よって、非常に効率よく潤滑油の利用あるいは循環を図ることができる。   Moreover, in this embodiment, it comprised so that the surface open area ratio of the enlarged diameter surfaces 5 and 6 might decrease as it goes to the large diameter side from each small diameter side. According to such a configuration, even when the shaft 2 having the deflection is supported by the enlarged diameter surfaces 5 and 6, the lubricating oil is substantially closer to the bearing center side (the cylindrical surface 7 side) than the region supporting the shaft 2. As a result, the lubricating oil that has oozed out can be positively supplied to the support region by the centrifugal force generated as the shaft 2 rotates. On the other hand, since there is little drawing of the lubricating oil on the outside of the bearing, the oil film can be favorably formed in the substantial support region. Further, since the lubricant does not ooze out on the bearing outer side (end surfaces 1a, 1b side) from the support region, the leakage of the lubricant can be suppressed as much as possible. Therefore, utilization or circulation of lubricating oil can be achieved very efficiently.

また、この実施形態では、拡径面5、6をそれぞれ含軸断面円弧状をなし、その軸線側に膨らみをもった環状の曲面で構成した。そのため、軸2の傾斜角度によらず、常に一定の摺動面積(支持面積)を確保することができる。また、軸受面4の一方側に配した拡径面(例えば第2の拡径面6)では、軸2をそのたわみ形状に倣って受けることができる。これにより、支持面積を確保して、軸とのなじみ性を高めると共に、面圧の低下および摺動摩耗の低減を図ることができる。   Further, in this embodiment, the diameter-enlarged surfaces 5 and 6 are each formed of an annular curved surface having an axial cross-section arc shape and bulging on the axis side. Therefore, a constant sliding area (supporting area) can always be ensured regardless of the inclination angle of the shaft 2. In addition, the diameter-enlarged surface (for example, the second diameter-enlarged surface 6) disposed on one side of the bearing surface 4 can receive the shaft 2 following its deflection shape. As a result, it is possible to secure a support area, improve compatibility with the shaft, and reduce the surface pressure and sliding wear.

上記構成の焼結含油軸受1は、例えば以下の工程を経て製造される。   The sintered oil-impregnated bearing 1 having the above-described configuration is manufactured through the following steps, for example.

具体的には、焼結含油軸受1は、原料となる金属粉末を圧粉成形する工程(a)、圧粉成形体を焼結する工程(b)、焼結体にサイジングを施す工程(c)、拡径面を形成する工程(d)、および潤滑油を含浸する工程(e)とを経て製造される。ここでは、特に拡径面形成工程(d)を中心に説明する。   Specifically, the sintered oil-impregnated bearing 1 includes a step (a) of compacting metal powder as a raw material, a step (b) of sintering a compact, and a step of sizing the sintered body (c ), A step (d) of forming an enlarged surface, and a step (e) of impregnating the lubricating oil. Here, it demonstrates centering around a diameter-expansion surface formation process (d) especially.

まず、原料となる金属粉末(例えばCu系粉末やFe系粉末など。合金粉末やこれら異種金属の混合粉末を含む。)を成形金型内部に充填し、これを圧縮成形することで完成品に近い形状の圧粉成形体を得る(圧粉成形工程(a))。次に、工程(a)で得られた圧粉成形体を、原料となる金属粉末の焼結温度まで加熱することで焼結し、焼結多孔質体を得る(焼結工程(b))。その後、工程(b)で得られた焼結多孔質体に対し、適当な金型を用いて圧迫力を付与することで、当該焼結多孔質体を所定形状に整形すると共に、その寸法(例えば外径寸法や軸方向寸法)を所定範囲内に仕上げる(サイジング工程(c))。   First, metal powder (for example, Cu-based powder, Fe-based powder, etc., including alloy powder and mixed powders of these different metals) is filled into the molding die, and this is compression molded into a finished product. A compact molded body having a close shape is obtained (compact molding step (a)). Next, the green compact obtained in the step (a) is sintered by heating to the sintering temperature of the metal powder as a raw material to obtain a sintered porous body (sintering step (b)). . Thereafter, by applying a pressing force to the sintered porous body obtained in the step (b) using an appropriate mold, the sintered porous body is shaped into a predetermined shape and its dimensions ( For example, the outer diameter dimension and the axial dimension) are finished within a predetermined range (sizing step (c)).

上記(a)〜(c)の工程を経て、拡径面5、6を除き完成品の形状(図1に示す形状)に仕上がった焼結多孔質体の内周面に、成形用のピンを挿入し、このピンを用いて焼結多孔質体に摩擦力および加圧力を付与することで、焼結多孔質体に拡径面5、6を形成する(拡径面形成工程(d))。   A pin for molding is formed on the inner peripheral surface of the sintered porous body finished in the shape of the finished product (the shape shown in FIG. 1) except for the diameter-enlarged surfaces 5 and 6 through the steps (a) to (c). Are inserted, and by applying friction force and pressure to the sintered porous body using this pin, the enlarged diameter surfaces 5 and 6 are formed on the sintered porous body (expanded surface forming step (d)). ).

図3は、同工程を概念的に示すもので、焼結多孔質体11はその外周に位置するダイなどの治具12により保持されている。焼結多孔質体11の軸方向一方側には、第1の拡径面5を成形するためのピン13が配置される。このピン13は、焼結多孔質体11の内周に挿入可能な大きさで、自らの中心軸ax1を回転軸として回転(自転)可能に構成されると共に、焼結多孔質体11の中心軸ax2を回転軸として回転(公転)可能なように構成されている。この実施形態では、先のサイジング工程(c)で焼結多孔質体11の外径寸法が仕上げられているので、かかる焼結多孔質体11を内周に保持する治具12の中心軸をピン13の中心軸ax1に一致させることで、結果的に焼結多孔質体11の中心軸ax2まわりにピン13を回転(公転)できるようになっている。   FIG. 3 conceptually shows the same process, and the sintered porous body 11 is held by a jig 12 such as a die located on the outer periphery thereof. On one side of the sintered porous body 11 in the axial direction, a pin 13 for forming the first diameter-expanded surface 5 is disposed. The pin 13 is sized to be inserted into the inner periphery of the sintered porous body 11 and is configured to rotate (rotate) about its own central axis ax1 as a rotation axis. It is configured to be able to rotate (revolve) with the axis ax2 as a rotation axis. In this embodiment, since the outer diameter of the sintered porous body 11 is finished in the previous sizing step (c), the central axis of the jig 12 that holds the sintered porous body 11 on the inner periphery is used. By matching with the central axis ax1 of the pin 13, the pin 13 can be rotated (revolved) around the central axis ax2 of the sintered porous body 11 as a result.

まず、図3に示すように、ピン13を焼結多孔質体11の内周に挿入する。この実施形態のように、図1に例示の焼結含油軸受1を形成する場合、その軸受面4のうち径一定の円筒面7と第1の拡径面5(あるいは第2の拡径面6)との境界となる位置までピン13を挿入する。そして、ピン13を徐々に図3中矢印の向きに傾けていき、かかるピン13を焼結多孔質体11の内周面に押し付ける(加圧する)。   First, as shown in FIG. 3, the pin 13 is inserted into the inner periphery of the sintered porous body 11. When the sintered oil-impregnated bearing 1 illustrated in FIG. 1 is formed as in this embodiment, the bearing surface 4 has a constant diameter cylindrical surface 7 and a first expanded surface 5 (or a second expanded surface). 6) The pin 13 is inserted to a position that becomes a boundary with 6). Then, the pin 13 is gradually tilted in the direction of the arrow in FIG. 3, and the pin 13 is pressed (pressurized) against the inner peripheral surface of the sintered porous body 11.

そして、上述の動作で生じる加圧領域を、図4に示すように、焼結多孔質体11の内周に沿って移動させることで、言い換えると、ピン13を焼結多孔質体11の中心軸ax2まわりに回転(公転)させることで、全周にわたって焼結多孔質体11の内周面が圧し拡げられると共に、その表面開孔が擦り潰される。この実施形態では、図3や図4に示すように、ピン13自らの中心軸ax1まわりの回転(自転)を伴って、焼結多孔質体11の内周を圧し拡げるようにしているので、ピン13の自転による表面開孔の擦り潰しが加わる。   Then, as shown in FIG. 4, the pressure region generated by the above operation is moved along the inner periphery of the sintered porous body 11, in other words, the pin 13 is centered on the sintered porous body 11. By rotating (revolving) around the axis ax2, the inner peripheral surface of the sintered porous body 11 is pressed and expanded over the entire periphery, and the surface opening is crushed. In this embodiment, as shown in FIG. 3 and FIG. 4, the rotation of the pin 13 itself around the central axis ax1 (rotation) is performed, so that the inner periphery of the sintered porous body 11 is pressed and expanded. The surface openings are crushed by the rotation of the pins 13.

そして、上述の加工を、図5に示すように、ピン13の傾斜角を大きくしていき(θ2>θ1)、かつ、ピン13をその中心軸ax1方向に沿って引き抜きつつ行うことで、焼結多孔質体11の端面に向かうにつれて滑らかに拡径する面、ここでは、図1に示すように、含軸断面円弧状をなす第1の拡径面5が形成される。上述の方法では、第1の拡径面5の大径側ほど多くの回転力(摩擦力)を受けることで、大径側に向かうほどその表面開孔が多く潰されることになる。従い、その表面開孔分布は図2のような分布態様を示す。   Then, as shown in FIG. 5, the above-described processing is performed by increasing the inclination angle of the pin 13 (θ2> θ1) and pulling the pin 13 along its central axis ax1 direction. As shown in FIG. 1, a first diameter-expanding surface 5 having an axial cross-section arc shape is formed as the diameter gradually increases toward the end face of the porous body 11. In the above-described method, a larger rotational force (frictional force) is received on the larger diameter side of the first diameter-expanded surface 5, and more surface openings are crushed toward the larger diameter side. Therefore, the surface opening distribution shows a distribution mode as shown in FIG.

以上の作業を焼結多孔質体11内周面の他方側に対しても行うことで、図1に示すように、互いに離隔する向きに拡径する第1の拡径面5および第2の拡径面6を有する軸受面4を形成することができる。なお、かかる作業は、焼結多孔質体11あるいは焼結多孔質体11を保持する治具12を上下反転させて行ってもよいし、一旦引き抜いたピン13を上下反転させて行ってもよい。あるいは、第1の拡径面5を形成したピン13とは別のピンを焼結多孔質体11の下方から挿入して第2の拡径面6を形成してもよい。   By performing the above operation on the other side of the inner peripheral surface of the sintered porous body 11, as shown in FIG. A bearing surface 4 having an enlarged diameter surface 6 can be formed. This operation may be performed by inverting the sintered porous body 11 or the jig 12 holding the sintered porous body 11 upside down, or by inverting the pin 13 once pulled up and down. . Alternatively, the second enlarged diameter surface 6 may be formed by inserting a pin different from the pin 13 on which the first enlarged diameter surface 5 is formed from below the sintered porous body 11.

また、この実施形態のように、各拡径面5、6の間に径一定の円筒面7を有する場合、拡径面5、6の成形前後に、ピン13を焼結多孔質体の中心軸ax2と平行に配した状態で、かかる中心軸ax2を中心軸として回転させることで、外周面とその中心軸を一致させた円筒面7を形成することができる。また、図1に示すチャンファ部1cは、予め圧粉成形工程(a)又はサイジング工程(c)にて成形しておくことができる。この場合、ピン13による拡径面5、6の形成を考慮して、予めチャンファ部1cを大きめに形成しておき、最終的にその一部を残すようにしても構わない。また、加工上特に問題がないのであれば、上述の拡径面形成工程を、サイジング工程(c)と同時に行うようにしても構わない。   Further, when the cylindrical surface 7 having a constant diameter is provided between each of the enlarged diameter surfaces 5 and 6 as in this embodiment, the pin 13 is placed at the center of the sintered porous body before and after the formation of the enlarged diameter surfaces 5 and 6. In a state of being arranged in parallel with the axis ax2, by rotating the central axis ax2 as the central axis, it is possible to form the cylindrical surface 7 in which the outer peripheral surface coincides with the central axis. Moreover, the chamfer part 1c shown in FIG. 1 can be previously molded in the compacting process (a) or the sizing process (c). In this case, in consideration of the formation of the enlarged diameter surfaces 5 and 6 by the pin 13, the chamfer portion 1c may be formed larger in advance and finally a part thereof may be left. If there is no particular problem in processing, the above-mentioned enlarged diameter surface forming step may be performed simultaneously with the sizing step (c).

最後に、上記工程(d)を経て完成品形状に仕上がった焼結多孔質体に潤滑油を含浸させることで(潤滑油含浸工程(e))、焼結含油軸受1が完成する。   Finally, the sintered porous body 1 finished in the finished product shape through the step (d) is impregnated with lubricating oil (lubricating oil impregnation step (e)), whereby the sintered oil-impregnated bearing 1 is completed.

このように、焼結多孔質体11の内周に挿入したピン13を傾けつつ回転させ、焼結多孔質体11の内周に摩擦力と加圧力とを付与することで、かかる内周面を圧し拡げると共に、微小な表面開孔を潰して、あるいは比較的大きい開孔を小さくして、表面開孔率をの数を減じることができる。また、ピン13の自転および中心軸ax2まわりの公転を伴って焼結多孔質体11の内周面を圧し拡げるようにすることで、圧し拡げる量の多い大径側ほど表面開孔を多く潰すことができる。特に、この実施形態のように、上述の動作をピン13を徐々に引き抜きながら続行することで、大径側ほどその内周表面にピン13の回転摩擦力を多く与えることになるため、第1の拡径面5(あるいは第2の拡径面6)の大径側と内径側とで表面開孔率に顕著な差を設ける場合に好適である。   As described above, the pin 13 inserted in the inner periphery of the sintered porous body 11 is rotated while being tilted, and the inner peripheral surface of the sintered porous body 11 is applied with a frictional force and a pressing force. In addition, the number of surface opening ratios can be reduced by crushing minute surface openings or reducing relatively large openings. Further, by pressing and expanding the inner peripheral surface of the sintered porous body 11 along with the rotation of the pin 13 and the revolution about the central axis ax2, the larger the diameter of the larger diameter side, the more the surface openings are crushed. be able to. In particular, as in this embodiment, by continuing the above-described operation while gradually pulling out the pin 13, the larger the diameter side, the more the rotational frictional force of the pin 13 is given to the inner peripheral surface. This is suitable when there is a significant difference in the surface area ratio between the large diameter side and the inner diameter side of the large diameter surface 5 (or the second large diameter surface 6).

以上、本発明の第1実施形態を説明したが、本発明より具現化される焼結含油軸受やその製造方法はこれら例示の範囲に制限されることはない。以下、その例を図示と併せて説明する。   The first embodiment of the present invention has been described above, but the sintered oil-impregnated bearing and the manufacturing method thereof embodied by the present invention are not limited to these exemplary ranges. Examples thereof will be described below with reference to the drawings.

図6は、本発明の第2実施形態に係る焼結含油軸受21の断面図を示している。同図に示す焼結含油軸受21は、軸受面24を、焼結含油軸受21の一端面21aに向けて滑らかに拡径する第1の拡径面25と、その他端面21bに向けて滑らかに拡径する第2の拡径面26とで構成している。この点において、同実施形態に係る焼結含油軸受21と、第1実施形態に開示の焼結含油軸受1とはその構造が異なる。   FIG. 6 shows a cross-sectional view of the sintered oil-impregnated bearing 21 according to the second embodiment of the present invention. The sintered oil-impregnated bearing 21 shown in the figure has a first diameter-expanded surface 25 that smoothly expands the bearing surface 24 toward one end surface 21a of the sintered oil-impregnated bearing 21, and a smooth surface toward the other end surface 21b. A second diameter-expanding surface 26 that expands the diameter is used. In this respect, the structure of the sintered oil-impregnated bearing 21 according to the embodiment differs from that of the sintered oil-impregnated bearing 1 disclosed in the first embodiment.

詳細には、第1の拡径面25と第2の拡径面26は共に含軸断面円弧状をなし、その軸線側に膨らみをもった環状の曲面で構成されている。また、その曲率半径や軸方向寸法は等しく、その軸方向中央における接線が焼結含油軸受21の中心軸と平行になるよう、両面25、26が滑らかにつながった形状をなしている。また、各拡径面25、26においては、第1実施形態と同様、その表面開孔率が、軸方向中央側から端面21a、21b側に向かうにつれて小さくなっている。   Specifically, the first diameter-expanded surface 25 and the second diameter-expanded surface 26 are both formed into an annular curved surface having an axial cross-section arc shape and bulging on the axis side. Further, the curvature radius and axial dimension are equal, and both surfaces 25 and 26 are smoothly connected so that the tangent at the center in the axial direction is parallel to the central axis of the sintered oil-impregnated bearing 21. Further, in each of the diameter-enlarged surfaces 25 and 26, as in the first embodiment, the surface open area ratio decreases from the center in the axial direction toward the end surfaces 21a and 21b.

従い、上記構成の焼結含油軸受21であれば、その軸2の傾斜(たわみ)の程度によらず、常に一定の接触状態(摺動状態)を保って軸2をその内部気孔23から滲み出た潤滑油の膜で回転支持することができる。また、軸受面24(ここでは各拡径面25、26)の表面開孔率がその大径側に向かうにつれて減少する構成とすることで、良好な油膜の形成を図りつつも、潤滑油の漏れ出しを可及的に防いで、長期使用(耐久性)に適した軸受として使用することが可能となる。   Therefore, in the case of the sintered oil-impregnated bearing 21 having the above-described configuration, the shaft 2 oozes from its internal pores 23 while always maintaining a constant contact state (sliding state) regardless of the degree of inclination (deflection) of the shaft 2. It can be rotationally supported by the lubricant film that comes out. In addition, the surface area of the bearing surface 24 (here, each of the enlarged diameter surfaces 25 and 26) decreases as it goes toward the larger diameter side, so that a good oil film can be formed while the lubricating oil is Leakage is prevented as much as possible, and it can be used as a bearing suitable for long-term use (durability).

上記構成の軸受面24(焼結含油軸受21)は、例えば上述の工程(工程(a)〜(e))を経ることで形成することができる。具体的には、図3に示す拡径面形成工程(d)において、ピン13を焼結多孔質体11の軸方向中央にまで挿入しておき、かかる状態から第1実施形態に例示の如く、ピン13の自転を伴ってその中心軸ax1を焼結多孔質体11の中心軸ax2に対して傾けていき、焼結多孔質体11に回転による摩擦力と傾斜押し付けによる加圧力とを付与することで、上記構成の軸受面24を形成することができる。   The bearing surface 24 (sintered oil-impregnated bearing 21) having the above-described configuration can be formed, for example, through the above-described steps (steps (a) to (e)). Specifically, in the diameter-enlarged surface forming step (d) shown in FIG. 3, the pin 13 is inserted up to the center in the axial direction of the sintered porous body 11, and from this state, as illustrated in the first embodiment, As the pin 13 rotates, the central axis ax1 is inclined with respect to the central axis ax2 of the sintered porous body 11, and the sintered porous body 11 is given a frictional force by rotation and an applied pressure by inclined pressing. By doing so, the bearing surface 24 having the above-described configuration can be formed.

図7は、本発明の第3実施形態に係る焼結含油軸受31の断面図を示している。同図に示す焼結含油軸受31は、軸受面34を構成する第1の拡径面35および第2の拡径面26を共に含軸断面テーパ状とした点で、第1実施形態に開示の焼結含油軸受1とその構造を異にする。   FIG. 7 shows a cross-sectional view of a sintered oil-impregnated bearing 31 according to the third embodiment of the present invention. The sintered oil-impregnated bearing 31 shown in the figure is disclosed in the first embodiment in that both the first diameter-expanded surface 35 and the second diameter-expanded surface 26 constituting the bearing surface 34 are tapered in section with shaft. The structure of the oil-impregnated sintered oil bearing 1 is different.

この場合、軸受面34は、断面テーパ状をなす第1の拡径面35と第2の拡径面36、および両拡径面35、36間に位置し、これら拡径面35、36と滑らかにつながる径一定の円筒面37とで構成される。また、各拡径面35、36における表面開孔率は、第1、第2実施形態と同様、軸方向中央側(円筒面37)から端面31a、31b側に向かうにつれて小さくなるよう構成されている。   In this case, the bearing surface 34 is located between the first enlarged surface 35 and the second enlarged surface 36, and both the enlarged surfaces 35, 36, each having a tapered cross section. It is comprised with the cylindrical surface 37 of constant diameter connected smoothly. Further, similarly to the first and second embodiments, the surface area ratio in each of the enlarged diameter surfaces 35 and 36 is configured to decrease from the axial center side (cylindrical surface 37) toward the end surfaces 31a and 31b. Yes.

よって、上記構成の焼結含油軸受31であれば、その軸2の傾斜(たわみ)の程度によらず、常に一定の接触状態(摺動状態)を保って軸2をその内部気孔33から滲み出た潤滑油の膜で回転支持することができる。また、軸受面34を構成する第1の拡径面35および第2の拡径面36の表面開孔率が、その大径側に向かうにつれて減少する構成とすることで、良好な油膜の形成を図りつつも、潤滑油の漏れ出しを可及的に防いで、長期使用(耐久性)に適した軸受として使用することが可能となる。   Therefore, in the case of the sintered oil-impregnated bearing 31 having the above-described configuration, the shaft 2 oozes from the internal pores 33 while always maintaining a constant contact state (sliding state) regardless of the degree of inclination (deflection) of the shaft 2. It can be rotationally supported by the lubricant film that comes out. Further, by forming the surface area ratio of the first diameter-expanded surface 35 and the second diameter-expanded surface 36 constituting the bearing surface 34 to decrease toward the larger diameter side, a good oil film can be formed. However, it is possible to prevent the lubricant from leaking out as much as possible and to use it as a bearing suitable for long-term use (durability).

上記構成の軸受面34(焼結含油軸受31)は、例えば上述の工程(工程(a)〜(e))を経ることで形成することができる。具体的には、拡径面形成工程(d)において、図8に示すように、ピン13を焼結多孔質体11を貫通する位置まで挿入しておき、かかる状態から第1実施形態に例示の如く、ピン13の自転を伴ってその中心軸ax1を焼結多孔質体11の中心軸ax2に対して傾けていき、焼結多孔質体11に回転による摩擦力と傾斜押し付けによる加圧力とを付与することで、上記構成の軸受面34が形成される。   The bearing surface 34 (sintered oil-impregnated bearing 31) of the said structure can be formed by passing through the above-mentioned process (process (a)-(e)), for example. Specifically, in the diameter-enlarged surface forming step (d), as shown in FIG. 8, the pin 13 is inserted to a position penetrating the sintered porous body 11, and from this state, the first embodiment is exemplified. As described above, with the rotation of the pin 13, the central axis ax1 is inclined with respect to the central axis ax2 of the sintered porous body 11, the frictional force due to rotation and the applied pressure due to the inclined pressing are applied to the sintered porous body 11. Is provided, the bearing surface 34 having the above-described configuration is formed.

従い、上述の方法であれば、双方の拡径面35、36を一回の加工で同時に形成することができるので、各拡径面35、36間の同軸度に優れたものが形成可能である。また、焼結多孔質体11あるいはピン13の配置を上下反転させたり、別途他のピンを用いて加工せずに済むため、簡易な加工設備で足り、また工程の簡素化を図ることができるため、経済的である。なお、上記工程(c)において、加工最終段階におけるピン13の傾斜角θ3(焼結多孔質体11の中心軸ax2に対するピン13の中心軸ax1の傾斜角)が、完成品におけるテーパ状の各拡径面35、36の傾斜角となるので、この点を考慮してかかる傾斜角を設定するのがよい。また、上述の方法を用いるのであれば、円筒面37と各拡径面35、36との間を滑らかにつなげた形状とすることも容易である。   Therefore, if the above-mentioned method is used, both of the enlarged diameter surfaces 35 and 36 can be formed simultaneously by a single process, so that an excellent concentricity between the enlarged diameter surfaces 35 and 36 can be formed. is there. Moreover, since it is not necessary to invert the arrangement of the sintered porous body 11 or the pins 13 or to process them separately using other pins, simple processing equipment is sufficient, and the process can be simplified. So it is economical. In the step (c), the inclination angle θ3 of the pin 13 in the final stage of processing (inclination angle of the central axis ax1 of the pin 13 with respect to the central axis ax2 of the sintered porous body 11) is tapered. Since this is the inclination angle of the enlarged diameter surfaces 35 and 36, it is preferable to set the inclination angle in consideration of this point. Further, if the above-described method is used, it is easy to form a shape in which the cylindrical surface 37 and each of the enlarged diameter surfaces 35 and 36 are smoothly connected.

図9は、本発明の第4実施形態に係る焼結含油軸受41の断面図を示している。同図に示す焼結含油軸受41は、軸受面44を構成する拡径面45が一面のみである点で、上記第1〜第3実施形態に開示の焼結含油軸受1、21、31とその構造を異にする。   FIG. 9 shows a cross-sectional view of a sintered oil-impregnated bearing 41 according to the fourth embodiment of the present invention. The sintered oil-impregnated bearing 41 shown in the figure is the same as the sintered oil-impregnated bearings 1, 21, 31 disclosed in the first to third embodiments in that the diameter-expanded surface 45 constituting the bearing surface 44 is only one surface. The structure is different.

詳細には、軸受面44は軸方向一方に向けて滑らかに拡径する拡径面45で構成される。拡径面45は含軸断面円弧状をなし、その軸線側に膨らみをもった環状の曲面で構成されている。また、拡径面45の軸方向他端(最小径部)における接線が、焼結含油軸受41の中心軸と平行となるよう、拡径面45が形成されている。拡径面45の表面開孔率は、その大径側に向かうにつれて減少する構成をなしている。   Specifically, the bearing surface 44 is configured by a diameter-expanded surface 45 that smoothly increases in diameter toward one axial direction. The enlarged diameter surface 45 has an arc-shaped cross section including a shaft, and is formed of an annular curved surface having a bulge on the axis side. Further, the enlarged diameter surface 45 is formed so that the tangent at the other axial end (minimum diameter portion) of the enlarged diameter surface 45 is parallel to the central axis of the sintered oil-impregnated bearing 41. The surface open area ratio of the enlarged diameter surface 45 is configured to decrease toward the larger diameter side.

従い、上記構成の焼結含油軸受41であれば、その内周に挿入した軸2の傾斜(たわみ)の程度によらず、常に一定の接触状態(摺動状態)を保って軸2をその内部気孔43から滲み出た潤滑油の膜で回転支持することができる。また、軸受面44を構成する拡径面45の表面開孔率が、その大径側に向かうにつれて減少する構成とすることで、良好な油膜の形成を図りつつも、潤滑油の漏れ出しを可及的に防いで、長期使用(耐久性)に適した軸受として使用することが可能となる。   Therefore, in the case of the sintered oil-impregnated bearing 41 having the above-described configuration, the shaft 2 is always maintained in a constant contact state (sliding state) regardless of the degree of inclination (deflection) of the shaft 2 inserted in the inner periphery thereof. It can be rotationally supported by a film of lubricating oil that has oozed out of the internal pores 43. In addition, since the surface area ratio of the enlarged diameter surface 45 constituting the bearing surface 44 is reduced toward the larger diameter side, the lubricating oil leaks out while forming a good oil film. It can be used as a bearing suitable for long-term use (durability) while preventing as much as possible.

また、上記構成の軸受面44(焼結含油軸受41)であれば、例えば第1実施形態と同様の工程(工程(a)〜(e))を経ることで形成することが可能である。   Moreover, if it is the bearing surface 44 (sintered oil-impregnated bearing 41) of the said structure, it can be formed by passing through the process (process (a)-(e)) similar to 1st Embodiment, for example.

もちろん、以上の説明に係る焼結含油軸受は例示に過ぎず、軸受面に、その軸方向一端に向けて滑らかに拡径する面であって、かつ、その表面開孔率が大径側に向かうにつれて減少する構成を有するものである限り、任意の構成を採ることが可能である。また、その製造方法については、焼結多孔質体の内周に挿入したピンを傾けていきながら、当該ピンを焼結多孔質体の内周に沿って回転(中心軸ax2まわりに回転)させて、焼結多孔質体に摩擦力および加圧力を付与する工程を含むものであれば、上記方法に限定されない。   Of course, the sintered oil-impregnated bearing according to the above description is merely an example, and the bearing surface is a surface that smoothly expands in diameter toward one end in the axial direction, and the surface opening ratio is on the large diameter side. As long as it has the structure which decreases as it goes, it can take arbitrary structures. As for the manufacturing method, while the pin inserted into the inner periphery of the sintered porous body is tilted, the pin is rotated along the inner periphery of the sintered porous body (rotated about the central axis ax2). The method is not limited to the above as long as it includes a step of applying a frictional force and a pressing force to the sintered porous body.

以上の説明に係る焼結含油軸受であれば、支持すべき軸の傾動状態によらず、安定した支持を長期間にわたって実現することができる。そのため、特にせん断方向の荷重(軸線に直交する向きの荷重)を受けて回転駆動する動力伝達軸、例えばパワーウィンドウ用動力伝達機構をなす駆動軸を支持するための軸受として好適に使用することができる。あるいは、良好な油膜の形成が可能であることから、例えば自動車用の電装モータなど、静粛性を要求される用途にも好適に使用することができる。また、図9に例示の形態をなす軸受であれば、例えばパワーウィンドウ用動力伝達機構の駆動軸をその端部で支持する用途に用いることも可能である。   With the sintered oil-impregnated bearing according to the above description, stable support can be realized over a long period of time regardless of the tilting state of the shaft to be supported. Therefore, it can be suitably used as a bearing for supporting a power transmission shaft that rotates in response to a load in a shearing direction (a load perpendicular to the axis), for example, a drive shaft that forms a power transmission mechanism for a power window. it can. Alternatively, since a good oil film can be formed, it can be suitably used for applications requiring quietness, such as an electric motor for automobiles. Moreover, if it is a bearing which makes the form illustrated in FIG. 9, it is also possible to use it for the use which supports the drive shaft of the power transmission mechanism for power windows, for example in the edge part.

本発明の第1実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on 1st Embodiment of this invention. 図1中の領域Aの拡大図である。It is an enlarged view of the area | region A in FIG. 図1に示す焼結含油軸受の拡径面を形成する工程の一例を概念的に示す図である。It is a figure which shows notionally an example of the process of forming the diameter expansion surface of the sintered oil-impregnated bearing shown in FIG. 図1に示す焼結含油軸受の拡径面を形成する工程の一例を概念的に示す図である。It is a figure which shows notionally an example of the process of forming the diameter expansion surface of the sintered oil-impregnated bearing shown in FIG. 図1に示す焼結含油軸受の拡径面を形成する工程の一例を概念的に示す図である。It is a figure which shows notionally an example of the process of forming the diameter expansion surface of the sintered oil-impregnated bearing shown in FIG. 本発明の第2実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on 3rd Embodiment of this invention. 図7に示す焼結含油軸受の拡径面を形成する工程の一例を概念的に示す図である。It is a figure which shows notionally an example of the process of forming the diameter expansion surface of the sintered oil-impregnated bearing shown in FIG. 本発明の第4実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

1、21、31、41 焼結含油軸受
2 軸
3、23、33、43 内部気孔
4、24、34、44 軸受面
5、6、25、26、35、36、45 拡径面
7、37 円筒面
8 表面開孔
11 焼結多孔質体
13 ピン
ax1 中心軸(ピン)
ax2 中心軸(焼結多孔質体)
1, 21, 31, 41 Sintered oil-impregnated bearing 2 Axes 3, 23, 33, 43 Internal pores 4, 24, 34, 44 Bearing surfaces 5, 6, 25, 26, 35, 36, 45 Expanded surface 7, 37 Cylindrical surface 8 Surface opening 11 Sintered porous body 13 Pin ax1 Center axis (pin)
ax2 Central axis (sintered porous body)

Claims (5)

焼結金属製の多孔質体でその内部気孔に潤滑流体が含浸されているもので、
内周に軸受面が設けられ、該軸受面の少なくとも一部が、前記軸受面の軸方向一端に向けて滑らかに拡径する拡径面で構成され、
該拡径面の表面開孔率がその大径側に向かうにつれて減少するように構成されている焼結含油軸受。
A porous body made of sintered metal with its internal pores impregnated with a lubricating fluid,
A bearing surface is provided on the inner periphery, and at least a part of the bearing surface is constituted by a diameter-expanded surface that smoothly expands toward one axial end of the bearing surface,
A sintered oil-impregnated bearing configured such that the surface area ratio of the diameter-expanded surface decreases with increasing diameter.
前記拡径面の一部又は全面が、含軸断面円弧状をなし、その軸線側に膨らみをもった曲面で構成される請求項1記載の焼結含油軸受。   2. The sintered oil-impregnated bearing according to claim 1, wherein a part or the entire surface of the diameter-enlarged surface is formed of a curved surface having a shaft-containing cross-sectional arc shape and bulging on the axis side. 前記拡径面の一部又は全面が、含軸断面テーパ状をなす面で構成される請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein a part or the whole of the diameter-expanded surface is configured by a surface having a tapered shaft-containing cross section. 前記軸受面が、さらに、前記軸受面の軸方向他端に向けて滑らかに拡径する第2の拡径面を有する請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the bearing surface further has a second diameter-expanding surface that smoothly expands toward the other axial end of the bearing surface. 焼結金属製の多孔質体でその内部気孔に潤滑流体が含浸されているもので、内周に軸受面が設けられ、該軸受面の少なくとも一部が、前記軸受面の軸方向一端に向けて滑らかに拡径する拡径面で構成される焼結含油軸受の製造方法であって、
前記多孔質体の内周にピンを挿入すると共に、該ピンの軸を前記多孔質体の中心軸に対して傾斜させて前記多孔質体の内周の一部を加圧し、かつ、
前記ピンの円周方向への移動により、前記加圧領域を前記多孔質体の内周に沿って移動させることで、前記拡径面を形成する焼結含油軸受の製造方法。
A porous body made of sintered metal, the internal pores of which are impregnated with a lubricating fluid. A bearing surface is provided on the inner periphery, and at least a part of the bearing surface is directed toward one axial end of the bearing surface. A method for producing a sintered oil-impregnated bearing composed of a diameter-enlarging surface that expands smoothly and smoothly,
Inserting a pin into the inner periphery of the porous body, inclining the axis of the pin with respect to the central axis of the porous body to press a part of the inner periphery of the porous body, and
The manufacturing method of the sintered oil impregnated bearing which forms the said enlarged diameter surface by moving the said pressurization area | region along the inner periphery of the said porous body by the movement to the circumferential direction of the said pin.
JP2007082397A 2007-03-27 2007-03-27 Oil-impegnated sintered bearing Withdrawn JP2008240908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082397A JP2008240908A (en) 2007-03-27 2007-03-27 Oil-impegnated sintered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082397A JP2008240908A (en) 2007-03-27 2007-03-27 Oil-impegnated sintered bearing

Publications (1)

Publication Number Publication Date
JP2008240908A true JP2008240908A (en) 2008-10-09

Family

ID=39912505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082397A Withdrawn JP2008240908A (en) 2007-03-27 2007-03-27 Oil-impegnated sintered bearing

Country Status (1)

Country Link
JP (1) JP2008240908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141022A (en) * 2010-01-08 2011-07-21 Samsung Electro-Mechanics Co Ltd Scanner motor
JP2012255548A (en) * 2011-06-08 2012-12-27 Johnson Electric Sa Thrust bearing assembly
WO2018079670A1 (en) * 2016-10-26 2018-05-03 株式会社ダイヤメット Oil-impregnated sintered bearing
JP2019052767A (en) * 2018-12-18 2019-04-04 Ntn株式会社 Sintered bearing and power transmission mechanism with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141022A (en) * 2010-01-08 2011-07-21 Samsung Electro-Mechanics Co Ltd Scanner motor
JP2012255548A (en) * 2011-06-08 2012-12-27 Johnson Electric Sa Thrust bearing assembly
WO2018079670A1 (en) * 2016-10-26 2018-05-03 株式会社ダイヤメット Oil-impregnated sintered bearing
JPWO2018079670A1 (en) * 2016-10-26 2019-09-19 株式会社ダイヤメット Sintered oil-impregnated bearing
EP3534023A4 (en) * 2016-10-26 2020-07-22 Diamet Corporation Oil-impregnated sintered bearing
US10865828B2 (en) 2016-10-26 2020-12-15 Diamet Corporation Oil-impregnated sintered bearing
JP2019052767A (en) * 2018-12-18 2019-04-04 Ntn株式会社 Sintered bearing and power transmission mechanism with the same

Similar Documents

Publication Publication Date Title
US8726515B2 (en) Oil-impregnated sintered bearing and method of producing the same
JP5674495B2 (en) Fluid dynamic bearing device
KR19980079973A (en) Dynamic pressure bearing containing porous oil and its manufacturing method
JP2008240908A (en) Oil-impegnated sintered bearing
JP2006125516A (en) Oil-retaining sintered bearing
JP4522619B2 (en) Sintered oil-impregnated bearing, manufacturing method thereof and motor
JPH04307111A (en) Oil-impregnated sintered bearing and manufacture thereof
JPH04307112A (en) Oil-impregnated sintered bearing and manufacture thereof
JP2015200337A (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method of manufacturing sintered bearing
JPH11236604A (en) Oil-impregnated sintered bearing and its production
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2012026504A (en) Oil-impregnated sintered bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
JP2009162353A (en) Planetary gear mechanism
JP6261922B2 (en) Fluid dynamic bearing device and method for manufacturing inner member
WO2016152474A1 (en) Bearing member, fluid dynamic pressure bearing device equipped with same, and method of manufacturing bearing member
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing
JP2016173135A (en) Oil-impregnated sintered bearing and manufacturing method of the same
JP3623521B2 (en) Sintered metal oil-impregnated bearing
JP2008069886A (en) Sliding bearing device and its manufacturing method
JPH06123313A (en) Oil-impregnated sintered bearing
JP6189065B2 (en) Fluid dynamic bearing device and assembly method thereof
JP4606870B2 (en) Method for producing sintered oil-impregnated bearing and sintered oil-impregnated bearing
JP2009133329A (en) Member for bearing and compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601