JP2008240024A - Compound object and manufacturing method of the same - Google Patents

Compound object and manufacturing method of the same Download PDF

Info

Publication number
JP2008240024A
JP2008240024A JP2007079116A JP2007079116A JP2008240024A JP 2008240024 A JP2008240024 A JP 2008240024A JP 2007079116 A JP2007079116 A JP 2007079116A JP 2007079116 A JP2007079116 A JP 2007079116A JP 2008240024 A JP2008240024 A JP 2008240024A
Authority
JP
Japan
Prior art keywords
thin film
aluminum
substrate
aluminum thin
barrier type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007079116A
Other languages
Japanese (ja)
Other versions
JP5162148B2 (en
Inventor
Sakae Inayoshi
さかえ 稲吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007079116A priority Critical patent/JP5162148B2/en
Publication of JP2008240024A publication Critical patent/JP2008240024A/en
Application granted granted Critical
Publication of JP5162148B2 publication Critical patent/JP5162148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound object having excellent corrosion resistance to corrosive gases and reactive gases, such as fluorine based gas, fluorine plasma, fluorine radical, gaseous oxygen, plasma and radicals, and having sufficient mechanical strength and a manufacturing method of the same. <P>SOLUTION: The compound object includes a substrate, an aluminum thin film formed on the substrate, and a barrier type anodization film formed on the aluminum thin film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真空装置に用いられる複合体およびその製造方法に関し、さらに詳しくは、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐食性に優れた複合体およびその製造方法に関する。  The present invention relates to a composite used in a vacuum apparatus and a method for producing the same, and more particularly to corrosion resistance against corrosive gases such as fluorine-based gas, fluorine plasma, and fluorine radicals and reactive gases such as oxygen gas, plasma, and radicals. The present invention relates to an excellent composite and a method for producing the same.

従来、液晶ディスプレイの製造過程や半導体製造プロセスなどに用いられる真空装置では、その装置内においてフッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの強力な腐食性のガスが用いられている。そのため、腐食を防止するために、フッ化物の蒸気圧が低いことから、装置にはアルミニウムやアルミニウム合金が多く用いられている。
さらにフッ素系ガスへの耐食性を向上させるためや酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐性を向上させるために、真空装置に用いられるアルミニウムやアルミニウム合金の表面に、ポーラス型陽極酸化処理やバリア型陽極酸化処理により、陽極酸化被膜が形成されている(例えば、特許文献1参照)。
特開2001−172795号公報
Conventionally, in a vacuum apparatus used in a liquid crystal display manufacturing process or a semiconductor manufacturing process, a strong corrosive gas such as a fluorine-based gas, fluorine plasma, or fluorine radical is used in the apparatus. Therefore, in order to prevent corrosion, since the vapor pressure of fluoride is low, aluminum and aluminum alloys are often used in the apparatus.
Furthermore, in order to improve the corrosion resistance to fluorine-based gases and to improve the resistance to reactive gases such as oxygen gas, plasma, radicals, etc., the surface of aluminum or aluminum alloy used in vacuum equipment is subjected to porous anodization treatment. An anodized film is formed by the barrier type anodizing treatment (see, for example, Patent Document 1).
JP 2001-172895 A

しかしながら、アルミニウムやアルミニウム合金の表面にポーラス型陽極酸化処理を行うと、ガス放出量が処理前に比べて1000倍から10000倍に増加するという問題があった。
そこで、ガス放出量を低減するために、バリア型陽極酸化処理が用いられる。しかし、バリア型陽極酸化処理によって形成される酸化被膜は、膜厚が薄く、アルミニウムやアルミニウム合金の表面に存在する金属間化合物を全て覆い尽くすだけの厚みを確保することができないため、金属間化合物の周辺が耐食性に劣るという問題があった。
さらに、アルミニウム合金は、機械的強度がステンレス鋼などに比べると低いため、機械的強度が必要とされる箇所には、耐食性を犠牲にして、ステンレス鋼、インコネル(登録商標)、ハステロイ(登録商標)などを用いなければならないという問題があった。
However, when a porous anodizing treatment is performed on the surface of aluminum or an aluminum alloy, there is a problem that the amount of gas released increases from 1000 times to 10,000 times compared to before the treatment.
Therefore, a barrier type anodizing process is used to reduce the amount of gas released. However, since the oxide film formed by the barrier type anodizing treatment is thin, it is not possible to secure a thickness sufficient to cover all intermetallic compounds existing on the surface of aluminum or aluminum alloy. There was a problem that the periphery of the was poor in corrosion resistance.
Furthermore, since the mechanical strength of aluminum alloys is lower than that of stainless steel and the like, stainless steel, Inconel (registered trademark), Hastelloy (registered trademark) are used at places where mechanical strength is required at the expense of corrosion resistance. ) Etc. had to be used.

本発明は、上記事情に鑑みてなされたものであって、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスに対する耐食蝕性に優れ、かつ、十分な機械的強度を有する複合体およびその製造方法を提供することを目的とする。  The present invention has been made in view of the above circumstances, and is excellent in corrosion resistance to corrosive gases such as fluorine-based gas, fluorine plasma and fluorine radicals and reactive gases such as oxygen gas, plasma and radicals, and An object of the present invention is to provide a composite having sufficient mechanical strength and a method for producing the same.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、真空装置などに用いられる基体の表面にアルミニウム薄膜を形成し、さらに、このアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成することにより、いかなる基体であっても耐酸化性、あるいは、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどの腐食性ガスおよび酸素ガス、プラズマ、ラジカルなどの反応性ガスなどに対する耐食性に優れる最表面を形成することができることを見出し、本発明を完成するに至った。特に、基体がアルミニウム合金である場合、その表面にアルミニウム薄膜を形成することにより、基体の表面に直接、バリア型陽極酸化被膜を形成した場合よりも、基体の表面に存在する金属間化合物の露出を少なくすることができ、結果として、ピットの少ない耐食性に優れる最表面を形成することができることも見出し、本発明を完成するに至った。  As a result of intensive studies to solve the above problems, the present inventors formed an aluminum thin film on the surface of a substrate used in a vacuum apparatus and the like, and further formed a barrier type anodic oxide coating on the surface of the aluminum thin film. By forming, the outermost surface is excellent in oxidation resistance in any substrate or in corrosion resistance to corrosive gases such as fluorine-based gas, fluorine plasma and fluorine radicals and reactive gases such as oxygen gas, plasma and radicals. Has been found to be able to be formed, and the present invention has been completed. In particular, when the substrate is an aluminum alloy, the formation of an aluminum thin film on the surface of the substrate makes it possible to expose intermetallic compounds present on the surface of the substrate more than when a barrier type anodized film is formed directly on the surface of the substrate. As a result, it was also found that the outermost surface having few pits and excellent corrosion resistance can be formed, and the present invention has been completed.

すなわち、本発明の複合体は、基体と、該基体上に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えてなることを特徴とする。  That is, the composite of the present invention comprises a substrate, an aluminum thin film formed on the substrate, and a barrier type anodized film formed on the aluminum thin film.

前記基体は、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であることが好ましい。
前記アルミニウム薄膜は、アルミニウムを90%以上含有していることが好ましい。
前記アルミニウム薄膜は、真空蒸着またはスパッタリングにより成膜されていることが好ましい。
前記バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることが好ましい。
The substrate is preferably one or more selected from the group consisting of stainless steel, aluminum, aluminum alloy, magnesium, titanium, nickel-base alloy, copper, and carbon material.
The aluminum thin film preferably contains 90% or more of aluminum.
The aluminum thin film is preferably formed by vacuum deposition or sputtering.
The thickness of the barrier type anodic oxide coating is preferably 0.1 μm or more and 1 μm or less.

本発明の複合体の製造方法は、基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成することを特徴とする。  The method for producing a composite of the present invention is characterized in that an aluminum thin film is formed on a surface of a substrate by vacuum deposition or sputtering, and then a barrier type anodic oxide film is formed on the surface of the aluminum thin film.

本発明の複合体は、基体と、該基体上に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えてなるので、耐酸化性およびフッ素などに対する耐食性に優れている。なぜならば、アルミニウム薄膜は真空蒸着またはスパッタリングにより成膜されているので介在物や欠陥が少ない上に、このアルミニウム薄膜上に形成したバリア型陽極酸化被膜も欠陥が少ないからである。  The composite of the present invention comprises a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film, so that the oxidation resistance and corrosion resistance against fluorine and the like are improved. Are better. This is because the aluminum thin film is formed by vacuum deposition or sputtering, so that there are few inclusions and defects, and the barrier type anodic oxide film formed on the aluminum thin film has few defects.

本発明の複合体およびその製造方法の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the composite of the present invention and the production method thereof will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

本発明の複合体は、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とから概略構成されている。  The composite of the present invention is generally composed of a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film.

基体としては、特に限定されないが、その表面に、真空蒸着あるいはスパッタリングによりアルミニウム薄膜を成膜することができる材質のものが用いられ、このようなものの中でも、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であることが好ましい。
これらの基体の中でも、アルミニウムまたはアルミニウム合金としては、例えば、A5052合金、A6061合金、A2017、A2219、A5056、A6063、AC4A、AC4Cなどが挙げられる。
The substrate is not particularly limited, but a material capable of forming an aluminum thin film on the surface by vacuum deposition or sputtering is used. Among these, stainless steel, aluminum, aluminum alloy, magnesium, titanium It is preferable that it is 1 type, or 2 or more types selected from the group of nickel base alloy, copper, and carbon material.
Among these substrates, examples of aluminum or aluminum alloy include A5052 alloy, A6061 alloy, A2017, A2219, A5056, A6063, AC4A, and AC4C.

また、ニッケル基合金としては、ニッケルをベースとし、鉄、クロム、ニオブ、モリブデンなどの合金元素の差異によって分類されるインコネル(登録商標)、ニッケルを主成分とし、モリブデン、クロム、鉄などの合金元素の差異によって分類されるハステロイ(登録商標)などが挙げられる。
インコネル(登録商標)としては、インコネル600、インコネル625、インコネル718、インコネル750Xなどが挙げられる。
ハステロイ(登録商標)としては、ハステロイB、ハステロイC、ハステロイX、ハステロイGなどが挙げられる。
In addition, nickel-based alloys are based on nickel and classified according to differences in alloy elements such as iron, chromium, niobium, molybdenum, etc. Examples include Hastelloy (registered trademark) classified by elemental differences.
Inconel (registered trademark) includes Inconel 600, Inconel 625, Inconel 718, Inconel 750X, and the like.
Hastelloy (registered trademark) includes Hastelloy B, Hastelloy C, Hastelloy X, Hastelloy G and the like.

炭素材としては、グラッシーカーボン、カーボン−アルミ、カーボン−エポキシなどのカーボンコンポジットなどが挙げられる。  Examples of the carbon material include carbon composites such as glassy carbon, carbon-aluminum, and carbon-epoxy.

アルミニウム薄膜は、アルミニウムを90%以上含有していることが好ましい。その理由は、アルミニウムの含有率が90%未満では、基体の表面全てをアルミニウムで覆い尽くすことができなくなり、アルミニウム薄膜の表面にバリア型陽極酸化処理を施した場合、バリア型陽極酸化被膜を斑なく均一に形成することができなくなる。その結果、得られた複合体の最表面は、耐酸化性や耐食性に劣るものとなる虞がある。  The aluminum thin film preferably contains 90% or more of aluminum. The reason for this is that when the aluminum content is less than 90%, the entire surface of the substrate cannot be completely covered with aluminum. Cannot be formed uniformly. As a result, the outermost surface of the obtained composite may be inferior in oxidation resistance and corrosion resistance.

また、アルミニウム薄膜の厚みは、特に限定されないが、0.1μm以上かつ10μm以下であることが好ましく、0.1μm以上かつ3μm以下であることがより好ましい。  The thickness of the aluminum thin film is not particularly limited, but is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 3 μm or less.

このようなアルミニウム薄膜は、真空蒸着またはスパッタリングにより成膜されることが好ましい。真空蒸着またはスパッタリングによれば、斑の少ないほぼ均一な厚みで、基体に対する密着性に優れ、介在物や欠陥が少ないアルミニウム薄膜を成膜することができる。  Such an aluminum thin film is preferably formed by vacuum deposition or sputtering. According to vacuum deposition or sputtering, an aluminum thin film having almost uniform thickness with few spots, excellent adhesion to a substrate, and few inclusions and defects can be formed.

バリア型陽極酸化被膜は、上記のアルミニウム薄膜の表面にバリア型陽極酸化処理を施すことによって形成されたものである。
アルミニウム薄膜の表面にバリア型陽極酸化処理を施し、バリア型陽極酸化被膜を形成するには、陽極酸化溶液として、ホウ酸塩、アジピン酸塩などの有機酸塩、リン酸塩などの溶液を用い、この陽極酸化溶液中において、アルミニウム薄膜を陽極で電解し、アルミニウム薄膜の表面に所定の厚みのバリア型陽極酸化被膜を形成する。
The barrier type anodized film is formed by subjecting the surface of the aluminum thin film to a barrier type anodizing treatment.
In order to perform barrier type anodizing treatment on the surface of aluminum thin film and form a barrier type anodized film, organic acid salts such as borate and adipate, and solutions such as phosphate are used as the anodizing solution. In this anodic oxidation solution, the aluminum thin film is electrolyzed with an anode to form a barrier type anodic oxide film having a predetermined thickness on the surface of the aluminum thin film.

また、バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることが好ましく、0.1μm以上かつ0.8μm以下であることがより好ましい。
バリア型陽極酸化被膜の厚みが0.1μm未満では、バリア型陽極酸化被膜の厚みが薄すぎて安定した耐食性が得られない。一方、バリア型陽極酸化被膜の厚みが1μmを超えると、電解処理中に絶縁破壊が起きる可能性が高くなり、その絶縁破壊によってバリア型陽極酸化被膜に欠陥が生じて、耐食性を悪化させる。
The thickness of the barrier type anodic oxide coating is preferably 0.1 μm or more and 1 μm or less, more preferably 0.1 μm or more and 0.8 μm or less.
If the thickness of the barrier type anodized film is less than 0.1 μm, the thickness of the barrier type anodized film is too thin to provide stable corrosion resistance. On the other hand, if the thickness of the barrier type anodic oxide coating exceeds 1 μm, there is a high possibility that dielectric breakdown will occur during the electrolytic treatment, and the dielectric breakdown will cause defects in the barrier type anodic oxide coating and deteriorate the corrosion resistance.

本発明の複合体は、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えているので、基体がアルミニウムやアルミニウム合金以外のものであっても、耐酸化性およびフッ素などに対する耐食性に優れている。なぜならば、アルミニウム薄膜は真空蒸着またはスパッタリングにより成膜されているので介在物や欠陥が少ない上に、このアルミニウム薄膜上に形成したバリア型陽極酸化被膜も欠陥が少ないからである。  Since the composite of the present invention comprises a substrate, an aluminum thin film formed on the substrate, and a barrier type anodic oxide film formed on the aluminum thin film, the substrate is not made of aluminum or an aluminum alloy. Even so, it is excellent in oxidation resistance and corrosion resistance against fluorine and the like. This is because the aluminum thin film is formed by vacuum deposition or sputtering, so that there are few inclusions and defects, and the barrier type anodic oxide film formed on the aluminum thin film has few defects.

次に、本発明の複合体の製造方法について説明する。
本発明の複合体の製造方法は、基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成し、基体と、この基体上に形成されたアルミニウム薄膜と、このアルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えた複合体を製造する方法である。
Next, the manufacturing method of the composite_body | complex of this invention is demonstrated.
In the method for producing the composite of the present invention, an aluminum thin film is formed on the surface of the substrate by vacuum evaporation or sputtering, and then a barrier type anodic oxide film is formed on the surface of the aluminum thin film. And a barrier type anodic oxide film formed on the aluminum thin film.

本発明の複合体の製造方法では、基体としては、例えば、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上が挙げられる。  In the method for producing a composite of the present invention, examples of the substrate include one or more selected from the group consisting of stainless steel, aluminum, aluminum alloy, magnesium, titanium, nickel-base alloy, copper, and carbon material. .

このような基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜する。  An aluminum thin film is formed on the surface of such a substrate by vacuum deposition or sputtering.

次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化処理を施し、バリア型陽極酸化被膜を形成するには、陽極酸化溶液として、ホウ酸塩、アジピン酸塩などの有機酸塩、リン酸塩などの溶液を用い、この陽極酸化溶液中において、アルミニウム薄膜を陽極で電解し、アルミニウム薄膜の表面に所定の厚みのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とを備えた複合体を得る。  Next, the surface of the aluminum thin film is subjected to a barrier type anodizing treatment to form a barrier type anodized film. As an anodizing solution, organic acid salts such as borate and adipate, phosphates and the like are used. In this anodic oxidation solution, an aluminum thin film is electrolyzed with an anode to form a barrier type anodic oxide coating having a predetermined thickness on the surface of the aluminum thin film, and a base and an aluminum thin film sequentially formed on the base And a composite comprising the barrier type anodic oxide coating.

上記のバリア型陽極酸化処理では、陽極酸化溶液の濃度は適宜調整されるが、0.1重量%以上かつ30重量%以下であることが好ましい。
陽極酸化溶液の濃度が0.1重量%以上かつ30重量%以下であることが好ましい理由は、陽極酸化溶液の濃度が0.1重量%未満では、緻密なバリア型陽極酸化被膜が形成され難いからであり、一方、陽極酸化溶液の濃度が30重量%を超えると、絶縁破壊が起こりやすく、欠陥の多いバリア型陽極酸化被膜が形成されてしまうからである。
In the barrier type anodizing treatment described above, the concentration of the anodizing solution is appropriately adjusted, but is preferably 0.1% by weight or more and 30% by weight or less.
The reason why the concentration of the anodizing solution is preferably 0.1% by weight or more and 30% by weight or less is that when the concentration of the anodizing solution is less than 0.1% by weight, a dense barrier type anodized film is difficult to be formed. On the other hand, if the concentration of the anodic oxidation solution exceeds 30% by weight, dielectric breakdown is likely to occur, and a barrier type anodic oxide film having many defects is formed.

また、上記のバリア型陽極酸化処理では、印加する電圧と、その電圧を印加する時間は適宜調整されるが、50V以上かつ1000V以下の電圧を、15分以上かつ360分(6時間)以下印加することが好ましい。
印加する電圧が50V以上かつ1000V以下であることが好ましい理由は、電圧が50V未満では、バリア型陽極酸化被膜の膜厚が薄いものしか得られないからであり、一方、電圧が1000Vを超えると、絶縁破壊によるバリア型陽極酸化被膜の欠陥が増加するからである。
電圧を印加する時間が15分以上かつ360分(6時間)以下であることが好ましい理由は、電圧を印加する時間が15分未満では、処理時間が短いため、連続的なバリア型陽極酸化被膜を形成しきれないからであり、一方、電圧を印加する時間が360分(6時間)を超えると、処理時間が長過ぎて、実用的ではなくなるためである。
In the barrier type anodizing treatment, the voltage to be applied and the time for which the voltage is applied are appropriately adjusted, but a voltage of 50 V or more and 1000 V or less is applied for 15 minutes or more and 360 minutes (6 hours) or less. It is preferable to do.
The reason why the applied voltage is preferably 50 V or more and 1000 V or less is that when the voltage is less than 50 V, only a thin barrier type anodic oxide film can be obtained, whereas when the voltage exceeds 1000 V, This is because defects in the barrier type anodic oxide film due to dielectric breakdown increase.
The reason why the voltage application time is preferably 15 minutes or more and 360 minutes (6 hours) or less is that, since the treatment time is short when the voltage application time is less than 15 minutes, it is a continuous barrier type anodic oxide coating. On the other hand, if the voltage application time exceeds 360 minutes (6 hours), the processing time is too long and it is not practical.

本発明の複合体の製造方法は、基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成するので、基体としてアルミニウムやアルミニウム合金以外のものを用いても、金属間化合物の露出が少ない最表面を形成することができ、結果として、欠陥が少なく、耐酸化性およびフッ素などに対する耐食性に優れた最表面を有する複合体を製造することができる。  In the method for producing the composite of the present invention, an aluminum thin film is formed on the surface of the substrate by vacuum deposition or sputtering, and then a barrier type anodic oxide film is formed on the surface of the aluminum thin film. Even when a material other than an alloy is used, the outermost surface with less exposure of intermetallic compounds can be formed, and as a result, a composite having the outermost surface with few defects and excellent oxidation resistance and corrosion resistance against fluorine and the like can be obtained. Can be manufactured.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

「実施例1」
基体として、縦30mm×横45mm×厚み1mmのアルミニウム合金(A6061)を用い、この基体の表面に、RFマグネトロンスパッタリングにより、厚み1μmのアルミニウム薄膜を成膜した。
ここでは、アルミニウムターゲットとしては、アルミニウムの純度が99.99%のものを用いた。
次いで、アルミニウム薄膜を成膜した基体を、5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、アルミニウム薄膜上に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とからなる複合体を得た。
"Example 1"
An aluminum alloy (A6061) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate, and an aluminum thin film having a thickness of 1 μm was formed on the surface of the substrate by RF magnetron sputtering.
Here, an aluminum target having an aluminum purity of 99.99% was used.
Next, the substrate on which the aluminum thin film is formed is immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V is applied for 30 minutes in this solution to perform anodization of the aluminum thin film. A barrier type anodic oxide film having a thickness of 250 nm was formed, and a composite body including a base, an aluminum thin film and a barrier type anodic oxide film sequentially formed on the base was obtained.

「実施例2」
基体として、縦30mm×横45mm×厚み1mmのステンレス(SUS304L)を用い、この基体の表面に、RFマグネトロンスパッタリングにより、厚み1μmのアルミニウム薄膜を成膜した。
ここでは、アルミニウムターゲットとしては、アルミニウムの純度が99.99%のものを用いた。
次いで、アルミニウム薄膜を成膜した基体を、5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、アルミニウム薄膜上に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体上に順に形成されたアルミニウム薄膜およびバリア型陽極酸化被膜とからなる複合体を得た。
"Example 2"
Stainless steel (SUS304L) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate, and an aluminum thin film having a thickness of 1 μm was formed on the surface of the substrate by RF magnetron sputtering.
Here, an aluminum target having an aluminum purity of 99.99% was used.
Next, the substrate on which the aluminum thin film is formed is immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V is applied for 30 minutes in this solution to perform anodization of the aluminum thin film. A barrier type anodic oxide film having a thickness of 250 nm was formed, and a composite body including a base, an aluminum thin film and a barrier type anodic oxide film sequentially formed on the base was obtained.

「比較例1」
基体として、縦30mm×横45mm×厚み1mmのアルミニウム合金(A6061)を用い、この基体を5重量%のアジピン酸アンモニウム溶液に浸漬し、この溶液中にて、電圧200Vを30分間印加し、アルミニウム薄膜の陽極酸化処理を行い、基体の表面に厚み250nmのバリア型陽極酸化被膜を形成し、基体と、この基体の表面に形成されたバリア型陽極酸化被膜とからなる複合体を得た。
"Comparative Example 1"
An aluminum alloy (A6061) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was used as a substrate. The substrate was immersed in a 5 wt% ammonium adipate solution, and a voltage of 200 V was applied in the solution for 30 minutes. The thin film was anodized to form a barrier type anodic oxide film having a thickness of 250 nm on the surface of the substrate, and a composite comprising the substrate and the barrier type anodic oxide film formed on the surface of the substrate was obtained.

「比較例2」
基体として、縦30mm×横45mm×厚み1mmのステンレス(SUS304L)を用意した。この基体には特に表面処理を施さなかった。
"Comparative Example 2"
Stainless steel (SUS304L) having a length of 30 mm, a width of 45 mm, and a thickness of 1 mm was prepared as a substrate. This substrate was not particularly surface treated.

「耐食性の評価」
実施例1の複合体、実施例2の複合体、比較例1の複合体、および、比較例2の基体を、大気中にて、550℃にて48時間加熱した。
その後、それぞれについて加熱の前後における表面の色の変化を目視により調べた。
結果を表1に示す。
"Evaluation of corrosion resistance"
The composite of Example 1, the composite of Example 2, the composite of Comparative Example 1, and the substrate of Comparative Example 2 were heated in air at 550 ° C. for 48 hours.
Thereafter, the change in the color of the surface before and after heating was examined visually.
The results are shown in Table 1.

Figure 2008240024
Figure 2008240024

表1の結果から、実施例1および2の複合体は、加熱の前後における表面の色の変化が全く認められなかった。
一方、比較例1の複合体は、目視により表面全面に点状の茶色の変色が認められるとともに、この点状の変色により光沢が低下していることが認められた。点状の茶色の変色は、バリア型陽極酸化被膜の欠陥部分が酸化されたことによるものである。
また、比較例2の基体では、表面全面に茶色の変色が認められ、かつ、周辺の茶色よりも一層濃い点状の茶色の変色が認められるとともに、この点状の変色により光沢が低下していることが認められた。これは、ステンレスの表面全面が酸化されたことによるものである。
このように、アルミニウムのスパッタ膜を試料の表面に形成し、その後、バリア型アノード酸化処理を行った試料は、酸化が認められず、耐食性に優れることが示された。
From the results shown in Table 1, the composites of Examples 1 and 2 showed no change in surface color before and after heating.
On the other hand, the composite of Comparative Example 1 was visually observed to have a point-like brown discoloration on the entire surface, and it was recognized that the gloss was lowered due to the point-like discoloration. The dot-like brown discoloration is due to the oxidation of the defective portion of the barrier type anodic oxide coating.
Further, in the substrate of Comparative Example 2, a brown discoloration was observed on the entire surface, and a spot-like brown discoloration that was darker than the surrounding brown was also observed, and the gloss was lowered due to the dot discoloration. It was recognized that This is because the entire surface of the stainless steel is oxidized.
Thus, it was shown that the sample in which the sputtered film of aluminum was formed on the surface of the sample and then subjected to the barrier type anodic oxidation treatment was not oxidized and was excellent in corrosion resistance.

なお、上記の実施例1および2では、アルミニウム薄膜の成膜にRFマグネトロンスパッタリングを用いたが、真空蒸着を用いても、実施例1および2と同様な効果が得られる。
また、上記の実施例1および2では、基体として、アルミニウム合金またはステンレスを用いたが、マグネシウム、チタン、インコネル(登録商標)、ハステロイ(登録商標)、銅、炭素材などを用いても、実施例1および2と同様な効果が得られる。
In Examples 1 and 2 described above, RF magnetron sputtering was used to form the aluminum thin film. However, the same effects as in Examples 1 and 2 can be obtained even if vacuum deposition is used.
In Examples 1 and 2 described above, an aluminum alloy or stainless steel was used as the substrate. However, even when magnesium, titanium, Inconel (registered trademark), Hastelloy (registered trademark), copper, carbon material, or the like was used, the present invention was implemented. The same effect as in Examples 1 and 2 is obtained.

本発明の複合体およびその製造方法は、酸素系ガス、酸素プラズマ、酸素ラジカル、フッ素系ガス、フッ素プラズマ、フッ素ラジカルなどに耐性の必要な真空装置の防着板、電極、アース板、ヒーターなどの真空部品にも適用できる。

The composite of the present invention and the method for producing the same include an oxygen-based gas, an oxygen plasma, an oxygen radical, a fluorine-based gas, a fluorine plasma, a fluorine protective film, an electrode, a ground plate, a heater, etc. It can be applied to other vacuum parts.

Claims (6)

基体と、該基体上に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたバリア型陽極酸化被膜とを備えてなることを特徴とする複合体。  A composite comprising: a base; an aluminum thin film formed on the base; and a barrier-type anodic oxide film formed on the aluminum thin film. 前記基体は、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、チタン、ニッケル基合金、銅、炭素材の群から選択された1種または2種以上であることを特徴とする請求項1に記載の複合体。  2. The composite according to claim 1, wherein the substrate is one or more selected from the group consisting of stainless steel, aluminum, aluminum alloy, magnesium, titanium, nickel-base alloy, copper, and carbon material. . 前記アルミニウム薄膜は、アルミニウムを90%以上含有していることを特徴とする請求項1または2に記載の複合体。  The composite according to claim 1, wherein the aluminum thin film contains 90% or more of aluminum. 前記アルミニウム薄膜は、真空蒸着またはスパッタリングにより成膜されていることを特徴とする請求項1ないし3のいずれか1項に記載の複合体。  The composite according to any one of claims 1 to 3, wherein the aluminum thin film is formed by vacuum deposition or sputtering. 前記バリア型陽極酸化被膜の厚みは0.1μm以上かつ1μm以下であることを特徴とする請求項1ないし4のいずれか1項に記載の複合体。  The composite according to any one of claims 1 to 4, wherein the barrier type anodic oxide coating has a thickness of 0.1 µm or more and 1 µm or less. 基体の表面に、真空蒸着またはスパッタリングによりアルミニウム薄膜を成膜し、次いで、そのアルミニウム薄膜の表面にバリア型陽極酸化被膜を形成することを特徴とする複合体の製造方法。

A method for producing a composite, comprising: forming an aluminum thin film on a surface of a substrate by vacuum deposition or sputtering; and then forming a barrier type anodic oxide film on the surface of the aluminum thin film.

JP2007079116A 2007-03-26 2007-03-26 Composite and production method thereof Active JP5162148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079116A JP5162148B2 (en) 2007-03-26 2007-03-26 Composite and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079116A JP5162148B2 (en) 2007-03-26 2007-03-26 Composite and production method thereof

Publications (2)

Publication Number Publication Date
JP2008240024A true JP2008240024A (en) 2008-10-09
JP5162148B2 JP5162148B2 (en) 2013-03-13

Family

ID=39911710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079116A Active JP5162148B2 (en) 2007-03-26 2007-03-26 Composite and production method thereof

Country Status (1)

Country Link
JP (1) JP5162148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111890A (en) * 2008-11-04 2010-05-20 Mitsubishi Chemicals Corp Method for anti-corrosion treatment of aluminum or aluminum alloy
JP2016514213A (en) * 2013-03-14 2016-05-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High purity aluminum topcoat on substrate
US10260160B2 (en) 2013-11-13 2019-04-16 Applied Materials, Inc. High purity metallic top coat for semiconductor manufacturing components

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312088A (en) * 1988-06-10 1989-12-15 Showa Alum Corp Production of electrode for dry etching device and cvd device
JPH0525694A (en) * 1991-07-15 1993-02-02 Mitsubishi Alum Co Ltd Production of aluminum or aluminum alloy for vacuum equipment
JPH08139337A (en) * 1994-11-11 1996-05-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JPH08260196A (en) * 1995-03-24 1996-10-08 Kobe Steel Ltd Surface treating method of vacuum chamber member made of al or al alloy
JPH08319573A (en) * 1995-05-22 1996-12-03 Nitsukooshi Prod Kk Anodically oxidized aluminum electrode for plasma cvd and etching
JPH0910577A (en) * 1995-06-26 1997-01-14 Ulvac Japan Ltd Structural material for vacuum apparatus and structural member for vacuum apparatus
JPH09184094A (en) * 1995-12-28 1997-07-15 Mitsubishi Alum Co Ltd Surface treated aluminum material and its production
JP2005105300A (en) * 2003-09-29 2005-04-21 Ulvac Japan Ltd Surface treatment method of aluminum or aluminum alloy used for vacuum device and its components, and vacuum device and its components
JP2006241589A (en) * 2005-01-18 2006-09-14 Applied Materials Inc Corrosion-resistant aluminum component having multi-layer coating
WO2008081748A1 (en) * 2006-12-28 2008-07-10 National University Corporation Tohoku University Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312088A (en) * 1988-06-10 1989-12-15 Showa Alum Corp Production of electrode for dry etching device and cvd device
JPH0525694A (en) * 1991-07-15 1993-02-02 Mitsubishi Alum Co Ltd Production of aluminum or aluminum alloy for vacuum equipment
JPH08139337A (en) * 1994-11-11 1996-05-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JPH08260196A (en) * 1995-03-24 1996-10-08 Kobe Steel Ltd Surface treating method of vacuum chamber member made of al or al alloy
JPH08319573A (en) * 1995-05-22 1996-12-03 Nitsukooshi Prod Kk Anodically oxidized aluminum electrode for plasma cvd and etching
JPH0910577A (en) * 1995-06-26 1997-01-14 Ulvac Japan Ltd Structural material for vacuum apparatus and structural member for vacuum apparatus
JPH09184094A (en) * 1995-12-28 1997-07-15 Mitsubishi Alum Co Ltd Surface treated aluminum material and its production
JP2005105300A (en) * 2003-09-29 2005-04-21 Ulvac Japan Ltd Surface treatment method of aluminum or aluminum alloy used for vacuum device and its components, and vacuum device and its components
JP2006241589A (en) * 2005-01-18 2006-09-14 Applied Materials Inc Corrosion-resistant aluminum component having multi-layer coating
WO2008081748A1 (en) * 2006-12-28 2008-07-10 National University Corporation Tohoku University Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111890A (en) * 2008-11-04 2010-05-20 Mitsubishi Chemicals Corp Method for anti-corrosion treatment of aluminum or aluminum alloy
JP2016514213A (en) * 2013-03-14 2016-05-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High purity aluminum topcoat on substrate
US10260160B2 (en) 2013-11-13 2019-04-16 Applied Materials, Inc. High purity metallic top coat for semiconductor manufacturing components

Also Published As

Publication number Publication date
JP5162148B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP4796464B2 (en) Aluminum alloy member with excellent corrosion resistance
US8282807B2 (en) Metal member having a metal oxide film and method of manufacturing the same
WO2006123736A1 (en) Corrosion resistance treatment method for aluminum or aluminum alloy
JPS589151B2 (en) Method of forming a corrosion-resistant coating on a metal substrate
JP6505126B2 (en) Multilayer substrate and manufacturing method
JP5403816B2 (en) DLC film coated member and method for manufacturing the same
CN108385148B (en) Semiconductor reactor and method for forming coating of metal base material for semiconductor reactor
JP2943634B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
JP5162148B2 (en) Composite and production method thereof
TW201500319A (en) Anti-corrosion film, metal substrate with anti-corrosion layer and manufacturing method thereof
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
JP2018188728A (en) Stainless steel having hydrogen barrier capability and method for producing the same
US10233558B2 (en) Method for manufacturing a part coated with a protective coating
JP2005029891A (en) Surface-treated aluminum material, and its production method
JPH09184094A (en) Surface treated aluminum material and its production
JPH1161410A (en) Vacuum chamber member and its production
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
RU2495966C1 (en) Method of grinding parts made from titanium alloys
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same
EP4039845A1 (en) Corrosion-resistant member
US20130011688A1 (en) Corrosion Resistant Metal Coating and Method of Making Same
JP2000282294A (en) Formation of anodically oxidized film excellent in thermal crack resistance and corrosion resistance and anodically oxidized film-coated member
TWI751701B (en) Corrosion resistant components
JP5798900B2 (en) Method for forming oxide film and oxide film
JP2008231520A (en) Member coated with film of amorphous hydrocarbon solid matter and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5162148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250