JP2018188728A - Stainless steel having hydrogen barrier capability and method for producing the same - Google Patents

Stainless steel having hydrogen barrier capability and method for producing the same Download PDF

Info

Publication number
JP2018188728A
JP2018188728A JP2018047388A JP2018047388A JP2018188728A JP 2018188728 A JP2018188728 A JP 2018188728A JP 2018047388 A JP2018047388 A JP 2018047388A JP 2018047388 A JP2018047388 A JP 2018047388A JP 2018188728 A JP2018188728 A JP 2018188728A
Authority
JP
Japan
Prior art keywords
stainless steel
film
hydrogen barrier
hydrogen
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047388A
Other languages
Japanese (ja)
Other versions
JP6853536B2 (en
Inventor
和嘉 川見
Kazuyoshi Kawami
和嘉 川見
淳之 木下
Atsuyuki Kinoshita
淳之 木下
泰伸 澤田
Yasunobu Sawada
泰伸 澤田
田村 元紀
Motonori Tamura
元紀 田村
飯島 高志
Takashi Iijima
高志 飯島
白 安
Akira Yasu
白 安
睦明 今岡
Mutsuaki Imaoka
睦明 今岡
田中 俊行
Toshiyuki Tanaka
俊行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Mekki Inc
National Institute of Advanced Industrial Science and Technology AIST
University of Electro Communications NUC
Tottori Institute of Industrial Technology
Original Assignee
Asahi Mekki Inc
National Institute of Advanced Industrial Science and Technology AIST
University of Electro Communications NUC
Tottori Institute of Industrial Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Mekki Inc, National Institute of Advanced Industrial Science and Technology AIST, University of Electro Communications NUC, Tottori Institute of Industrial Technology filed Critical Asahi Mekki Inc
Publication of JP2018188728A publication Critical patent/JP2018188728A/en
Application granted granted Critical
Publication of JP6853536B2 publication Critical patent/JP6853536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel and a method for manufacturing the same, having a hydrogen barrier capability by being covered with a hydrogen barrier film formed by a wet process of high mass-productivity, low processing cost, high productivity, simple device structure, and low equipment cost.SOLUTION: The process for producing the stainless steel having a hydrogen barrier capability comprises electrolytic polishing a surface of a stainless steel, anodizing it in a treatment solution comprising a mixture of chromic acid and sulfuric acid to form a chromium oxide film, cathodizing it in a treatment solution comprising a mixture of chromic acid and phosphoric acid to cure the chromium oxide film, and then immersing it in nitric acid to form a passivation film.SELECTED DRAWING: Figure 1

Description

本願発明は、水素バリア機能を有するステンレス鋼及びその製造方法に関する。特に、ウエットプロセスにより形成した金属酸化物皮膜からなる水素バリア機能膜で被覆した水素バリア機能を有するステンレス鋼及びその製造方法に関する。   The present invention relates to a stainless steel having a hydrogen barrier function and a method for producing the same. In particular, the present invention relates to a stainless steel having a hydrogen barrier function coated with a hydrogen barrier function film made of a metal oxide film formed by a wet process, and a method for producing the same.

環境負荷の少ない次世代エネルギー源として水素を活用する水素社会の実現への取り組みがなされている。水素社会を実現するためには、水素の安定供給に向けた貯蔵・輸送技術の開発が必要である。
水素を貯蔵する高圧貯蔵容器、水素を輸送する高圧パイプラインには金属材料が用いられている。特に、高圧水素環境下では、金属材料中へ水素が侵入することにより引き起こされる水素脆化の問題があり、水素脆化の起こりにくいステンレス鋼(例、SUS316L)、アルミ合金(例、A6061−T6)が用いられている(非特許文献1)。しかしながら、経年耐久性を有する金属材料はなく、金属材料表面に水素バリア機能を有する皮膜を形成することが行われている。
Efforts are being made to realize a hydrogen society that uses hydrogen as a next-generation energy source with low environmental impact. In order to realize a hydrogen society, it is necessary to develop storage and transport technologies for the stable supply of hydrogen.
Metal materials are used for high-pressure storage containers for storing hydrogen and high-pressure pipelines for transporting hydrogen. In particular, in a high-pressure hydrogen environment, there is a problem of hydrogen embrittlement caused by hydrogen intrusion into the metal material, and stainless steel (eg, SUS316L), aluminum alloy (eg, A6061-T6) that is less prone to hydrogen embrittlement. ) Is used (Non-Patent Document 1). However, there is no metal material having aging durability, and a film having a hydrogen barrier function is formed on the surface of the metal material.

金属材料表面に皮膜を形成する方法としては、水溶液を用いないドライプロセス(乾式処理法)と水溶液を用いるウエットプロセス(湿式処理法)がある。ドライプロセスとしては、真空蒸着(VE)、気相中で物質の表面に物理的手法により目的とする物質の薄膜を堆積する物理気相蒸着(PVD)、目的とする薄膜の成分を含む原料ガスを供給し、基板表面あるいは気相での化学反応により膜を堆積する化学気相蒸着(CVD)がある。
一方、ウエットプロセスとしては、電解メッキ、無電解メッキ、陽極酸化、化成処理、電着塗装がある。ウエットプロセスは、ドライプロセスに比べて、大面積の処理が可能であり、量産性が高く、処理コストが安価であること、また大気開放系であり、装置構造が単純であり、設備コストが安価であること、という2つの大きな特徴がある。
As a method for forming a film on the surface of a metal material, there are a dry process that does not use an aqueous solution (dry process method) and a wet process that uses an aqueous solution (wet process method). Examples of the dry process include vacuum vapor deposition (VE), physical vapor deposition (PVD) in which a thin film of a target substance is deposited on the surface of the substance by a physical method in a gas phase, and a raw material gas containing a target thin film component. There is chemical vapor deposition (CVD) in which a film is deposited by a chemical reaction on the substrate surface or in the gas phase.
On the other hand, wet processes include electrolytic plating, electroless plating, anodization, chemical conversion treatment, and electrodeposition coating. The wet process can process a large area compared to the dry process, has high mass productivity and low processing costs, is open to the atmosphere, has a simple equipment structure, and low equipment costs. There are two major characteristics.

金属材料表面に形成される緻密な酸化物、窒化物は水素バリア性に優れていることが知られている。このため、金属材料(ステンレス鋼、クロムモリブデン鋼)の表面にクロム酸窒化物皮膜とセラミック皮膜を積層した水素バリア機能を有する皮膜をVE、PVDを用いて形成すること(特許文献1)、ステンレス鋼を大気圧の純酸素雰囲気下で200〜400℃に加熱して表面に酸化物皮膜を形成すること(特許文献2)、金属材料表面に酸化アルミニウム(Al23)皮膜をスパッタ法により、窒化シリコン(Si34)皮膜をプラズマCVD法により形成すること(特許文献3)がそれぞれ開示されている。しかしながら、上述したようにドライプロセスによる酸化物皮膜、窒化物皮膜の形成には皮膜形成物質を気化、イオン化する必要があるため処理コストが高く、量産化が難しく生産性が劣るという問題がある。また、密閉系プロセスであるため装置構造が複雑で設備コストが高くコスト優位性に劣るという問題がある。 It is known that dense oxides and nitrides formed on the surface of a metal material are excellent in hydrogen barrier properties. For this reason, a film having a hydrogen barrier function in which a chromium oxynitride film and a ceramic film are laminated on the surface of a metal material (stainless steel, chromium molybdenum steel) is formed using VE and PVD (Patent Document 1), stainless steel Steel is heated to 200 to 400 ° C. in a pure oxygen atmosphere at atmospheric pressure to form an oxide film on the surface (Patent Document 2), and an aluminum oxide (Al 2 O 3 ) film is formed on the surface of the metal material by sputtering. And forming a silicon nitride (Si 3 N 4 ) film by a plasma CVD method (Patent Document 3), respectively. However, as described above, the formation of an oxide film or a nitride film by a dry process requires vaporization and ionization of the film-forming substance, resulting in high processing costs, difficulty in mass production, and poor productivity. Moreover, since it is a closed system process, there exists a problem that an apparatus structure is complicated, equipment cost is high, and a cost advantage is inferior.

一方、ウエットプロセスは、皮膜形成物質を含む水溶液に金属材料を浸漬する方法であるため、ドライプロセスに比べ生産性、コスト優位性のいずれも高いというメリットがある。しかしながら、ウエットプロセスにより水素バリア機能を有する皮膜を形成する方法に関しては、水素ガスに接触する鋼材の表面に、ニッケルメッキ、亜鉛メッキ、銅メッキにより厚み0.10μm〜50μmのニッケル、亜鉛、銅の皮膜を電気メッキにより形成することが開示されている(特許文献4)のみで、ウエットプロセスにより水素バリア機能を有する緻密な酸化物皮膜を形成すること関しては開示されていない。   On the other hand, the wet process is a method in which a metal material is immersed in an aqueous solution containing a film-forming substance, and thus has an advantage that both productivity and cost advantage are higher than that of a dry process. However, regarding a method of forming a film having a hydrogen barrier function by a wet process, nickel, zinc, or copper having a thickness of 0.10 μm to 50 μm is formed on the surface of a steel material in contact with hydrogen gas by nickel plating, zinc plating, or copper plating. Only the formation of a film by electroplating is disclosed (Patent Document 4), but there is no disclosure regarding the formation of a dense oxide film having a hydrogen barrier function by a wet process.

特開2014−214336号公報JP 2014-214336 A 特開平04−157149号公報Japanese Patent Laid-Open No. 04-157149 特開2016− 53209号公報JP 2006-53209 A 特開2016− 65313号公報JP, 2006-65313, A

田村元紀,柴田浩司著:「日本金属学会誌」,69巻,12号(2005),P.1039−1048Tamura Motoki and Shibata Koji: “The Journal of the Japan Institute of Metals”, Vol. 69, No. 12 (2005), p. 1039-1048

本願発明は、大面積の処理が可能であり、量産性が高く、処理コストが安価で生産性が高く、また大気開放系であり、装置構造が単純であり、設備コストが安価でコスト優位性が高いウエットプロセスにより形成した金属酸化物皮膜からなる水素バリア機能膜で被覆した水素バリア機能を有するステンレス鋼及びその製造方法を提案するものである。   The present invention can process a large area, has high mass productivity, low processing cost and high productivity, is open to the atmosphere, has a simple device structure, and has low equipment cost and cost advantage. The present invention proposes a stainless steel having a hydrogen barrier function coated with a hydrogen barrier function film made of a metal oxide film formed by a high wet process and a method for producing the same.

本願発明の課題は、以下の態様により解決できる。具体的には、   The problems of the present invention can be solved by the following aspects. In particular,

(態様1) 電解研磨処理されたステンレス鋼表面に、不動態化した皮膜を被覆した水素バリア機能を有するステンレス鋼である。ステンレス鋼表面を電解研磨処理することで、ステンレス鋼表面が平滑化し、平滑化したステンレス鋼表面に形成された皮膜厚みが均一となり、水素バリア機能が低下する原因となる皮膜が薄い部分や皮膜欠損(ピンホール)が生じないからである。 (Aspect 1) A stainless steel having a hydrogen barrier function in which a surface of stainless steel subjected to electropolishing treatment is coated with a passivated film. By electropolishing the stainless steel surface, the surface of the stainless steel is smoothed, the thickness of the film formed on the smoothed stainless steel surface is uniform, and the thin film part or film defect that causes the hydrogen barrier function to deteriorate This is because no (pinhole) occurs.

(態様2) 電解研磨処理されたステンレス鋼表面に、ウエットプロセスにより形成された金属酸化物を不動態化した皮膜を被覆した水素バリア機能を有するステンレス鋼である。ステンレス鋼表面を電解研磨処理することでステンレス鋼表面が平滑化し、ウエットプロセスにより形成した金属酸化物を不動態化した皮膜のステンレス鋼表面への皮膜密着性が向上するからである。また、平滑化したステンレス鋼表面に形成された皮膜厚みが均一となり、水素バリア機能が低下する原因となる皮膜が薄い部分や皮膜欠損(ピンホール)が生じないからである。 (Aspect 2) A stainless steel having a hydrogen barrier function in which a surface of a stainless steel subjected to an electropolishing treatment is coated with a film obtained by passivating a metal oxide formed by a wet process. This is because the surface of the stainless steel is smoothed by electropolishing the surface of the stainless steel, and the adhesion of the film obtained by passivating the metal oxide formed by the wet process to the surface of the stainless steel is improved. Further, the thickness of the film formed on the smoothed stainless steel surface is uniform, and the thin film part or the film defect (pinhole) that causes the deterioration of the hydrogen barrier function does not occur.

(態様3) 前記ウエットプロセスにより形成された金属酸化物を不動態化した皮膜が、クロム酸化物を不動態化した皮膜であることを特徴とする(態様3)に記載した水素バリア機能を有するステンレス鋼である。水素バリア機能を高めるためには、水素バリア性が高い金属酸化物で形成される皮膜をステンレス鋼表面に密着性と均一性を保持して形成する必要がある。クロム酸と硫酸の混合溶液からなる処理液を用いたインコ法により形成された酸化クロム皮膜は、水素バリア性の高い酸化クロム層をステンレス鋼表面に密着性と均一性を保持して形成でき、ステンレス鋼表面に発色皮膜を形成するインコ法は、簡易かつ低コストで量産できる皮膜形成法だからである。 (Aspect 3) The film obtained by passivating the metal oxide formed by the wet process is a film obtained by passivating chromium oxide, and has a hydrogen barrier function described in (Aspect 3) Stainless steel. In order to enhance the hydrogen barrier function, it is necessary to form a film formed of a metal oxide having a high hydrogen barrier property on the stainless steel surface while maintaining adhesion and uniformity. The chromium oxide film formed by the inco method using a treatment solution consisting of a mixed solution of chromic acid and sulfuric acid can form a chromium oxide layer with high hydrogen barrier property while maintaining adhesion and uniformity on the stainless steel surface, This is because the inco method for forming a colored film on the surface of stainless steel is a film forming method that can be mass-produced easily and at low cost.

(態様4) ステンレス鋼表面を電解研磨する研磨処理工程、研磨処理工程で研磨処理したステンレス鋼表面を不動態化剤からなる処理液に浸漬して、不動態化する不動態化処理工程、とからなる不動態膜を被覆した水素バリア機能を有するステンレス鋼の製造方法である。ステンレス鋼表面を電解研磨処理することで、ステンレス鋼表面が平滑化し、平滑化したステンレス鋼表面に形成された皮膜厚みが均一となり、水素バリア機能が低下する原因となる皮膜が薄い部分や皮膜欠損(ピンホール)が生じないからである。そして、不動態化したステンレス表面に形成される不動態化皮膜の水素バリア機能が強化されるからである。また、すべて工程をウエットプロセスとすることで、大面積の処理が可能であり、量産性が高く、処理コストが安価で生産性が高くなる。また、装置構造も単純であり、設備コストも安価であるため、コスト優位性が高く処理コストが安い水素バリア機能を有するステンレス鋼を製造することができるからである。 (Aspect 4) Polishing treatment step for electrolytic polishing the surface of stainless steel, Passivation treatment step for passivating by immersing the stainless steel surface polished in the polishing treatment step in a treatment solution comprising a passivating agent, and It is a manufacturing method of the stainless steel which has the hydrogen barrier function which coat | covered the passive film which consists of. By electropolishing the stainless steel surface, the surface of the stainless steel is smoothed, the thickness of the film formed on the smoothed stainless steel surface is uniform, and the thin film part or film defect that causes the hydrogen barrier function to deteriorate This is because no (pinhole) occurs. This is because the hydrogen barrier function of the passivated film formed on the passivated stainless steel surface is enhanced. In addition, since all processes are wet processes, a large area can be processed, mass productivity is high, processing costs are low, and productivity is high. Moreover, since the apparatus structure is simple and the equipment cost is low, it is possible to manufacture stainless steel having a hydrogen barrier function with high cost advantage and low processing cost.

(態様5) ステンレス鋼表面を電解研磨する研磨処理工程、研磨処理されたステンレス鋼を、クロム酸と硫酸の混合溶液からなる処理液に浸漬して、ステンレス鋼表面に酸化クロム皮膜をする形成する皮膜形成工程、皮膜形成工程で形成された酸化クロム皮膜を、クロム酸とリン酸の混合溶液からなる処理液に浸漬して、酸化クロム皮膜を硬化する硬化処理工程、硬化処理工程で硬化した酸化クロム皮膜を不動態化剤からなる処理液に浸漬して、酸化クロム皮膜を不動態化する不動態化処理工程、とからなる水素バリア機能膜で被覆した水素バリア機能を有するステンレス鋼の製造方法である。ステンレス鋼表面を電解研磨処理、皮膜形成処理、硬化処理、不動態化処理を逐次行うことにより、ステンレス鋼表面に形成される金属酸化物皮膜の水素バリア機能が強化されるからである。また、すべて工程をウエットプロセスとすることで、大面積の処理が可能であり、量産性が高く、処理コストが安価で生産性が高くなる。また、装置構造も単純であり、設備コストも安価であるため、コスト優位性が高く処理コストが安い水素バリア機能を有するステンレス鋼を製造することができるからである。 (Aspect 5) A polishing process for electrolytic polishing the surface of stainless steel, and the polished stainless steel is immersed in a processing solution comprising a mixed solution of chromic acid and sulfuric acid to form a chromium oxide film on the stainless steel surface. Oxidation cured in the film forming process, the curing process in which the chromium oxide film formed in the film forming process is immersed in a treatment liquid composed of a mixed solution of chromic acid and phosphoric acid to cure the chromium oxide film A method for producing stainless steel having a hydrogen barrier function coated with a hydrogen barrier functional film comprising: a passivation treatment step of passivating a chromium oxide film by immersing a chromium film in a treatment liquid comprising a passivating agent. It is. This is because the hydrogen barrier function of the metal oxide film formed on the stainless steel surface is enhanced by sequentially performing electrolytic polishing treatment, film formation treatment, hardening treatment, and passivation treatment on the stainless steel surface. In addition, since all processes are wet processes, a large area can be processed, mass productivity is high, processing costs are low, and productivity is high. Moreover, since the apparatus structure is simple and the equipment cost is low, it is possible to manufacture stainless steel having a hydrogen barrier function with high cost advantage and low processing cost.

本願発明によれば、大面積の処理が可能であり、量産性が高く、処理コストが安価で生産性が高く、また大気開放系であり、装置構造が単純であり、設備コストが安価でコスト優位性が高いウエットプロセスにより形成した金属酸化物皮膜からなる水素バリア機能膜で被覆した水素バリア機能を有するステンレス鋼及びその製造方法を提案できる。   According to the present invention, large area processing is possible, mass productivity is high, processing cost is low and productivity is high, the system is open to the atmosphere, the device structure is simple, the equipment cost is low, and the cost is low. It is possible to propose a stainless steel having a hydrogen barrier function coated with a hydrogen barrier function film made of a metal oxide film formed by a wet process having a high advantage and a method for producing the same.

本願発明のステンレス鋼表面に水素バリア機能膜をウエットプロセスにより形成する工程の流れを示す工程図である。It is process drawing which shows the flow of the process of forming a hydrogen barrier functional film by the wet process on the stainless steel surface of this invention. 本願発明の第1の水素バリア機能膜の形成方法で製作した水素バリア機能膜で被覆したステンレス鋼のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である。In the fracture surface SEM photograph after the SSRT test (1.1MPa hydrogen atmosphere, 1.1MPa nitrogen atmosphere) of the stainless steel coated with the hydrogen barrier function film manufactured by the first method of forming the hydrogen barrier function film of the present invention is there. 本願発明の水素バリア機能膜を被覆していないステンレス鋼のSSRT試験(1.1MPa水素雰囲気下)後の破断面SEM写真である。It is a fracture surface SEM photograph after the SSRT test (1.1MPa hydrogen atmosphere) of the stainless steel which has not coat | covered the hydrogen barrier functional film of this invention. 本願発明の第2の水素バリア機能膜の形成方法で製作した水素バリア機能膜で被覆したステンレス鋼のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である。In the fracture surface SEM photograph after the SSRT test (1.1MPa hydrogen atmosphere, 1.1MPa nitrogen atmosphere) of the stainless steel coated with the hydrogen barrier functional film manufactured by the second hydrogen barrier functional film forming method of the present invention is there. 本願発明の第2の水素バリア機能膜の形成方法で製作した(重クロム酸添加)水素バリア機能膜で被覆したステンレス鋼のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である。After SSRT test (1.1 MPa hydrogen atmosphere, 1.1 MPa nitrogen atmosphere) of stainless steel coated with hydrogen barrier functional film (added with dichromic acid) produced by the second method of forming a hydrogen barrier functional film of the present invention It is a fracture surface SEM photograph.

本願発明は、電解研磨処理したステンレス鋼表面に、ウエットプロセスにより形成された水素バリア機能膜を被覆した水素バリア機能を有するステンレス鋼である。ウエットプロセスとは、ステンレス鋼の表面に水素バリア機能膜を形成するプロセスにおいて、ステンレス鋼を水溶液に浸漬した状態(湿式)で行うことをいう。水素バリア機能膜の形成方法としては、具体的には、図1に示すようにステンレス鋼の表面を電解研磨する研磨処理工程、ステンレス鋼の表面に金属酸化物皮膜を形成する皮膜形成工程、金属酸化物皮膜を硬化させる硬化処理、硬化させた金属酸化物皮膜を酸化剤により不動態化させる不動態化処理工程、とからなる第1の水素バリア機能膜の形成方法と、ステンレス鋼の表面に化学発色法による金属酸化物皮膜を形成することなく、ステンレス鋼の表面を電解研磨処理した後、電解研磨処理したステンレス鋼表面を酸化剤により不動態化させる第2の水素バリア機能の膜形成方法がある。
以下、本願発明について、ステンレス鋼、研磨処理工程、皮膜形成工程、硬化処理工程、不動態化処理工程、水素バリア機能評価、耐食性評価(孔食電位)の順に説明する。なお、本願発明は以下の発明を実施するための態様に限定されるものではない。
The present invention is stainless steel having a hydrogen barrier function in which a surface of stainless steel subjected to electropolishing treatment is coated with a hydrogen barrier functional film formed by a wet process. The wet process refers to a process of forming a hydrogen barrier functional film on the surface of stainless steel, in a state where the stainless steel is immersed in an aqueous solution (wet). As a method for forming a hydrogen barrier functional film, specifically, as shown in FIG. 1, a polishing process for electrolytic polishing the surface of stainless steel, a film forming process for forming a metal oxide film on the surface of stainless steel, a metal A first hydrogen barrier functional film forming method comprising: a curing treatment for curing the oxide film; a passivation treatment step for passivating the cured metal oxide film with an oxidizing agent; and a surface of stainless steel. A second hydrogen barrier film forming method in which the surface of stainless steel is electropolished without forming a metal oxide film by chemical coloring, and then the electropolished stainless steel surface is passivated with an oxidizing agent. There is.
Hereinafter, the present invention will be described in the order of stainless steel, polishing process, film forming process, curing process, passivation process, hydrogen barrier function evaluation, and corrosion resistance evaluation (pitting corrosion potential). In addition, this invention is not limited to the aspect for implementing the following invention.

1.ステンレス鋼
本願発明の電解研磨処理に供するステンレス鋼としては、水素を貯蔵する高圧貯蔵容器、水素を輸送する高圧パイプラインに使用されるステンレス鋼を好適に用いることができる。具体的には、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼がある。耐食性や高強度が要求される高圧貯蔵容器や高圧パイプラインには、マルテンサイト系ステンレス鋼(例えば、410C、420、430、440C、440B)、オーステナイト系ステンレス鋼(例えば、304、304L、321、347、316L)が好適に用いることができる。特に、オーステナイト系ステンレス鋼316Lが採用されている。
1. Stainless steel As stainless steel used for the electrolytic polishing treatment of the present invention, stainless steel used for a high-pressure storage container for storing hydrogen and a high-pressure pipeline for transporting hydrogen can be suitably used. Specifically, there are ferritic stainless steel, martensitic stainless steel, and austenitic stainless steel. For high pressure storage containers and high pressure pipelines that require corrosion resistance and high strength, martensitic stainless steel (for example, 410C, 420, 430, 440C, 440B), austenitic stainless steel (for example, 304, 304L, 321, 347, 316L) can be preferably used. In particular, austenitic stainless steel 316L is employed.

2.研磨処理工程
研磨処理工程は、ステンレス材料表面の酸化皮膜や不純物(非金属介在物)、加工変質層等の表面欠陥を除去または低減して、ステンレス鋼表面に均一で緻密な水素バリア機能を有する金属酸化物皮膜を形成する前処理としての役割を担う。
2. Polishing process The polishing process has a uniform and dense hydrogen barrier function on the stainless steel surface by removing or reducing surface defects such as oxide films and impurities (non-metallic inclusions) on the stainless steel surface and work-affected layers. It plays a role as a pretreatment for forming a metal oxide film.

(2−1)電解研磨
研磨処理工程には、電解研磨を採用することができる。電解研磨は、外部電源により、電解研磨溶液中で、金属をアノード(陽極)として直流電流を流して、微細な凹凸のある金属表面の凸部分の溶解により金属表面を平滑化し光沢化する研磨方法である。バフ研磨などの物理的研磨と異なり加工変質や加工硬化層を作らず、研磨面に不純物や汚染が少ないため研磨面が清浄となるという長所がある。
電解研磨浴における陽極分極曲線(Jacquet曲線)では、電位に依存しない一定電流(限界電流)範囲が存在する。この限界電流範囲において、アノード被研磨金属近傍には濃厚な粘性の高い陽極液層(Jacquet層)が形成される。この液層は溶出カチオンの拡散を抑制し、これによって研磨が行われると考えられる。すなわち、アノード金属表面状の凹凸により、粘性液層中の濃度勾配に差異を生じ、拡散電流が影響して凸部に電流が集中するようになり、表面の凹凸が消失して研磨が行われる。
(2-1) Electropolishing Electropolishing can be employed in the polishing process. Electropolishing is a polishing method in which a direct current is passed in an electropolishing solution using an external power source to make the metal surface smooth and glossy by melting the convex portions of the metal surface with fine irregularities. It is. Unlike physical polishing such as buffing, there is an advantage in that the polished surface is clean because there is no work alteration or work hardened layer and there are few impurities and contamination on the polished surface.
In the anodic polarization curve (Jacquet curve) in the electropolishing bath, there is a constant current (limit current) range that does not depend on the potential. In this limit current range, a thick and highly viscous anolyte layer (Jacquet layer) is formed in the vicinity of the anode polished metal. This liquid layer suppresses the diffusion of the eluted cations, and it is considered that polishing is performed by this. That is, the unevenness on the surface of the anode metal causes a difference in the concentration gradient in the viscous liquid layer, the diffusion current affects the current, and the current concentrates on the protrusions, and the surface unevenness disappears and polishing is performed. .

(2−2)電解研磨溶液
電解研磨に利用される研磨液は、過塩素酸系、リン酸−硫酸−クロム酸系、リン酸−硫酸−有機物系、の3つに分類され、リン酸−硫酸−クロム酸系、リン酸−硫酸−有機物系、が広く採用されている。氷酪酸,燐酸,硫酸,硝酸,クロム酸,重クロム酸ソーダ等の単独または混合酸性水溶液で構成され、有機物(添加剤)としてエチレングリコールモノエチルエーテル,エチレングリコールモノブチルエステルやグリセリンを使用することができる。これら添加剤は電解液を安定化させ、濃度変化、経時変化、使用による劣化に対して適正電解範囲を広げる効果がある。
具体的には、40〜80vol%リン酸、5〜30vol%硫酸、15〜20vol%水、0〜35vol%エチレングリコールからなる電解液中で、40〜70℃、3〜10min、直流(10〜30V、3〜60A/dm)で行うことができる。
(2-2) Electropolishing solution Polishing liquids used for electropolishing are classified into three types: perchloric acid type, phosphoric acid-sulfuric acid-chromic acid type, phosphoric acid-sulfuric acid-organic type, and phosphoric acid- A sulfuric acid-chromic acid system and a phosphoric acid-sulfuric acid-organic system are widely used. Consists of single or mixed acidic aqueous solutions such as glacial butyric acid, phosphoric acid, sulfuric acid, nitric acid, chromic acid, sodium dichromate, etc., and uses ethylene glycol monoethyl ether, ethylene glycol monobutyl ester or glycerin as the organic substance (additive) Can do. These additives have the effect of stabilizing the electrolytic solution and expanding the appropriate electrolysis range against changes in concentration, changes over time, and deterioration due to use.
Specifically, in an electrolytic solution composed of 40 to 80 vol% phosphoric acid, 5 to 30 vol% sulfuric acid, 15 to 20 vol% water, and 0 to 35 vol% ethylene glycol, 40 to 70 ° C., 3 to 10 min, direct current (10 to 10 vol. 30 V, can be carried out in 3~60A / dm 2).

(2−3)表面粗さ
電解研磨処理により、ステンレス鋼材の表面粗さを0.1μm未満、好ましくは0.08μm以下に抑える必要がある。表面粗さは、後述する皮膜形成工程に影響するからである。ここで、「表面粗さ」とは、JIS B 0601に規定する算術平均粗さ(Ra)をいう。
(2-3) Surface roughness It is necessary to suppress the surface roughness of the stainless steel material to less than 0.1 μm, preferably 0.08 μm or less by electrolytic polishing. This is because the surface roughness affects the film forming process described later. Here, “surface roughness” refers to arithmetic average roughness (Ra) defined in JIS B 0601.

3.皮膜形成工程
皮膜形成工程は、水素バリア機能を有する金属酸化物皮膜をステンレス鋼表面に形成して、ステンレス鋼に水素バリア機能を付与する役割を担う。
3. Film Forming Process The film forming process plays a role of forming a metal oxide film having a hydrogen barrier function on the stainless steel surface and imparting a hydrogen barrier function to the stainless steel.

(3−1)皮膜形成
水素バリア機能を担う金属酸化物皮膜の形成には、ステンレス発色技術を採用する。ステンレス発色技術とは、ステンレス鋼表面に形成される陽極酸化膜の干渉色によりステンレス鋼を発色させる技術をいう。形成される陽極酸化膜の厚さは陽極と参照極との電位差(発色電位)に関連する。クロム酸と硫酸混合溶液中で酸化クロム皮膜を形成する、いわゆるインコ法(特開昭48−011243号公報参照)が広く採用される。
(3-1) Film formation Stainless steel coloring technology is adopted for the formation of the metal oxide film that bears the hydrogen barrier function. The stainless steel coloring technique refers to a technique for coloring stainless steel by the interference color of the anodized film formed on the stainless steel surface. The thickness of the formed anodic oxide film is related to the potential difference (coloring potential) between the anode and the reference electrode. A so-called inco method (see Japanese Patent Laid-Open No. 48-011243) for forming a chromium oxide film in a mixed solution of chromic acid and sulfuric acid is widely employed.

(3−2)皮膜形成速度
水素バリア機能膜を担う金属酸化物の形成速度(以下、「皮膜形成速度」という。)を制御することで、皮膜の密着性、均一性を高めて水素バリア機能が低下する原因となる皮膜が薄い部分や皮膜欠損(ピンホール)の発生を抑制できる。
皮膜形成速度は、発色液組成と温度で制御できる。発色液組成としては、硫酸とクロム酸の混合比(クロム酸/硫酸)は、クロム酸15〜30wt/v%に対し、硫酸40〜50wt/v%が好適である。クロム酸濃度を低減することで、水素バリア機能膜の形成速度を低くすることができ、発色皮膜の生成厚みを精密に制御できるからである。
皮膜形成速度は、電位速度(mV/sec)で制御することができる。電位速度は、0.02〜0.08mV/sec、好ましくは0.050〜0.065mV/secである。電位速度が0.02mV/sec未満であると発色皮膜の生成が遅れ生産性が低下するからである。電位速度が0.08mV/secを超えると形成された水素バリア機能膜の厚みが不均一となり、水素バリア機能が低下する原因となる塗膜が薄い部分や塗膜欠損(ピンホール)が生じるからである。
(3-2) Film formation rate By controlling the formation rate of the metal oxide that bears the hydrogen barrier function film (hereinafter referred to as “film formation rate”), the adhesion and uniformity of the film are enhanced to increase the hydrogen barrier function. The generation | occurrence | production of the part with a thin film | membrane and film | membrane defect | deletion (pinhole) which becomes the cause which falls can be suppressed.
The film formation rate can be controlled by the color developer composition and temperature. As a coloring solution composition, the mixing ratio of sulfuric acid and chromic acid (chromic acid / sulfuric acid) is preferably 40-50 wt / v% sulfuric acid with respect to 15-30 wt / v% chromic acid. This is because by reducing the chromic acid concentration, the formation rate of the hydrogen barrier functional film can be lowered, and the thickness of the colored film formed can be precisely controlled.
The film formation rate can be controlled by the potential rate (mV / sec). The potential speed is 0.02 to 0.08 mV / sec, preferably 0.050 to 0.065 mV / sec. This is because, when the potential speed is less than 0.02 mV / sec, the production of the colored film is delayed and the productivity is lowered. If the electric potential speed exceeds 0.08 mV / sec, the thickness of the formed hydrogen barrier functional film becomes non-uniform, resulting in a thin coating film part or a coating film defect (pinhole) that causes the hydrogen barrier function to deteriorate. It is.

(3−3)発色液
発色液組成としては、クロム酸と硫酸の混合比(クロム酸/硫酸)は、クロム酸15〜30wt/vl%に対し、硫酸40〜50wt/vl%が好適である。クロム酸濃度を低減することで、水素バリア機能膜の形成速度を低くすることができ、発色皮膜の生成厚みを精密に制御できるからである。発色液の温度は、60〜90℃である。
(3-3) Coloring solution As the color developing solution composition, the mixing ratio of chromic acid and sulfuric acid (chromic acid / sulfuric acid) is preferably 40-50 wt / vl% for sulfuric acid with respect to 15-30 wt / vl% for chromic acid. . This is because by reducing the chromic acid concentration, the formation rate of the hydrogen barrier functional film can be lowered, and the thickness of the colored film formed can be precisely controlled. The temperature of the color developer is 60 to 90 ° C.

(3−4)マンガンイオン
発色液中のクロム酸濃度の低減に伴う水素バリア機能膜の形成I速度を補うために、マンガンイオン(Mn2+)を添加することができる。メッキ液に用いるマンガン塩としては、塩化マンガン(MnCl2)、硫酸マンガン(MnSO4)、硝酸マンガン(Mn(NO3)2)などがあり、これらの中の1種または2種以上を用いることができる。メッキ液中のマンガンイオン(Mn2+)濃度は、0.5〜300mmol/Lが好ましく、5〜150mmol/Lがより好ましい。マンガンイオン(Mn2+)濃度が0.5mmol/L未満では、水素バリア機能膜の形成を促す効果がなく、マンガンイオン(Mn2+)濃度が300mmol/Lを超えると不溶な部分が残って、水素バリア機能膜の形成に影響を及ぼすからである。
(3-4) Manganese Ion Manganese ions (Mn 2+ ) can be added to supplement the formation rate I of the hydrogen barrier functional film accompanying the reduction of the chromic acid concentration in the color developing solution. Manganese salts used in the plating solution include manganese chloride (MnCl 2 ), manganese sulfate (MnSO 4 ), and manganese nitrate (Mn (NO 3 ) 2 ). Use one or more of these. Can do. The manganese ion (Mn 2+ ) concentration in the plating solution is preferably 0.5 to 300 mmol / L, more preferably 5 to 150 mmol / L. When the manganese ion (Mn 2+ ) concentration is less than 0.5 mmol / L, there is no effect of promoting the formation of a hydrogen barrier functional film, and when the manganese ion (Mn 2+ ) concentration exceeds 300 mmol / L, an insoluble portion remains. This is because it affects the formation of a hydrogen barrier functional film.

4.硬化処理工程
硬化処理工程は、ステンレス鋼表面に形成された水素バリア機能を有する金属酸化物皮膜を硬化させて強固にする役割を担う。
4). Curing treatment step The curing treatment step plays a role of hardening and strengthening the metal oxide film having a hydrogen barrier function formed on the stainless steel surface.

(4−1)硬化処理工程
硬化処理工程は、皮膜形成工程により水素バリア機能を有する金属酸化物皮膜が形成されたステンレス鋼を陰極とし、陰極電解により皮膜を硬化させる。皮膜形成工程により形成された水素バリア機能を有する金属酸化物皮膜は、10〜20nmの空孔が1cm2当たり1011個程度分布している。この空孔は、水素バリア機能を低下させる原因となるものであり、硬化処理により空孔を封じることができる。また、ルーズな皮膜を強固にすることもできる。
(4-1) Curing process The curing process uses a stainless steel on which a metal oxide film having a hydrogen barrier function is formed in the film forming process as a cathode, and cures the film by cathodic electrolysis. In the metal oxide film having a hydrogen barrier function formed by the film forming step, about 10 11 pores of 10 to 20 nm are distributed per 1 cm 2 . The pores cause a decrease in the hydrogen barrier function, and the pores can be sealed by a curing process. In addition, a loose film can be strengthened.

(4−2)硬化処理液
硬化処理液としては、クロム酸とリン酸の混合比(クロム酸/リン酸)は、クロム酸15〜30wt/v%に対し、反応促進剤としてリン酸0.2〜0.3wt/v%が好適である。電流密度0.2〜1.0A/dm2で、5〜10min行う。
(4-2) Curing Treatment Solution As the curing treatment solution, the mixing ratio of chromic acid and phosphoric acid (chromic acid / phosphoric acid) is 0.1 to 30 wt / v% of chromic acid, and phosphoric acid is used as a reaction accelerator. 2 to 0.3 wt / v% is preferable. It is performed at a current density of 0.2 to 1.0 A / dm 2 for 5 to 10 minutes.

5.不動態化処理工程
不働態化処理工程は、硬化処理された水素バリア機能を有する金属酸化物皮膜にさらに保護皮膜を形成する役割を担う。
5. Passivation treatment step The passivation treatment step plays a role of further forming a protective film on the metal oxide film having a hydrogen barrier function that has been subjected to the curing treatment.

(5−1)不動態化処理
不働態化とは、金属または半導体の表面に保護皮膜を生成させることをいう。一般に、金属は環境の酸化性が高くなると腐食反応が進むが、ステンレス鋼においては酸化性がある程度以上高くなると保護皮膜の形成により腐食反応が抑制される。
ステンレス鋼の不動態化処理方法としては、(a)硝酸その他強力な酸化剤を含む溶液に浸漬する方法、(b)酸化剤を含む溶液中でのアノード分極による方法、(c)酸素または清浄な空気中における低温加熱による方法、などがある。本願発明はウエットプロセスであるため(a)または(b)の方法を採用することができる。この不動態化処理により極めて薄い保護膜(10〜100nm)が形成される。
(5-1) Passivation treatment Passivation means forming a protective film on the surface of a metal or semiconductor. In general, a metal undergoes a corrosion reaction when the environment becomes highly oxidizing. However, in stainless steel, when the oxidizing property is increased to some extent, the corrosion reaction is suppressed by formation of a protective film.
As a passivation method of stainless steel, (a) a method of immersing in a solution containing nitric acid or another strong oxidizing agent, (b) a method by anodic polarization in a solution containing an oxidizing agent, (c) oxygen or cleaning There is a method by low temperature heating in the air. Since the present invention is a wet process, the method (a) or (b) can be employed. An extremely thin protective film (10 to 100 nm) is formed by this passivation treatment.

(5−2)不動態化処理液
不働態化処理液は、不動態化させる能力のある酸化剤(以下、「不動態化剤」という。)を含む水溶液中で行う。不動態化剤としては、硝酸、クロム酸、過マンガン酸、モリブデン酸、亜硝酸がある。不動態化剤として硝酸を用いる場合は、硝酸15〜30v/v%が好適である。
また、重クロム酸ナトリウムを添加すると後述する孔食電位が貴となり、耐孔食性が向上する。添加する重クロム酸ナトリウムは1.5〜3.5wt%が好適である。
(5-2) Passivation treatment liquid The passivation treatment liquid is carried out in an aqueous solution containing an oxidizing agent capable of being passivated (hereinafter referred to as “passivation agent”). Passivators include nitric acid, chromic acid, permanganic acid, molybdic acid, and nitrous acid. When nitric acid is used as a passivating agent, 15-30 v / v% nitric acid is preferred.
Further, when sodium dichromate is added, the pitting corrosion potential described later becomes noble and the pitting corrosion resistance is improved. The sodium dichromate to be added is preferably 1.5 to 3.5 wt%.

6.水素バリア機能評価
水素バリア機能評価は、水素環境下での加速試験(SSRT試験)によるステンレス鋼の遅れ破壊(水素脆化)と水素透過防止性で評価する。
6). Hydrogen barrier function evaluation The hydrogen barrier function evaluation is based on delayed fracture (hydrogen embrittlement) and hydrogen permeation prevention of stainless steel by an accelerated test (SSRT test) in a hydrogen environment.

(6−1)SSRT試験
水素を貯蔵する高圧貯蔵容器、水素を輸送する高圧パイプラインに使用される金属材料は高強度化が指向されている。このため、遅れ破壊(水素脆化)の感受性が増大する。SSRT(Slow Strain Rate Technique)試験は、低歪み速度による応力負荷により強制破断させるため、原理的に試験環境によらず遅れ破壊感受性を高感度に迅速評価することができる。
(6-1) SSRT test Metal materials used for high-pressure storage containers for storing hydrogen and high-pressure pipelines for transporting hydrogen are aimed at increasing strength. For this reason, the sensitivity of delayed fracture (hydrogen embrittlement) increases. Since the SSRT (Slow Strain Rate Technique) test is forcibly fractured by a stress load at a low strain rate, in principle, delayed fracture susceptibility can be rapidly evaluated with high sensitivity regardless of the test environment.

(6−2)破断面形態観察
SSRT試験後の試験品の破断面を走査型電子顕微鏡(SEM)にて観察を行う。
(6-2) Observation of fracture surface morphology The fracture surface of the test product after the SSRT test is observed with a scanning electron microscope (SEM).

(6−3)水素透過防止性評価
水素バリア機能膜の水素透過性防止性の評価は、JIS K7126−1(差圧法)に準じた差圧式のガスクロ法で、試験片を境に、一方を加圧、他方(透過側)を減圧にして行う。透過したガス(水素)をガスクロマトグラフにて分離し、熱伝導度検出器(TCD)により、時間当たりのガス透過量を求めることで、透過度を算出する。
(6-3) Evaluation of hydrogen permeation preventive property The hydrogen permeation preventive property of the hydrogen barrier functional membrane was evaluated by a differential pressure type gas chromatographic method according to JIS K7126-1 (differential pressure method), with one of the test pieces as a boundary. Pressurization is performed while the other (permeation side) is depressurized. The permeation rate is calculated by separating the permeated gas (hydrogen) with a gas chromatograph and obtaining the amount of gas permeation per hour by a thermal conductivity detector (TCD).

7.耐孔食性評価(孔食電位)
孔食電位はJIS G0577(2014年、ステンレス鋼の孔食電位測定方法)に準拠する方法で測定した。3.5wt%NaCl溶液(293K)中のアノード分極曲線から電流密度0.1mA・cm-2に対応する電位(V´c100)を測定した。
7). Pitting corrosion resistance evaluation (pitting corrosion potential)
The pitting potential was measured by a method based on JIS G0577 (2014, pitting corrosion potential measuring method for stainless steel). A potential (V′c100) corresponding to a current density of 0.1 mA · cm −2 was measured from an anodic polarization curve in a 3.5 wt% NaCl solution (293 K).

次に本願発明の効果を奏する実施態様を実施例として示す。また、そのまとめを表1及び表2に示す。   Next, an embodiment that exhibits the effect of the present invention will be shown as an example. The summary is shown in Tables 1 and 2.

1.試験サンプル作製
<実施例1>
以下の電解研磨処理、皮膜形成処理、硬化処理、不動態化処理を逐次行って、本願発明の試験サンプルを作製した(以下、「実施例1品」という。)。
(1)電解研磨処理
ステンレス鋼試験片、SSRT試験用(SUS304、φ4mm×20mm)及び水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm)に電極(+)を取り付け、以下の処理条件で電解研磨を行い、研磨処理品を作製した。
[電解研磨処理条件]
・電解研磨液組成 リン酸70ml/L、硫酸20ml/L、エチレングリコール0.2ml/L
・処理温度 70℃
・処理時間 5min
・電流密度 10A/dm
1. Test sample preparation <Example 1>
The following electrolytic polishing treatment, film formation treatment, curing treatment, and passivation treatment were sequentially performed to produce a test sample of the present invention (hereinafter referred to as “Example 1 product”).
(1) Electrolytic polishing treatment Stainless steel specimen, SSRT test (SUS304, φ4mm × 20mm) and hydrogen permeation prevention evaluation (SUS316L, φ35mm, thickness 0.1mm) are attached with electrodes (+), and the following treatment Electropolishing was performed under conditions to prepare a polished product.
[Electropolishing conditions]
-Electropolishing liquid composition Phosphoric acid 70 ml / L, sulfuric acid 20 ml / L, ethylene glycol 0.2 ml / L
・ Processing temperature 70 ℃
・ Processing time 5min
・ Current density 10A / dm 2

(2)表面粗さ計測
研磨処理品の算術平均粗さ(Ra)を表面粗さ測定機(テーラーホブソン製、フォームタリサーフPGI―PLS)計測した。表面粗さは、0.08μmであった。
(2) Surface Roughness Measurement The arithmetic average roughness (Ra) of the polished product was measured by a surface roughness measuring machine (made by Taylor Hobson, Form Talysurf PGI-PLS). The surface roughness was 0.08 μm.

(3)皮膜形成処理
研磨処理品を以下の条件で皮膜形成処理(発色処理)を行い、皮膜形成品を作製した。
〔皮膜形成処理条件〕
・発色液組成 酸化クロム250g/L、硫酸500g/L、硫酸マンガン6.3g/L
・処理温度 80℃
・処理時間 8min
・発色電位速度 0.053mV/sec
(3) Film formation treatment The polishing treatment product was subjected to film formation treatment (coloring treatment) under the following conditions to produce a film formation product.
[Film formation treatment conditions]
Color composition: Chromium oxide 250 g / L, sulfuric acid 500 g / L, manganese sulfate 6.3 g / L
・ Processing temperature 80 ℃
・ Processing time 8min
・ Coloring potential speed 0.053mV / sec

(4)硬化処理
皮膜形成品を以下の条件で硬化処理を行い、硬化処理品を作製した。
〔硬化処理条件〕
・硬化液組成 酸化クロム250g/L、リン酸2.5g/L
・処理温度 25℃
・処理時間 10min
・電流密度 0.5A/dm2
(4) Curing treatment The film-formed product was cured under the following conditions to produce a cured product.
[Curing conditions]
・ Curing liquid composition: Chrome oxide 250g / L, phosphoric acid 2.5g / L
・ Processing temperature 25 ℃
・ Processing time 10min
・ Current density 0.5A / dm 2

(5)不動態化処理
硬化処理品を以下の条件で不動態化処理を行い、不動態化処理品を作製した。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%
・処理温度 50℃
・処理時間 60min
(5) Passivation treatment The cured product was passivated under the following conditions to produce a passivated product.
[Passivation treatment conditions]
・ Passivation liquid composition: 25 vol% nitric acid
・ Processing temperature 50 ℃
・ Processing time 60min

<比較例1>
実施例記載の処理を行わないステンレス鋼試験片、SSRT試験用(SUS304、φ4mm×20mm)及び水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm)を比較例1とした(以下、「比較例1品」という。)。
<Comparative Example 1>
Stainless steel specimens not subjected to the treatment described in the examples, SSRT test (SUS304, φ4 mm × 20 mm) and hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) are referred to as Comparative Example 1 (hereinafter referred to as “Comparative Example 1”). It is referred to as “Comparative Example 1 product”).

<実施例2−1>
以下の電解研磨処理、皮膜形成処理、硬化処理、不動態化処理を逐次行って、本願発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例2−1品」という。)。
(1)電解研磨処理
ステンレス鋼試験片、水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm)に電極(+)を取り付け、以下の処理条件で電解研磨を行い、研磨処理品を作製した。
[電解研磨処理条件]
・電解研磨液組成 リン酸70ml/L、硫酸20ml/L、エチレングリコール0.2ml/L
・処理温度 70℃
・処理時間 5min
・電流密度 10A/dm
<Example 2-1>
The following electrolytic polishing treatment, film formation treatment, curing treatment, and passivation treatment were sequentially performed to prepare a test sample (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm)) of the present invention ( Hereinafter referred to as “Example 2-1 product”).
(1) Electropolishing treatment An electrode (+) is attached to a stainless steel test piece, for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm), and electropolishing is performed under the following processing conditions. Produced.
[Electropolishing conditions]
-Electropolishing liquid composition Phosphoric acid 70 ml / L, sulfuric acid 20 ml / L, ethylene glycol 0.2 ml / L
・ Processing temperature 70 ℃
・ Processing time 5min
・ Current density 10A / dm 2

(2)皮膜形成処理
研磨処理品を以下の条件で皮膜形成処理(発色処理)を行い、皮膜形成品を作製した。
〔皮膜形成処理条件〕
・発色液組成 酸化クロム250g/L、硫酸500g/L、硫酸マンガン6.3g/L
・処理温度 65℃
・処理時間 20min
・発色電位速度 0.003mV/sec
(2) Film Forming Process A film-formed article was produced by subjecting the polished product to a film forming process (coloring process) under the following conditions.
[Film formation treatment conditions]
Color composition: Chromium oxide 250 g / L, sulfuric acid 500 g / L, manganese sulfate 6.3 g / L
・ Processing temperature 65 ℃
・ Processing time 20min
・ Coloring potential speed 0.003mV / sec

(3)硬化処理
皮膜形成品を以下の条件で硬化処理を行い、硬化処理品を作製した。
〔硬化処理条件〕
・硬化液組成 酸化クロム250g/L、リン酸2.5g/L
・処理温度 25℃
・処理時間 10min
・電流密度 0.5A/dm2
(3) Curing treatment The film-formed product was cured under the following conditions to produce a cured product.
[Curing conditions]
・ Curing liquid composition: Chrome oxide 250g / L, phosphoric acid 2.5g / L
・ Processing temperature 25 ℃
・ Processing time 10min
・ Current density 0.5A / dm 2

(4)不動態化処理
硬化処理品を以下の条件で不動態化処理を行い、不動態化処理品を作製した。
〔不動態化処理条件〕
・不動態化液組成 硝酸20vol%
・処理温度 50℃
・処理時間 60min
(4) Passivation treatment The cured product was passivated under the following conditions to produce a passivated product.
[Passivation treatment conditions]
・ Passivation liquid composition Nitric acid 20vol%
・ Processing temperature 50 ℃
・ Processing time 60min

<実施例2−2>
不動態化処理を以下の条件に変更したことを除き、<実施例2−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例2−2品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%
・処理温度 50℃
・処理時間 60min
<Example 2-2>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 2-1> except that the passivation treatment was changed to the following conditions. (Hereinafter referred to as “Example 2-2 product”).
[Passivation treatment conditions]
・ Passivation liquid composition: 25 vol% nitric acid
・ Processing temperature 50 ℃
・ Processing time 60min

<実施例2−3>
皮膜形成処理を以下の条件に変更したことを除き、<実施例2−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例2−3品」という。)。
〔皮膜形成処理条件〕
・発色液組成 酸化クロム250g/L、硫酸500g/L、硫酸マンガン6.3g/L
・処理温度 65℃
・処理時間 35min
・発色電位速度 0.011mV/sec
<Example 2-3>
A test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm)) under the same conditions as <Example 2-1> except that the film formation treatment was changed to the following conditions. (Hereinafter referred to as “Example 2-3 product”).
[Film formation treatment conditions]
Color composition: Chromium oxide 250 g / L, sulfuric acid 500 g / L, manganese sulfate 6.3 g / L
・ Processing temperature 65 ℃
・ Processing time 35min
・ Coloring potential speed 0.011mV / sec

<実施例2−4>
不動態化処理を以下の条件に変更したことを除き、<実施例2−3>と同じ条件で、本発明の試験サンプル(SSRT試験用(SUS304、φ4mm×20mm)及び水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例2−4品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%
・処理温度 50℃
・処理時間 60min
<Example 2-4>
Except that the passivation treatment was changed to the following conditions, the test sample of the present invention (for SSRT test (SUS304, φ4 mm × 20 mm) and for hydrogen permeation prevention evaluation) under the same conditions as <Example 2-3> (SUS316L, φ35 mm, thickness 0.1 mm)) was prepared (hereinafter referred to as “Example 2-4 product”).
[Passivation treatment conditions]
・ Passivation liquid composition: 25 vol% nitric acid
・ Processing temperature 50 ℃
・ Processing time 60min

<実施例3−1>
以下の電解研磨処理、皮膜形成処理、硬化処理、不動態化処理を逐次行って、本願発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例3−1品」という。)。
(1)電解研磨処理
ステンレス鋼試験片、水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm)に電極(+)を取り付け、以下の処理条件で電解研磨を行い、研磨処理品を作製した。
[電解研磨処理条件]
・電解研磨液組成 リン酸70ml/L、硫酸20ml/L、エチレングリコール0.2ml/L
・処理温度 70℃
・処理時間 5min
・電流密度 10A/dm
<Example 3-1>
The following electrolytic polishing treatment, film formation treatment, curing treatment, and passivation treatment were sequentially performed to prepare a test sample (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm)) of the present invention ( Hereinafter referred to as “Example 3-1 product”).
(1) Electropolishing treatment An electrode (+) is attached to a stainless steel test piece, for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm), and electropolishing is performed under the following processing conditions. Produced.
[Electropolishing conditions]
-Electropolishing liquid composition Phosphoric acid 70 ml / L, sulfuric acid 20 ml / L, ethylene glycol 0.2 ml / L
・ Processing temperature 70 ℃
・ Processing time 5min
・ Current density 10A / dm 2

(2)皮膜形成処理
研磨処理品を以下の条件で皮膜形成処理(発色処理)を行い、皮膜形成品を作製した。
〔皮膜形成処理条件〕
・発色液組成 酸化クロム250g/L、硫酸500g/L、硫酸マンガン6.3g/L
・処理温度 65℃
・処理時間 20min
・発色電位速度 0.003mV/sec
(2) Film Forming Process A film-formed article was produced by subjecting the polished product to a film forming process (coloring process) under the following conditions.
[Film formation treatment conditions]
Color composition: Chromium oxide 250 g / L, sulfuric acid 500 g / L, manganese sulfate 6.3 g / L
・ Processing temperature 65 ℃
・ Processing time 20min
・ Coloring potential speed 0.003mV / sec

(3)硬化処理
皮膜形成品を以下の条件で硬化処理を行い、硬化処理品を作製した。
〔硬化処理条件〕
・硬化液組成 酸化クロム250g/L、リン酸2.5g/L
・処理温度 25℃
・処理時間 10min
・電流密度 0.5A/dm2
(3) Curing treatment The film-formed product was cured under the following conditions to produce a cured product.
[Curing conditions]
・ Curing liquid composition: Chrome oxide 250g / L, phosphoric acid 2.5g / L
・ Processing temperature 25 ℃
・ Processing time 10min
・ Current density 0.5A / dm 2

(4)不動態化処理
硬化処理品を以下の条件で不動態化処理を行い、不動態化処理品を作製した。
〔不動態化処理条件〕
・不動態化液組成 硝酸20vol%、重クロム酸ナトリウム2.5wt%
・処理温度 25℃
・処理時間 10min
(4) Passivation treatment The cured product was passivated under the following conditions to produce a passivated product.
[Passivation treatment conditions]
・ Passivation liquid composition Nitric acid 20vol%, sodium dichromate 2.5wt%
・ Processing temperature 25 ℃
・ Processing time 10min

<実施例3−2>
不動態化処理を以下の条件に変更したことを除き、<実施例3−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例3−2品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%、重クロム酸ナトリウム2.5wt%
・処理温度 25℃
・処理時間 10min
<Example 3-2>
A test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 3-1> except that the passivation treatment was changed to the following conditions. (Hereinafter referred to as “Example 3-2 product”).
[Passivation treatment conditions]
-Passivation liquid composition: 25 vol% nitric acid, 2.5 wt% sodium dichromate
・ Processing temperature 25 ℃
・ Processing time 10min

<実施例3−3>
皮膜形成処理を以下の条件に変更したことを除き、<実施例3−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例3−3品」という。)。
〔皮膜形成処理条件〕
・発色液組成 酸化クロム250g/L、硫酸500g/L、硫酸マンガン6.3g/L
・処理温度 65℃
・処理時間 35min
・発色電位速度 0.011mV/sec
<Example 3-3>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm)) under the same conditions as <Example 3-1> except that the film formation treatment was changed to the following conditions. (Hereinafter referred to as “Example 3-3 product”).
[Film formation treatment conditions]
Color composition: Chromium oxide 250 g / L, sulfuric acid 500 g / L, manganese sulfate 6.3 g / L
・ Processing temperature 65 ℃
・ Processing time 35min
・ Coloring potential speed 0.011mV / sec

<実施例3−4>
不動態化処理を以下の条件に変更したことを除き、<実施例3−3>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例3−4品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%、重クロム酸ナトリウム2.5wt%
・処理温度 25℃
・処理時間 10min
<Example 3-4>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 3-3> except that the passivation treatment was changed to the following conditions (Hereinafter referred to as “Example 3-4 product”).
[Passivation treatment conditions]
-Passivation liquid composition: 25 vol% nitric acid, 2.5 wt% sodium dichromate
・ Processing temperature 25 ℃
・ Processing time 10min

<実施例4−1>
以下の電解研磨処理、不動態化処理を逐次行って、本願発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例4−1品」という。)。
(1)電解研磨処理
ステンレス鋼試験片、水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm)に電極(+)を取り付け、以下の処理条件で電解研磨を行い、研磨処理品を作製した。
[電解研磨処理条件]
・電解研磨液組成 リン酸70ml/L、硫酸20ml/L、エチレングリコール0.2ml/L
・処理温度 70℃
・処理時間 5min
・電流密度 10A/dm
<Example 4-1>
The following electrolytic polishing treatment and passivation treatment were sequentially performed to produce a test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm)) (hereinafter referred to as “Example 4- 1 product ").
(1) Electropolishing treatment An electrode (+) is attached to a stainless steel test piece, for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm), and electropolishing is performed under the following processing conditions. Produced.
[Electropolishing conditions]
-Electropolishing liquid composition Phosphoric acid 70 ml / L, sulfuric acid 20 ml / L, ethylene glycol 0.2 ml / L
・ Processing temperature 70 ℃
・ Processing time 5min
・ Current density 10A / dm 2

〔不動態化処理条件〕
・不動態化液組成 硝酸20vol%
・処理温度 50℃
・処理時間 60min
[Passivation treatment conditions]
・ Passivation liquid composition Nitric acid 20vol%
・ Processing temperature 50 ℃
・ Processing time 60min

<実施例4−2>
不動態化処理を以下の条件に変更したことを除き、<実施例4−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例4−2品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%
・処理温度 50℃
・処理時間 60min
<Example 4-2>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 4-1> except that the passivation treatment was changed to the following conditions. (Hereinafter referred to as “Example 4-2 product”).
[Passivation treatment conditions]
・ Passivation liquid composition: 25 vol% nitric acid
・ Processing temperature 50 ℃
・ Processing time 60min

<実施例5−1>
不動態化処理を以下の条件に変更したことを除き、<実施例4−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例5−1品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸20vol%、重クロム酸ナトリウム2.5wt%
・処理温度 25℃
・処理時間 10min
<Example 5-1>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 4-1> except that the passivation treatment was changed to the following conditions. (Hereinafter referred to as “Example 5-1 product”).
[Passivation treatment conditions]
・ Passivation liquid composition Nitric acid 20vol%, sodium dichromate 2.5wt%
・ Processing temperature 25 ℃
・ Processing time 10min

<実施例5−2>
不動態化処理を以下の条件に変更したことを除き、<実施例5−1>と同じ条件で、本発明の試験サンプル(水素透過防止性評価用(SUS316L、φ35mm、厚さ0.1mm))を作製した(以下、「実施例5−1品」という。)。
〔不動態化処理条件〕
・不動態化液組成 硝酸25vol%、重クロム酸ナトリウム2.5wt%
・処理温度 25℃
・処理時間 10min
<Example 5-2>
The test sample of the present invention (for hydrogen permeation prevention evaluation (SUS316L, φ35 mm, thickness 0.1 mm) under the same conditions as <Example 5-1> except that the passivation treatment was changed to the following conditions. (Hereinafter referred to as “Example 5-1 product”).
[Passivation treatment conditions]
-Passivation liquid composition: 25 vol% nitric acid, 2.5 wt% sodium dichromate
・ Processing temperature 25 ℃
・ Processing time 10min

2.水素バリア機能評価
(1)SSRT試験
実施例1品、実施例2−4品、実施例4−2品、実施例5−2品及び比較例1品について、水素脆化評価を行うためにSSRT試験(1.1MPa水素下及び1.1MPa窒素下)により断面絞り(%)を測定した。ここで、断面絞りとは、くびれ破断した箇所の断面積の原断面積に対する比率をいう。
1.1MPa水素下での断面絞りは、実施例1品と実施例2−4品はいずれも77%、実施例4−2品は74%、実施例5−2品は76%、比較例1品は63%であった。
水素脆性の尺度は断面絞りの相対値(水素下での断面絞りを不活性ガス下での断面絞りで除した値)で示される。実施例品は、いずれも1.0であり、水素による脆化は認められなかった。
〔試験条件〕
・歪み速度 4.17×10-5/sec
・試験温度 16℃
2. Hydrogen Barrier Function Evaluation (1) SSRT Test SSRT to evaluate hydrogen embrittlement for Example 1 product, Example 2-4 product, Example 4-2 product, Example 5-2 product and Comparative Example 1 product The sectional drawing (%) was measured by a test (under 1.1 MPa hydrogen and 1.1 MPa nitrogen). Here, the cross-sectional aperture means the ratio of the cross-sectional area of the constricted and broken portion to the original cross-sectional area.
The section drawing under 1.1 MPa hydrogen is 77% for Example 1 and Example 2-4, 74% for Example 4-2, 76% for Example 5-2, and Comparative Example. One product was 63%.
The measure of hydrogen embrittlement is indicated by the relative value of the cross-section restriction (the value obtained by dividing the cross-section restriction under hydrogen by the cross-section restriction under inert gas). All of the examples were 1.0, and no embrittlement due to hydrogen was observed.
〔Test conditions〕
・ Strain rate 4.17 × 10 -5 / sec
・ Test temperature 16 ℃

(2)破断面SEM観察
SSRT試験に供した実施例品と比較例品2について破断面をSEM観察した。
図2は、実施例1品のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である((a):破断面の全体写真、(b):破断面中央部拡大写真、(c):破断面表層部拡大写真)。
図3は、比較例1品のSSRT試験(1.1MPa水素雰囲気下)後の破断面SEM写真である((a):破断面の全体写真、(b):破断面中央部拡大写真、(c):破断面表層部拡大写真)。
実施例1品の破断面の全体写真(a)は、いずれも均一なくびれがあり、破断面の拡大写真(b)、(c)も延性的なディンプル破断面であり、水素脆化による形態的差異は認められなかった。
一方、比較例1品の破断面の全体写真(a)では、破断面のくびれは均一でなく、表面から水素脆化の影響による亀裂の進展が認められる。また、破断面の拡大写真(c)には、亀裂の起点のある脆性的な粒内破断面が認められる。これらは、水素脆化による形態的差異である。
図4は、実施例4−2品のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である((a):破断面の全体写真、(b):破断面中央部拡大写真、(c):破断面表層部拡大写真)。
図5は、実施例5−2品のSSRT試験(1.1MPa水素雰囲気下,1.1MPa窒素雰囲気下)後の破断面SEM写真である((a):破断面の全体写真、(b):破断面中央部拡大写真、(c):破断面表層部拡大写真)。
実施例4−2品及び実施例5−2品のいずれも実施例1品と同様に破断面の全体写真(a)は、いずれも均一なくびれがあり、破断面の拡大写真(b)、(c)も延性的なディンプル破断面であり、水素脆化による形態的差異は認められなかった。
(2) Fracture surface SEM observation About the Example product and the comparative example product 2 which used for the SSRT test, the fracture surface was observed by SEM.
FIG. 2 is a SEM photograph of a fracture surface after an SSRT test (1.1 MPa hydrogen atmosphere, 1.1 MPa nitrogen atmosphere) of the product of Example 1 ((a): overall photograph of fracture surface, (b): fracture. Cross-sectional central part enlarged photograph, (c): Fracture surface layer part enlarged photograph).
FIG. 3 is a fracture surface SEM photograph after the SSRT test (1.1 MPa hydrogen atmosphere) of the product of Comparative Example 1 ((a): overall photograph of the fracture surface, (b): enlarged photograph of the center of the fracture surface, ( c): Fracture surface surface layer enlarged photograph).
The entire photograph (a) of the fracture surface of the product of Example 1 has uniform necking, and the enlarged photographs (b) and (c) of the fracture surface are ductile dimple fracture surfaces, which are forms due to hydrogen embrittlement. There was no significant difference.
On the other hand, in the overall photograph (a) of the fracture surface of the product of Comparative Example 1, the constriction of the fracture surface is not uniform, and crack growth due to the influence of hydrogen embrittlement is recognized from the surface. Further, in the enlarged photograph (c) of the fracture surface, a brittle intragranular fracture surface with a crack starting point is observed. These are morphological differences due to hydrogen embrittlement.
FIG. 4 is a fracture surface SEM photograph after the SSRT test (1.1 MPa hydrogen atmosphere, 1.1 MPa nitrogen atmosphere) of the product of Example 4-2 ((a): overall photograph of fracture surface, (b) : Enlarged photograph of fracture center part, (c): Enlarged photograph of fracture surface layer part).
FIG. 5 is a SEM photograph of a fracture surface after an SSRT test (1.1 MPa in a hydrogen atmosphere and 1.1 MPa in a nitrogen atmosphere) of the product of Example 5-2 ((a): overall photograph of the fracture surface, (b). : Enlarged photograph of fracture center part, (c): Enlarged photograph of fracture surface layer part).
As for Example 4-2 goods and Example 5-2 goods, as for Example 1 goods, the whole photograph (a) of a torn surface has all a uniform neck, The enlarged photograph (b) of a torn surface, (C) is also a ductile dimple fracture surface, and no morphological difference due to hydrogen embrittlement was observed.

(3)水素透過防止性評価
実施例品(実施例1〜実施例5−2)、比較例1品について、JIS K7126−1(差圧法)に準じた差圧式のガスクロ法で、高温水素透過試験を行い、水素透過率比(実施例品/比較例1品)を求めた。
実施例1品は、温度条件(300℃、400℃、500℃)のいずれにおいても、水素透過率比は1以下であり、水素バリア性が高いことが認められる。
他の実施例品(実施例2−1〜実施例5−2)のいずれも、温度条件(300℃)水素透過率比は1以下であり、水素バリア性が高いことが認められる。
〔試験条件〕
・試験用サンプル(φ35mm,厚さ0.1mm)
・差圧 400kPa
・温度 300℃、400℃、500℃
(3) Evaluation of hydrogen permeation prevention property The product of Examples (Examples 1 to 5-2) and the product of Comparative Example 1 were subjected to high-temperature hydrogen permeation by a differential pressure type gas chromatography method according to JIS K7126-1 (differential pressure method). A test was conducted to obtain a hydrogen permeability ratio (Example product / Comparative example 1 product).
The product of Example 1 has a hydrogen permeability ratio of 1 or less under any of the temperature conditions (300 ° C., 400 ° C., 500 ° C.), and it is recognized that the hydrogen barrier property is high.
In any of the other example products (Example 2-1 to Example 5-2), the temperature condition (300 ° C.) hydrogen permeability ratio is 1 or less, and it is recognized that the hydrogen barrier property is high.
〔Test conditions〕
・ Test sample (φ35mm, thickness 0.1mm)
・ Differential pressure 400kPa
・ Temperature 300 ℃, 400 ℃, 500 ℃

(4)耐孔食性評価(孔食電位)
実施例品(実施例1〜実施例5−2)、比較例1品についてJIS G0577(2014年、ステンレス鋼の孔食電位測定方法)に準拠する方法で測定した。結果は表2に示すとおりである。実施例品の孔食電位はいずれも比較例1品(0.30V,SCE)に比べて有意に高い。
また電解研磨処理と不動態化処理の実施品(実施例4−1〜実施例5−2)では、孔食電位と水素透過防止性との相関が認められ、孔食電位測定により、水素透過防止性を予測できることが示唆される。水素透過防止性評価は測定に時間を要することから、孔食電位測定が基準以上(例えば、1.0V,SCE)とすることで、水素透過防止性の高い(水素バリア性の優れる)製品を製造できる。
(4) Pitting corrosion resistance evaluation (pitting corrosion potential)
Example products (Examples 1 to 5-2) and Comparative product 1 were measured by a method based on JIS G0577 (2014, pitting corrosion potential measurement method for stainless steel). The results are as shown in Table 2. The pitting corrosion potential of the example product is significantly higher than that of the comparative example 1 product (0.30 V, SCE).
In addition, in the electropolished and passivated products (Example 4-1 to Example 5-2), there was a correlation between the pitting potential and the hydrogen permeation preventing property. This suggests that prevention can be predicted. Since the hydrogen permeation prevention evaluation requires time for measurement, a product with high hydrogen permeation prevention (excellent in hydrogen barrier properties) can be obtained by setting the pitting corrosion potential to a standard or higher (for example, 1.0 V, SCE). Can be manufactured.

本願発明により、環境負荷の少ない次世代エネルギー源として水素を活用する水素社会を実現するための水素の安定供給に向けた貯蔵・輸送技術に供する水素を貯蔵する高圧貯蔵容器、水素を輸送する高圧パイプラインに使用できるステンレス鋼を提供できる。   According to the present invention, a high-pressure storage container for storing hydrogen, a high-pressure for transporting hydrogen, and a storage and transport technology for the stable supply of hydrogen to realize a hydrogen society that utilizes hydrogen as a next-generation energy source with low environmental impact Stainless steel that can be used in pipelines can be provided.

Claims (5)

電解研磨処理されたステンレス鋼表面に、不動態化した皮膜を被覆した水素バリア機能を有するステンレス鋼。   Stainless steel having a hydrogen barrier function, in which a surface of stainless steel that has been electropolished is coated with a passivated film. 電解研磨処理されたステンレス鋼表面に、ウエットプロセスにより形成された金属酸化物を不動態化した皮膜を被覆した水素バリア機能を有するステンレス鋼。   Stainless steel having a hydrogen barrier function, in which a surface of stainless steel that has been subjected to electropolishing treatment is coated with a film obtained by passivating a metal oxide formed by a wet process. 前記電解研磨処理されたステンレス鋼表面に、ウエットプロセスにより形成された金属酸化物を不動態化した皮膜が、クロム酸化物を不動態化した皮膜であることを特徴とする請求項2に記載した水素バリア機能を有するステンレス鋼。   3. The film obtained by passivating a metal oxide formed by a wet process on the surface of the stainless steel subjected to electropolishing treatment is a film obtained by passivating chromium oxide. Stainless steel with hydrogen barrier function. ステンレス鋼表面を電解研磨する研磨処理工程、
研磨処理工程で研磨処理したステンレス鋼表面を不動態化剤からなる処理液に浸漬して、不動態化する不動態化処理工程、
とからなる不動態膜を被覆した水素バリア機能を有するステンレス鋼の製造方法。
Polishing process for electrolytic polishing of stainless steel surface,
A passivating treatment step in which the stainless steel surface polished in the polishing treatment step is immersed in a treatment solution comprising a passivating agent to passivate,
A method for producing stainless steel having a hydrogen barrier function coated with a passivating film comprising:
ステンレス鋼表面を電解研磨する研磨処理工程、
研磨処理されたステンレス鋼を、クロム酸と硫酸の混合溶液からなる処理液に浸漬して、ステンレス鋼表面に酸化クロム皮膜をする形成する皮膜形成工程、
皮膜形成工程で形成された酸化クロム皮膜を、クロム酸とリン酸の混合溶液からなる処理液に浸漬して、酸化クロム皮膜を硬化する硬化処理工程、
硬化処理工程で硬化した酸化クロム皮膜を不動態化剤からなる処理液に浸漬して、酸化クロム皮膜を不動態化する不動態化処理工程、
とからなる不動態膜を被覆した水素バリア機能を有するステンレス鋼の製造方法。
Polishing process for electrolytic polishing of stainless steel surface,
A film forming process for forming a chromium oxide film on the stainless steel surface by immersing the polished stainless steel in a treatment solution composed of a mixed solution of chromic acid and sulfuric acid.
A curing treatment step in which the chromium oxide film formed in the film formation step is immersed in a treatment solution comprising a mixed solution of chromic acid and phosphoric acid to cure the chromium oxide film;
A passivation treatment step for passivating the chromium oxide film by immersing the chromium oxide film cured in the curing treatment step in a treatment solution comprising a passivating agent;
A method for producing stainless steel having a hydrogen barrier function coated with a passivating film comprising:
JP2018047388A 2017-05-08 2018-03-15 Stainless steel with hydrogen barrier function and its manufacturing method Active JP6853536B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017092081 2017-05-08
JP2017092081 2017-05-08

Publications (2)

Publication Number Publication Date
JP2018188728A true JP2018188728A (en) 2018-11-29
JP6853536B2 JP6853536B2 (en) 2021-03-31

Family

ID=64479657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047388A Active JP6853536B2 (en) 2017-05-08 2018-03-15 Stainless steel with hydrogen barrier function and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6853536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021112A (en) * 2019-07-29 2021-02-18 株式会社アサヒメッキ Method of producing chemical coloring stainless steel article
US20220042175A1 (en) * 2020-08-05 2022-02-10 Asahimekki Corporation Stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance and method for manufacturing the same
JP7029742B1 (en) 2021-11-09 2022-03-04 株式会社アサヒメッキ Electropolishing liquid and electropolishing method of stainless steel using it, and manufacturing method of stainless steel with excellent corrosion resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128949A (en) * 1978-03-31 1979-10-05 Mitsubishi Precision Co Ltd Surface treatment of stainless steel
JP2007131921A (en) * 2005-11-11 2007-05-31 Tamura Seisakusho Co Ltd Stainless steel, its production method, and soldering apparatus using stainless steel
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same
JP2014109059A (en) * 2012-12-03 2014-06-12 Iwatani Internatl Corp Hydrogen embrittlement-resistant metal material, and surface treatment method of hydrogen embrittlement-resistant metal material
WO2014103703A1 (en) * 2012-12-28 2014-07-03 マルイ鍍金工業株式会社 Passivation method for stainless steel
JP2016000857A (en) * 2014-05-21 2016-01-07 マルイ鍍金工業株式会社 Passivation method of stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128949A (en) * 1978-03-31 1979-10-05 Mitsubishi Precision Co Ltd Surface treatment of stainless steel
JP2007131921A (en) * 2005-11-11 2007-05-31 Tamura Seisakusho Co Ltd Stainless steel, its production method, and soldering apparatus using stainless steel
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same
JP2014109059A (en) * 2012-12-03 2014-06-12 Iwatani Internatl Corp Hydrogen embrittlement-resistant metal material, and surface treatment method of hydrogen embrittlement-resistant metal material
WO2014103703A1 (en) * 2012-12-28 2014-07-03 マルイ鍍金工業株式会社 Passivation method for stainless steel
JP2016000857A (en) * 2014-05-21 2016-01-07 マルイ鍍金工業株式会社 Passivation method of stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021112A (en) * 2019-07-29 2021-02-18 株式会社アサヒメッキ Method of producing chemical coloring stainless steel article
JP7272584B2 (en) 2019-07-29 2023-05-12 株式会社アサヒメッキ Method for manufacturing chemically colored stainless steel products
US20220042175A1 (en) * 2020-08-05 2022-02-10 Asahimekki Corporation Stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance and method for manufacturing the same
JP2022029825A (en) * 2020-08-05 2022-02-18 株式会社アサヒメッキ Stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance and method for manufacturing the same
JP7029742B1 (en) 2021-11-09 2022-03-04 株式会社アサヒメッキ Electropolishing liquid and electropolishing method of stainless steel using it, and manufacturing method of stainless steel with excellent corrosion resistance
JP2023070216A (en) * 2021-11-09 2023-05-19 株式会社アサヒメッキ Electrolytic polishing solution, method of electrolytically polishing stainless steel using the same, and method of producing stainless steel excellent in corrosion resistance

Also Published As

Publication number Publication date
JP6853536B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
Kumar et al. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications
Elsentriecy et al. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique
Mohammadloo et al. A comprehensive study of the green hexafluorozirconic acid-based conversion coating
Lu et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium
Arrabal et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings
Lee et al. Cr2O3 sealing of anodized aluminum alloy by heat treatment
JP6853536B2 (en) Stainless steel with hydrogen barrier function and its manufacturing method
Selvi et al. Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy
Pezzato et al. Plasma electrolytic oxidation coating produced on 39NiCrMo3 steel
Verdalet-Guardiola et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy
KR101346014B1 (en) Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same
Han et al. Electrochemical corrosion behavior of modified MAO film on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam
Peng et al. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte
JP2016074948A (en) Surface modification method of metal and metal product
Ko et al. Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes
TW201812111A (en) Tin based alloy plated steel sheet
JP2011157610A (en) Member coated with dlc film and method for manufacturing the same
Song et al. Performance of composite coating on AZ31B magnesium alloy prepared by anodic polarization and electroless electrophoresis coating
Yu et al. Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5% sodium chloride solution
JP5081570B2 (en) Titanium material and titanium material manufacturing method
JP6869495B1 (en) Stainless steel structure with excellent hydrogen embrittlement and corrosion resistance and its manufacturing method
Morks et al. Growth and characterization of anodic films on aluminum alloys in 5-sulfosalicylic acid solution
Zhang et al. Electrodeposition of zinc on AZ91D magnesium alloy pre‐treated by stannate conversion coatings
Darband et al. Electrochemical phosphate conversion coatings: A review
ZHANG et al. Development of microarc oxidation process to improve corrosion resistance on AZ91HP magnesium alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6853536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250