JP2008238063A - Catalyst and method for treating organic acid-containing exhaust gas - Google Patents

Catalyst and method for treating organic acid-containing exhaust gas Download PDF

Info

Publication number
JP2008238063A
JP2008238063A JP2007082949A JP2007082949A JP2008238063A JP 2008238063 A JP2008238063 A JP 2008238063A JP 2007082949 A JP2007082949 A JP 2007082949A JP 2007082949 A JP2007082949 A JP 2007082949A JP 2008238063 A JP2008238063 A JP 2008238063A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
organic acid
composite oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082949A
Other languages
Japanese (ja)
Other versions
JP4700647B2 (en
Inventor
Ryoji Kuma
涼慈 熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2007082949A priority Critical patent/JP4700647B2/en
Publication of JP2008238063A publication Critical patent/JP2008238063A/en
Application granted granted Critical
Publication of JP4700647B2 publication Critical patent/JP4700647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst suitable for treating organic acid-containing exhaust gas and a method for treating the organic acid-containing exhaust gas by using the catalyst. <P>SOLUTION: The catalyst obtained by depositing a noble metal (for example, Pt or Pd) on a cerium-zirconium compound oxide is used. The catalyst obtained by depositing the noble metal on a cerium-zirconium-lanthanum (or -yttrium etc.) compound oxide is also used suitably. In particular, the organic acid-containing exhaust gas can be treated with any of these catalysts at a high removal rate of an organic acid over a long period of time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機酸含有排ガス処理用触媒および処理方法に関し、詳しくは、例えば、炭素数1〜6の有機カルボン酸を含む排ガスを処理するに好適な触媒、およびこの触媒を用いた有機酸含有排ガスの処理方法に関する。   The present invention relates to an organic acid-containing exhaust gas treatment catalyst and a treatment method, and more particularly, for example, a catalyst suitable for treating exhaust gas containing an organic carboxylic acid having 1 to 6 carbon atoms, and an organic acid-containing exhaust gas using the catalyst. It relates to the processing method.

アルミナ、チタニアなどの無機酸化物担体にPt、Pdなどの1種または2種以上の貴金属を担持した触媒を用いて、排ガス中に含まれる有害物質を分解除去することは一般によく知られている。例えば、排ガス中の低濃度炭化水素を酸化分解するのに、アルミナ担体にPtとPdとを担持した触媒を用いることが提案されている(特許文献1参照)。   It is generally well known to decompose and remove harmful substances contained in exhaust gas by using a catalyst in which one or more kinds of noble metals such as Pt and Pd are supported on an inorganic oxide carrier such as alumina and titania. . For example, in order to oxidatively decompose low-concentration hydrocarbons in exhaust gas, it has been proposed to use a catalyst in which Pt and Pd are supported on an alumina carrier (see Patent Document 1).

一方、内燃機関からの排ガスを処理する触媒として、セリアおよび/またはジルコニアの金属酸化物を含む触媒が提案されている(特許文献2の請求項2参照)。また、セリウムおよびランタンを含むジルコニウム酸化物を含有する触媒が提案されている(特許文献3参照)。   On the other hand, as a catalyst for treating exhaust gas from an internal combustion engine, a catalyst containing a metal oxide of ceria and / or zirconia has been proposed (see claim 2 of Patent Document 2). A catalyst containing a zirconium oxide containing cerium and lanthanum has been proposed (see Patent Document 3).

特開2001−129400号公報JP 2001-129400 A 特開平11−333294号公報JP-A-11-333294 特開2002−79053号公報JP 2002-79053 A

本発明の目的は、有機酸含有排ガスの処理に好適な触媒、およびこの触媒を用いた有機酸含有排ガスの処理方法を提供することにある。   An object of the present invention is to provide a catalyst suitable for treating an organic acid-containing exhaust gas and a method for treating an organic acid-containing exhaust gas using the catalyst.

セリウム(Ce)−ジルコニウム(Zr)酸化物は、上述のとおり、内燃機関からの排ガスを処理するのに助触媒として広く用いられているが、その理由は、この酸化物が酸素吸蔵放出能(OSC)を有しており、このOSC機能により排ガスの雰囲気変動による影響を緩和するためと考えられている。   As described above, cerium (Ce) -zirconium (Zr) oxide is widely used as a co-catalyst for treating exhaust gas from an internal combustion engine because the oxide is capable of storing and releasing oxygen. OSC), and this OSC function is considered to mitigate the influence of atmospheric fluctuation of exhaust gas.

本発明者らは、Ce−Zr酸化物を添加した貴金属系触媒について検討したところ、化学プラント排ガスのように雰囲気変動の比較的小さい排ガスの処理においても、Ce−Zr酸化物が貴金属系触媒に高い分解活性と耐久性とを付与することを見出し、本発明を完成するに至った。   The present inventors have examined a noble metal catalyst to which a Ce—Zr oxide is added. As a result, Ce—Zr oxide is used as a noble metal catalyst even in the treatment of an exhaust gas having a relatively small atmospheric fluctuation, such as a chemical plant exhaust gas. It has been found that high decomposition activity and durability are imparted, and the present invention has been completed.

本発明は次のとおりである。
(1)貴金属とCe−Zr複合酸化物とを含有することを特徴とする有機酸含有排ガス処理用触媒。
(2)貴金属と、Ce−Zr複合酸化物と、イットリウム(Y)、ランタン(La)およびプラセオジム(Pr)から選ばれる少なくとも1種の元素とを含有することを特徴とする有機酸含有排ガス処理用触媒。
(3)Y、LaおよびPrから選ばれる少なくとも1種の元素の少なくとも一部がCeおよびZrとの複合酸化物の形態で含有されている上記(2)の有機酸含有排ガス処理用触媒。
(4)さらにアルミニウム(Al)および/またはタングステン(W)を含有する上記(1)、(2)または(3)の有機酸含有排ガス処理用触媒。
(5)有機酸を含有する排ガスを上記(1)ないし(4)のいずれかの有機酸含有排ガス処理用触媒に接触させて排ガス中の有機酸を分解することを特徴とする有機酸含有排ガス処理方法。
(6)有機酸が炭素数1〜6の有機カルボン酸である上記(5)の有機酸含有排ガス処理方法。
The present invention is as follows.
(1) An organic acid-containing exhaust gas treatment catalyst comprising a noble metal and a Ce—Zr composite oxide.
(2) An organic acid-containing exhaust gas treatment containing a noble metal, a Ce—Zr composite oxide, and at least one element selected from yttrium (Y), lanthanum (La), and praseodymium (Pr) Catalyst.
(3) The organic acid-containing exhaust gas treatment catalyst according to (2), wherein at least a part of at least one element selected from Y, La, and Pr is contained in the form of a complex oxide with Ce and Zr.
(4) The organic acid-containing exhaust gas treatment catalyst according to (1), (2) or (3), further containing aluminum (Al) and / or tungsten (W).
(5) An exhaust gas containing an organic acid is brought into contact with the organic acid-containing exhaust gas treatment catalyst according to any one of (1) to (4) above to decompose the organic acid in the exhaust gas, Processing method.
(6) The organic acid-containing exhaust gas treatment method according to (5), wherein the organic acid is an organic carboxylic acid having 1 to 6 carbon atoms.

本発明の触媒は、有機酸含有排ガスの処理において、有機酸分解に係わる高い触媒活性と耐久性とを有する。したがって、本発明の触媒を用いることにより、有機酸含有排ガスを長期にわたり高い有機酸除去率をもって処理することができる。   The catalyst of the present invention has high catalytic activity and durability related to organic acid decomposition in the treatment of organic acid-containing exhaust gas. Therefore, by using the catalyst of the present invention, the organic acid-containing exhaust gas can be treated with a high organic acid removal rate over a long period of time.

本発明の「貴金属」とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)および金(Au)から選ばれる少なくとも1種の貴金属元素を意味する。なかでも、PtとPdとの組合せが好適に用いられる。   The “noble metal” in the present invention means at least one noble metal element selected from platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and gold (Au). . Of these, a combination of Pt and Pd is preferably used.

本発明の「Ce−Zr複合酸化物」とは、X線回折図において、CeOの明らかな固有のピークが認められず、2θ=29°付近に回折ピークが認められるものである(図1参照)。このCe−Zr複合酸化物は一般によく知られており、一般的な方法、例えば、固相法、アルコキシド法、共沈法、気相法などにより容易に調製することができる。具体的には、例えば、酸化ジルコニウムに硝酸セリウムなどのセリウム塩の水溶液を加え、混合し、乾燥した後、400〜1000℃で焼成すればよい。 The “Ce—Zr composite oxide” of the present invention is one in which a clear intrinsic peak of CeO 2 is not observed in the X-ray diffraction diagram, and a diffraction peak is observed in the vicinity of 2θ = 29 ° (FIG. 1). reference). This Ce—Zr composite oxide is generally well known, and can be easily prepared by a general method such as a solid phase method, an alkoxide method, a coprecipitation method, a gas phase method and the like. Specifically, for example, an aqueous solution of cerium salt such as cerium nitrate may be added to zirconium oxide, mixed, dried, and then fired at 400 to 1000 ° C.

上記Ce−Zr複合酸化物において、CeとZrとの割合は、CeO:ZrO=1:8〜1:1、好ましくは1:5〜1:1(質量比)である。Ce−Zr複合酸化物のBET比表面積は10m/g以上であるのが好ましく、より好ましくは30〜200m/gである。 In the Ce—Zr composite oxide, the ratio of Ce and Zr is CeO 2 : ZrO 2 = 1: 8 to 1: 1, preferably 1: 5 to 1: 1 (mass ratio). The BET specific surface area of the Ce—Zr composite oxide is preferably 10 m 2 / g or more, more preferably 30 to 200 m 2 / g.

なお、上記のCe−Zr複合酸化物は市販されており、本発明においては、これら市販品をそのまま使用してもよい。   The Ce-Zr composite oxide is commercially available, and in the present invention, these commercially available products may be used as they are.

本発明の触媒は、上記の貴金属とCe−Zr複合酸化物とを含むものであり、具体的には、Ce−Zr複合酸化物に少なくとも1種の貴金属を担持したものである(以下、この触媒を便宜上「触媒A」という。)。この触媒Aは、耐火性無機酸化物に貴金属を担持した従来公知の触媒の調製方法に一般に用いられている浸漬法や含浸法などの方法に従って調製することができる。具体的には、例えば、Ce−Zr複合酸化物粉体をヘキサアンミン白金水溶液と混合し、乾燥した後、300〜700℃で1〜20時間焼成することにより、白金担持Ce−Zr複合酸化物粉体を得ることができる。   The catalyst of the present invention contains the above-described noble metal and Ce—Zr composite oxide, and specifically, is a catalyst in which at least one noble metal is supported on the Ce—Zr composite oxide (hereinafter referred to as “this”). The catalyst is referred to as “catalyst A” for convenience). The catalyst A can be prepared according to a method such as a dipping method or an impregnation method generally used in a conventionally known method for preparing a catalyst in which a noble metal is supported on a refractory inorganic oxide. Specifically, for example, a Ce-Zr composite oxide powder is mixed with a hexaammineplatinum aqueous solution, dried, and then fired at 300 to 700 ° C. for 1 to 20 hours, whereby a platinum-supported Ce—Zr composite oxide is obtained. A powder can be obtained.

上記貴金属供給源としての貴金属含有化合物の具体例としては、例えば、貴金属の硝酸塩、ハロゲン化物、アンモニウム塩、アンミン錯体、ジニトロジアンミン塩、水酸化物などの溶液(例えば、水溶液)またはコロイド溶液(例えば、コロイド水溶液)を挙げることができる。なかでも、貴金属のアンミン錯体、水酸化物などの塩基性水溶液が好適に用いられる。   Specific examples of the noble metal-containing compound as the noble metal source include, for example, solutions (for example, aqueous solutions) or colloidal solutions (for example, aqueous solutions) of nitrates, halides, ammonium salts, ammine complexes, dinitrodiammine salts, and hydroxides of noble metals. , Colloidal aqueous solution). Of these, basic aqueous solutions such as nomine complexes and hydroxides of noble metals are preferably used.

上記触媒Aにおいて、貴金属の含有量は、触媒の全質量基準(但し、セラミックハニカムに担持する場合は、このセラミックハニカムを除く。)で、0.02〜5質量%、好ましくは0.02〜3質量%、より好ましくは0.1〜2.5質量%である。
上記触媒Aは、貴金属およびCe−Zr複合酸化物のほかに、その性能を損なわない範囲でCeおよびZrのそれぞれの単独酸化物を含んでいてもよい。
In the catalyst A, the content of the noble metal is 0.02 to 5% by mass, preferably 0.02 to 5% by mass based on the total mass of the catalyst (however, when supported on a ceramic honeycomb, this ceramic honeycomb is excluded). It is 3 mass%, More preferably, it is 0.1-2.5 mass%.
In addition to the noble metal and the Ce—Zr composite oxide, the catalyst A may contain a single oxide of Ce and Zr as long as the performance is not impaired.

本発明の触媒は、貴金属およびCe−Zr複合酸化物に加えて、Y、LaおよびPrから選ばれる少なくとも1種の元素(以下、「La等元素」という。)を含有するのが、より高い触媒活性と耐久性とが得られる点において、好ましいものである(以下、この触媒を「触媒B」という。)。La等元素のなかでも、Laが好適に用いられる。   The catalyst of the present invention contains at least one element selected from Y, La and Pr (hereinafter referred to as “La element”) in addition to the noble metal and the Ce—Zr composite oxide. This is preferable in that catalyst activity and durability can be obtained (hereinafter, this catalyst is referred to as “catalyst B”). Of the elements such as La, La is preferably used.

触媒Bは、貴金属、Ce−Zr複合酸化物およびLa等元素を含むものである。具体的には、Ce−Zr複合酸化物とLa等元素の酸化物とを含む担体に少なくとも1種の貴金属を担持したものである。この触媒Bのなかでも、La等元素がCeおよびZrと複合酸化物を形成しているのが好ましい。これら複合酸化物としては、Ce−Zr−La複合酸化物やCe−Zr−Y複合酸化物が挙げられる。なかでも、Ce−Zr−La複合酸化物が好適に用いられる。したがって、触媒Bのなかでも、Ce−Zr−La複合酸化物またはCe−Zr−Y複合酸化物、特にCe−Zr−La複合酸化物に少なくとも1種の貴金属を担持したものが好ましいものである。   The catalyst B contains a noble metal, a Ce—Zr composite oxide, and an element such as La. Specifically, at least one noble metal is supported on a support containing a Ce—Zr composite oxide and an oxide of an element such as La. Among these catalysts B, elements such as La preferably form a complex oxide with Ce and Zr. Examples of these composite oxides include Ce—Zr—La composite oxide and Ce—Zr—Y composite oxide. Among these, Ce—Zr—La composite oxide is preferably used. Therefore, among the catalysts B, a Ce—Zr—La composite oxide or a Ce—Zr—Y composite oxide, in particular, a catalyst in which at least one noble metal is supported on a Ce—Zr—La composite oxide is preferable. .

上記のCe−Zr−(La等元素)複合酸化物は、Ce−Zr複合酸化物と同様に、X線回折図において、CeOとLa等元素の酸化物、例えば、Laとの明らかな固有のピークが認められず、2θ=29°付近に回折ピークが認められるものである。 The Ce—Zr— (La element etc.) composite oxide is similar to the Ce—Zr composite oxide in the X-ray diffraction diagram of the oxide of CeO 2 and La element such as La 2 O 3 . A clear intrinsic peak is not recognized, and a diffraction peak is observed in the vicinity of 2θ = 29 °.

上記のCe−Zr−(La等元素)複合酸化物は、Ce−Zr複合酸化物と同様に、一般によく知られており、一般的な方法、例えば、固相法、アルコキシド法、共沈法、気相法などにより容易に調製することができる。具体的には、例えば、酸化ジルコニウムに硝酸セリウムなどのセリウム塩と硝酸ランタンなどのランタン塩などとの水溶液を加え、混合し、乾燥した後、400〜1000℃で焼成すればよい。   The Ce—Zr— (elements such as La) composite oxides are generally well known, as are Ce—Zr composite oxides. Common methods such as a solid phase method, an alkoxide method, and a coprecipitation method are known. It can be easily prepared by a vapor phase method or the like. Specifically, for example, an aqueous solution of a cerium salt such as cerium nitrate and a lanthanum salt such as lanthanum nitrate may be added to zirconium oxide, mixed, dried, and then fired at 400 to 1000 ° C.

触媒BにおけるLa等元素の含有量(Ce−Zr−(La等元素)複合酸化物のときも含む)は、La等酸化物(La、Y、Pr):ZrO=1:1.5〜1:60、好ましくは1:1.5〜1:40(質量比)である。Ce−Zr−(La等元素)複合酸化物のBET比表面積は10m/g以上であるのが好ましく、より好ましくは30〜200m/gである。 The content of elements such as La in the catalyst B (including the case of Ce-Zr- (La elements) complex oxide) is the oxide of La (La 2 O 3 , Y 2 O 3 , Pr 2 O 3 ): ZrO 2 = 1: 1.5 to 1:60, preferably 1: 1.5 to 1:40 (mass ratio). The BET specific surface area of the Ce—Zr— (La element, etc.) composite oxide is preferably 10 m 2 / g or more, more preferably 30 to 200 m 2 / g.

なお、上記のCe−Zr−(La等元素)複合酸化物、例えば、Ce−Zr−La複合酸化物やCe−Zr−Y複合酸化物は市販されており、本発明においては、これら市販品をそのまま使用してもよい。   The Ce-Zr- (La element) composite oxides such as Ce-Zr-La composite oxide and Ce-Zr-Y composite oxide are commercially available. In the present invention, these commercially available products are used. May be used as they are.

触媒B、例えば、Ce−Zr−La複合酸化物に少なくとも1種の貴金属を担持した触媒は、上述のCe−Zr複合酸化物に少なくとも1種の貴金属を担持した触媒と同様に調製することができる。具体的には、例えば、Ce−Zr−La複合酸化物粉体をヘキサアンミン白金水溶液と混合し、乾燥した後、300〜700℃で1〜20時間焼成することにより、白金担持Ce−Zr−La複合酸化物粉体を得ることができる。   The catalyst B, for example, a catalyst in which at least one noble metal is supported on a Ce-Zr-La composite oxide can be prepared in the same manner as the catalyst in which at least one noble metal is supported on the above-described Ce-Zr composite oxide. it can. Specifically, for example, the Ce—Zr—La composite oxide powder is mixed with a hexaammineplatinum aqueous solution, dried, and then calcined at 300 to 700 ° C. for 1 to 20 hours, whereby platinum-supported Ce—Zr— La composite oxide powder can be obtained.

触媒Bは、貴金属とCe−Zr−(La等元素)複合酸化物とのほかに、その性能を損なわない範囲において、Ce、ZrおよびLa等元素それぞれの単独酸化物を含んでいてもよい。   In addition to the noble metal and Ce—Zr— (elements such as La) composite oxide, the catalyst B may contain single oxides of elements such as Ce, Zr and La as long as the performance is not impaired.

上記触媒Aおよび触媒Bは、アルミニウム(Al)またはタングステン(W)もしくはAlとWとを含有するのが、触媒性能および耐久性の点で、好ましい。Alおよび/またはWは、通常、酸化物の形態が含まれので、以下、これらをAl/W酸化物と表示する。タングステン酸化物としては、WO、W、WOなどが挙げられる。また、アルミニウム酸化物としては、α−アルミナ、γ−アルミナ、θ−アルミナなどが挙げられる。なかでも、比表面積の大きいγ−アルミナが好適に用いられる。 The catalyst A and the catalyst B preferably contain aluminum (Al) or tungsten (W) or Al and W from the viewpoint of catalyst performance and durability. Since Al and / or W usually include oxide forms, these are hereinafter referred to as Al / W oxides. Examples of the tungsten oxide include WO, W 2 O 3 , WO 3 and the like. Examples of the aluminum oxide include α-alumina, γ-alumina, and θ-alumina. Among these, γ-alumina having a large specific surface area is preferably used.

すなわち、本発明の触媒のなかでも、貴金属とCe−Zr複合酸化物とAl/W酸化物とを含む触媒(以下、「触媒C1」という。)や、貴金属とCe−Zr複合酸化物とLa等元素酸化物、好ましくは貴金属とCe−Zr−(La等元素)複合酸化物とAl/W酸化物とを含む触媒(以下、「触媒C2」という。)が好適に用いられる。   That is, among the catalysts of the present invention, a catalyst containing a noble metal, a Ce—Zr composite oxide and an Al / W oxide (hereinafter referred to as “catalyst C1”), a noble metal, a Ce—Zr composite oxide and La A catalyst (hereinafter referred to as “catalyst C2”) containing an equielemental oxide, preferably a noble metal, a Ce—Zr— (La etc.) composite oxide, and an Al / W oxide is suitably used.

触媒C1は、具体的には、Ce−Zr複合酸化物とアルミニウム酸化物(例えば、Al)および/またはタングステン酸化物(例えば、WO)とを含む担体に少なくとも1種の貴金属を担持したものである。 Specifically, the catalyst C1 contains at least one noble metal on a support containing a Ce—Zr composite oxide and an aluminum oxide (eg, Al 2 O 3 ) and / or a tungsten oxide (eg, WO 3 ). It is supported.

触媒C1において、Ce−Zr複合酸化物とアルミニウム酸化物またはタングステン酸化物とからなる担体を用いる場合、Ce−Zr複合酸化物の含有量は、全担体質量基準で、1〜80質量%、好ましくは5〜80質量%、より好ましくは5〜40質量%である(残余はアルミニウム酸化物またはタングステン酸化物であり、合計100質量%)。Ce−Zr複合酸化物の含有量が1質量%未満では、十分なOSC機能が得られず、一方、80質量%を超えると逆に活性が低下するおそれがある。   In the catalyst C1, when a support composed of Ce—Zr composite oxide and aluminum oxide or tungsten oxide is used, the content of Ce—Zr composite oxide is 1 to 80% by mass, preferably based on the total support mass. Is 5 to 80% by mass, more preferably 5 to 40% by mass (the balance is aluminum oxide or tungsten oxide, and the total is 100% by mass). When the content of the Ce—Zr composite oxide is less than 1% by mass, a sufficient OSC function cannot be obtained. On the other hand, when the content exceeds 80% by mass, the activity may decrease.

Ce−Zr複合酸化物とアルミニウム酸化物とタングステン酸化物との混合物を用いる場合、Ce−Zr複合酸化物の含有量は、上記のとおりであり、アルミニウム酸化物の含有量(Al換算)は、全担体質量基準で、5〜94.5質量%であるのが好ましく、より好ましくは10〜94.5質量%である。また、タングステン酸化物の含有量(WO換算)は、全担体質量基準で、0.5〜40質量%であるのが好ましく、より好ましくは1〜40質量%である(3成分合計100質量%)。アルミニウム酸化物の含有量が20質量%未満では触媒の比表面積が低下するため好ましくなく、一方80質量%を超えると触媒活性が低下するおそれがある。また、タングステン酸化物の含有量が0.5質量%未満ではタングステンと貴金属との相互作用が弱まるため十分な効果が得られなくなり、一方40質量%を超えると比表面積の低下などにより貴金属の分散性が低下して好ましくない。 When a mixture of Ce—Zr composite oxide, aluminum oxide and tungsten oxide is used, the content of Ce—Zr composite oxide is as described above, and the content of aluminum oxide (in terms of Al 2 O 3) ) Is preferably 5 to 94.5% by mass, more preferably 10 to 94.5% by mass based on the total mass of the carrier. Further, the content of tungsten oxide (in terms of WO 3 ) is preferably 0.5 to 40% by mass, more preferably 1 to 40% by mass, based on the total mass of the carrier (the total of the three components is 100% by mass). %). If the aluminum oxide content is less than 20% by mass, the specific surface area of the catalyst decreases, which is not preferable. On the other hand, if it exceeds 80% by mass, the catalyst activity may decrease. If the tungsten oxide content is less than 0.5% by mass, the interaction between tungsten and the noble metal is weakened, so that a sufficient effect cannot be obtained. On the other hand, if the content exceeds 40% by mass, the noble metal is dispersed due to a decrease in the specific surface area. It is not preferable because the properties are lowered.

触媒C2は、具体的には、Ce−Zr複合酸化物とLa等元素酸化物とアルミニウム酸化物(例えば、Al)および/またはタングステン酸化物(例えば、WO)、好ましくはCe−Zr−(La等元素)複合酸化物とAlおよび/またはWOとを含む担体に少なくとも1種の貴金属を担持したものである。 Specifically, the catalyst C2 includes a Ce—Zr composite oxide, an elemental oxide such as La, an aluminum oxide (eg, Al 2 O 3 ) and / or a tungsten oxide (eg, WO 3 ), preferably Ce— At least one kind of noble metal is supported on a support containing a Zr— (element such as La) composite oxide and Al 2 O 3 and / or WO 3 .

触媒C2において、Ce−Zr複合酸化物とLa等元素酸化物、好ましくはCe−Zr−(La等元素)複合酸化物とアルミニウム酸化物またはタングステン酸化物とからなる担体を用いる場合、Ce−Zr複合酸化物とLa等元素酸化物との合計含有量、またはCe−Zr−(La等元素)複合酸化物の含有量は、全担体質量基準で、5〜80質量%であるのが好ましく、より好ましくは5〜40質量%である(残余はアルミニウム酸化物またタングステン酸化物であり、合計100質量%)。上記含有量が5質量%未満では、十分なOSC機能が得られず、一方、80質量%を超えると逆に活性が低下するおそれがある。   In the catalyst C2, when using a support made of Ce—Zr composite oxide and La element oxide, preferably Ce—Zr— (La element) composite oxide and aluminum oxide or tungsten oxide, Ce—Zr The total content of the complex oxide and elemental oxide such as La, or the content of Ce-Zr- (element such as La) complex oxide is preferably 5 to 80% by mass based on the total carrier mass, More preferably, it is 5 to 40% by mass (the balance is aluminum oxide or tungsten oxide, and the total is 100% by mass). When the content is less than 5% by mass, a sufficient OSC function cannot be obtained. On the other hand, when the content exceeds 80% by mass, the activity may decrease.

Ce−Zr複合酸化物とLa等元素酸化物、好ましくはCe−Zr−(La等元素)複合酸化物とアルミニウム酸化物とタングステン酸化物との混合物を用いる場合、Ce−Zr複合酸化物またはCe−Zr−(La等元素)複合酸化物の含有量、アルミニウム酸化物の含有量(Al換算)、およびタングステン酸化物の含有量(WO換算)は、上述の触媒C1におけると同じである。 When a mixture of Ce-Zr composite oxide and La element oxide, preferably Ce-Zr- (La element) composite oxide, aluminum oxide and tungsten oxide is used, Ce-Zr composite oxide or Ce -Zr- (La, etc. element) content of the composite oxide, the content of aluminum oxide (Al 2 O 3 equivalent), and the content of tungsten oxide (WO 3 equivalent), the same as in the above-mentioned catalyst C1 It is.

上記触媒C1、C2は、触媒Aや触媒Bと同様に調製することができる。具体的には、触媒C1の場合、例えば、Ce−Zr複合酸化物粉体とAl粉体および/またはWO粉体とをヘキサアンミン白金水溶液と混合し、乾燥した後、300〜700℃で1〜20時間焼成することにより、白金担持(Ce−Zr複合酸化物・Alおよび/またはWO)粉体を得ることができる。触媒C2の場合、例えば、Ce−Zr−La複合酸化物粉体とAl粉体および/またはWO粉体とをヘキサアンミン白金水溶液と混合し、乾燥した後、300〜700℃で1〜20時間焼成することにより、白金担持(Ce−Zr−La複合酸化物・Alおよび/またはWO)粉体を得ることができる。 The catalysts C1 and C2 can be prepared in the same manner as the catalyst A and the catalyst B. Specifically, in the case of the catalyst C1, for example, a Ce—Zr composite oxide powder, an Al 2 O 3 powder and / or a WO 3 powder are mixed with a hexaammineplatinum aqueous solution and dried, and then 300 to By calcination at 700 ° C. for 1 to 20 hours, a platinum-supported (Ce—Zr composite oxide / Al 2 O 3 and / or WO 3 ) powder can be obtained. In the case of the catalyst C2, for example, Ce—Zr—La composite oxide powder, Al 2 O 3 powder and / or WO 3 powder are mixed with a hexaammineplatinum aqueous solution and dried, and then at 300 to 700 ° C. By firing for 1 to 20 hours, a platinum-supported (Ce—Zr—La composite oxide / Al 2 O 3 and / or WO 3 ) powder can be obtained.

発明の触媒を用いて処理する有機酸含有排ガスとは、燃焼排ガス、化学品製造プラントや印刷、塗装などの工程から排出される、有機酸を含有する排ガスである。この有機酸としては、ギ酸、酢酸、アクリル酸、プロピオン酸、酪酸、吉草酸、酒石酸、フタル酸、マレイン酸などが挙げられるが、なかでも、本発明の触媒は、炭素数1〜6のカルボン酸、特に酢酸の分解除去に好適に用いられる。   The organic acid-containing exhaust gas treated using the catalyst of the invention is an exhaust gas containing an organic acid discharged from a process such as combustion exhaust gas, chemical production plant, printing, painting, or the like. Examples of the organic acid include formic acid, acetic acid, acrylic acid, propionic acid, butyric acid, valeric acid, tartaric acid, phthalic acid, maleic acid, and the like. Among these, the catalyst of the present invention is a carboxylic acid having 1 to 6 carbon atoms. It is suitably used for decomposition and removal of acids, particularly acetic acid.

処理対象とする各種排ガスの温度については、100〜700℃であることが好ましく、より好ましくは200〜700℃、更に好ましくは250〜700℃である。排ガス量は、空間速度で100〜100000Hr−1、好ましくは1000〜100000Hr−1である。 About the temperature of the various waste gas made into a process target, it is preferable that it is 100-700 degreeC, More preferably, it is 200-700 degreeC, More preferably, it is 250-700 degreeC. The amount of exhaust gas is 100 to 100,000 Hr −1 , preferably 1000 to 100,000 Hr −1 in space velocity.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。触媒組成の分析は、蛍光X線分析により、下記条件で行った。
分析装置:リガク製RIX2000
分析時の雰囲気:真空
試料スピン速度:60rpm
X線源:Rh管球
(実施例1)
<工程1>
Ce−Zr複合酸化物600g(第一稀元素化学工業(株)製、CeO:ZrO(質量比)=16:84、比表面積=30m/g)に、白金を12g含有するヘキサアンミン白金水溶液を加えて混合し、乾燥後、500℃で1時間焼成することにより、Ce−Zr複合酸化物に白金を担持した(Pt/CeZr)粉体を得た。
<工程2>
上記の粉体に、硝酸水溶液を加え、磁性ボールミルに投入し、混合、粉砕してスラリーを得た。このスラリーをコージェライトハニカム(1.0L、200セル/平方インチ(x2.5センチ))に付着させ、空気流にてセル内の余剰スラリーを除去した後、100℃で乾燥し、空気雰囲気下にて500℃で3時間焼成して、完成触媒を得た。コート量は100g/Lであった。得られた触媒の組成を分析した結果、Ptの含有量は、コージェライトハニカムを除いた全触媒質量の2.0質量%であった。
(実施例2)
<工程1>
Ce−Zr−La複合酸化物600g(第一稀元素化学工業(株)製、CeO:ZrO:La(質量比)=30:50:20、比表面積=60m/g)に、白金12gを含有するヘキサアンミン白金水溶液およびパラジウム6gを含有するテトラアンミンパラジウム水溶液を加えて混合し、乾燥後、500℃で1時間焼成することにより、Ce−Zr−La複合酸化物に白金とパラジウムとを担持した(Pt+Pd/CeZrLa)粉体を得た。なお、Ce−Zr−La複合酸化物のX線回折図を図1に示す。
<工程2>
実施例1の工程2において、Pt/CeZr粉体の代わりに上記Pt+Pd/CeZrLa粉体を使用したこと以外は実施例1の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例3)
<工程1>
実施例2の工程1において、Ce−Zr−La複合酸化物600gの代わりに、実施例1で用いたと同じCe−Zr複合酸化物60gとγ−アルミナ粉体540g(比表面積=150m/g)の混合粉体を使用したこと以外は同様にして、Ce−Zr複合酸化物とAlとの混合粉体に白金とパラジウムとを担持した(Pt+Pd/CeZr+Al)粉体を得た。
<工程2>
実施例2の工程2において、Pt+Pd/CeZrLa粉体の代わりに上記Pt+Pd/CeZr+Al粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例4)
<工程1>
実施例2の工程1において、Ce−Zr−La複合酸化物600gの代わりに、実施例2で用いたと同じCe−Zr−La複合酸化物60gとγ−アルミナ粉体540g(比表面積=150m/g)との混合粉体を使用したこと以外は同様にして、Ce−Zr−La複合酸化物とAlとの混合粉体に白金とパラジウムとを担持した(Pt+Pd/CeZrLa+Al+W)粉体を得た。
<工程2>
実施例2の工程2において、Pt+Pd/CeZrLa粉体の代わりに上記Pt+Pd/CeZrLa+Al粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例5)
<工程1>
実施例2の工程1において、Ce−Zr−La複合酸化物600gの代わりに、実施例2で用いたと同じCe−Zr−La複合酸化物60gとγ−アルミナ粉体480g(比表面積=150m/g)とWO粉体60gの混合粉体を使用したこと以外は同様にして、Ce−Zr−La複合酸化物とAlとWOとの混合粉体に白金とパラジウムとを担持した(Pt+Pd/CeZrLa+Al+W)粉体を得た。
<工程2>
実施例2の工程2において、Pt+Pd/CeZrLa粉体の代わりに上記Pt+Pd/CeZrLa+Al+W粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例6)
<工程1>
実施例4の工程1において、Ce−Zr−La複合酸化物の代わりに、Ce−Zr−Y複合酸化物(第一稀元素化学工業(株)製、CeO:ZrO:Y(質量比)=30:50:20、比表面積=60m/g)を使用したこと以外は同様にして、Ce−Zr−Y複合酸化物とAlとWOとの混合粉体に白金とパラジウムとを担持した(Pt+Pd/CeZrY+Al+W)粉体を得た。<工程2>
実施例2の工程2において、Pt+Pd/CeZrLa粉体の代わりに上記Pt+Pd/CeZrY+Al+W粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0g/Lおよび1.0g/Lであった。
(比較例1)
<工程1>
実施例2の工程1において、Ce−Zr−La複合酸化物の代わりにγ−アルミナを使用したこと以外は実施例2の工程1と同様にして、アルミナに白金とパラジウムとを担持した(Pt+Pd/Al)粉体を得た。
<工程2>
実施例2の工程2において、Pt+Pd/CeZrLa粉体の代わりに上記Pt+Pd/Al粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(比較例2)
<工程1>
実施例2の工程1において、Ce−Zr−La複合酸化物600gの代わりに、CeO粉体96gとZrO粉体504gの混合粉体を使用したこと以外は同様にして、CeOとZrOとの混合粉体に白金とパラジウムとを担持した(Pt+Pd/Ce+Zr)粉体を得た。
<工程2>
実施例2の工程2において、Pt+Pd/CeZrLaの代わりに上記Pt+Pd/Ce+Zr粉体を使用したこと以外は実施例2の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例7〜11)
<工程1>
実施例5の工程1において、Ce−Zr−La複合酸化物、アルミナ、WOの量を、表2に示す比率となるように量を変更したこと以外は同様にして、Pt+Pd/CeZrLa+Al+W粉体を得た。
<工程2>
実施例5の工程2と同様にして、完成触媒を得た。得られた触媒の組成を分析した結果、PtおよびPdの含有量はそれぞれ2.0質量%および1.0質量%であった。
(実施例12)
実施例1〜11および比較例1、2で得られた触媒の性能を評価するために下記の酢酸除去試験を行った。
<酢酸除去試験>
試験条件:
排ガス組成=酢酸:5000ppm、O :5%、N :バランス
反応器入口ガス温度=280℃
空間速度(STP)=30000Hr−1
酢酸除去率算出式:
酢酸除去率(%)=〔(反応器入口酢酸濃度)−(反応器出口酢酸濃度)〕/(反応器入口酢酸濃度)(×100)
実施例1〜6および比較例1、2の触媒について、その組成と、3時間後と2000時間後の酢酸除去率を表1に示す。また、実施例7〜11の触媒について、その組成と、3時間後と2000時間後の酢酸除去率を表2に示す。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention. The analysis of the catalyst composition was performed under the following conditions by fluorescent X-ray analysis.
Analyzer: Rigaku RIX2000
Analysis atmosphere: Vacuum sample spin speed: 60 rpm
X-ray source: Rh tube (Example 1)
<Step 1>
Hexammine containing 12 g of platinum in Ce-Zr composite oxide 600 g (Daiichi Rare Element Chemical Co., Ltd., CeO 2 : ZrO 2 (mass ratio) = 16: 84, specific surface area = 30 m 2 / g) An aqueous platinum solution was added, mixed, dried, and then fired at 500 ° C. for 1 hour to obtain (Pt / CeZr) powder carrying platinum on a Ce—Zr composite oxide.
<Process 2>
A nitric acid aqueous solution was added to the above powder, put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was attached to a cordierite honeycomb (1.0 L, 200 cells / square inch (x2.5 cm)), excess slurry in the cells was removed by air flow, and then dried at 100 ° C. in an air atmosphere. And calcined at 500 ° C. for 3 hours to obtain a finished catalyst. The coating amount was 100 g / L. As a result of analyzing the composition of the obtained catalyst, the Pt content was 2.0% by mass of the total catalyst mass excluding the cordierite honeycomb.
(Example 2)
<Step 1>
Ce-Zr-La composite oxide 600 g (Daiichi Rare Element Chemical Co., Ltd., CeO 2 : ZrO 2 : La 2 O 3 (mass ratio) = 30: 50: 20, specific surface area = 60 m 2 / g) In addition, a hexaammineplatinum aqueous solution containing 12 g of platinum and a tetraamminepalladium aqueous solution containing 6 g of palladium were added, mixed, dried, and calcined at 500 ° C. for 1 hour, whereby platinum was added to the Ce—Zr—La composite oxide. A (Pt + Pd / CeZrLa) powder carrying palladium was obtained. An X-ray diffraction pattern of the Ce—Zr—La composite oxide is shown in FIG.
<Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 1, except that the Pt + Pd / CeZrLa powder was used in place of Pt / CeZr powder in Step 2 of Example 1. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Example 3)
<Step 1>
In Step 1 of Example 2, instead of 600 g of Ce—Zr—La composite oxide, 60 g of the same Ce—Zr composite oxide and 540 g of γ-alumina powder used in Example 1 (specific surface area = 150 m 2 / g). (Pt + Pd / CeZr + Al) powder in which platinum and palladium are supported on a mixed powder of Ce—Zr composite oxide and Al 2 O 3 in the same manner except that the mixed powder (1) is used.
<Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 2, except that the Pt + Pd / CeZrLa powder was used instead of the Pt + Pd / CeZrLa powder in Step 2 of Example 2. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
Example 4
<Step 1>
In Step 1 of Example 2, instead of 600 g of Ce—Zr—La composite oxide, 60 g of the same Ce—Zr—La composite oxide and 540 g of γ-alumina powder (specific surface area = 150 m 2) used in Example 2 were used. (Pt + Pd / CeZrLa + Al + W) powder in which platinum and palladium are supported on a mixed powder of Ce—Zr—La composite oxide and Al 2 O 3 in the same manner except that the mixed powder is used. Got the body.
<Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 2, except that the Pt + Pd / CeZrLa + Al powder was used instead of the Pt + Pd / CeZrLa powder in Step 2 of Example 2. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Example 5)
<Step 1>
In Step 1 of Example 2, instead of 600 g of Ce—Zr—La composite oxide, 60 g of the same Ce—Zr—La composite oxide and 480 g of γ-alumina powder (specific surface area = 150 m 2) used in Example 2 were used. / G) and WO 3 powder 60 g, except that a mixed powder of Ce-Zr-La composite oxide, Al 2 O 3 and WO 3 is mixed with platinum and palladium. A supported (Pt + Pd / CeZrLa + Al + W) powder was obtained.
<Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 2, except that the Pt + Pd / CeZrLa + Al + W powder was used in place of Pt + Pd / CeZrLa powder in Step 2 of Example 2. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Example 6)
<Step 1>
In Step 1 of Example 4, instead of the Ce—Zr—La composite oxide, a Ce—Zr—Y composite oxide (CeO 2 : ZrO 2 : Y 2 O 3 manufactured by Daiichi Rare Element Chemical Industries, Ltd.) (Mass ratio) = 30: 50: 20, specific surface area = 60 m 2 / g), and mixed powder of Ce—Zr—Y composite oxide, Al 2 O 3 and WO 3 (Pt + Pd / CeZrY + Al + W) powder carrying platinum and palladium was obtained. <Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 2, except that the Pt + Pd / CeZrY + Al + W powder was used in place of Pt + Pd / CeZrLa powder in Step 2 of Example 2. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 g / L and 1.0 g / L, respectively.
(Comparative Example 1)
<Step 1>
In Step 1 of Example 2, platinum and palladium were supported on alumina in the same manner as in Step 1 of Example 2 except that γ-alumina was used instead of Ce-Zr-La composite oxide (Pt + Pd / Al) powder was obtained.
<Process 2>
A finished catalyst was obtained in the same manner as in Step 2 of Example 2, except that the Pt + Pd / Al powder was used instead of the Pt + Pd / CeZrLa powder in Step 2 of Example 2. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Comparative Example 2)
<Step 1>
In the same manner as in Step 2 of Example 2, except that a mixed powder of 96 g of CeO 2 powder and 504 g of ZrO 2 powder was used instead of 600 g of Ce—Zr—La composite oxide, CeO 2 and ZrO carrying platinum and palladium in a mixed powder and 2 to give the (Pt + Pd / Ce + Zr ) powder.
<Process 2>
In Step 2 of Example 2, a finished catalyst was obtained in the same manner as in Step 2 of Example 2 except that the Pt + Pd / Ce + Zr powder was used instead of Pt + Pd / CeZrLa. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Examples 7 to 11)
<Step 1>
Pt + Pd / CeZrLa + Al + W powder in the same manner except that the amounts of Ce—Zr—La composite oxide, alumina, and WO 3 were changed so as to have the ratio shown in Table 2 in Step 1 of Example 5. Got.
<Process 2>
In the same manner as in Step 2 of Example 5, a finished catalyst was obtained. As a result of analyzing the composition of the obtained catalyst, the contents of Pt and Pd were 2.0 mass% and 1.0 mass%, respectively.
(Example 12)
In order to evaluate the performance of the catalysts obtained in Examples 1 to 11 and Comparative Examples 1 and 2, the following acetic acid removal test was performed.
<Acetic acid removal test>
Test conditions:
Exhaust gas composition = acetic acid: 5000 ppm, O 2 : 5%, N 2 : balance reactor inlet gas temperature = 280 ° C.
Space velocity (STP) = 30000Hr −1
Formula for calculating acetic acid removal rate:
Acetic acid removal rate (%) = [(reactor inlet acetic acid concentration) − (reactor outlet acetic acid concentration)] / (reactor inlet acetic acid concentration) (× 100)
Table 1 shows the compositions of Examples 1 to 6 and Comparative Examples 1 and 2 and the acetic acid removal rates after 3 hours and 2000 hours. Moreover, about the catalyst of Examples 7-11, the composition and the acetic acid removal rate after 3 hours and 2000 hours are shown in Table 2.

Figure 2008238063
Figure 2008238063

Figure 2008238063
Figure 2008238063

実施例2で用いたCe−Zr−La複合酸化物のX線回折図である。3 is an X-ray diffraction pattern of a Ce—Zr—La composite oxide used in Example 2. FIG.

Claims (6)

貴金属とセリウム−ジルコニウム複合酸化物とを含有することを特徴とする有機酸含有排ガス処理用触媒。 An organic acid-containing exhaust gas treatment catalyst comprising a noble metal and a cerium-zirconium composite oxide. 貴金属と、セリウム−ジルコニウム複合酸化物と、イットリウム、ランタンおよびプラセオジムから選ばれる少なくとも1種の元素とを含有することを特徴とする有機酸含有排ガス処理用触媒。 An organic acid-containing exhaust gas treatment catalyst comprising a noble metal, a cerium-zirconium composite oxide, and at least one element selected from yttrium, lanthanum, and praseodymium. イットリウム、ランタンおよびプラセオジムから選ばれる少なくとも1種の元素の少なくとも一部がセリウムおよびジルコニウムとの複合酸化物の形態で含有されている請求項2記載の有機酸含有排ガス処理用触媒。 3. The organic acid-containing exhaust gas treatment catalyst according to claim 2, wherein at least a part of at least one element selected from yttrium, lanthanum and praseodymium is contained in the form of a complex oxide with cerium and zirconium. さらにアルミニウムおよび/またはタングステンを含有する請求項1、2または3記載の有機酸含有排ガス処理用触媒。 The organic acid-containing exhaust gas treatment catalyst according to claim 1, 2, or 3, further comprising aluminum and / or tungsten. 有機酸を含有する排ガスを請求項1ないし4のいずれかの有機酸含有排ガス処理用触媒に接触させて排ガス中の有機酸を分解することを特徴とする有機酸含有排ガス処理方法。 An organic acid-containing exhaust gas treatment method comprising contacting an exhaust gas containing an organic acid with the organic acid-containing exhaust gas treatment catalyst according to any one of claims 1 to 4 to decompose the organic acid in the exhaust gas. 有機酸が炭素数1〜6の有機カルボン酸である請求項5に記載の有機酸含有排ガス処理方法。 The organic acid-containing exhaust gas treatment method according to claim 5, wherein the organic acid is an organic carboxylic acid having 1 to 6 carbon atoms.
JP2007082949A 2007-03-27 2007-03-27 Catalyst for treating exhaust gas containing organic acid and treatment method Expired - Fee Related JP4700647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082949A JP4700647B2 (en) 2007-03-27 2007-03-27 Catalyst for treating exhaust gas containing organic acid and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082949A JP4700647B2 (en) 2007-03-27 2007-03-27 Catalyst for treating exhaust gas containing organic acid and treatment method

Publications (2)

Publication Number Publication Date
JP2008238063A true JP2008238063A (en) 2008-10-09
JP4700647B2 JP4700647B2 (en) 2011-06-15

Family

ID=39910035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082949A Expired - Fee Related JP4700647B2 (en) 2007-03-27 2007-03-27 Catalyst for treating exhaust gas containing organic acid and treatment method

Country Status (1)

Country Link
JP (1) JP4700647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032598A1 (en) 2008-09-17 2010-03-25 日本電気株式会社 Input unit, method for controlling same, and electronic device provided with input unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2001129400A (en) * 1999-11-05 2001-05-15 Tokyo Gas Co Ltd Catalyst for oxidation of hydrocarbon with low concentration in exhaust gas and method for preparing it
JP2002079053A (en) * 2000-06-27 2002-03-19 Ict:Kk Exhaust gas cleaning catalyst
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
JP2003190789A (en) * 2001-02-22 2003-07-08 Matsushita Electric Ind Co Ltd Purifying catalyst, its manufacturing method and apparatus for purifying gas
JP2004216369A (en) * 2002-12-26 2004-08-05 Matsushita Electric Ind Co Ltd Co removal catalyst body, production method of co removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP2004330106A (en) * 2003-05-08 2004-11-25 Mitsubishi Gas Chem Co Inc Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2001129400A (en) * 1999-11-05 2001-05-15 Tokyo Gas Co Ltd Catalyst for oxidation of hydrocarbon with low concentration in exhaust gas and method for preparing it
JP2002079053A (en) * 2000-06-27 2002-03-19 Ict:Kk Exhaust gas cleaning catalyst
JP2003190789A (en) * 2001-02-22 2003-07-08 Matsushita Electric Ind Co Ltd Purifying catalyst, its manufacturing method and apparatus for purifying gas
JP2002263449A (en) * 2001-03-09 2002-09-17 Equos Research Co Ltd Activated carbon filter
JP2004216369A (en) * 2002-12-26 2004-08-05 Matsushita Electric Ind Co Ltd Co removal catalyst body, production method of co removal catalyst body, hydrogen purification apparatus, and fuel cell system
JP2004330106A (en) * 2003-05-08 2004-11-25 Mitsubishi Gas Chem Co Inc Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032598A1 (en) 2008-09-17 2010-03-25 日本電気株式会社 Input unit, method for controlling same, and electronic device provided with input unit

Also Published As

Publication number Publication date
JP4700647B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
CN102149462B (en) Mixed phase ceramic oxide three preparation method of catalyst preparation thing and this catalyst
EP0428752B1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JP2755937B2 (en) Method for producing catalyst composition
JP5465842B2 (en) Core-shell structure and exhaust gas-purifying catalyst including the core-shell structure
WO2004004898A1 (en) Catalyst for clarifying exhaust gas
JPH0644999B2 (en) Exhaust gas purification catalyst
JP2010058110A (en) Low noble metal-supporting three way catalyst
JP6676394B2 (en) Core-shell carrier and method for producing the same, catalyst for purifying exhaust gas using the core-shell carrier, method for producing the same, and method for purifying exhaust gas using the catalyst for purifying exhaust gas
JP5938515B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPWO2012128297A1 (en) Exhaust gas purification oxidation catalyst, method for producing the same, and exhaust gas purification method using the same
CN108883397B (en) Exhaust gas purifying catalyst, method for producing same, and exhaust gas purifying apparatus using same
CN108136374B (en) Exhaust gas purifying catalyst, method for producing same, and exhaust gas purifying apparatus using same
WO2008007628A1 (en) Catalyst carrier particle, method for producing the same, and exhaust gas purifying catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JP4700648B2 (en) Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas
JP4700647B2 (en) Catalyst for treating exhaust gas containing organic acid and treatment method
JP2005224792A (en) Catalyst for cleaning exhaust gas
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006224086A (en) Catalyst carrier, its production method, and exhaust gas treatment catalyst
JP6851225B2 (en) Exhaust gas purification catalyst, its manufacturing method, and exhaust gas purification equipment using it
JP5641674B2 (en) Catalyst for treating exhaust gas containing organic acid
JP2001232199A (en) Exhaust gas cleaning catalyst
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP2006341152A (en) Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

LAPS Cancellation because of no payment of annual fees