JP2008238054A - Underground storage system of carbon dioxide gas - Google Patents

Underground storage system of carbon dioxide gas Download PDF

Info

Publication number
JP2008238054A
JP2008238054A JP2007082078A JP2007082078A JP2008238054A JP 2008238054 A JP2008238054 A JP 2008238054A JP 2007082078 A JP2007082078 A JP 2007082078A JP 2007082078 A JP2007082078 A JP 2007082078A JP 2008238054 A JP2008238054 A JP 2008238054A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
solvent
dissolved
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082078A
Other languages
Japanese (ja)
Other versions
JP4924140B2 (en
Inventor
Yuji Sekine
裕治 関根
Hirokazu Kishi
裕和 岸
Masayuki Masuda
雅之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007082078A priority Critical patent/JP4924140B2/en
Priority to AU2008236123A priority patent/AU2008236123B2/en
Priority to PCT/JP2008/055508 priority patent/WO2008123222A1/en
Publication of JP2008238054A publication Critical patent/JP2008238054A/en
Application granted granted Critical
Publication of JP4924140B2 publication Critical patent/JP4924140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To feed carbon dioxide gas into an aquifer under pressure in a state that the carbon dioxide gas is dissolved in a solvent (seawater or water) at a high concentration near the saturated concentration to stably store and isolate the carbon dioxide gas in the aquifer for a long time. <P>SOLUTION: An underground storage system of carbon dioxide gas comprises a carbon oxide gas compression device 2 for compressing carbon oxide gas into a liquid or a supercritical state, a pressure pump 3 for compressing and carrying the solvent comprising seawater and/or water, one or more dissolving tanks 4 for receiving injection of the compressed carbon dioxide gas and solvent and dissolving the carbon dioxide gas in the solvent to generate carbon dioxide gas dissolved water, and an injection well 5 penetrating from the ground surface to the aquifer to feed the generated carbon dioxide gas dissolved water into the underground aquifer under pressure. In the dissolving tank 4, a carbon dioxide gas injection port 11 through which the carbon dioxide gas fed from the carbon oxide gas compression device 2 is injected, and a solvent injection port 12 through which the solvent fed from the solvent pressure pump 3 is injected are formed in the bottom of a closed container 10, and a granular filler 16 is filled into the container 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地球温暖化の原因とされる温室効果ガスの一つである炭酸ガスの削減に資するため、炭酸ガスの大規模な排出源等から分離・回収した炭酸ガスを、地中に圧入し、長期的かつ安定的に貯留・隔離するための炭酸ガスの地中貯留システムに関する。   In order to contribute to the reduction of carbon dioxide, which is one of the greenhouse gases that cause global warming, the present invention presses carbon dioxide separated and recovered from a large-scale emission source of carbon dioxide into the ground. And a carbon dioxide underground storage system for long-term and stable storage and sequestration.

従来より、排出ガスから分離・回収した炭酸ガスを、地中の枯渇した油田やガス田あるいは帯水層に貯留する際、下記非特許文献1,2に記載されるように、前記炭酸ガスを液体又は超臨界状態に圧縮し、注入井より地中に圧入することが試みられている。一般に、この炭酸ガスは深度800m以上の貯留層に圧入することにより、炭酸ガスの超臨界状態(二酸化炭素の場合、温度31℃以上、圧力7.4MPa以上)を維持し、炭酸ガスの密度を大きくして効率的な貯留を図っている。   Conventionally, when storing carbon dioxide separated and recovered from exhaust gas in an oil field, gas field, or aquifer that is depleted in the ground, as described in Non-Patent Documents 1 and 2 below, Attempts have been made to compress it into a liquid or supercritical state and press it into the ground through an injection well. Generally, this carbon dioxide gas is injected into a reservoir with a depth of 800m or more to maintain the supercritical state of carbon dioxide gas (in the case of carbon dioxide, the temperature is 31 ° C or higher and the pressure is 7.4MPa or higher), and the carbon dioxide gas density is increased. And efficient storage.

しかしながら、超臨界状態の炭酸ガスは周辺地下水より比重が軽く、浮力で上方へ移動するため、炭酸ガスを貯留する帯水層として、形状がドーム状とされ、上方中央部に浮上した炭酸ガスがトラップされるようなシール層(キャップロック)が形成されていることが必要であった。ところが、一般的に油田やガス田では、貯留層が前記シール層とドーム形状との組合せによるトラップ構造を有することが確認されているが、自然界において係る条件に適合した帯水層を見つけることが課題となっている。このため適用できる条件を拡げ、炭酸ガスが浮上せず長期的かつ安定的に地中に貯留・隔離させる方法が望まれていた。   However, since the carbon dioxide in the supercritical state has a lower specific gravity than the surrounding groundwater and moves upward by buoyancy, the shape of the aquifer that stores the carbon dioxide gas is a dome shape, and the carbon dioxide that floats in the upper center is It was necessary that a sealing layer (cap lock) to be trapped was formed. However, in oil fields and gas fields, it is generally confirmed that the reservoir has a trap structure that is a combination of the seal layer and the dome shape, but it is possible to find an aquifer that meets the conditions in nature. It has become a challenge. For this reason, there has been a demand for a method for expanding the applicable conditions and storing and isolating carbon dioxide gas in the ground in a stable manner over a long period of time.

一方、炭酸ガスの地中への圧入方法としては、地表面上から地中に貫通したパイプの上部から、CO2昇圧装置で昇圧された二酸化炭素と、ポンプで昇圧された水とをパイプ内で合流混合しつつ圧入する下記特許文献1記載の方法、ガス田又は油田の地下層内に二酸化炭素をミキサーによって水に溶解させた状態で貯蔵する下記特許文献2記載の方法、炭酸ガスを含む気体をマイクロバブル化して水または海水中に分散させ、マイクロバブル化した炭酸ガスを地底に隔離する下記特許文献3記載の方法などがある。これらいずれの方法も、帯水層に海水又は水の溶媒と炭酸ガスとを圧入し、溶媒に炭酸ガスを溶解させて帯水層に貯留させるようにしている。
IPCC、“IPCC Special Report on Carbon Dioxide Capture and Storage”、Chapter 5、2005年、Cambridge University Press 大関真一、嘉納康二、”「二酸化炭素地中貯留」事業の実現にむけて〜石油・天然ガス上流技術への期待〜”、「石油・天然ガスレビュー」、独立行政法人 石油天然ガス・金属鉱物資源機構、2006.7、vol.40 No.4、p57-70 特開平6−170215号公報 特開平3−258340号公報 特開2004−50167号公報
On the other hand, as a method of pressurizing carbon dioxide into the ground, carbon dioxide boosted by a CO 2 booster and water pressurized by a pump are introduced into the pipe from the top of the pipe penetrating from the ground surface into the ground. Including the method described in Patent Document 1 described below, which is injected while being mixed and mixed, and the method described in Patent Document 2 described below, wherein carbon dioxide is dissolved in water by a mixer in the underground layer of a gas field or oil field, including carbon dioxide gas There exists the method of the following patent document 3, etc. which make gas microbubble and disperse | distribute it in water or seawater, and isolate | separate the carbon dioxide gas made into microbubble on the ground. In any of these methods, a seawater or water solvent and carbon dioxide are injected into the aquifer, and the carbon dioxide is dissolved in the solvent and stored in the aquifer.
IPCC, “IPCC Special Report on Carbon Dioxide Capture and Storage”, Chapter 5, 2005, Cambridge University Press Shinichi Ozeki, Koji Kano, “Towards the realization of“ CO2 underground storage ”business-Expectations for upstream technology of oil and natural gas”, “Oil and natural gas review”, Petroleum natural gas and metal minerals Resource Organization, 2006.7, vol.40 No.4, p57-70 JP-A-6-170215 JP-A-3-258340 JP 2004-50167 A

しかしながら、上記特許文献1〜3記載の方法では、溶媒に炭酸ガスを飽和濃度レベルの高い濃度で溶解させることにより、周辺地下水より比重を重くした状態とし、帯水層に炭酸ガスを長期的かつ安定的に貯留・隔離させるというというものであるが、溶媒が水だけであったり、溶解手段が「合流」、「ミキサー」、「マイクロバブル発生装置」では、溶解条件によっては、炭酸ガスの溶解濃度レベルが不十分であると考えられ、周辺地下水より比重を重くすることができないおそれがあった。また、溶解する位置によっては、炭酸ガスの溶解量の確認が出来ないおそれもある。   However, in the methods described in Patent Documents 1 to 3, carbon dioxide gas is dissolved in a solvent at a high concentration level, so that the specific gravity is heavier than that of the surrounding groundwater. It can be stably stored and sequestered, but if the solvent is only water or the dissolution means is “Merging”, “Mixer”, “Microbubble generator”, depending on the dissolution conditions, the dissolution of carbon dioxide gas The concentration level was considered insufficient, and there was a possibility that the specific gravity could not be increased more than the surrounding groundwater. In addition, depending on the position of dissolution, the amount of carbon dioxide dissolved may not be confirmed.

そこで本発明の主たる課題は、飽和濃度レベル付近の高い濃度で炭酸ガスを溶媒(海水又は水)に溶解させた状態で、炭酸ガス溶解水を帯水層に圧入し、貯留・隔離するための炭酸ガスの地中貯留システムを提供することにある。   Therefore, the main problem of the present invention is to press-fit carbon dioxide-dissolved water into an aquifer and store / isolate it in a state where carbon dioxide is dissolved in a solvent (seawater or water) at a high concentration near the saturation concentration level. It is to provide a carbon dioxide underground storage system.

前記課題を解決するために請求項1に係る本発明として、炭酸ガスを溶媒に溶解させた状態で地中の帯水層に圧入し、貯留・隔離するための炭酸ガスの地中貯留システムであって、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成されることを特徴とする炭酸ガスの地中貯留システムが提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is a carbon dioxide underground storage system for press-fitting into a groundwater aquifer in a state where carbon dioxide gas is dissolved in a solvent, and storing and isolating it. There,
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is One or a plurality of dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and an injection well that penetrates the generated carbon dioxide-dissolved water from the ground surface into the aquifer through the ground. Consisting of
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a discharge port through which the carbon dioxide-dissolved water is discharged is formed in an upper portion of the container, and the container is filled with a granular filler. A geological storage system is provided.

上記請求項1記載の発明では、前記溶解槽を、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に、前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成されることにより、この溶解槽において飽和濃度レベル付近の高い濃度で炭酸ガス(液体又は超臨界状態)を溶媒(海水又は水)に溶解させることが可能となり、これにより炭酸ガス溶解水の比重が周辺地下水より大きくなるため、炭酸ガスを帯水層に長期的かつ安定的に貯留・隔離させることができるようになる。   In the first aspect of the present invention, the dissolution tank is fed into a lower part of a hermetically sealed container from a carbon dioxide gas inlet through which the carbon dioxide gas sent from the carbon dioxide gas compressor is injected, and from the solvent pressure pump. A solvent injection port for injecting the solvent is formed, and a discharge port for discharging the carbon dioxide-dissolved water is formed in the upper part of the container, and the container is filled with a granular filler As a result, carbon dioxide gas (liquid or supercritical state) can be dissolved in the solvent (seawater or water) at a high concentration near the saturation concentration level in this dissolution tank. Since it becomes larger than the surrounding groundwater, carbon dioxide can be stored and isolated in the aquifer for a long time and stably.

請求項2に係る本発明として、前記粒状の充填材として、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとする請求項1記載の炭酸ガスの地中貯留システムが提供される。   According to a second aspect of the present invention, there is provided the carbon dioxide underground storage system according to the first aspect, wherein the granular filler is any one or a combination of sand, crushed stone, Raschig ring, and saddle.

上記請求項2記載の発明では、溶解槽に充填される粒状充填材として、例えば砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせて用いるものである。   In the second aspect of the present invention, as the granular filler to be filled in the dissolution tank, for example, any one of sand, crushed stone, Raschig ring, and saddle or a combination thereof is used.

請求項3に係る本発明として、前記粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径とする請求項1,2いずれかに記載の炭酸ガスの地中貯留システムが提供される。   As the present invention according to claim 3, the granular filler is, for each type of filler, the amount of carbon dioxide dissolved based on the flow rate of carbon dioxide and solvent and the shape of the dissolution tank, and the pressure in the dissolution tank. The underground storage system for carbon dioxide according to any one of claims 1 and 2, wherein an optimum average particle diameter determined from the loss is provided.

上記請求項3記載の発明では、粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径のものを用いるものであり、平均粒径が上記の最適平均粒径であると、溶解効率に優れるようになる。   In the invention of claim 3, the granular filler is, for each type of filler, the amount of carbon dioxide dissolved based on the flow rate of carbon dioxide and solvent and the shape of the dissolution tank, and the pressure loss in the dissolution tank. The average particle size determined from the above is used, and when the average particle size is the above-mentioned optimal average particle size, the dissolution efficiency is excellent.

請求項4に係る本発明として、前記溶解槽において、前記充填材の充填領域内に、流路を仕切るように多数の開孔が形成された整流板が1又は複数設けられている請求項1〜3いずれかに記載の炭酸ガスの地中貯留システムが提供される。 上記請求項4記載の発明では、前記整流板を設けることにより、前記溶解槽における炭酸ガスの溶解が促進されるようになる。   According to a fourth aspect of the present invention, in the melting tank, one or a plurality of rectifying plates having a plurality of apertures formed so as to partition the flow path are provided in the filling region of the filler. The underground storage system of the carbon dioxide gas in any one of -3 is provided. In the invention according to claim 4, by providing the current plate, dissolution of carbon dioxide gas in the dissolution tank is promoted.

請求項5に係る本発明として、前記溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置と溶解槽との中間流路に戻す炭酸ガス圧送装置が配設された請求項1〜4いずれかに記載の炭酸ガスの地中貯留システムが提供される。   As the present invention according to claim 5, undissolved carbon dioxide gas and carbon dioxide gas at a saturated concentration with respect to the total amount of carbon dioxide dissolved water fed in the middle of the flow path from the dissolution tank to the injection well. A separation tank for separating the dissolved carbon dioxide-dissolved water is disposed, and a carbon dioxide pressure feeding device for returning the separated undissolved carbon dioxide to an intermediate flow path between the carbon dioxide compression apparatus and the dissolution tank. The underground storage system of the carbon dioxide gas in any one of Claims 1-4 arrange | positioned is provided.

上記請求項5記載の発明は、前記溶解槽で生成した炭酸ガス溶解水の全量を対象として、未溶解炭酸ガス分を前記分離槽において分離し、この未溶解の炭酸ガス分を溶解槽にリターンさせることにより、飽和濃度レベルで炭酸ガスを溶媒(海水又は水)に溶解させた状態で地中に圧入することが可能となる。この炭酸ガス溶解水は、帯水層の周辺地下水より大きな比重を持つようになり、帯水層に注入しても炭酸ガスが浮上せず、長期的かつ安定的に帯水層に貯留・隔離させることができるようになる。   The invention of claim 5 is directed to separating the undissolved carbon dioxide in the separation tank for the total amount of carbon dioxide-dissolved water produced in the dissolution tank, and returning the undissolved carbon dioxide to the dissolution tank. By making it, it becomes possible to press-fit into the ground in a state where carbon dioxide gas is dissolved in a solvent (seawater or water) at a saturated concentration level. This carbon dioxide-dissolved water has a greater specific gravity than the groundwater around the aquifer, and even when injected into the aquifer, carbon dioxide does not rise and is stored and sequestered in the aquifer in a long-term and stable manner. To be able to.

請求項6に係る本発明として、前記溶解槽は複数配置され、これら溶解槽の内の一部については、溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置と溶解槽との中間流路に戻す炭酸ガス圧送装置が配設され、残る溶解槽については、前記分離槽の下流側に流路が接続されている請求項1〜4いずれかに記載の炭酸ガスの地中貯留システムが提供される。   As the present invention according to claim 6, a plurality of the dissolution tanks are arranged, and some of these dissolution tanks are fed into the carbon dioxide dissolved water fed in the middle of the flow path from the dissolution tank to the injection well. On the other hand, a separation tank for separating undissolved carbon dioxide and carbon dioxide-dissolved water in which carbon dioxide is dissolved at a saturated concentration is provided, and the separated undissolved carbon dioxide is compressed by the carbon dioxide gas. The carbon dioxide gas pressure feeding apparatus which returns to the intermediate flow path of an apparatus and a dissolution tank is arrange | positioned, and about the remaining dissolution tank, the flow path is connected to the downstream of the said separation tank. A carbon dioxide underground storage system is provided.

上記請求項6記載の発明では、地下水に対する炭酸ガスの溶解を期待して、ある程度、未溶解の炭酸ガスを含んだ状態(最大で溶媒重量の5%)で地中の帯水層に圧入し、この未溶解の炭酸ガスを地下水に対して溶解させるように制御するものである。なお、地下水に対する炭酸ガスの溶解期間としては、炭酸ガスの圧入が行われ、帯水層内で炭酸ガスの流動が生じている期間のみを考慮するものとする。本請求項6記載の発明は、上記請求項5記載の発明と対比すると、炭酸ガスの単位重量当たりの処理に要する海水又は水の使用量及び使用エネルギーを削減することが可能となる。   In the invention according to claim 6, the carbon dioxide gas is dissolved in the groundwater, and is injected into the underground aquifer in a state containing some undissolved carbon dioxide gas (up to 5% of the solvent weight). The undissolved carbon dioxide gas is controlled to be dissolved in the groundwater. In addition, as a melt | dissolution period of the carbon dioxide gas with respect to groundwater, only the period when the injection of a carbon dioxide gas is performed and the flow of the carbon dioxide gas within the aquifer is considered. In contrast to the invention described in claim 5, the invention described in claim 6 can reduce the amount of seawater or water used and the energy used for the treatment per unit weight of carbon dioxide gas.

請求項7に係る本発明として、前記溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしてある請求項1〜4いずれかに記載の炭酸ガスの地中貯留システムが提供される。   The present invention according to claim 7 is configured such that the carbon dioxide dissolved water discharged from the dissolution tank is press-fitted into an underground aquifer while containing undissolved carbon dioxide. 4. A carbon dioxide underground storage system according to any one of 4 is provided.

上記請求項7記載の発明は、更に炭酸ガスの単位重量当たりの処理に要する海水又は水の使用量及び使用エネルギーの削減を進めたものである。溶解槽において、帯水層への注入期間後に帯水層内で未溶解の炭酸ガスが存在しないように、溶解槽への炭酸ガス導入量を調整することにより、分離装置が不要になるとともに、海水又は水の使用量及び使用エネルギーの削減を図ることが可能となる。   The invention of claim 7 further promotes the reduction of the amount of seawater or water used and the energy used for the treatment per unit weight of carbon dioxide. In the dissolution tank, by adjusting the amount of carbon dioxide introduced into the dissolution tank so that there is no undissolved carbon dioxide in the aquifer after the injection period into the aquifer, a separation device becomes unnecessary, It is possible to reduce the amount of seawater or water used and the energy used.

以上詳説のとおり本発明によれば、飽和濃度レベル付近の高い濃度で炭酸ガスを溶媒に溶解させた状態で、長期的かつ安定的に帯水層に貯留・隔離することが可能となる。   As described above in detail, according to the present invention, carbon dioxide can be stored and isolated in the aquifer for a long time and stably in a state where carbon dioxide gas is dissolved in a solvent at a high concentration near the saturation concentration level.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る炭酸ガスの地中貯留システム1は、炭酸ガスの大規模な排出源等から分離・回収した炭酸ガスを、飽和濃度レベル付近の高い濃度で溶媒(海水又は水)に溶解させた状態で地中の帯水層に封じ込め、長期的かつ安定的に貯留・隔離するためのものである。   The carbon dioxide underground storage system 1 according to the present invention dissolves carbon dioxide separated and recovered from a large-scale emission source of carbon dioxide in a solvent (seawater or water) at a high concentration near the saturation concentration level. It is for containment in the underground aquifer in a state, and for long-term and stable storage and isolation.

このように本発明では、溶媒に炭酸ガスを飽和濃度レベルの高い濃度で溶解させることにより、周辺地下水より比重を重くした状態とし、帯水層に炭酸ガスを長期的かつ安定的に貯留・隔離させるというものであるため、炭酸ガスの溶解量は、溶媒1m当たり40〜50kg、好ましくは45〜50kgを目標とする。 As described above, in the present invention, carbon dioxide is dissolved in a solvent at a high saturation concentration level so that the specific gravity is heavier than that of the surrounding groundwater, and carbon dioxide is stored and sequestered in the aquifer in a long-term and stable manner. Therefore, the amount of carbon dioxide dissolved is 40 to 50 kg, preferably 45 to 50 kg per 1 m 3 of the solvent.

また、系内の圧力は、炭酸ガスが液体又は超臨界状態を維持した状態で溶解が行われるようにするとともに、炭酸ガス溶解水を地下の帯水層に圧入するための帯水層内の注入圧力と配管系の圧力損失とを考慮して、8MPa以上の高圧状態を維持するようにする。   The pressure in the system is such that the carbon dioxide is dissolved in a liquid or supercritical state, and the carbon dioxide dissolved water is injected into the underground aquifer. Considering the injection pressure and the pressure loss of the piping system, a high pressure state of 8 MPa or more is maintained.

〔第1構成パターン〕
図1は、本発明に係る炭酸ガスの地中貯留システム1の第1構成パターンを示す概念図である。
本地中貯留システム1は、図1に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4、4…と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から前記帯水層まで貫通した注入井5とから主に構成される。
[First configuration pattern]
FIG. 1 is a conceptual diagram showing a first configuration pattern of a carbon dioxide underground storage system 1 according to the present invention.
As shown in FIG. 1, the underground storage system 1 includes a carbon dioxide gas compression device 2 that compresses carbon dioxide gas to a liquid or supercritical state, and a pressure feed pump 3 that compresses and conveys seawater and / or a solvent composed of water. The compressed carbon dioxide gas and solvent are injected, the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water, and the generated carbon dioxide-dissolved water is submerged in the ground. It consists mainly of an injection well 5 penetrating from the ground surface pressed into the aquifer to the aquifer.

なお、本形態例では、前記溶解槽4は、炭酸ガスの溶解を促進するため複数設置したが、必要に応じて1基としてもよい。   In the present embodiment, a plurality of the dissolution tanks 4 are installed in order to promote the dissolution of carbon dioxide gas. However, a single unit may be used as necessary.

前記溶解槽4は、図2に示されるように、密閉された容器10の下部に、前記炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、前記溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、15がそれぞれ配設され、前記多孔板14、15間に粒状の充填材16が充填されて構成されている。   As shown in FIG. 2, the dissolution tank 4 includes a carbon dioxide gas inlet 11 into which a carbon dioxide gas sent from the carbon dioxide gas compression device 2 is injected into a lower portion of a sealed container 10, and the solvent pressure pump. 3 is formed, and a discharge port 13 for discharging the carbon dioxide-dissolved water is formed in the upper portion of the container 10. The perforated plates 14 and 15 for partitioning the inside of the container 10 in the vertical direction are respectively arranged on the upper side, and a granular filler 16 is filled between the perforated plates 14 and 15.

前記充填材16は、溶媒と炭酸ガスとの撹拌を促し、炭酸ガスの溶解を効率化するためのものであり、例えば、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとすることができる。前記ラシヒリングとは、セラミック、プラスチック、メタル、カーボンなどからなる円筒形状をした、充填塔で使用される充填物で、一般に広く用いられているものを使用することができる。前記サドルとは、セラミックなどからなる馬鞍形状をした、充填塔で使用される充填物で、一般に前記ラシヒリングより圧力損失が小さくなるように形成されている。   The filler 16 is for accelerating the stirring of the solvent and the carbon dioxide gas and improving the efficiency of the dissolution of the carbon dioxide gas. For example, the filler 16 may be any one or a combination of sand, crushed stone, Raschig ring, and saddle. it can. The Raschig ring is a cylinder-shaped packing made of ceramic, plastic, metal, carbon, etc., which is used in packed towers and can be used in general. The saddle is a horseshoe-shaped packing made of ceramic or the like, and is generally formed so that the pressure loss is smaller than that of the Raschig ring.

また、前記充填材16は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定する最適な平均粒径とすることが好ましい。具体的には、充填材の種類ごとに、充填材の平均粒径に対する次の2つの関係を実験的に得た上で、溶解槽において許容される圧力損失(溶解槽の注入口と吐出口の間の圧力差)に対して、最も溶解量が多くなる平均粒径のものを最適な平均粒径として選定する。
(1)所定の炭酸ガス及び溶媒の流量及び溶解槽の形状において、充填材の平均粒径に対する炭酸ガス溶解量の関係。
(2)充填材の平均粒径に対する溶解槽の圧力損失の関係。
Moreover, the said filler 16 is the optimal average determined from the amount of carbon dioxide dissolution determined based on the flow volume of a carbon dioxide gas and a solvent, and the shape of the said dissolution tank, and the pressure loss in the said dissolution tank for every kind of filler. It is preferable to use a particle size. Specifically, for each type of filler, after experimentally obtaining the following two relationships with respect to the average particle diameter of the filler, the pressure loss allowed in the dissolution tank (inlet and outlet of the dissolution tank) For the difference in pressure between the two, an average particle size with the largest amount of dissolution is selected as the optimum average particle size.
(1) The relationship of the amount of carbon dioxide dissolved with respect to the average particle diameter of the filler in the predetermined flow rate of carbon dioxide and solvent and the shape of the dissolution tank.
(2) Relationship between dissolution tank pressure loss and average filler particle size.

一般に、前記充填材の平均粒径に対する特性は、(1)炭酸ガス及び溶媒の流量と溶解槽の形状とが与えられれば、充填材の平均粒径を細かくするほど、炭酸ガスの溶解量は増加する。(2)一方、充填材の平均粒径を細かくするほど、溶解槽内の炭酸ガス及び溶媒の流れによる圧力損失が大きくなり、一定の流量を確保するために使用するエネルギーが増加する、という傾向がある。したがって、上記炭酸ガス及び溶媒の流量と溶解槽の形状とを総合的に勘案した上で、充填材の平均粒径を選定する。なお、所要の炭酸ガス溶解量が決定できない場合には、溶解槽の大型化などの対策を採ることも考慮する。   Generally, the properties of the filler with respect to the average particle size are as follows: (1) Given the flow rate of carbon dioxide gas and solvent and the shape of the dissolution tank, the smaller the average particle size of the filler, the more the amount of carbon dioxide dissolved To increase. (2) On the other hand, as the average particle size of the filler becomes finer, the pressure loss due to the flow of carbon dioxide and solvent in the dissolution tank increases, and the energy used to secure a constant flow rate tends to increase. There is. Therefore, the average particle size of the filler is selected after comprehensively considering the flow rates of the carbon dioxide gas and the solvent and the shape of the dissolution tank. In addition, when the required amount of carbon dioxide dissolution cannot be determined, it is also considered to take measures such as increasing the size of the dissolution tank.

上記の最適な平均粒径の充填材16を用いることにより、炭酸ガスの溶解効率に優れるようになる。   By using the filler 16 having the optimum average particle diameter, the carbon dioxide gas is efficiently dissolved.

前記容器10は、図2に示されるように、密閉された縦長の管型とすることが好ましい。これにより、溶解槽4における炭酸ガスと溶媒の滞留時間を確保することが可能になる。また、系内の前記設定圧力に対して耐圧性を有する構造とすることができるとともに、短時間で連続的かつ安定的な炭酸ガス溶解水の生成が可能となる。   As shown in FIG. 2, the container 10 is preferably a sealed vertically long tube. Thereby, it becomes possible to ensure the residence time of the carbon dioxide gas and the solvent in the dissolution tank 4. Moreover, it can be set as the structure which has pressure | voltage resistance with respect to the said setting pressure in a system, and the production | generation of a carbon dioxide dissolved water can be continuously and stably in a short time.

ここで、溶解槽4内の流れについて図2に基づいて説明すると、前記炭酸ガス注入口11及び溶媒注入口12から容器10内に圧送された炭酸ガス及び溶媒は、下方ホッパー部17で混合されるとともに、下方側多孔板14から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板15に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板15から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。   Here, the flow in the dissolution tank 4 will be described with reference to FIG. 2. The carbon dioxide gas and the solvent pumped into the container 10 from the carbon dioxide inlet 11 and the solvent inlet 12 are mixed in the lower hopper 17. And enters the filling region of the filler 16 from the lower perforated plate 14 evenly. In the filling region of the filler 16, the solvent and carbon dioxide are sufficiently stirred together with the flow between the fillers 16 to dissolve the carbon dioxide in the solvent and flow upward. Due to this action, when the upper porous plate 15 is reached, carbon dioxide-dissolved water in which carbon dioxide is substantially dissolved in the solvent is generated, and reaches the saturated dissolution level of the solvent. Thereafter, the carbon dioxide-dissolved water that has entered the upper hopper 18 from the upper porous plate 15 is discharged from the discharge port 13.

前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。   In the dissolution tank 4, it is desirable to provide one or a plurality of rectifying plates 19 in which a large number of openings are formed so as to partition the flow path in the filling region of the filler 16. By providing the rectifying plate 19, the flow of the carbon dioxide gas and the solvent by the filler 16 is made uniform, and the dissolution of the carbon dioxide gas in the dissolution tank 4 is improved by increasing the chance of contact between them. The residence time in the dissolution tank 4 and the carbon dioxide gas dissolution amount are in a generally proportional relationship up to the saturation concentration level. Therefore, the apparatus scale is set so that the residence time according to the target dissolution amount is obtained under predetermined operating conditions. It is desirable to set.

また、本第1構成パターンでは、前記溶解槽4から注入井5に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽6が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置2と溶解槽4との中間流路に戻す炭酸ガス圧送装置7が配設されている。   Further, in this first configuration pattern, undissolved carbon dioxide and carbon dioxide are saturated with respect to the total amount of carbon dioxide dissolved water fed in the middle of the flow path from the dissolution tank 4 to the injection well 5. A separation tank 6 that separates the dissolved carbon dioxide dissolved water at a concentration is disposed, and the separated undissolved carbon dioxide is returned to an intermediate flow path between the carbon dioxide compression apparatus 2 and the dissolution tank 4. A carbon dioxide pressure feeding device 7 is provided.

本第1構成パターンでは、前記溶解槽4で生成した炭酸ガス溶解水の全量を対象として、未溶解炭酸ガス分を前記分離槽6において分離し、この未溶解の炭酸ガス分を溶解槽4にリターンさせることにより、飽和濃度レベルで炭酸ガスを溶媒(海水又は水)に溶解させた状態で地中に圧入することが可能となる。この炭酸ガス溶解水は、帯水層の周辺地下水より大きな比重を持つようになり、帯水層に注入しても炭酸ガスが浮上せず、長期的かつ安定的に帯水層に貯留・隔離させることができるようになる。   In this first configuration pattern, the undissolved carbon dioxide content is separated in the separation tank 6 with respect to the total amount of carbon dioxide dissolved water generated in the dissolution tank 4, and this undissolved carbon dioxide content is separated into the dissolution tank 4. By returning, it becomes possible to press-fit into the ground in a state where carbon dioxide gas is dissolved in a solvent (seawater or water) at a saturated concentration level. This carbon dioxide-dissolved water has a greater specific gravity than the groundwater around the aquifer, and even when injected into the aquifer, carbon dioxide does not rise and is stored and sequestered in the aquifer in a long-term and stable manner. To be able to.

前記分離槽6は、図3に示されるように、密閉された容器20の内部に下面から所定高さで立設し、前記溶解槽4を通過した炭酸ガス溶解水の流路と接続した流入管21が設けられ、概ね前記炭酸ガス溶解水で容器20内が満たされて、未溶解炭酸ガスが上方側に重力分離されるとともに、前記容器20の上部に、前記未溶解炭酸ガスを吐出する未溶解炭酸ガス吐出口22が形成され、前記容器20の下方に、前記未溶解炭酸ガスが分離された後の炭酸ガス溶解水を吐出する炭酸ガス溶解水吐出口23が形成されて構成されている。   As shown in FIG. 3, the separation tank 6 is erected in a sealed container 20 at a predetermined height from the lower surface and connected to a flow path of carbon dioxide dissolved water that has passed through the dissolution tank 4. A tube 21 is provided, and the inside of the container 20 is substantially filled with the carbon dioxide-dissolved water so that the undissolved carbon dioxide is gravity separated upward, and the undissolved carbon dioxide gas is discharged to the upper part of the container 20. An undissolved carbon dioxide gas discharge port 22 is formed, and a carbon dioxide gas-dissolved water discharge port 23 for discharging the carbon dioxide-dissolved water after the undissolved carbon dioxide gas is separated is formed below the container 20. Yes.

溶解槽1基当たりの溶媒及び炭酸ガスの各流量は、溶解槽4の容積と炭酸ガス及び溶媒の溶解槽4内の滞留時間によって定めた全体流量に対して、注入する炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)から求めることができる。この際、炭酸ガス及び溶媒の重量比は、所望の炭酸ガスの溶解量に基づいて定められる。この炭酸ガス及び溶媒の重量比と炭酸ガスの溶解量との関係については、予め行われる通水試験によって求めておく。   Each flow rate of the solvent and carbon dioxide gas per dissolution tank is the weight of the injected carbon dioxide gas and solvent with respect to the total flow rate determined by the volume of the dissolution tank 4 and the residence time of the carbon dioxide gas and solvent in the dissolution tank 4. It can be determined from the ratio (carbon dioxide weight / solvent weight). At this time, the weight ratio between the carbon dioxide gas and the solvent is determined based on the desired amount of carbon dioxide dissolved. The relationship between the weight ratio of the carbon dioxide gas and the solvent and the dissolved amount of the carbon dioxide gas is determined by a water flow test performed in advance.

後段の実施例で詳述するように、溶解槽4での溶解濃度は、注入される炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)に影響する。具体的には、注入される前記重量比が大きくなると、溶解槽4での溶解濃度が大きくなる傾向にあるため、炭酸ガスの溶解を促進させる目的で、炭酸ガス及び溶媒の注入重量比は、前記炭酸ガス溶解濃度の目標値より大きく設定することが好ましい。   As will be described in detail in an example at a later stage, the dissolution concentration in the dissolution tank 4 affects the weight ratio of the injected carbon dioxide gas to the solvent (carbon dioxide weight / solvent weight). Specifically, as the weight ratio to be injected increases, the dissolution concentration in the dissolution tank 4 tends to increase. For the purpose of promoting the dissolution of carbon dioxide, the injection weight ratio of carbon dioxide and solvent is: It is preferable to set it larger than the target value of the carbon dioxide gas dissolution concentration.

本第1構成パターンでは、前述の通り、全ての溶解槽4、4…から吐出された炭酸ガス溶解水は前記分離槽6に注入されるため、前記分離槽6において溶解槽4、4…から吐出される炭酸ガス溶解水に含まれる未溶解炭酸ガスが完全に分離され、注入井5には、炭酸ガスが溶媒に完全に溶解した状態の炭酸ガス溶解水が圧入される。   In the first configuration pattern, as described above, the carbon dioxide dissolved water discharged from all the dissolution tanks 4, 4... Is injected into the separation tank 6. Undissolved carbon dioxide contained in the discharged carbon dioxide-dissolved water is completely separated, and carbon dioxide-dissolved water in a state where the carbon dioxide is completely dissolved in the solvent is injected into the injection well 5.

〔第2構成パターン〕
第2構成パターンは、地中貯留システム1の主な構成は、前記第1構成パターンと同様であるが、以下の点が相違する。すなわち、図4に示されるように、前記溶解槽4は複数配置され、これら溶解槽4、4…の内の一部については、溶解槽4から注入井5に至る流路の途中に、送給された炭酸ガス溶解水に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽6が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置2と溶解槽4との中間流路に戻す炭酸ガス圧送装置7が配設され、残る溶解槽については、前記分離槽6の下流側に流路が接続される構成となっている。
[Second configuration pattern]
The second configuration pattern is the same as the first configuration pattern in the main configuration of the underground storage system 1 except for the following points. That is, as shown in FIG. 4, a plurality of the dissolution tanks 4 are arranged, and some of these dissolution tanks 4, 4... Are sent in the middle of the flow path from the dissolution tank 4 to the injection well 5. A separation tank 6 for separating undissolved carbon dioxide gas and carbon dioxide-dissolved water in a state where the carbon dioxide gas is dissolved at a saturated concentration is disposed with respect to the supplied carbon dioxide-dissolved water, and the separated tank 6 is separated. A carbon dioxide pressure feeding device 7 for returning undissolved carbon dioxide gas to the intermediate flow path between the carbon dioxide compression apparatus 2 and the dissolution tank 4 is disposed, and the remaining dissolution tank is connected to the downstream side of the separation tank 6. It becomes the composition which is done.

本第2構成パターンでは、地下水に対する炭酸ガスの溶解を期待して、ある程度、未溶解の炭酸ガスを含んだ状態(最大で溶媒重量の5%)で地中の帯水層に圧入し、この未溶解の炭酸ガスを地下水に対して溶解させるように制御するものである。なお、地下水に対する炭酸ガスの溶解期間としては、炭酸ガスの圧入が行われ、帯水層内で炭酸ガスの流動が生じている期間のみを考慮するものとする。   In this second configuration pattern, in order to dissolve carbon dioxide in groundwater, it is injected into the underground aquifer with some undissolved carbon dioxide (up to 5% of the solvent weight). Control is performed so that undissolved carbon dioxide is dissolved in groundwater. In addition, as a melt | dissolution period of the carbon dioxide gas with respect to groundwater, only the period when the injection of a carbon dioxide gas is performed and the flow of the carbon dioxide gas within the aquifer is considered.

本第2構成パターンは、上記第1構成パターンと対比すると、炭酸ガスの単位重量当たりの処理に要する海水又は水の使用量及び使用エネルギーを削減することが可能となる。   Compared with the first configuration pattern, the second configuration pattern can reduce the amount of seawater or water used and energy used for processing per unit weight of carbon dioxide gas.

〔第3構成パターン〕
第3構成パターンは、図5に示されるように、上記第1構成パターンと対比して、前記溶解槽4から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしてある点で相違する。
[Third configuration pattern]
As shown in FIG. 5, the third configuration pattern is the same as the first configuration pattern in that the carbon dioxide-dissolved water discharged from the dissolution tank 4 is left in the state containing undissolved carbon dioxide, It is different in that it is pressed into the aquifer inside.

本第3構成パターンは、更に炭酸ガスの単位重量当たりの処理に要する海水又は水の使用量及び使用エネルギーの削減を進めたものである。本第3構成パターンでは、地下水に対する炭酸ガスの溶解を期待して、未溶解の炭酸ガス(最大で溶媒重量の5%)は、地中の帯水層で、地下水に対して溶解させるように制御するものである。この地下水に対する炭酸ガスの溶解期間としては、未溶解の炭酸ガスの注入が行われ、帯水層内で炭酸ガスの流動が生じている期間のみを考慮するものとする。溶解槽4において、上記の期間より後に帯水層内で未溶解の炭酸ガスが存在しないように、溶解槽への炭酸ガス導入量を調整することにより、分離装置が不要になるとともに、海水又は水の使用量及び使用エネルギーの削減を図ることが可能となる。   In the third configuration pattern, the amount of seawater or water required for processing per unit weight of carbon dioxide or water and the energy used are further reduced. In this third configuration pattern, in order to dissolve carbon dioxide in groundwater, undissolved carbon dioxide (up to 5% of the solvent weight) is dissolved in groundwater in the underground aquifer. It is something to control. As a dissolution period of carbon dioxide gas in the groundwater, only a period in which undissolved carbon dioxide gas is injected and carbon dioxide flows in the aquifer is considered. In the dissolution tank 4, by adjusting the amount of carbon dioxide introduced into the dissolution tank so that there is no undissolved carbon dioxide in the aquifer after the above period, a separation device becomes unnecessary, and seawater or It is possible to reduce water consumption and energy consumption.

本地中貯留システム1による炭酸ガスの溶解状態を実証するため、図6に示される実験装置を用いて炭酸ガスの溶解実験を行った。   In order to verify the dissolution state of carbon dioxide gas by the underground storage system 1, a carbon dioxide dissolution experiment was conducted using the experimental apparatus shown in FIG.

実験装置は、図6に示されるように、炭酸ガスボンベ30の炭酸ガスを炭酸ガス圧縮装置2によって加圧して溶解槽4に注入するとともに、塩水タンク31の塩水を溶媒圧送ポンプ3によって加圧して溶解槽4に注入し、溶解槽4で炭酸ガスの溶解処理を行い、この炭酸ガス溶解水を分離槽で未溶解炭酸ガスを分離した後の炭酸ガス溶解水をサンプリングする。ここで、溶解槽4の容積は850mlとし、充填材16は、平均粒径が0.18mm(粒度1)、0.63mm(粒度2)、1.32mm(粒度3)の砂状のものを使用した。実験では、温度、圧力、塩水流量、充填材16の粒度及び炭酸ガスと塩水の重量比(炭酸ガス重量/塩水重量)をそれぞれ変化させたとき、サンプリングした炭酸ガス溶解水の炭酸ガス溶解量を測定した。   As shown in FIG. 6, the experimental apparatus pressurizes the carbon dioxide in the carbon dioxide cylinder 30 by the carbon dioxide compressor 2 and injects it into the dissolution tank 4, and pressurizes the salt water in the salt water tank 31 by the solvent pump 3. The carbon dioxide is dissolved in the dissolution tank 4, the carbon dioxide is dissolved in the dissolution tank 4, and the carbon dioxide dissolved water after the carbon dioxide dissolved water is separated from the undissolved carbon dioxide in the separation tank is sampled. Here, the volume of the dissolution tank 4 was 850 ml, and the filler 16 used was a sand-like material having an average particle size of 0.18 mm (particle size 1), 0.63 mm (particle size 2), and 1.32 mm (particle size 3). In the experiment, when the temperature, pressure, salt water flow rate, particle size of the filler 16 and the weight ratio of carbon dioxide and salt water (carbon dioxide weight / salt water weight) were changed, the amount of carbon dioxide dissolved in the sampled carbon dioxide dissolved water was changed. It was measured.

図7、図8は、各温度における塩水流量及び充填材16の粒度をそれぞれ変化させたときの溶解槽4に注入する炭酸ガス及び塩水の重量比(炭酸ガス重量/塩水重量)と炭酸ガス溶解量との関係を示すグラフである。この結果、温度29℃、33℃のいずれの試験温度においても、炭酸ガスと塩水の重量比を増大させるほど、また充填材16の粒度を小さくするほど炭酸ガス溶解量が大きくなる傾向にある。   FIGS. 7 and 8 show the weight ratio of carbon dioxide and salt water (carbon dioxide weight / salt water weight) and carbon dioxide dissolution when injected into the dissolution tank 4 when the salt water flow rate and the particle size of the filler 16 are changed at each temperature. It is a graph which shows the relationship with quantity. As a result, at any of the test temperatures of 29 ° C. and 33 ° C., the amount of carbon dioxide dissolved tends to increase as the weight ratio of carbon dioxide to salt water increases and the particle size of the filler 16 decreases.

図9〜図11は、各温度における塩水流量及び圧力をそれぞれ変化させたときの前記重量比と炭酸ガス溶解量との関係を示すグラフである。この結果、前述と同様に、炭酸ガスと塩水の重量比を増大させるほど、炭酸ガス溶解量が増大する傾向にあるが、ある重量比以上では炭酸ガス溶解量がほぼ一定の飽和濃度レベルとなり、本地中貯留システムの有効性が確認された。   9 to 11 are graphs showing the relationship between the weight ratio and the amount of dissolved carbon dioxide gas when the salt water flow rate and pressure at each temperature are changed. As a result, as described above, as the weight ratio of carbon dioxide and salt water increases, the amount of dissolved carbon dioxide tends to increase, but at a certain weight ratio or more, the amount of dissolved carbon dioxide becomes a substantially constant saturation concentration level, The effectiveness of the underground storage system was confirmed.

図12は、各圧力における温度と炭酸ガス溶解量との関係を示すグラフである。この結果、25℃〜40℃の範囲の一般的な温度条件においては、炭酸ガス溶解量に大きく影響を及ぼさないことが確認された。   FIG. 12 is a graph showing the relationship between the temperature at each pressure and the amount of carbon dioxide dissolved. As a result, it was confirmed that, under general temperature conditions in the range of 25 ° C. to 40 ° C., the carbon dioxide dissolution amount was not greatly affected.

図13は、各塩水流量における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。この結果、本実施例では、充填材の平均粒径は、平均粒径1.0mm以下とすることにより、炭酸ガスの溶解効率に優れるようになる。   FIG. 13 is a graph showing the relationship between the average particle diameter of the filler and the amount of carbon dioxide dissolved at each salt water flow rate. As a result, in this example, the average particle size of the filler is excellent in the dissolution efficiency of carbon dioxide gas by setting the average particle size to 1.0 mm or less.

本発明にかかる炭酸ガスの地中貯留システム1(第1の構成パターン)の概念図である。It is a conceptual diagram of the underground storage system 1 (1st structure pattern) of the carbon dioxide gas concerning this invention. 溶解槽4の縦断面図である。3 is a longitudinal sectional view of the dissolution tank 4. FIG. 分離槽6の縦断面図である。3 is a longitudinal sectional view of a separation tank 6. FIG. 本発明にかかる炭酸ガスの地中貯留システム1(第2の構成パターン)の概念図である。It is a conceptual diagram of the carbon dioxide underground storage system 1 (2nd structure pattern) concerning this invention. 本発明にかかる炭酸ガスの地中貯留システム1(第3の構成パターン)の概念図である。It is a conceptual diagram of the underground storage system 1 (3rd structure pattern) of the carbon dioxide gas concerning this invention. 実験装置の概念図である。It is a conceptual diagram of an experimental apparatus. 温度29℃における塩水流量及び粒度に対する重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the weight ratio with respect to the salt water flow rate in a temperature of 29 degreeC, and a particle size, and a carbon dioxide dissolved amount. 温度33℃における塩水流量及び粒度に対する重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the weight ratio with respect to the salt water flow rate and particle size at the temperature of 33 degreeC, and a carbon dioxide gas dissolution amount. 温度25℃における塩水流量及び圧力に対する重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the weight ratio with respect to the salt water flow rate in the temperature of 25 degreeC, and a pressure, and a carbon dioxide gas dissolution amount. 温度29℃における塩水流量及び圧力に対する重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the weight ratio with respect to the salt water flow rate and pressure in the temperature of 29 degreeC, and a carbon dioxide gas dissolution amount. 温度33℃における塩水流量及び圧力に対する重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the weight ratio with respect to the salt water flow rate and pressure in the temperature of 33 degreeC, and a carbon dioxide gas dissolution amount. 温度と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between temperature and the amount of carbon dioxide dissolution. 充填材の平均粒径と炭酸ガス溶解量との関係との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of a filler, and the relationship between a carbon dioxide gas dissolution amount.

符号の説明Explanation of symbols

1…地中貯留システム、2…炭酸ガス圧縮装置、3…溶媒圧送ポンプ、4…溶解槽、5…注入井、6…分離槽、7…炭酸ガス圧送装置、10…容器、11…炭酸ガス注入口、12…溶媒注入口、13…吐出口、14、15…多孔板、16…充填材、19…整流板、20…容器、21…流入管、22…未溶解炭酸ガス吐出口、23…炭酸ガス吐出口   DESCRIPTION OF SYMBOLS 1 ... Underground storage system, 2 ... Carbon dioxide compression apparatus, 3 ... Solvent pump, 4 ... Dissolution tank, 5 ... Injection well, 6 ... Separation tank, 7 ... Carbon dioxide pump, 10 ... Container, 11 ... Carbon dioxide Inlet 12, 12 Solvent inlet, 13 Discharge port 14, 15 ... Perforated plate, 16 ... Filler, 19 ... Rectifier plate, 20 ... Container, 21 ... Inflow pipe, 22 ... Undissolved carbon dioxide discharge port, 23 ... CO2 outlet

Claims (7)

炭酸ガスを溶媒に溶解させた状態で地中の帯水層に圧入し、貯留・隔離するための炭酸ガスの地中貯留システムであって、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成されることを特徴とする炭酸ガスの地中貯留システム。
A carbon dioxide underground storage system for pressurizing, storing, and isolating carbon dioxide into a groundwater aquifer in a state of being dissolved in a solvent,
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is One or a plurality of dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and an injection well that penetrates the generated carbon dioxide-dissolved water from the ground surface into the aquifer through the ground. Consisting of
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a discharge port through which the carbon dioxide-dissolved water is discharged is formed in an upper portion of the container, and the container is filled with a granular filler. Underground storage system.
前記粒状の充填材として、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとする請求項1記載の炭酸ガスの地中貯留システム。   The underground storage system for carbon dioxide gas according to claim 1, wherein the granular filler is any one or a combination of sand, crushed stone, Raschig ring, and saddle. 前記粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径とする請求項1,2いずれかに記載の炭酸ガスの地中貯留システム。   The granular filler is an optimum average determined from the amount of carbon dioxide dissolved based on the flow rate of carbon dioxide and solvent and the shape of the dissolution tank and the pressure loss in the dissolution tank for each type of filler. The underground storage system for carbon dioxide gas according to claim 1, wherein the particle size is a particle size. 前記溶解槽において、前記充填材の充填領域内に、流路を仕切るように多数の開孔が形成された整流板が1又は複数設けられている請求項1〜3いずれかに記載の炭酸ガスの地中貯留システム。   The carbon dioxide gas according to any one of claims 1 to 3, wherein in the dissolution tank, one or a plurality of rectifying plates in which a large number of openings are formed so as to partition the flow path are provided in the filling region of the filler. Underground storage system. 前記溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置と溶解槽との中間流路に戻す炭酸ガス圧送装置が配設された請求項1〜4いずれかに記載の炭酸ガスの地中貯留システム。   In the middle of the flow path from the dissolution tank to the injection well, undissolved carbon dioxide gas and carbon dioxide dissolved water in a state where the carbon dioxide gas is dissolved at a saturated concentration with respect to the total amount of carbon dioxide dissolved water fed. And a carbon dioxide gas pressure feeding device for returning the separated undissolved carbon dioxide gas to an intermediate flow path between the carbon dioxide gas compression device and the dissolution vessel. The carbon dioxide underground storage system according to any one of the above. 前記溶解槽は複数配置され、これら溶解槽の内の一部については、溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽が配設されるとともに、分離された前記未溶解炭酸ガスを前記炭酸ガス圧縮装置と溶解槽との中間流路に戻す炭酸ガス圧送装置が配設され、残る溶解槽については、前記分離槽の下流側に流路が接続されている請求項1〜4いずれかに記載の炭酸ガスの地中貯留システム。   A plurality of the dissolution tanks are arranged, and a part of these dissolution tanks is in the middle of the flow path from the dissolution tank to the injection well, with the undissolved carbon dioxide gas supplied to the carbon dioxide dissolved water supplied. A separation tank that separates the carbon dioxide-dissolved water in a state where the carbon dioxide gas is dissolved at a saturated concentration, and an intermediate flow path between the undissolved carbon dioxide separated by the carbon dioxide compression apparatus and the dissolution tank. A carbon dioxide gas underground storage system according to any one of claims 1 to 4, wherein a carbon dioxide gas pressure feeding device is disposed to return to the remaining dissolution tank, and a flow path is connected to the downstream side of the separation tank. 前記溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしてある請求項1〜4いずれかに記載の炭酸ガスの地中貯留システム。   The carbon dioxide dissolved water discharged from the dissolution tank is pressed into a groundwater aquifer in a state containing undissolved carbon dioxide as it is. Underground storage system.
JP2007082078A 2007-03-27 2007-03-27 Carbon dioxide underground storage system Expired - Fee Related JP4924140B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007082078A JP4924140B2 (en) 2007-03-27 2007-03-27 Carbon dioxide underground storage system
AU2008236123A AU2008236123B2 (en) 2007-03-27 2008-03-25 Carbon dioxide underground reserving system
PCT/JP2008/055508 WO2008123222A1 (en) 2007-03-27 2008-03-25 Carbon dioxide underground reserving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082078A JP4924140B2 (en) 2007-03-27 2007-03-27 Carbon dioxide underground storage system

Publications (2)

Publication Number Publication Date
JP2008238054A true JP2008238054A (en) 2008-10-09
JP4924140B2 JP4924140B2 (en) 2012-04-25

Family

ID=39830717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082078A Expired - Fee Related JP4924140B2 (en) 2007-03-27 2007-03-27 Carbon dioxide underground storage system

Country Status (3)

Country Link
JP (1) JP4924140B2 (en)
AU (1) AU2008236123B2 (en)
WO (1) WO2008123222A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201330A (en) * 2009-03-03 2010-09-16 Tokyo Electric Power Co Inc:The Underground storage system for carbon dioxide
JP2011005378A (en) * 2009-06-24 2011-01-13 Tokyo Electric Power Co Inc:The Method of storing carbon dioxide in the ground
KR101034249B1 (en) 2010-10-26 2011-05-12 한국기계연구원 Geological storage system of carbon dioxide using energy recovery device
CN102348614A (en) * 2009-03-11 2012-02-08 莫里斯·B·杜西奥尔特 Process for sequestration of fluids in geological formations
WO2012133265A1 (en) 2011-03-30 2012-10-04 財団法人地球環境産業技術研究機構 Retention device for retained substance and retention method
KR101399442B1 (en) 2013-08-30 2014-05-28 한국기계연구원 Apparatus for liquefaction and underground injection of carbon dioxide
JP2015188859A (en) * 2014-03-28 2015-11-02 三相電機株式会社 Microbubble generator
JP2017164719A (en) * 2016-03-18 2017-09-21 株式会社イズミフードマシナリ Carbonic acid beverage manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170215A (en) * 1992-12-07 1994-06-21 Mitsubishi Heavy Ind Ltd Method for injecting carbon dioxide into ground under pressure
JPH10146523A (en) * 1996-09-20 1998-06-02 Nippon Shokubai Co Ltd Gas-liquid dispersion apparatus, gas-liquid contact apparatus and waste water treatment apparatus
JP2001348584A (en) * 2000-06-08 2001-12-18 National Institute Of Advanced Industrial & Technology Method for producing carbon dioxide hydrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170215A (en) * 1992-12-07 1994-06-21 Mitsubishi Heavy Ind Ltd Method for injecting carbon dioxide into ground under pressure
JPH10146523A (en) * 1996-09-20 1998-06-02 Nippon Shokubai Co Ltd Gas-liquid dispersion apparatus, gas-liquid contact apparatus and waste water treatment apparatus
JP2001348584A (en) * 2000-06-08 2001-12-18 National Institute Of Advanced Industrial & Technology Method for producing carbon dioxide hydrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201330A (en) * 2009-03-03 2010-09-16 Tokyo Electric Power Co Inc:The Underground storage system for carbon dioxide
CN102348614A (en) * 2009-03-11 2012-02-08 莫里斯·B·杜西奥尔特 Process for sequestration of fluids in geological formations
JP2011005378A (en) * 2009-06-24 2011-01-13 Tokyo Electric Power Co Inc:The Method of storing carbon dioxide in the ground
KR101034249B1 (en) 2010-10-26 2011-05-12 한국기계연구원 Geological storage system of carbon dioxide using energy recovery device
WO2012133265A1 (en) 2011-03-30 2012-10-04 財団法人地球環境産業技術研究機構 Retention device for retained substance and retention method
US8998532B2 (en) 2011-03-30 2015-04-07 Tokyo Gas Co., Ltd. Retention device for retained substance and retention method
KR101399442B1 (en) 2013-08-30 2014-05-28 한국기계연구원 Apparatus for liquefaction and underground injection of carbon dioxide
JP2015188859A (en) * 2014-03-28 2015-11-02 三相電機株式会社 Microbubble generator
JP2017164719A (en) * 2016-03-18 2017-09-21 株式会社イズミフードマシナリ Carbonic acid beverage manufacturing apparatus

Also Published As

Publication number Publication date
WO2008123222A1 (en) 2008-10-16
AU2008236123B2 (en) 2012-08-02
JP4924140B2 (en) 2012-04-25
AU2008236123A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4924140B2 (en) Carbon dioxide underground storage system
JP5062527B2 (en) High pressure carbon dioxide foaming device and carbon dioxide underground storage system using the same
US8167037B2 (en) Method and device for feeding liquefied carbon-dioxide gas into an aquifer deep underground
CN110821448B (en) Exploitation method and exploitation device for marine natural gas hydrate
WO2010018844A1 (en) Storing device for stored substance and method for storing stored substance
EP2695671B1 (en) Retention device for retained substance and retention method
JP2010239962A (en) Method for producing methane gas using carbon dioxide
JP5267810B2 (en) Carbon dioxide gas storage method
CN104096491B (en) Anti-bubble generator and preparation method
US9155992B2 (en) Mass transfer apparatus and method for separation of gases
JP5360820B2 (en) Carbon dioxide storage method
JP2010201330A (en) Underground storage system for carbon dioxide
JP2009233630A (en) Separating method for polluted substance and facility therefor
JP5208862B2 (en) Emulsion production / injection apparatus and method, and methane hydrate mining method
NL2014964B1 (en) Device and method for compensating for extraction of natural gas from a natural gas field.
WO2013179684A1 (en) Apparatus for producing hydrogen gas and method for producing hydrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees