WO2013179684A1 - Apparatus for producing hydrogen gas and method for producing hydrogen gas - Google Patents

Apparatus for producing hydrogen gas and method for producing hydrogen gas Download PDF

Info

Publication number
WO2013179684A1
WO2013179684A1 PCT/JP2013/051653 JP2013051653W WO2013179684A1 WO 2013179684 A1 WO2013179684 A1 WO 2013179684A1 JP 2013051653 W JP2013051653 W JP 2013051653W WO 2013179684 A1 WO2013179684 A1 WO 2013179684A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
water
gas
microbubbles
reaction tank
Prior art date
Application number
PCT/JP2013/051653
Other languages
French (fr)
Japanese (ja)
Inventor
忠政 長谷川
Original Assignee
Hasegawa Tadamasa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Tadamasa filed Critical Hasegawa Tadamasa
Publication of WO2013179684A1 publication Critical patent/WO2013179684A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen gas production apparatus and a hydrogen gas production method for producing hydrogen gas by water decomposition.
  • Conventional hydrogen gas production methods include an electrolysis method, a polymer separation membrane method, and a thermal decomposition method, all of which have poor hydrogen gas production efficiency with respect to production costs. Consuming fossil fuels and generating carbon dioxide.
  • the hydrogen gas production apparatus by electrolysis of water can produce hydrogen gas appropriately by controlling the current for electrolysis, so a full-scale storage cylinder is unnecessary, and a high-temperature combustion flame used for welding, etc. It is conveniently used as a hydrogen gas source for generating hydrogen.
  • a hydrogen gas production apparatus is known in which a mixed gas of hydrogen gas and oxygen gas is produced by electrolysis under low-frequency vibration stirring conditions. (For example, refer to Patent Document 1).
  • microbubbles of several tens of ⁇ m or less in water.
  • microbubbles with a particle size of 50 ⁇ m or less are generated in water and then naturally suspended in water to reduce the particle size, thereby stabilizing microbubbles with a particle size of 3 ⁇ m or less.
  • a method for producing water that is present in see, for example, Patent Document 2.
  • the particle size is reduced at a certain depth of water having a predetermined electric conductivity and normal hexane extraction concentration.
  • a high-concentration ion shell is harmonized on the entire gas-liquid interface of bubbles.
  • the particle size is stable at 3 ⁇ m or less.
  • a microbubble crushing method has been proposed in which microbubbles having a diameter of 50 ⁇ m or less floating in a solution are crushed to generate free radicals (see, for example, Patent Document 3).
  • the microbubbles are crushed by self-compression due to the surface tension of the gas-liquid interface, and when the microbubbles disappear, the charge energy charged at the gas-liquid interface of the microbubbles is released and freed by the energy. Radicals are generated.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a new basic hydrogen gas production apparatus and hydrogen gas production method using water as a raw material with a simple configuration.
  • a hydrogen gas production apparatus of the present invention is a hydrogen gas production apparatus for producing hydrogen gas by decomposing water, a reaction tank for storing water for decomposition, and hydrogen generated in the reaction tank.
  • a hydrogen gas collecting part that separates and collects hydrogen gas from a mixed gas of gas and oxygen gas, and a bubble generating part that generates microbubbles having a diameter of 50 ⁇ m or less in water stored in the reaction tank,
  • Hydrogen gas collection unit collects hydrogen gas generated by decomposition of water molecules due to physicochemical reaction caused by free radical field and local high temperature generated when microbubbles in water in the reaction tank collapse It is characterized by doing.
  • the reaction tank may have an electrode for electrolyzing water stored in the reaction tank.
  • the reaction tank may have an ultrasonic wave generation unit that emits ultrasonic waves to water stored in the reaction tank.
  • the bubble generation unit generates a gas-liquid mixed fluid by mixing the pipe for taking in water in the reaction tank, the pipe for taking in air in the atmosphere, and the water and air taken in by both pipes. And a gas-liquid mixed fluid may be injected from the mixer into the reaction vessel to generate microbubbles.
  • the bubble generation unit mixes piping for taking in water in the reaction tank, piping for taking in oxygen gas separated by the hydrogen gas collecting unit, and water and oxygen gas taken in by both pipings.
  • a mixer that generates a gas-liquid mixed fluid and may have a gas-liquid circulation configuration in which the gas-liquid mixed fluid is injected from the mixer into the reaction tank to generate microbubbles.
  • the hydrogen gas production method of the present invention is generated by a bubble generation step of generating fine bubbles having a diameter of 50 ⁇ m or less in water and a bubble generation step in the hydrogen gas production method of producing hydrogen gas by decomposing water. From a crushing process that crushes microbubbles and decomposes water molecules by a physicochemical reaction caused by a free radical field and local high temperature generated during the crushing, and a mixed gas of hydrogen gas and oxygen gas generated by the crushing process A collection step of separating and collecting hydrogen gas.
  • the hydrogen gas production method may further include an electrolysis process for generating hydrogen gas by electrolyzing water, and the collection process may collect the hydrogen gas generated by the electrolysis process.
  • the hydrogen gas production apparatus and the hydrogen gas production method of the present invention it is possible to provide a new apparatus and method for producing hydrogen gas by physicochemical reaction based on the collapse of microbubbles using water as a raw material.
  • the block diagram containing the partial cross section of the hydrogen gas manufacturing apparatus which concerns on other embodiment.
  • the hydrogen gas production apparatus 1 includes a reaction tank 11 that stores water W for decomposition, and a hydrogen gas collection unit that separates and collects hydrogen gas from a mixed gas Vp of hydrogen gas and oxygen gas generated in the reaction tank 11. 12 and a bubble generation unit 13 that generates microbubbles MB having a diameter of 50 ⁇ m or less in the water W stored in the reaction tank 11.
  • the reaction tank 11 is a box-shaped airtight container, and the water surface upper space of the stored water W is filled with water vapor evaporated from the water surface and a mixed gas Vp of hydrogen gas and oxygen gas generated by the decomposition of the water W.
  • the hydrogen gas collection unit 12 is disposed in the upper part of the reaction tank 11.
  • the casing of the hydrogen gas collection unit 12 is provided with a gas intake port communicating with the upper space of the reaction tank 11, and further, a hydrogen gas pipe 12a for sending out hydrogen gas, and a discharge pipe for discharging water vapor and oxygen gas 12b is connected.
  • a hydrogen gas separation membrane and a hydrogen gas permeable porous material that selectively permeate hydrogen gas are provided inside the housing of the hydrogen gas collection unit 12.
  • a pump 14 for circulating the water W inside the reaction tank 11 is provided on the side of the reaction tank 11.
  • the pump 14 is connected to the side wall of the reaction tank 11 by a water intake pipe 14 a, and is connected to the side wall of the reaction tank 11 through a water supply pipe 14 b and the bubble generating unit 13.
  • the bubble generating unit 13 includes a mixer that generates water-gas mixed fluid by mixing water and gas.
  • the bubble generating unit 13 is connected to a pipe 13a that takes in air in the atmosphere and a pipe 13b that takes in water W in the reaction tank 11 (this is the same as the water supply pipe 14b).
  • the bubble generating unit 13 mixes water and air taken in by both the pipes 13a and 13b with a mixer, and discharges the generated gas-liquid mixed fluid to the water W of the reaction tank 11, so that the diameter in the water W is reduced. Generates microbubbles MB of 50 ⁇ m or less.
  • a commercially available loop flow type bubble generating nozzle Japanese Patent No. 5002480 can be used.
  • the hydrogen gas production apparatus 1 and the hydrogen gas production method are based on a phenomenon in which water molecules are decomposed by a physicochemical reaction caused by a free radical field or local high temperature generated when the microbubbles MB in the water in the reaction tank 11 are crushed. To generate hydrogen gas.
  • a normal large bubble AB having a diameter of about 1 mm rises to the water surface by buoyancy, dissolves in the air, and disappears.
  • the microbubbles MB having a diameter of 50 ⁇ m or less in the water W exhibit unique characteristics and behavior that are significantly different from those of the normal bubbles AB. Therefore, the microbubbles MB are also referred to as microbubbles in distinction from the normal large bubbles AB. .
  • the shape of the microbubbles MB (microbubbles) is formed by the gas-liquid interface between the bubbles and the water surrounding the bubbles, and is surrounded by the water W that is a liquid outside the bubbles.
  • the surface tension of water W acts on the gas-liquid interface.
  • the surface tension acts to reduce the area of the gas-liquid interface, that is, the surface area of the bubbles.
  • the surface tension compresses the gas inside the microbubble MB having a closed gas-liquid interface surrounded by the water W.
  • the atmospheric pressure inside the microbubbles MB is represented by a differential pressure ⁇ P which is the difference between the atmospheric pressure and the water pressure with reference to the surrounding water pressure.
  • the microbubbles MB are pressurized with a differential pressure ⁇ P based on the surface tension ⁇ .
  • the differential pressure ⁇ P is, for example, about 0.3 atm for a microbubble MB having a diameter of 10 ⁇ m and about 3 atm for a diameter of 1 ⁇ m. Since the gas is dissolved in water in proportion to the atmospheric pressure according to Henry's law, the gas inside the bubble pressurized by the differential pressure ⁇ P is efficiently dissolved in the surrounding water.
  • the microbubbles MB are reduced, the ratio of the surface area to the internal volume is increased to increase the apparent dissolution rate, and the reduction rate is increased as the microbubbles MB are reduced.
  • the microbubbles MB fall into such a state, the volume decreases as the gas dissolves, the internal pressure further increases, and the pressure increase further accelerates the gas dissolution rate.
  • the differential pressure ⁇ P becomes infinite.
  • the differential pressure ⁇ P does not become infinite, but it is said that a very large pressure field, for example, several thousand atmospheres is generated.
  • the gas in the microbubbles MB is air in the atmosphere taken in by the bubble generating unit 13. The microbubbles MB take in the heat of the atmosphere and release the heat to the water W when the microbubbles MB disappear.
  • the energy source for high temperature generation is the atmosphere.
  • the bubble generating unit 13 and the mechanism for collapsing the microbubbles MB constitute a heat pump.
  • the temperature of the water W in the reaction tank 11 rises with the operation of the hydrogen gas production apparatus 1.
  • the gas-liquid interface of the microbubbles MB is charged. Charging has been confirmed by measuring the zeta potential by electrophoresis. Further, it has been reported that the zeta potential rapidly increases as the microbubbles MB are reduced, and the zeta potential tends to increase in inverse proportion to the radius when the microbubbles MB disappear. When the gas-liquid interface disappears due to the rapid disappearance of the microbubbles MB, the energy stored as electric charge is released into the water.
  • the microbubbles MB rapidly shrink and disappear, a region of high temperature, high pressure, and high energy appears locally in the water.
  • the region becomes, for example, a hot spot that is an active energy field of several thousand degrees and several thousand atmospheres.
  • a hot spot exists in a very small range in terms of time and space, but decomposes water molecules in and around the hot spot to generate free radicals such as hydroxyl radicals.
  • Free radicals are highly reactive atoms and molecules with unpaired electron pairs, and have the property of causing atomic dissociation and molecular recombination of water molecules.
  • the free radical field which combines the energy of the hot spot and the free radical, decomposes water molecules existing in the surroundings by physicochemical reaction under local high temperatures, and also generates hydrogen ions, atomic hydrogen, and free radicals. Generate hydrogen molecules from hydrogen. The generated hydrogen molecules are dissolved in water and, when supersaturated in water, are released into the air as hydrogen gas. Hydrogen gas becomes mixed gas Vp together with water vapor evaporated due to the effect of oxygen gas, free radicals, etc. generated by the decomposition of water, and fills the upper space of the reaction tank 11.
  • the hydrogen gas production method includes a bubble generation step (S1) for generating microbubbles MB having a diameter of 50 ⁇ m or less in water W, and microbubbles MB generated by the bubble generation step (S1).
  • a crushing step (S2) in which water molecules are decomposed by a physicochemical reaction caused by a free radical field generated at the time of crushing and a local high temperature, and a hydrogen gas and an oxygen gas generated by the crushing step (S2).
  • a collection step (S3) for separating and collecting hydrogen gas from the mixed gas Vp.
  • the raw material for producing hydrogen gas in this method is water W, and the gas in contact with the water W in the upper space of the reaction tank 11 is the mixed gas Vp and the atmosphere.
  • the hydrogen gas production apparatus 1 is a positive / negative pair for electrolyzing the water W stored in the reaction tank 11 in the hydrogen gas production apparatus 1 shown in FIGS.
  • the electrode 15 is further provided.
  • this hydrogen gas production method further includes an electrolysis step (S4) for producing hydrogen gas by electrolyzing water in the hydrogen gas production method of FIG. 4 described above. is there.
  • the electrode 15 is connected to a power source 15a and supplied with an electrolysis current.
  • the mixed gas Vp includes hydrogen gas and oxygen gas generated by electrolysis of the water W.
  • the current supplied by the power supply 15a is not limited to a direct current wave, but can be various currents such as a rectangular wave, a pulse wave, and an alternating current thereof.
  • Generation of hydrogen gas is promoted by electrolysis of water W using the electrode 15.
  • An electrolyte may be added to the water W.
  • FIG. 7 shows still another embodiment of the hydrogen gas production apparatus 1 and the hydrogen gas production method.
  • the hydrogen gas production apparatus 1 includes an ultrasonic wave generation unit 16 that radiates an ultrasonic wave US to the water W stored in the reaction tank 11 in the hydrogen gas production apparatus 1 shown in FIG. 5 described above.
  • the ultrasonic generator 16 is driven by a high frequency power source from a power source 16a.
  • the ultrasonic wave US promotes the collapse and disappearance of the microbubbles MB and the generation of hydrogen gas by the cavitation effect based on the pressure wave with respect to the water W.
  • FIG. 8 shows still another embodiment of the hydrogen gas production apparatus 1 and the hydrogen gas production method.
  • This hydrogen gas production apparatus 1 is obtained by connecting the outlet side of the discharge pipe 12b and the inlet side of the pipe 13a to each other in the hydrogen gas production apparatus 1 shown in FIG.
  • Oxygen gas separated by the hydrogen gas collection unit 12 is taken into the mixer of the bubble generation unit 13 instead of the atmosphere.
  • the bubble generation unit 13 has a gas-liquid circulation type configuration in which the water W, oxygen gas, and water vapor in the reaction tank 11 are circulated.
  • the bubble generating unit 13 mixes the water taken in by the pipes 14b and 13b and the oxygen gas taken in by the pipes 12b and 13a with a mixer, and releases the generated gas-liquid mixed fluid to the water W.
  • Microbubbles MB having a diameter of 50 ⁇ m or less are generated inside.
  • the hydrogen gas production apparatus 1 shown in FIGS. 1 and 8 may include the ultrasonic wave generation unit 16 shown in FIG. Further, as shown in FIG. 5, the hydrogen gas production apparatus 1 of FIG. 8 can further include electrodes 15 that form a positive and negative pair for electrolyzing the water W. Further, in order to promote the collapse and disappearance of the microbubbles MB and promote the generation of hydrogen gas, in addition to the ultrasonic generator 16 or independently of the ultrasonic generator 16, Stimulation means such as a discharge device for stimulating W can be provided. Further, the oxygen gas separated by the hydrogen gas collection unit 12 may be released into the atmosphere or recovered separately and used without returning to the reaction tank 11 via the pipe 12b or the pipe 13a. Good.
  • the present invention can be applied to a use for producing hydrogen gas added to fuel in order to improve the combustion efficiency of a conventional internal combustion engine or a use for producing hydrogen gas used for welding.

Abstract

The invention provides a novel apparatus and method for producing hydrogen gas by using water as a raw material. The apparatus (1) for producing hydrogen gas is provided with a reaction tank (11) for storing water (W) for decomposition, a hydrogen gas collection unit (12) for separating and collecting the hydrogen gas from the mixed gas (Vp) of oxygen gas and hydrogen gas generated in the reaction tank (11), and a bubble generator (13) for generating micro-bubbles (MB) 50 μm or less in diameter in the water (W) stored in the reaction tank (11). The apparatus (1) for producing hydrogen gas generates hydrogen gas based on a phenomenon whereby water molecules are decomposed by a physicochemical reaction caused by a free radical field, local high temperature, or the like generated during collapse of micro-bubbles (MB) in the water in the reaction tank (11).

Description

水素ガス製造装置および水素ガス製造方法Hydrogen gas production apparatus and hydrogen gas production method
 本発明は、水の分解によって水素ガスを製造する水素ガス製造装置および水素ガス製造方法に関する。 The present invention relates to a hydrogen gas production apparatus and a hydrogen gas production method for producing hydrogen gas by water decomposition.
 従来水素ガスの製造方法に、電気分解による方法、高分子分離膜による方法、および熱分解による方法があり、いずれも製造コストに対する水素ガスの製造効率が悪く、また、熱分解方式では、製造過程において化石燃料を消費して二酸化炭素を発生する。これらの中で、水の電気分解による水素ガス製造装置は、電気分解用の電流の制御によって適宜に水素ガスを製造できるので、本格的な貯蔵ボンベが不要であり、溶接等に用いる高温燃焼炎を発生するための水素ガス源として簡便に用いられている。例えば、装置の小型化と水素ガスの製造効率向上とを図るため、低周波振動撹拌条件下で電気分解によって水素ガスと酸素ガスの混合ガスを製造するようにした水素ガス製造装置が知られている(例えば、特許文献1参照)。この装置は、電極近傍に発生する水素や酸素が気泡を形成する前に、電解液の振動撹拌によって電解液面へと運ばれるので、液中で生成された水素や酸素が電極表面に付着して電気抵抗を増加させるということがなく高電流密度の電気分解が実現できるとしている。 Conventional hydrogen gas production methods include an electrolysis method, a polymer separation membrane method, and a thermal decomposition method, all of which have poor hydrogen gas production efficiency with respect to production costs. Consuming fossil fuels and generating carbon dioxide. Among these, the hydrogen gas production apparatus by electrolysis of water can produce hydrogen gas appropriately by controlling the current for electrolysis, so a full-scale storage cylinder is unnecessary, and a high-temperature combustion flame used for welding, etc. It is conveniently used as a hydrogen gas source for generating hydrogen. For example, in order to reduce the size of the apparatus and improve the production efficiency of hydrogen gas, a hydrogen gas production apparatus is known in which a mixed gas of hydrogen gas and oxygen gas is produced by electrolysis under low-frequency vibration stirring conditions. (For example, refer to Patent Document 1). In this device, hydrogen and oxygen generated in the vicinity of the electrode are carried to the electrolyte surface by vibrating and stirring the electrolyte before forming bubbles, so that the hydrogen and oxygen generated in the solution adhere to the electrode surface. In other words, high current density electrolysis can be realized without increasing the electrical resistance.
 ところで、近年、水中の数10μm以下の微小なマイクロバブルと呼ばれる気泡について、種々の現象解明や応用開発が行われている。このような微小な気泡に関し、粒径が50μm以下の微小気泡を水中に発生させた後、水中で自然浮遊させてその粒径を縮小させることにより、粒径が3μm以下の極微小気泡を安定に存在させてなる水を製造する方法が知られている(例えば、特許文献2参照)。この方法においては、所定の電気伝導度とノルマルヘキサン抽出濃度を有する水のある程度の水深において粒径の縮小が進行するが、気泡の気液界面全体に調和のとれた高濃度のイオンの殻が形成されることにより粒径が3μm以下で安定する、とされている。また、溶液中に浮遊する直径50μm以下の微小気泡を圧壊してフリーラジカルを発生させるという、微小気泡の圧壊方法が提案されている(例えば、特許文献3参照)。この方法において、微小気泡は、その気液界面の表面張力によって自己圧縮によって圧壊され、その消滅の際に、微小気泡の気液界面に帯電していた電荷のエネルギが解放され、そのエネルギによってフリーラジカルが発生する、とされている。 By the way, in recent years, various phenomena have been elucidated and applied development has been performed on bubbles called micro-bubbles of several tens of μm or less in water. For such microbubbles, microbubbles with a particle size of 50 μm or less are generated in water and then naturally suspended in water to reduce the particle size, thereby stabilizing microbubbles with a particle size of 3 μm or less. There is known a method for producing water that is present in (see, for example, Patent Document 2). In this method, the particle size is reduced at a certain depth of water having a predetermined electric conductivity and normal hexane extraction concentration. However, a high-concentration ion shell is harmonized on the entire gas-liquid interface of bubbles. When formed, the particle size is stable at 3 μm or less. In addition, a microbubble crushing method has been proposed in which microbubbles having a diameter of 50 μm or less floating in a solution are crushed to generate free radicals (see, for example, Patent Document 3). In this method, the microbubbles are crushed by self-compression due to the surface tension of the gas-liquid interface, and when the microbubbles disappear, the charge energy charged at the gas-liquid interface of the microbubbles is released and freed by the energy. Radicals are generated.
国際公開第03/048424号パンフレットInternational Publication No. 03/048424 Pamphlet 特開2008-93611号公報JP 2008-93611 A 特許第4378543号Japanese Patent No. 4378543
 しかしながら、上述した特許文献1に示されるような電気分解方式の水素ガス製造装置においては、水素ガスの製造効率が従来よりも改善されているものの、さらなる効率向上が望まれている。また、上述した非特許文献1や特許文献2,3に示されるような微小気泡に関する技術においては、液相に対する有用気体の効率的溶解や機能的液体の生成を目的とするものであり、副次的に発生するガスを応用した水素ガス製造についての技術思想はない。そして、水素ガス製造において、安全性や製造効率の向上に加え、新基軸の水素ガス製造装置および方法が望まれている。 However, in the electrolysis-type hydrogen gas production apparatus as shown in Patent Document 1 described above, although the production efficiency of hydrogen gas is improved as compared with the conventional one, further efficiency improvement is desired. In addition, in the technology related to microbubbles as shown in Non-Patent Document 1 and Patent Documents 2 and 3 described above, the purpose is to efficiently dissolve a useful gas in a liquid phase and to generate a functional liquid. There is no technical idea about hydrogen gas production using the next generated gas. In addition, in hydrogen gas production, in addition to improvements in safety and production efficiency, a new basic hydrogen gas production apparatus and method are desired.
 本発明は、上記課題を解消するものであって、簡単な構成により、水を原料とする新基軸の水素ガス製造装置および水素ガス製造方法を提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide a new basic hydrogen gas production apparatus and hydrogen gas production method using water as a raw material with a simple configuration.
 上記課題を達成するために、本発明の水素ガス製造装置は、水を分解して水素ガスを製造する水素ガス製造装置において、分解用の水を貯留する反応槽と、反応槽に発生する水素ガスと酸素ガスの混合ガスから水素ガスを分離して捕集する水素ガス捕集部と、反応槽に貯留された水の中に直径が50μm以下の微小気泡を発生させる気泡発生部と、を備え、反応槽内の水中の微小気泡が圧壊する際に発生するフリーラジカル場と局所的高温とによる物理化学反応によって水分子が分解して生成される水素ガスを水素ガス捕集部によって捕集することを特徴とする。 In order to achieve the above object, a hydrogen gas production apparatus of the present invention is a hydrogen gas production apparatus for producing hydrogen gas by decomposing water, a reaction tank for storing water for decomposition, and hydrogen generated in the reaction tank. A hydrogen gas collecting part that separates and collects hydrogen gas from a mixed gas of gas and oxygen gas, and a bubble generating part that generates microbubbles having a diameter of 50 μm or less in water stored in the reaction tank, Hydrogen gas collection unit collects hydrogen gas generated by decomposition of water molecules due to physicochemical reaction caused by free radical field and local high temperature generated when microbubbles in water in the reaction tank collapse It is characterized by doing.
 この水素ガス製造装置において、反応槽は該反応槽内に貯留した水を電気分解する電極を有してもよい。 In this hydrogen gas production apparatus, the reaction tank may have an electrode for electrolyzing water stored in the reaction tank.
 この水素ガス製造装置において、反応槽は該反応槽内に貯留した水に超音波を放射する超音波発生部を有してもよい。 In this hydrogen gas production apparatus, the reaction tank may have an ultrasonic wave generation unit that emits ultrasonic waves to water stored in the reaction tank.
 この水素ガス製造装置において、気泡発生部は、反応槽内の水を取り込む配管と、大気中の空気を取り込む配管と、両配管によって取り込まれる水と空気とを混合して気液混合流体を生成する混合器と、を備え、気液混合流体を混合器から反応槽に注入して微小気泡を発生させるようにしてもよい。 In this hydrogen gas production device, the bubble generation unit generates a gas-liquid mixed fluid by mixing the pipe for taking in water in the reaction tank, the pipe for taking in air in the atmosphere, and the water and air taken in by both pipes. And a gas-liquid mixed fluid may be injected from the mixer into the reaction vessel to generate microbubbles.
 この水素ガス製造装置において、気泡発生部は、反応槽内の水を取り込む配管と、水素ガス捕集部によって分離された酸素ガスを取り込む配管と、両配管によって取り込まれる水と酸素ガスとを混合して気液混合流体を生成する混合器と、を備え、気液混合流体を混合器から反応槽に注入して微小気泡を発生させる気液循環式の構成を有するようにしてもよい。 In this hydrogen gas production apparatus, the bubble generation unit mixes piping for taking in water in the reaction tank, piping for taking in oxygen gas separated by the hydrogen gas collecting unit, and water and oxygen gas taken in by both pipings. And a mixer that generates a gas-liquid mixed fluid, and may have a gas-liquid circulation configuration in which the gas-liquid mixed fluid is injected from the mixer into the reaction tank to generate microbubbles.
 本発明の水素ガス製造方法は、水を分解して水素ガスを製造する水素ガス製造方法において、水の中に直径が50μm以下の微小気泡を発生させる気泡発生工程と、気泡発生工程によって発生した微小気泡を圧壊させ、その圧壊の際に発生するフリーラジカル場と局所的高温とによる物理化学反応によって水分子を分解する圧壊工程と、圧壊工程によって生成される水素ガスと酸素ガスの混合ガスから水素ガスを分離して捕集する捕集工程と、を備えることを特徴とする。 The hydrogen gas production method of the present invention is generated by a bubble generation step of generating fine bubbles having a diameter of 50 μm or less in water and a bubble generation step in the hydrogen gas production method of producing hydrogen gas by decomposing water. From a crushing process that crushes microbubbles and decomposes water molecules by a physicochemical reaction caused by a free radical field and local high temperature generated during the crushing, and a mixed gas of hydrogen gas and oxygen gas generated by the crushing process A collection step of separating and collecting hydrogen gas.
 この水素ガス製造方法において、水を電気分解することによって水素ガスを生成する電気分解工程をさらに備え、捕集工程は、電気分解工程によって生成される水素ガスを捕集するようにしてもよい。 The hydrogen gas production method may further include an electrolysis process for generating hydrogen gas by electrolyzing water, and the collection process may collect the hydrogen gas generated by the electrolysis process.
 本発明の水素ガス製造装置および水素ガス製造方法によれば、水を原料として微小気泡の圧壊に基づく物理化学反応によって水素ガスを製造する新規の装置および方法を提供できる。 According to the hydrogen gas production apparatus and the hydrogen gas production method of the present invention, it is possible to provide a new apparatus and method for producing hydrogen gas by physicochemical reaction based on the collapse of microbubbles using water as a raw material.
本発明の一実施形態に係る水素ガス製造装置の一部断面を含む構成図。The block diagram including the partial cross section of the hydrogen gas manufacturing apparatus which concerns on one Embodiment of this invention. 同装置の斜視図。The perspective view of the apparatus. 気泡の特性を説明する概念図。The conceptual diagram explaining the characteristic of a bubble. 本発明の一実施形態に係る水素ガス製造方法のフローチャート。The flowchart of the hydrogen gas manufacturing method which concerns on one Embodiment of this invention. 他の実施形態に係る水素ガス製造装置の一部断面を含む構成図。The block diagram containing the partial cross section of the hydrogen gas manufacturing apparatus which concerns on other embodiment. 他の実施形態に係る水素ガス製造方法のフローチャート。The flowchart of the hydrogen gas manufacturing method which concerns on other embodiment. さらに他の実施形態に係る水素ガス製造装置の一部断面を含む構成図。Furthermore, the block diagram containing the partial cross section of the hydrogen gas manufacturing apparatus which concerns on other embodiment. さらに他の実施形態に係る水素ガス製造装置の一部断面を含む構成図。Furthermore, the block diagram containing the partial cross section of the hydrogen gas manufacturing apparatus which concerns on other embodiment.
 以下、本発明の一実施形態に係る水素ガス製造装置および水素ガス製造方法について、図面を参照して説明する。図1、図2は、一実施形態に係る水素ガス製造装置1を示す。水素ガス製造装置1は、分解用の水Wを貯留する反応槽11と、反応槽11に発生する水素ガスと酸素ガスの混合ガスVpから水素ガスを分離して捕集する水素ガス捕集部12と、反応槽11に貯留された水Wの中に直径が50μm以下の微小気泡MBを発生させる気泡発生部13と、を備えている。 Hereinafter, a hydrogen gas production apparatus and a hydrogen gas production method according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show a hydrogen gas production apparatus 1 according to an embodiment. The hydrogen gas production apparatus 1 includes a reaction tank 11 that stores water W for decomposition, and a hydrogen gas collection unit that separates and collects hydrogen gas from a mixed gas Vp of hydrogen gas and oxygen gas generated in the reaction tank 11. 12 and a bubble generation unit 13 that generates microbubbles MB having a diameter of 50 μm or less in the water W stored in the reaction tank 11.
 反応槽11は、箱状の密閉容器であり、貯留された水Wの水面上部空間には、水面から蒸散する水蒸気、および水Wの分解によって発生した水素ガスと酸素ガスの混合ガスVpが充満する。水素ガス捕集部12は、反応槽11の上部に配置されている。水素ガス捕集部12の筐体には、反応槽11の上部空間に連通する気体取り入れ口が備えられ、さらに、水素ガスを送出する水素ガス配管12aと、水蒸気および酸素ガスを排出する排出配管12bとが接続されている。また、水素ガス捕集部12の筐体内部には、水素ガスを選択的に透過する水素ガス分離膜や水素ガス透過多孔質材が備えられている。 The reaction tank 11 is a box-shaped airtight container, and the water surface upper space of the stored water W is filled with water vapor evaporated from the water surface and a mixed gas Vp of hydrogen gas and oxygen gas generated by the decomposition of the water W. To do. The hydrogen gas collection unit 12 is disposed in the upper part of the reaction tank 11. The casing of the hydrogen gas collection unit 12 is provided with a gas intake port communicating with the upper space of the reaction tank 11, and further, a hydrogen gas pipe 12a for sending out hydrogen gas, and a discharge pipe for discharging water vapor and oxygen gas 12b is connected. In addition, a hydrogen gas separation membrane and a hydrogen gas permeable porous material that selectively permeate hydrogen gas are provided inside the housing of the hydrogen gas collection unit 12.
 反応槽11の側方には、その内部の水Wを循環させるポンプ14が備えられている。ポンプ14は、取水配管14aによって反応槽11の側壁に接続され、送水配管14bと、気泡発生部13とを介して、反応槽11の側壁に接続されている。気泡発生部13は、その内部に、水と気体とを混合して気液混合流体を生成する混合器を備えている。気泡発生部13には、大気中の空気を取り込む配管13aと、反応槽11内の水Wを取り込む配管13b(これは送水配管14bと同じ)と、が接続されている。気泡発生部13は、両配管13a,13bによって取り込まれる水と空気とを混合器によって混合し、生成した気液混合流体を反応槽11の水Wに放出することにより、水Wの中に直径が50μm以下の微小気泡MBを発生させる。混合器として、例えば、市販のループ流式バブル発生ノズル(特許第5002480号)を用いることができる。 A pump 14 for circulating the water W inside the reaction tank 11 is provided on the side of the reaction tank 11. The pump 14 is connected to the side wall of the reaction tank 11 by a water intake pipe 14 a, and is connected to the side wall of the reaction tank 11 through a water supply pipe 14 b and the bubble generating unit 13. The bubble generating unit 13 includes a mixer that generates water-gas mixed fluid by mixing water and gas. The bubble generating unit 13 is connected to a pipe 13a that takes in air in the atmosphere and a pipe 13b that takes in water W in the reaction tank 11 (this is the same as the water supply pipe 14b). The bubble generating unit 13 mixes water and air taken in by both the pipes 13a and 13b with a mixer, and discharges the generated gas-liquid mixed fluid to the water W of the reaction tank 11, so that the diameter in the water W is reduced. Generates microbubbles MB of 50 μm or less. As the mixer, for example, a commercially available loop flow type bubble generating nozzle (Japanese Patent No. 5002480) can be used.
 次に、図3,図4により、上述の水素ガス製造装置1を用いて水素ガスを製造する水素ガス製造方法を説明する。水素ガス製造装置1および水素ガス製造方法は、反応槽11内の水中の微小気泡MBが圧壊する際に発生するフリーラジカル場や局所的高温等による物理化学反応によって水分子が分解する現象に基づいて水素ガスを発生させる。 Next, referring to FIGS. 3 and 4, a hydrogen gas production method for producing hydrogen gas using the above-described hydrogen gas production apparatus 1 will be described. The hydrogen gas production apparatus 1 and the hydrogen gas production method are based on a phenomenon in which water molecules are decomposed by a physicochemical reaction caused by a free radical field or local high temperature generated when the microbubbles MB in the water in the reaction tank 11 are crushed. To generate hydrogen gas.
 図3に示すように、例えば、直径が1mm程度の通常の大きな気泡ABは、浮力によって水面まで上昇し、気中に溶け込んで消滅する。ところが、直径が例えば50μm以下の水中の微小気泡MBは、水面まで上昇する前に、水の表面張力の圧力によって崩壊(圧壊)して消滅する。このように、水Wにおける直径が50μm以下の微小気泡MBは、通常の気泡ABとは大きく異なる特異な特性と挙動を示すことから、通常の大きな気泡ABと区別してマイクロバブルとも呼ばれている。 As shown in FIG. 3, for example, a normal large bubble AB having a diameter of about 1 mm rises to the water surface by buoyancy, dissolves in the air, and disappears. However, the microbubbles MB in water having a diameter of, for example, 50 μm or less, for example, collapse (crush) due to the pressure of the surface tension of water and disappear before rising to the water surface. As described above, the microbubbles MB having a diameter of 50 μm or less in the water W exhibit unique characteristics and behavior that are significantly different from those of the normal bubbles AB. Therefore, the microbubbles MB are also referred to as microbubbles in distinction from the normal large bubbles AB. .
 微小気泡MB(マイクロバブル)は、気泡と気泡を囲む水との気液界面によってその形が形成され、気泡の外部の液体である水Wによって取り囲まれている。気液界面には水Wの表面張力が作用している。表面張力は、気液界面の面積、すなわち、気泡の表面積を小さくするように作用する。表面張力は、水Wに囲まれて閉じた気液界面を持つ微小気泡MBの内部の気体を圧縮する。ここで、微小気泡MB内部の気圧を、周囲の水圧を基準にして気圧と水圧の差である差圧ΔPで表す。すると、差圧ΔPは、表面張力σ、気泡直径Dを用いて、ヤング・ラプラスの理論式ΔP=4σ/Dによって表される。微小気泡MBは、表面張力σに基づく差圧ΔPによって加圧される。 The shape of the microbubbles MB (microbubbles) is formed by the gas-liquid interface between the bubbles and the water surrounding the bubbles, and is surrounded by the water W that is a liquid outside the bubbles. The surface tension of water W acts on the gas-liquid interface. The surface tension acts to reduce the area of the gas-liquid interface, that is, the surface area of the bubbles. The surface tension compresses the gas inside the microbubble MB having a closed gas-liquid interface surrounded by the water W. Here, the atmospheric pressure inside the microbubbles MB is represented by a differential pressure ΔP which is the difference between the atmospheric pressure and the water pressure with reference to the surrounding water pressure. Then, the differential pressure ΔP is expressed by Young Laplace's theoretical formula ΔP = 4σ / D using the surface tension σ and the bubble diameter D. The microbubbles MB are pressurized with a differential pressure ΔP based on the surface tension σ.
 上式によると、差圧ΔPは、例えば、直径10μmの微小気泡MBでは約0.3気圧、直径1μmでは約3気圧となる。気体はヘンリーの法則に従って、気圧に比例して水に溶解するので、差圧ΔPによって加圧された気泡内部の気体は効率的に周囲の水に溶解していく。微小気泡MBが縮小すると、その内部体積に対する表面積の割合が増加して見かけの溶解率が増し、微小気泡MBが小さくなるほど縮小速度が増す。微小気泡MBがこのような状態に陥ると、気体の溶解にともなって体積が縮小し、内部の圧力がさらに上昇し、圧力の上昇が気体の溶解速度をさらに加速するという自己加圧、自己収縮の現象が発生する。上式をそのまま消滅時(D=0)に適用すると、差圧ΔPは無限大となる。実際には、差圧ΔPは無限大にはならないが、きわめて大きな、例えば数千気圧の圧力場が発生すると言われている。また、微小気泡MBが急激に縮小すると内部の圧力が急上昇し、圧力の急上昇に伴う断熱圧縮作用によって気泡内の温度が急激に高くなり、微小気泡MBの消滅時に局所的な高温が発生する。さらに説明すると、微小気泡MB内の気体は、気泡発生部13によって取り込まれた大気中の空気である。微小気泡MBは大気の熱を取り込んでおり、微小気泡MBの消滅時にその熱を水Wに放出する。つまり、高温発生のエネルギ源は、大気である。また、気泡発生部13と微小気泡MBの圧壊の機構とはヒートポンプを構成する。反応槽11の水Wの温度は水素ガス製造装置1の運転に伴って上昇する。 According to the above equation, the differential pressure ΔP is, for example, about 0.3 atm for a microbubble MB having a diameter of 10 μm and about 3 atm for a diameter of 1 μm. Since the gas is dissolved in water in proportion to the atmospheric pressure according to Henry's law, the gas inside the bubble pressurized by the differential pressure ΔP is efficiently dissolved in the surrounding water. When the microbubbles MB are reduced, the ratio of the surface area to the internal volume is increased to increase the apparent dissolution rate, and the reduction rate is increased as the microbubbles MB are reduced. When the microbubbles MB fall into such a state, the volume decreases as the gas dissolves, the internal pressure further increases, and the pressure increase further accelerates the gas dissolution rate. The phenomenon occurs. If the above equation is applied as it is when it disappears (D = 0), the differential pressure ΔP becomes infinite. Actually, the differential pressure ΔP does not become infinite, but it is said that a very large pressure field, for example, several thousand atmospheres is generated. Further, when the microbubbles MB are rapidly reduced, the internal pressure rapidly increases, and the temperature inside the bubbles is rapidly increased by the adiabatic compression action accompanying the rapid increase in pressure, and a local high temperature is generated when the microbubbles MB disappear. More specifically, the gas in the microbubbles MB is air in the atmosphere taken in by the bubble generating unit 13. The microbubbles MB take in the heat of the atmosphere and release the heat to the water W when the microbubbles MB disappear. That is, the energy source for high temperature generation is the atmosphere. Further, the bubble generating unit 13 and the mechanism for collapsing the microbubbles MB constitute a heat pump. The temperature of the water W in the reaction tank 11 rises with the operation of the hydrogen gas production apparatus 1.
 また、微小気泡MBの気液界面は帯電している。帯電は、電気泳動法によるゼータ電位の測定によって確認されている。また、微小気泡MBの縮小に伴ってゼータ電位が急激に上昇し、微小気泡MBの消滅の際に半径に反比例するようなゼータ電位の増加傾向があることが報告されている。微小気泡MBの急激な消滅によって気液界面が消失すると、電荷として蓄えられたエネルギが水中に解放される。 Also, the gas-liquid interface of the microbubbles MB is charged. Charging has been confirmed by measuring the zeta potential by electrophoresis. Further, it has been reported that the zeta potential rapidly increases as the microbubbles MB are reduced, and the zeta potential tends to increase in inverse proportion to the radius when the microbubbles MB disappear. When the gas-liquid interface disappears due to the rapid disappearance of the microbubbles MB, the energy stored as electric charge is released into the water.
 上述のように、微小気泡MBが急激に縮小して消滅すると、高温、高圧、かつ、高エネルギの領域が水中に局所的に出現する。その領域は、例えば、数千度で数千気圧の活性なエネルギ場であるホットスポットとなる。このようなホットスポットは、時間空間的に極めて微小な範囲に存在するものの、その内部と周辺の水分子を分解して、水酸基ラジカル等のフリーラジカルを発生させる。フリーラジカルは、不対電子対を持つ反応性が極めて高い原子や分子であり、水分子の原子解離や分子再結合をさせる特性を有している。ホットスポットのエネルギとフリーラジカルとが合わさったフリーラジカル場は、局所的高温の下で物理化学反応によって、周辺に存在する水分子を分解し、また、水素イオン、原子状水素、フリーラジカル状の水素等から水素分子を生成する。生成された水素分子は、水中に溶解し、水中で過飽和になると、水素ガスとして気中に放出される。水素ガスは、水の分解によって発生した酸素ガスやフリーラジカル等の効果によって蒸発した水蒸気と共に混合ガスVpとなり、反応槽11の上部空間に充満する。 As described above, when the microbubbles MB rapidly shrink and disappear, a region of high temperature, high pressure, and high energy appears locally in the water. The region becomes, for example, a hot spot that is an active energy field of several thousand degrees and several thousand atmospheres. Such a hot spot exists in a very small range in terms of time and space, but decomposes water molecules in and around the hot spot to generate free radicals such as hydroxyl radicals. Free radicals are highly reactive atoms and molecules with unpaired electron pairs, and have the property of causing atomic dissociation and molecular recombination of water molecules. The free radical field, which combines the energy of the hot spot and the free radical, decomposes water molecules existing in the surroundings by physicochemical reaction under local high temperatures, and also generates hydrogen ions, atomic hydrogen, and free radicals. Generate hydrogen molecules from hydrogen. The generated hydrogen molecules are dissolved in water and, when supersaturated in water, are released into the air as hydrogen gas. Hydrogen gas becomes mixed gas Vp together with water vapor evaporated due to the effect of oxygen gas, free radicals, etc. generated by the decomposition of water, and fills the upper space of the reaction tank 11.
 図4に示すように、水素ガス製造方法は、水Wの中に直径が50μm以下の微小気泡MBを発生させる気泡発生工程(S1)と、気泡発生工程(S1)によって発生した微小気泡MBを圧壊させ、その圧壊の際に発生するフリーラジカル場と局所的高温とによる物理化学反応によって水分子を分解する圧壊工程(S2)と、圧壊工程(S2)によって生成される水素ガスと酸素ガスの混合ガスVpから水素ガスを分離して捕集する捕集工程(S3)と、を備える。本方法における水素ガス製造の原料は、水Wであり、反応槽11の上部空間において水Wに接している気体は、混合ガスVpと大気である。 As shown in FIG. 4, the hydrogen gas production method includes a bubble generation step (S1) for generating microbubbles MB having a diameter of 50 μm or less in water W, and microbubbles MB generated by the bubble generation step (S1). A crushing step (S2) in which water molecules are decomposed by a physicochemical reaction caused by a free radical field generated at the time of crushing and a local high temperature, and a hydrogen gas and an oxygen gas generated by the crushing step (S2). A collection step (S3) for separating and collecting hydrogen gas from the mixed gas Vp. The raw material for producing hydrogen gas in this method is water W, and the gas in contact with the water W in the upper space of the reaction tank 11 is the mixed gas Vp and the atmosphere.
 本発明は、水素ガスを製造する手段として、大気圧下で、反応槽11中に過飽和高密度の微小気泡MBを発生させ、微小気泡MBの自己圧縮による圧壊によってフリーラジカル場を発生させる。そのフリーラジカル場において、物理化学化学反応が促進され、微小気泡MB周辺の水分子の分解による原子化や再結合による水素ガスの生成が行われる。生成された水素ガスは、同時に発生した水蒸気と共に捕集され、さらに、その中から水素ガスだけが分離して捕集される。このように、本発明の水素ガス製造装置1および水素ガス製造方法によれば、微小気泡MBの圧壊に基づく物理化学反応によって水素ガスを製造する新規の装置および方法が提供される。 In the present invention, as means for producing hydrogen gas, supersaturated high-density microbubbles MB are generated in the reaction tank 11 under atmospheric pressure, and a free radical field is generated by crushing by self-compression of the microbubbles MB. In the free radical field, the physicochemical reaction is promoted, and atomization by decomposition of water molecules around the microbubbles MB and generation of hydrogen gas by recombination are performed. The produced hydrogen gas is collected together with the water vapor generated at the same time, and only the hydrogen gas is separated and collected. Thus, according to the hydrogen gas production apparatus 1 and the hydrogen gas production method of the present invention, a new apparatus and method for producing hydrogen gas by a physicochemical reaction based on the collapse of the microbubbles MB are provided.
 図5、図6は、水素ガス製造装置1および水素ガス製造方法の他の実施形態を示す。この水素ガス製造装置1は、図5に示すように、上述の図1、図2に示した水素ガス製造装置1において、反応槽11内に貯留した水Wを電気分解する正負の対となる電極15をさらに備えるものである。また、この水素ガス製造方法は、図6に示すように、上述した図4の水素ガス製造方法において、水を電気分解することによって水素ガスを生成する電気分解工程(S4)をさらに備えるものである。電極15は、電源15aに接続されて、電気分解用の電流が供給される。混合ガスVp中には、水Wの電気分解によって生成された水素ガスや酸素ガスが含まれる。電源15aによって通電する電流は、直流波に限らず矩形波やパルス波およびこれらの交流波などの種々の電流とすることができる。電極15を用いる水Wの電気分解によって、水素ガスの発生が促進される。このような水Wの電気分解の際に、水Wに電解質を加えて電解質溶液にする必要はない。これは、上述したように、微小気泡MBの気液界面が帯電しているので、微小気泡MBによって電流が流れることによる。水Wに電解質を加えてもよい。 5 and 6 show another embodiment of the hydrogen gas production apparatus 1 and the hydrogen gas production method. As shown in FIG. 5, the hydrogen gas production apparatus 1 is a positive / negative pair for electrolyzing the water W stored in the reaction tank 11 in the hydrogen gas production apparatus 1 shown in FIGS. The electrode 15 is further provided. Further, as shown in FIG. 6, this hydrogen gas production method further includes an electrolysis step (S4) for producing hydrogen gas by electrolyzing water in the hydrogen gas production method of FIG. 4 described above. is there. The electrode 15 is connected to a power source 15a and supplied with an electrolysis current. The mixed gas Vp includes hydrogen gas and oxygen gas generated by electrolysis of the water W. The current supplied by the power supply 15a is not limited to a direct current wave, but can be various currents such as a rectangular wave, a pulse wave, and an alternating current thereof. Generation of hydrogen gas is promoted by electrolysis of water W using the electrode 15. In the electrolysis of the water W, it is not necessary to add an electrolyte to the water W to form an electrolyte solution. This is because, as described above, the gas-liquid interface of the microbubbles MB is charged, so that a current flows through the microbubbles MB. An electrolyte may be added to the water W.
 図7は、水素ガス製造装置1および水素ガス製造方法のさらに他の実施形態を示す。この水素ガス製造装置1は、上述の図5に示した水素ガス製造装置1において、反応槽11内に貯留した水Wに超音波USを放射する超音波発生部16を備えるものである。超音波発生部16は、電源16aからの高周波電源によって駆動される。超音波USは、水Wに対する圧力波に基づくキャビテーション効果によって、微小気泡MBの圧壊と消滅を促進し、水素ガスの発生を促進する。 FIG. 7 shows still another embodiment of the hydrogen gas production apparatus 1 and the hydrogen gas production method. The hydrogen gas production apparatus 1 includes an ultrasonic wave generation unit 16 that radiates an ultrasonic wave US to the water W stored in the reaction tank 11 in the hydrogen gas production apparatus 1 shown in FIG. 5 described above. The ultrasonic generator 16 is driven by a high frequency power source from a power source 16a. The ultrasonic wave US promotes the collapse and disappearance of the microbubbles MB and the generation of hydrogen gas by the cavitation effect based on the pressure wave with respect to the water W.
 図8は、水素ガス製造装置1および水素ガス製造方法のさらに他の実施形態を示す。この水素ガス製造装置1は、上述の図1に示した水素ガス製造装置1において、排出配管12bの出口側と配管13aの入り口側とを互いに接続したものである。気泡発生部13の混合器には、大気の代わりに、水素ガス捕集部12によって分離された酸素ガスを取り込まれる。気泡発生部13は、反応槽11内の水W、酸素ガス、および水蒸気を循環させる気液循環式の構成を有する。気泡発生部13は、配管14b,13bによって取り込まれる水と、配管12b,13aによって取り込まれる酸素ガスとを混合器で混合し、生成した気液混合流体を水Wに放出して、水Wの中に直径が50μm以下の微小気泡MBを発生させる。 FIG. 8 shows still another embodiment of the hydrogen gas production apparatus 1 and the hydrogen gas production method. This hydrogen gas production apparatus 1 is obtained by connecting the outlet side of the discharge pipe 12b and the inlet side of the pipe 13a to each other in the hydrogen gas production apparatus 1 shown in FIG. Oxygen gas separated by the hydrogen gas collection unit 12 is taken into the mixer of the bubble generation unit 13 instead of the atmosphere. The bubble generation unit 13 has a gas-liquid circulation type configuration in which the water W, oxygen gas, and water vapor in the reaction tank 11 are circulated. The bubble generating unit 13 mixes the water taken in by the pipes 14b and 13b and the oxygen gas taken in by the pipes 12b and 13a with a mixer, and releases the generated gas-liquid mixed fluid to the water W. Microbubbles MB having a diameter of 50 μm or less are generated inside.
 なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述図1や図8の水素ガス製造装置1に、図7に示した超音波発生部16を備えるものとすることができる。また、図8の水素ガス製造装置1には、さらに、図5に示したように、水Wを電気分解する正負の対となる電極15を備えることができる。また、微小気泡MBの圧壊と消滅を促進し、水素ガスの発生を促進するために、超音波発生部16に加え、または、超音波発生部16とは別途独立に、反応槽11内の水Wに対して刺激を与える放電装置などの刺激手段を備えることができる。また、水素ガス捕集部12によって分離された酸素ガスは、配管12bや配管13aを介して反応槽11に戻すことなく、大気中に解放したり、別途に回収して利用したりしてもよい。 It should be noted that the present invention is not limited to the above configuration and can be variously modified. For example, the hydrogen gas production apparatus 1 shown in FIGS. 1 and 8 may include the ultrasonic wave generation unit 16 shown in FIG. Further, as shown in FIG. 5, the hydrogen gas production apparatus 1 of FIG. 8 can further include electrodes 15 that form a positive and negative pair for electrolyzing the water W. Further, in order to promote the collapse and disappearance of the microbubbles MB and promote the generation of hydrogen gas, in addition to the ultrasonic generator 16 or independently of the ultrasonic generator 16, Stimulation means such as a discharge device for stimulating W can be provided. Further, the oxygen gas separated by the hydrogen gas collection unit 12 may be released into the atmosphere or recovered separately and used without returning to the reaction tank 11 via the pipe 12b or the pipe 13a. Good.
 本出願は、2012年6月1日付けの日本国特許出願2012-138216に基づいて優先権主張を行う。その出願の内容の全体が参照によって、この出願に組み込まれる。 This application claims priority based on Japanese Patent Application 2012-138216 dated June 1, 2012. The entire contents of that application are incorporated by reference into this application.
 本発明は、従来の内燃式エンジンの燃焼効率を向上させるために燃料に添加する水素ガスを製造する用途や、溶接に用いる水素ガスを製造する用途に適用できる。 The present invention can be applied to a use for producing hydrogen gas added to fuel in order to improve the combustion efficiency of a conventional internal combustion engine or a use for producing hydrogen gas used for welding.
 1  水素ガス製造装置
 11 反応槽
 12 水素ガス捕集部
 13  気泡発生部
 15 電極
 16 超音波発生部
DESCRIPTION OF SYMBOLS 1 Hydrogen gas production apparatus 11 Reaction tank 12 Hydrogen gas collection part 13 Bubble generation part 15 Electrode 16 Ultrasonic generation part

Claims (7)

  1.  水を分解して水素ガスを製造する水素ガス製造装置において、
     分解用の水を貯留する反応槽と、
     前記反応槽に発生する水素ガスと酸素ガスの混合ガスから水素ガスを分離して捕集する水素ガス捕集部と、
     前記反応槽に貯留された水の中に直径が50μm以下の微小気泡を発生させる気泡発生部と、を備え、
     前記反応槽内の水中の前記微小気泡が圧壊する際に発生するフリーラジカル場と局所的高温とによる物理化学反応によって水分子が分解して生成される水素ガスを前記水素ガス捕集部によって捕集することを特徴とする水素ガス製造装置。
    In a hydrogen gas production device that produces hydrogen gas by decomposing water,
    A reaction tank for storing water for decomposition;
    A hydrogen gas collecting section for separating and collecting hydrogen gas from a mixed gas of hydrogen gas and oxygen gas generated in the reaction vessel;
    A bubble generating unit that generates microbubbles having a diameter of 50 μm or less in the water stored in the reaction vessel,
    Hydrogen gas generated by decomposition of water molecules by a physicochemical reaction caused by free radical fields and local high temperatures generated when the microbubbles in the water in the reaction vessel are crushed is captured by the hydrogen gas collector. A hydrogen gas production apparatus characterized by collecting.
  2.  前記反応槽は該反応槽内に貯留した水を電気分解する電極を有することを特徴とする請求項1に記載の水素ガス製造装置。 The hydrogen gas production apparatus according to claim 1, wherein the reaction tank has an electrode for electrolyzing water stored in the reaction tank.
  3.  前記反応槽は該反応槽内に貯留した水に超音波を放射する超音波発生部を有することを特徴とする請求項1または請求項2に記載の水素ガス製造装置。 The hydrogen gas production apparatus according to claim 1 or 2, wherein the reaction tank has an ultrasonic wave generation unit that emits ultrasonic waves to water stored in the reaction tank.
  4.  前記気泡発生部は、前記反応槽内の水を取り込む配管と、大気中の空気を取り込む配管と、前記両配管によって取り込まれる水と空気とを混合して気液混合流体を生成する混合器と、を備え、気液混合流体を前記混合器から前記反応槽に注入して前記微小気泡を発生させることを特徴とする請求項1乃至請求項3のいずれか一項に記載の水素ガス製造装置。 The bubble generating unit includes a pipe that takes in water in the reaction tank, a pipe that takes in air in the atmosphere, and a mixer that mixes water and air taken in by both the pipes to generate a gas-liquid mixed fluid; The hydrogen gas production apparatus according to any one of claims 1 to 3, wherein a gas-liquid mixed fluid is injected from the mixer into the reaction vessel to generate the microbubbles. .
  5.  前記気泡発生部は、前記反応槽内の水を取り込む配管と、前記水素ガス捕集部によって分離された酸素ガスを取り込む配管と、前記両配管によって取り込まれる水と酸素ガスとを混合して気液混合流体を生成する混合器と、を備え、気液混合流体を前記混合器から前記反応槽に注入して前記微小気泡を発生させる気液循環式の構成を有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の水素ガス製造装置。 The bubble generating unit mixes a pipe for taking in water in the reaction vessel, a pipe for taking in oxygen gas separated by the hydrogen gas collecting unit, and water and oxygen gas taken in by both the pipes. And a mixer that generates a liquid mixture fluid, and has a gas-liquid circulation configuration in which the gas-liquid mixture fluid is injected from the mixer into the reaction vessel to generate the microbubbles. The hydrogen gas production apparatus according to any one of claims 1 to 3.
  6.  水を分解して水素ガスを製造する水素ガス製造方法において、
     水の中に直径が50μm以下の微小気泡を発生させる気泡発生工程と、
     前記気泡発生工程によって発生した微小気泡を圧壊させ、その圧壊の際に発生するフリーラジカル場と局所的高温とによる物理化学反応によって水分子を分解する圧壊工程と、
     前記圧壊工程によって生成される水素ガスと酸素ガスの混合ガスから水素ガスを分離して捕集する捕集工程と、を備えることを特徴とする水素ガス製造方法。
    In a hydrogen gas production method for producing hydrogen gas by decomposing water,
    A bubble generation process for generating microbubbles having a diameter of 50 μm or less in water;
    A crushing step of crushing microbubbles generated by the bubble generation step, and decomposing water molecules by a physicochemical reaction caused by a free radical field and a local high temperature generated during the crushing;
    And a collecting step of separating and collecting the hydrogen gas from a mixed gas of hydrogen gas and oxygen gas generated by the crushing step.
  7.  水を電気分解することによって水素ガスを生成する電気分解工程をさらに備え、
     前記捕集工程は、前記電気分解工程によって生成される水素ガスを捕集することを特徴とする請求項6に記載の水素ガス製造方法。
    An electrolysis process for generating hydrogen gas by electrolyzing water;
    The method for producing hydrogen gas according to claim 6, wherein the collecting step collects hydrogen gas generated by the electrolysis step.
PCT/JP2013/051653 2012-06-01 2013-01-25 Apparatus for producing hydrogen gas and method for producing hydrogen gas WO2013179684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-138216 2012-06-01
JP2012138216 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013179684A1 true WO2013179684A1 (en) 2013-12-05

Family

ID=49672900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051653 WO2013179684A1 (en) 2012-06-01 2013-01-25 Apparatus for producing hydrogen gas and method for producing hydrogen gas

Country Status (1)

Country Link
WO (1) WO2013179684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046806A1 (en) * 2014-09-26 2016-03-31 Centre National De La Recherche Scientifique Method for controlling at least one gas bubble produced in a localised manner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169053A (en) * 2004-12-16 2006-06-29 Jipangu Energy:Kk Method and system for producing hydrogen gas
JP2006193358A (en) * 2005-01-12 2006-07-27 Denso Corp Hydrogen production apparatus for internal combustion engine
JP2008105905A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Apparatus for photolysis of water
WO2011025069A1 (en) * 2009-08-28 2011-03-03 株式会社ナノプラネット研究所 Method for manufacturing ammonia and an ammonium compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169053A (en) * 2004-12-16 2006-06-29 Jipangu Energy:Kk Method and system for producing hydrogen gas
JP2006193358A (en) * 2005-01-12 2006-07-27 Denso Corp Hydrogen production apparatus for internal combustion engine
JP2008105905A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Apparatus for photolysis of water
WO2011025069A1 (en) * 2009-08-28 2011-03-03 株式会社ナノプラネット研究所 Method for manufacturing ammonia and an ammonium compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046806A1 (en) * 2014-09-26 2016-03-31 Centre National De La Recherche Scientifique Method for controlling at least one gas bubble produced in a localised manner
US10538848B2 (en) 2014-09-26 2020-01-21 Centre National De La Recherche Scientifique Method for controlling at least one gas bubble produced in a localised manner

Similar Documents

Publication Publication Date Title
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
JP4016099B2 (en) How to create nanobubbles
JP5535206B2 (en) Sonochemical hydrogen generation system with cavitation assistance
JP2005245817A (en) Production method of nano-bubble
US20090147905A1 (en) Ultrasonic treatment chamber for initiating thermonuclear fusion
JP2005529455A (en) Plasma created in fluid
WO2012054842A2 (en) Enhanced water electrolysis apparatus and methods for hydrogen generation and other applications
US9816190B2 (en) Energy extraction system and methods
US9353447B2 (en) Multifactorial hydrogen reactor
WO2015005921A1 (en) Multifactorial hydrogen reactor
US8354010B2 (en) Electrolytic cell with cavitating jet
US9487872B2 (en) Electrolytic cell, method for enhancing electrolytic cell performance, and hydrogen fueling system
JP2005240152A (en) Method and device for electrolyzing water
WO2007023514A1 (en) System for producing hydrogen from seawater and method for producing hydrogen
JP2008238054A (en) Underground storage system of carbon dioxide gas
WO2013179684A1 (en) Apparatus for producing hydrogen gas and method for producing hydrogen gas
WO2015125981A1 (en) High energy efficiency apparatus for generating the gas mixture of hydrogen and oxygen by water electrolysis
JP2019183286A (en) Organic matter production method and organic matter production system
JPWO2003064318A1 (en) Hydrogen generator, hydrogen generation system and applications thereof
JP6326172B1 (en) A system for producing water with a high hydrogen content
JP2013094747A (en) Ozone liquid generator and ozone liquid generation method
RU107161U1 (en) PLASMA CHEMOTRON
JP2022094902A (en) Gas-liquid separator of electrolytic water system
JP4794859B2 (en) Hydrogen gas generator
JP2016132800A (en) Organic matter production method and organic matter production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP