JP2011005378A - Method of storing carbon dioxide in the ground - Google Patents

Method of storing carbon dioxide in the ground Download PDF

Info

Publication number
JP2011005378A
JP2011005378A JP2009149354A JP2009149354A JP2011005378A JP 2011005378 A JP2011005378 A JP 2011005378A JP 2009149354 A JP2009149354 A JP 2009149354A JP 2009149354 A JP2009149354 A JP 2009149354A JP 2011005378 A JP2011005378 A JP 2011005378A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
undissolved
solvent
aquifer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149354A
Other languages
Japanese (ja)
Other versions
JP5267810B2 (en
Inventor
Yuji Sekine
裕治 関根
Hirokazu Kishi
裕和 岸
Masayuki Masuda
雅之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009149354A priority Critical patent/JP5267810B2/en
Publication of JP2011005378A publication Critical patent/JP2011005378A/en
Application granted granted Critical
Publication of JP5267810B2 publication Critical patent/JP5267810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably store/isolate undissolved carbon dioxide in an aquifer for a long time, and to greatly reduce the amount of a solvent used therefor.SOLUTION: The mass ratio of undissolved carbon dioxide to be mixed into water saturated with carbon dioxide is determined by the following steps (1) to (3) so that a first storage zone for storing undissolved carbon dioxide together with water saturated with carbon dioxide is formed around the circumference of an injection well in an aquifer and a second storage zone for exclusively storing water saturated with carbon dioxide is roughly concentrically formed in a manner of surrounding the first storage zone in the aquifer respectively, under a condition of storing/isolating water saturated with carbon dioxide as well as undissolved carbon dioxide: (1) a step of measuring the degree of saturation by volume of carbon dioxide, which is defined as the volume ratio of undissolved carbon dioxide storable relative to the volume of the void present in the aquifer, (2) a step of setting the volume of the first storage zone and the volume of the second storage zone, and (3) a step of determining the mass ratio of the undissolved carbon dioxide to be mixed into the water saturated with carbon dioxide based on the degree of saturation by volume of carbon dioxide measured in the step (1), and on the volumes of the first and the second storage zones set in the step (2).

Description

本発明は、地球温暖化の原因とされる温室効果ガスの一つである炭酸ガスの削減に資するため、炭酸ガスの大規模な排出源等から分離・回収した炭酸ガスを、海水及び/又は水からなる溶媒に溶解させて地中に圧入する際に、炭酸ガスを溶媒に飽和濃度付近で溶解させた炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入することにより、炭酸ガスの安定的貯留を図るとともに、溶媒の使用量を低減した炭酸ガスの地中貯留方法に関する。   The present invention contributes to the reduction of carbon dioxide, which is one of the greenhouse gases that cause global warming, so that the carbon dioxide separated and recovered from a large-scale emission source of carbon dioxide, etc. is treated with seawater and / or When dissolved in a solvent consisting of water and injected into the ground, by mixing undissolved carbon dioxide gas at a predetermined ratio with respect to carbon dioxide-dissolved water in which carbon dioxide gas is dissolved in the vicinity of the saturated concentration in the solvent, The present invention relates to a carbon dioxide underground storage method in which carbon dioxide gas is stably stored and the amount of solvent used is reduced.

従来より、排出ガスから分離・回収した炭酸ガスを、地中の枯渇した油田やガス田あるいは帯水層に貯留する際、下記非特許文献1,2に記載されるように、前記炭酸ガスを液体又は超臨界状態に圧縮し、注入井より地中に圧入することが試みられている。一般に、この炭酸ガスは深度800m以上の貯留層に圧入することにより、炭酸ガスの超臨界状態(二酸化炭素の場合、温度31℃以上、圧力7.4MPa以上)を維持し、炭酸ガスの密度を大きくして効率的な貯留を図っている。   Conventionally, when storing carbon dioxide separated and recovered from exhaust gas in an oil field, gas field, or aquifer that is depleted in the ground, as described in Non-Patent Documents 1 and 2 below, Attempts have been made to compress it into a liquid or supercritical state and press it into the ground through an injection well. In general, this carbon dioxide gas is injected into a reservoir with a depth of 800 m or more to maintain the supercritical state of carbon dioxide gas (in the case of carbon dioxide, the temperature is 31 ° C or higher, the pressure is 7.4 MPa or higher), and the density of the carbon dioxide gas is increased. And efficient storage.

しかしながら、超臨界状態の炭酸ガスは周辺地下水より比重が軽く、浮力で上方へ移動するため、炭酸ガスを貯留する帯水層として、形状がドーム状とされ、上方中央部に浮上した炭酸ガスがトラップされるようなシール層(キャップロック)が形成されていることが必要であった。ところが、一般的に油田やガス田では、貯留層が前記シール層とドーム形状との組合せによるトラップ構造を有することが確認されているが、自然界において係る条件に適合した帯水層を見つけることが課題となっている。このため適用できる条件を拡げ、炭酸ガスが浮上せず長期的かつ安定的に地中に貯留・隔離させる方法が望まれていた。   However, supercritical carbon dioxide has a lower specific gravity than the surrounding groundwater and moves upward by buoyancy, so the shape of the aquifer that stores carbon dioxide is dome-shaped, and the carbon dioxide that has floated in the upper center is It was necessary to form a sealing layer (cap lock) to be trapped. However, in oil and gas fields, it is generally confirmed that the reservoir has a trap structure that is a combination of the seal layer and the dome shape, but it is possible to find an aquifer that meets the conditions in nature. It has become a challenge. For this reason, there has been a demand for a method for expanding the applicable conditions and storing and isolating carbon dioxide in the ground for a long term and stably without rising.

一方、炭酸ガスの地中への圧入方法としては、地表面上から地中に貫通したパイプの上部から、CO2昇圧装置で昇圧された二酸化炭素と、ポンプで昇圧された水とをパイプ内で合流混合しつつ圧入する下記特許文献1記載の方法、ガス田又は油田の地下層内に二酸化炭素をミキサーによって水に溶解させた状態で貯蔵する下記特許文献2記載の方法、炭酸ガスを含む気体をマイクロバブル化して水または海水中に分散させ、マイクロバブル化した炭酸ガスを地底に隔離する下記特許文献3記載の方法などがある。これらいずれの方法も、帯水層に海水又は水の溶媒と炭酸ガスとを圧入し、溶媒に炭酸ガスを溶解させて帯水層に貯留させるようにしている。 On the other hand, as a method of pressurizing carbon dioxide into the ground, carbon dioxide boosted by a CO 2 booster and water pressurized by a pump are introduced into the pipe from the top of the pipe penetrating from the ground surface into the ground. Including the method described in Patent Document 1 described below, which is injected while being mixed and mixed, and the method described in Patent Document 2 described below, wherein carbon dioxide is dissolved in water by a mixer in the underground layer of a gas field or oil field, including carbon dioxide gas There exists the method of the following patent document 3, etc. which make gas microbubble and disperse | distribute it in water or seawater, and isolate | separate the carbon dioxide gas made into microbubble on the ground. In any of these methods, a seawater or water solvent and carbon dioxide are injected into the aquifer, and the carbon dioxide is dissolved in the solvent and stored in the aquifer.

しかしながら、上記特許文献1〜3記載の方法では、溶媒に炭酸ガスを飽和濃度レベルの高い濃度で溶解させることにより、周辺地下水より比重を重くした状態とし、帯水層に炭酸ガスを長期的かつ安定的に貯留・隔離させるというものであるが、溶媒が水だけであったり、溶解手段が「合流」、「ミキサー」、「マイクロバブル発生装置」では、溶解条件によっては、炭酸ガスの溶解濃度レベルが不十分であると考えられ、周辺地下水より比重を重くすることができないおそれがあった。   However, in the methods described in Patent Documents 1 to 3, carbon dioxide gas is dissolved in a solvent at a high concentration level, so that the specific gravity is heavier than that of the surrounding groundwater. It can be stably stored and sequestered, but if the solvent is only water or the dissolution means is “Merging”, “Mixer”, “Microbubble generator”, depending on the dissolution conditions, the dissolution concentration of carbon dioxide gas The level was considered insufficient, and there was a risk that the specific gravity could not be increased more than the surrounding groundwater.

そこで本出願人は、下記特許文献4において、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から前記帯水層まで貫通した注入井とから構成される炭酸ガスの地中貯留システムを提案するとともに、第2構成パターンとして、地下水に対する炭酸ガスの溶解を期待して、最大で溶媒重量の5%の未溶解の炭酸ガスを含んだ状態で地中の帯水層に圧入する炭酸ガスの地中貯留システムを提案した。   Therefore, in the following Patent Document 4, the applicant of the present invention disclosed a carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed gas. One or a plurality of dissolution tanks in which carbon dioxide gas and a solvent are injected, and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water, and the generated carbon dioxide-dissolved water is pressed into the ground aquifer. A carbon dioxide underground storage system composed of an injection well penetrating from the surface to the aquifer is proposed, and as a second configuration pattern, the maximum weight of the solvent is expected in the hope of dissolving carbon dioxide in groundwater. We proposed a carbon dioxide underground storage system that injects 5% undissolved carbon dioxide into the underground aquifer.

さらに本出願人は、下記特許文献5において、溶媒を所定の高流速で流した主流管路の内部に炭酸ガスの供給管路を配設するなどし、溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、主流管路を流れる溶媒のせん断力によって炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置を提案した。かかる細泡化装置によれば、高圧状態下において炭酸ガスを溶媒に効率的かつ高い処理能力で細泡化し混入することが可能となった。   Further, in the following Patent Document 5, the applicant of the present invention has provided a carbon dioxide gas supply line inside a main flow line through which a solvent is flowed at a predetermined high flow rate, and the like, and a wall surface of the pipe line that partitions the solvent and the carbon dioxide gas. A high-pressure carbon dioxide gas bubbler was proposed, in which pores are formed in the gas and mixed while the carbon dioxide gas is bubbled by the shearing force of the solvent flowing through the main flow line. According to such a fine foaming apparatus, carbon dioxide gas can be finely foamed and mixed in a solvent with high processing capacity under a high pressure condition.

また近年では、下記特許文献6に開示されるように、液化炭酸ガスを注入水の中に微細液滴化して混合し二液混合流体を地中に注入する液化炭酸ガスの地中送り込み方法が提案されている。このとき、微細液滴状の二酸化炭素は、岩石鉱物の表面に吸着される場合や、毛細管効果により岩石中の残留液滴としてトラップされるが、圧力と温度の条件変化により微細気泡になった二酸化炭素は、周囲の地下水に溶解しやすくなる旨が記載されている。   Also, in recent years, as disclosed in Patent Document 6 below, there is an underground feeding method of liquefied carbon dioxide gas in which liquefied carbon dioxide gas is mixed into fine water droplets and mixed, and a two-component mixed fluid is injected into the ground. Proposed. At this time, carbon dioxide in the form of fine droplets is trapped as residual droplets in the rock when adsorbed on the surface of rock minerals or due to the capillary effect, but becomes fine bubbles due to changes in pressure and temperature conditions It is described that carbon dioxide is easily dissolved in the surrounding groundwater.

特開平6−170215号公報JP-A-6-170215 特開平3−258340号公報JP-A-3-258340 特開2004−50167号公報JP 2004-50167 A 特開2008−238054号公報JP 2008-238054 A 特開2009−112995号公報JP 2009-112995 A 特開2009−11964号公報JP 2009-11964 A

IPCC、“IPCC Special Report on Carbon Dioxide Capture and Storage”、Chapter 5、2005年、Cambridge University PressIPCC, “IPCC Special Report on Carbon Dioxide Capture and Storage”, Chapter 5, 2005, Cambridge University Press 大関真一、嘉納康二、“「二酸化炭素地中貯留」事業の実現にむけて〜石油・天然ガス上流技術への期待〜”、「石油・天然ガスレビュー」、独立行政法人 石油天然ガス・金属鉱物資源機構、2006.7、vol.40 No.4、p57-70Shinichi Ozeki, Koji Kano, “Towards the realization of“ CO2 underground storage ”business-Expectations for upstream oil and natural gas technologies”, “Oil / Natural gas review”, Independent administrative agency Petroleum natural gas and metal minerals Resource Organization, 2006.7, vol.40 No.4, p57-70

上記特許文献4〜6に開示されるように、炭酸ガスを溶媒に溶解させず未溶解の炭酸ガスの状態で地中の帯水層に圧入した場合でも、地下水に溶解したり、岩石鉱物の表面への吸着や毛細管効果による岩石中の残留液滴として帯水層にトラップされ、安定的に貯留・隔離されるようになることが明らかとなっている。   As disclosed in Patent Documents 4 to 6, even when carbon dioxide is not dissolved in a solvent and is injected into an underground aquifer in the state of undissolved carbon dioxide, It has been clarified that it is trapped in the aquifer as residual droplets in the rock due to adsorption to the surface and capillary effect, and it is stably stored and isolated.

この知見に基づいて、さらに本発明者等が鋭意研究を重ねた結果、炭酸ガス溶解水に未溶解炭酸ガスを混入して圧入する際、地盤条件や帯水層内の圧力・温度条件、帯水層内に形成される炭酸ガス溶解水及び未溶解炭酸ガスの貯留領域等に応じて、炭酸ガス溶解水に対する未溶解炭酸ガスの質量割合を適正に制御しなければ、帯水層への圧入が不可能となったり、無駄なエネルギーを消費したりする場合があることが予測された。   Based on this knowledge, as a result of further extensive research by the present inventors, the ground conditions and the pressure / temperature conditions in the aquifer, If the mass ratio of undissolved carbon dioxide gas to carbon dioxide-dissolved water is not properly controlled according to the storage area of carbon dioxide-dissolved water and undissolved carbon dioxide gas formed in the water layer, it will be pressed into the aquifer. It has been predicted that there may be cases where it becomes impossible or wastes energy.

また、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を溶媒重量の5%より増やすことで、溶媒の使用量を削減することも期待できる。   Moreover, it can also be expected that the amount of the solvent used is reduced by increasing the mass ratio of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water from 5% of the solvent weight.

そこで本発明の主たる課題は、帯水層の地盤条件等に応じて炭酸ガス溶解水に混入する適正な未溶解炭酸ガスの質量割合を決定することにより、未溶解炭酸ガスを帯水層に安定的かつ長期的に貯留・隔離するとともに、溶媒の使用量を大幅に削減した炭酸ガスの地中貯留方法を提供することにある。   Therefore, the main problem of the present invention is to stabilize the undissolved carbon dioxide gas in the aquifer by determining the appropriate mass ratio of undissolved carbon dioxide gas mixed in the carbon dioxide-dissolved water according to the ground conditions of the aquifer. It is intended to provide a method for underground storage of carbon dioxide gas that can be stored and sequestered for a long period of time and in which the amount of solvent used is greatly reduced.

前記課題を解決するために請求項1に係る本発明として、炭酸ガスを溶媒に飽和濃度付近で溶解させた炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入し、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中に貯留・隔離するための炭酸ガスの地中貯留方法であって、
前記帯水層内において、注入井の周囲に前記炭酸ガス溶解水とともに、前記未溶解炭酸ガスを貯留・隔離する第1貯留領域と、この第1貯留領域を取り囲むように略同心円状に前記炭酸ガス溶解水のみによる第2貯留領域とを夫々形成するように前記炭酸ガス溶解水と未溶解炭酸ガスとを貯留・隔離する条件の下で、前記炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を下記(1)〜(3)の手順によって決定することを特徴とする炭酸ガスの地中貯留方法が提供される。
(1)前記帯水層から採取した原地盤材料を用いた室内試験によって、帯水層の間隙体積に占める貯留可能な未溶解炭酸ガスの体積割合として定義付けられる炭酸ガスの体積飽和率を測定するか、蓄積された実績データに基づいて前記炭酸ガスの体積飽和率を推定する第1手順。
(2)前記第1貯留領域の体積と、前記第2貯留領域の体積とを設定する第2手順。
(3)前記炭酸ガスの体積飽和率と前記第1貯留領域及び第2貯留領域の体積とに基づいて、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を決定する第3手順。
In order to solve the above-mentioned problem, as the present invention according to claim 1, undissolved carbon dioxide gas is mixed in a predetermined ratio with respect to carbon dioxide-dissolved water obtained by dissolving carbon dioxide in a solvent at a saturation concentration. A carbon dioxide underground storage method for press-fitting into an aquifer and storing and isolating the carbon dioxide-dissolved water and undissolved carbon dioxide in the ground,
In the aquifer, the carbon dioxide dissolved water and the undissolved carbon dioxide gas are stored and separated around the injection well, and the carbon dioxide is concentrically formed so as to surround the first reservoir area. Under the condition of storing and isolating the carbon dioxide-dissolved water and the undissolved carbon dioxide so as to form the second storage region only by the gas-dissolved water, the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water is obtained. Provided is a method for underground storage of carbon dioxide gas, wherein the mass ratio is determined by the following procedures (1) to (3).
(1) The volume saturation rate of carbon dioxide gas, defined as the volume ratio of undissolved carbon dioxide gas that can be stored in the gap volume of the aquifer, is measured by laboratory tests using raw ground material collected from the aquifer. Or a first procedure for estimating the volume saturation of the carbon dioxide gas based on the accumulated performance data.
(2) A second procedure for setting the volume of the first storage area and the volume of the second storage area.
(3) A third procedure for determining a mass ratio of undissolved carbon dioxide mixed in carbon dioxide-dissolved water based on the volume saturation rate of the carbon dioxide and the volumes of the first storage region and the second storage region.

上記請求項1記載の発明では、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を決定するに当たって、前記炭酸ガスの体積飽和率を測定又は推定する第1手順、第1貯留領域の体積と第2貯留領域の体積とを設定する第2手順、前記炭酸ガスの体積飽和率と前記第1貯留領域及び第2貯留領域の体積とに基づいて、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を決定する第3手順を構成要素としている。   In the first aspect of the invention, in determining the mass ratio of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water, the first procedure for measuring or estimating the volume saturation of the carbon dioxide, the volume of the first storage region And the second procedure for setting the volume of the second storage area, based on the volume saturation of the carbon dioxide gas and the volumes of the first storage area and the second storage area, undissolved carbon dioxide mixed into the carbon dioxide dissolved water The third procedure for determining the mass ratio of gas is a constituent element.

具体的に、前記第1手順では、帯水層の間隙率、地下水圧、温度等を考慮して、地盤材料の特性を測定又は推定している。   Specifically, in the first procedure, the characteristics of the ground material are measured or estimated in consideration of the aquifer porosity, groundwater pressure, temperature, and the like.

前記第2手順では、帯水層の分布(面積、層厚)、間隙率、地下水圧、温度、炭酸ガスの飽和率、炭酸ガス溶解水の炭酸ガスの質量割合等を考慮して、帯水層における各貯留領域の体積を設定している。   In the second procedure, the aquifer is considered in consideration of the aquifer distribution (area, layer thickness), porosity, groundwater pressure, temperature, carbon dioxide saturation, carbon dioxide mass ratio of carbon dioxide dissolved water, etc. The volume of each storage area in the layer is set.

前記第3手順では、帯水層の分布(面積、層厚)、間隙率、地下水圧、温度、浸透率、炭酸ガス溶解水及び炭酸ガスの相対浸透率、毛管圧特性、地下水塩濃度等の帯水層における各種特性や、炭酸ガス溶解水及び未溶解炭酸ガスの圧入量等を考慮して、圧入浸透流解析による帯水層における未溶解炭酸ガスと炭酸ガス溶解水の貯留状況を確認して注入可能か否かの判断をしたり、設備建設コスト、使用エネルギー、溶媒(海水等)の使用量等の主に経済性の面から、未溶解炭酸ガスの混入効果を評価し、最適な貯留条件であるか否かの判断をしたりして最終的な炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を決定している。   In the third procedure, aquifer distribution (area, layer thickness), porosity, groundwater pressure, temperature, permeability, carbon dioxide dissolved water and carbon dioxide relative permeability, capillary pressure characteristics, groundwater salt concentration, etc. Checking the storage status of undissolved carbon dioxide and carbon dioxide dissolved water in the aquifer by intrusion flow analysis considering various characteristics in the aquifer and the amount of carbon dioxide dissolved water and undissolved carbon dioxide injected. To determine whether it can be injected or not, and evaluate the effects of mixing undissolved carbon dioxide mainly from the economic point of view, such as equipment construction costs, energy usage, and solvent (seawater, etc.) usage. The mass ratio of undissolved carbon dioxide mixed in the final carbon dioxide-dissolved water is determined by determining whether or not the storage conditions are satisfied.

このように最適な質量割合で未溶解炭酸ガスを混入した炭酸ガス溶解水を圧入することにより、未溶解炭酸ガスは、地下水への溶解以外にも、帯水層の間隙内に一定割合で捕捉(トラップ)され、安定的かつ長期的に貯留・隔離できるようになる。   By injecting carbon dioxide-dissolved water mixed with undissolved carbon dioxide at an optimal mass ratio in this way, undissolved carbon dioxide is captured at a constant rate in the gap of the aquifer in addition to dissolving in groundwater. (traps) is, it becomes possible storage and sequestration stably and long-term.

また、後段で詳述するように、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合は、帯水層における炭酸ガスの貯留量、炭酸ガス飽和率、帯水層の間隙率・地下水圧・温度等の条件に応じて、最大25%程度まで上げることが可能であり、これまでの溶媒重量の5%より増やすことができ、溶媒の使用量の削減による消費エネルギーの低減を図ることができるようになる。   As will be described in detail later, the mass proportion of undissolved carbon dioxide mixed in the carbon dioxide-dissolved water is the amount of carbon dioxide stored in the aquifer, the carbon dioxide saturation rate, the porosity of the aquifer, and the groundwater pressure.・ It can be increased up to about 25% depending on temperature and other conditions, and can be increased from 5% of the solvent weight so far, and the energy consumption can be reduced by reducing the amount of solvent used. become able to.

請求項2に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中の帯水層に圧入するために地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガスの地中貯留システムを用いて、
前記溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解炭酸ガスと、炭酸ガスが飽和濃度で溶解した炭酸ガス溶解水とを分離する分離槽と、該分離槽で分離された未溶解炭酸ガスを圧送する未溶解炭酸ガス圧送装置と、該未溶解炭酸ガス圧送装置から圧送された未溶解炭酸ガスを分岐する分岐装置と、前記分離槽で分離された炭酸ガス溶解水に前記分岐装置にて分岐された未溶解炭酸ガスを混入する合流点とを設け、前記分岐装置にて前記未溶解炭酸ガスのうち前記炭酸ガス溶解水に混入する所定量を分岐して前記合流点に圧送することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入する請求項1記載の炭酸ガスの地中貯留方法が提供される。
As the present invention according to claim 2, a carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide and In order to press-fit one or a plurality of dissolution tanks in which a solvent is injected and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water, and the carbon dioxide-dissolved water and undissolved carbon dioxide are injected into the underground aquifer. And an injection well penetrating from the ground surface to the aquifer,
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a carbon dioxide underground storage system in which a discharge port for discharging the carbon dioxide-dissolved water is formed in an upper portion of the container, and the container is filled with a granular filler. make use of,
In the middle of the flow path from the dissolution tank to the injection well, undissolved carbon dioxide gas and carbon dioxide-dissolved water in which carbon dioxide gas is dissolved at a saturated concentration are separated from the total amount of carbon dioxide-dissolved water fed. A separation tank, an undissolved carbon dioxide pressure feeding device that pumps the undissolved carbon dioxide gas separated in the separation tank, a branching device that branches the undissolved carbon dioxide gas fed from the undissolved carbon dioxide pressure feeding device, and the separation The carbon dioxide dissolved water separated in the tank is provided with a junction for mixing the undissolved carbon dioxide branched by the branching device, and mixed in the carbon dioxide dissolved water among the undissolved carbon dioxide by the branching device. A predetermined amount to be branched and pumped to the merging point so that undissolved carbon dioxide gas is mixed into the carbon dioxide dissolved water at a predetermined ratio and press-fitted into the underground aquifer. A method for underground storage of carbon dioxide is provided.

上記請求項2記載の発明は、請求項1記載の地中貯留方法に用いる地中貯留システムの第1形態例について規定したものであり、溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解炭酸ガスと、炭酸ガスが飽和濃度で溶解した炭酸ガス溶解水とを分離する分離槽と、該分離槽で分離された未溶解炭酸ガスを圧送する未溶解炭酸ガス圧送装置と、該未溶解炭酸ガス圧送装置から圧送された未溶解炭酸ガスを分岐する分岐装置と、前記分離槽で分離された炭酸ガス溶解水に前記分岐装置にて分岐された未溶解炭酸ガスを混入する合流点とを設けた地中貯留システムを用いるものである。この地中貯留システムを用いた場合、前記分岐装置にて前記未溶解炭酸ガスのうち前記炭酸ガス溶解水に混入する所定量を分岐して前記合流点に圧送することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入するようにする。   The invention described in claim 2 is defined for the first embodiment of the underground storage system used in the underground storage method described in claim 1, and is sent in the middle of the flow path from the dissolution tank to the injection well. A separation tank that separates undissolved carbon dioxide gas and carbon dioxide-dissolved water in which carbon dioxide gas is dissolved at a saturated concentration with respect to the total amount of carbon dioxide-dissolved water supplied, and undissolved carbon dioxide gas separated in the separation tank An undissolved carbon dioxide gas feeding device for feeding the water, a branch device for branching the undissolved carbon dioxide gas fed from the undissolved carbon dioxide gas feed device, and the carbon dioxide dissolved water separated in the separation tank by the branch device. The underground storage system provided with the junction where the branched undissolved carbon dioxide gas is mixed is used. When this underground storage system is used, the carbon dioxide-dissolved water is obtained by branching a predetermined amount mixed in the carbon dioxide-dissolved water out of the undissolved carbon dioxide by the branching device and pumping it to the junction. On the other hand, undissolved carbon dioxide gas is mixed at a predetermined ratio and pressed into the underground aquifer.

このように溶解槽から注入井に至る流路の途中に前記分離槽を設けることにより、帯水層に圧入する炭酸ガス溶解水として分離槽で分離された炭酸ガス溶解水を用いることができ、確実に飽和濃度に近い状態で炭酸ガスが溶解した炭酸ガス溶解水を地中に圧入できるとともに、この炭酸ガス溶解水に対して、分離槽で分離された未溶解炭酸ガスを所定の割合で精度よく混入させることができるようになる。   Thus, by providing the separation tank in the middle of the flow path from the dissolution tank to the injection well, the carbon dioxide dissolved water separated in the separation tank can be used as the carbon dioxide dissolved water to be pressed into the aquifer, Carbon dioxide-dissolved water in which carbon dioxide is dissolved in a state that is close to saturation concentration can be surely injected into the ground, and undissolved carbon dioxide separated in the separation tank can be accurately added to this carbon dioxide-dissolved water at a specified ratio. It becomes possible to mix well.

請求項3に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中の帯水層に圧入するために地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成され、
前記溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしてある炭酸ガスの地中貯留システムを用いて、
前記炭酸ガス圧縮装置によって圧送する炭酸ガスの質量と前記溶媒圧送ポンプによって圧送する溶媒の質量とをそれぞれ制御することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入する請求項1記載の炭酸ガスの地中貯留方法が提供される。
As the present invention according to claim 3, a carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide and In order to press-fit one or a plurality of dissolution tanks in which a solvent is injected and the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water, and the carbon dioxide-dissolved water and undissolved carbon dioxide are injected into the underground aquifer And an injection well penetrating from the ground surface to the aquifer,
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a discharge port through which the carbon dioxide-dissolved water is discharged is formed at the top of the container, and the container is filled with a granular filler,
Using the carbon dioxide underground storage system in which the carbon dioxide dissolved water discharged from the dissolution tank is injected into the underground aquifer in the state containing undissolved carbon dioxide as it is,
By controlling the mass of the carbon dioxide gas fed by the carbon dioxide compressor and the mass of the solvent fed by the solvent pump, respectively, undissolved carbon dioxide is mixed in the carbon dioxide-dissolved water at a predetermined ratio. Then, the underground storage method for carbon dioxide gas according to claim 1, which is press-fitted into the underground aquifer.

上記請求項3記載の発明は、請求項1記載の地中貯留方法に用いる地中貯留システムの第2形態例について規定したものであり、前記溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにした地中貯留システムを用いたものである。この地中貯留システムを用いた場合、炭酸ガス圧縮装置によって圧送する炭酸ガスの質量と前記溶媒圧送ポンプによって圧送する溶媒の質量とをそれぞれ制御することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入することができる。したがって、地中貯留システムに供給する炭酸ガスの量を一元的に管理することができるようになる。   The invention according to claim 3 is defined for the second embodiment of the underground storage system used in the underground storage method according to claim 1, and the carbon dioxide dissolved water discharged from the dissolution tank is undissolved. It uses an underground storage system that press-fits the underground aquifer while containing carbon dioxide. When this underground storage system is used, the mass of carbon dioxide pumped by the carbon dioxide compressor and the mass of solvent pumped by the solvent pump are respectively controlled, so that Dissolved carbon dioxide gas can be mixed at a predetermined ratio and injected into the underground aquifer. Therefore, the amount of carbon dioxide supplied to the underground storage system can be managed in an integrated manner.

請求項4に係る本発明として、前記溶解槽の前段に、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置が設置されている請求項3記載の炭酸ガスの地中貯留方法が提供される。   As a fourth aspect of the present invention, the carbon dioxide gas supply line is disposed in the main stream line in which the solvent is allowed to flow at a predetermined high flow rate, or the main stream line is disposed upstream of the dissolution tank. The carbon dioxide gas supply pipe line that fits outside is provided, pores are formed on the wall surface of the pipe line that partitions the solvent and carbon dioxide gas, and the carbon dioxide gas is finely bubbled by the shearing force of the solvent flowing through the main flow pipe line. The carbon dioxide gas underground storage method according to claim 3, wherein a high-pressure carbon dioxide gas bubble generation device that is mixed while being converted is installed.

上記請求項4記載の発明では、溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で地中の帯水層に圧入する第2形態例に係る地中貯留システムにおいて、溶解槽の前段に、前記高圧用炭酸ガス細泡化装置を設置するようにしたものである。前記高圧用炭酸ガス細泡化装置を設置することにより、飽和濃度レベル付近の高い濃度で炭酸ガスを溶媒(海水等)に溶解させた状態で、炭酸ガス溶解水を帯水層に圧入できるようになる。   In the invention described in claim 4, the underground storage system according to the second embodiment in which the carbon dioxide dissolved water discharged from the dissolution tank is press-fitted into the underground aquifer while containing undissolved carbon dioxide as it is. In the above, the high-pressure carbon dioxide gas bubble generation device is installed in the previous stage of the dissolution tank. By installing the high-pressure carbon dioxide fine foaming device, carbon dioxide-dissolved water can be injected into the aquifer in a state where carbon dioxide is dissolved in a solvent (such as seawater) at a high concentration near the saturation concentration level. become.

また、前記高圧用炭酸ガス細泡化装置は、主流管路を流れる溶媒のせん断力によって炭酸ガスを細泡化しながら溶媒に混入させる構造であるため、圧力開放を伴うこと無く、高圧状態を維持した状態で炭酸ガスを溶媒に効率的かつ高い処理能力で混入することができるようになる。さらに、管路の組合せからなる構造であるため、パイプライン中に簡単に組み込むことが可能となる。   The high-pressure carbon dioxide gas bubbler has a structure in which carbon dioxide gas is mixed into the solvent while making it finer by the shearing force of the solvent flowing through the main flow line, so that the high pressure state is maintained without pressure release. In this state, carbon dioxide gas can be mixed into the solvent efficiently and with high processing capacity. Furthermore, since the structure is a combination of pipe lines, it can be easily incorporated into the pipeline.

請求項5に係る本発明として、下式(5)によって求められるウェーバー数(We)が10以上となるように、前記溶媒の流速、前記細孔の孔径が設定されている請求項4記載の炭酸ガスの地中貯留方法が提供される。

Figure 2011005378
The present invention according to claim 5 is characterized in that the flow rate of the solvent and the pore diameter of the pores are set so that the Weber number (We) obtained by the following formula (5) is 10 or more. A method for underground storage of carbon dioxide gas is provided.
Figure 2011005378

上記請求項5記載の発明は、後述の実施例2−3に従い、溶媒の流速、前記細孔の孔径の設定に際して、ウェーバー数(We)を10以上とすることにより、炭酸ガスを効率的かつ高い処理能力で細泡化し、高い溶解効率をもたらすことが可能となる。   In the invention according to the fifth aspect, in accordance with Example 2-3 described later, when setting the flow rate of the solvent and the pore diameter of the pores, the Weber number (We) is set to 10 or more so that the carbon dioxide gas is efficiently and and fine foaming at a high throughput, it is possible to provide a high dissolution efficiency.

請求項6に係る本発明として、前記溶解槽に充填される粒状の充填材として、砂、砕石、ラシヒリング、サドルの内のいずれか又は組合せとする請求項2〜5いずれかに記載の炭酸ガスの地中貯留方法が提供される。   The present invention according to claim 6 is the carbon dioxide gas according to any one of claims 2 to 5, wherein the granular filler filled in the dissolution tank is any one or a combination of sand, crushed stone, Raschig ring, and saddle. An underground storage method is provided.

上記請求項6記載の発明では、溶解槽に充填される粒状充填材として、例えば砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせて用いるものである。   In the invention described in claim 6, as the granular filler filled in the dissolution tank, for example, any one of sand, crushed stone, Raschig ring, and saddle or a combination thereof is used.

請求項7に係る本発明として、前記溶解槽に充填される粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径とする請求項2〜6いずれかに記載の炭酸ガスの地中貯留方法が提供される。   As the present invention according to claim 7, the granular filler to be filled in the dissolution tank is, for each type of filler, a carbon dioxide dissolution amount determined based on the flow rates of carbon dioxide and solvent and the shape of the dissolution tank. A carbon dioxide underground storage method according to any one of claims 2 to 6, wherein the average particle size is determined based on the pressure loss in the dissolution tank.

上記請求項7記載の発明では、粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径のものを用いるものであり、平均粒径が上記の最適平均粒径であると、溶解効率に優れるようになる。   In the invention of claim 7, the granular filler is, for each type of filler, the amount of carbon dioxide dissolved based on the flow rates of carbon dioxide and solvent and the shape of the dissolution tank, and the pressure loss in the dissolution tank. The average particle size determined from the above is used, and when the average particle size is the above-mentioned optimal average particle size, the dissolution efficiency is excellent.

請求項8に係る本発明として、前記溶解槽において、前記充填材の充填領域内に、流路を仕切るように多数の開孔が形成された整流板が1又は複数設けられている請求項2〜7いずれかに記載の炭酸ガスの地中貯留方法が提供される。   As the present invention according to claim 8, in the melting tank, one or a plurality of rectifying plates in which a large number of openings are formed so as to partition the flow path are provided in the filling region of the filler. 7-geological storage method carbon dioxide according to any one is provided.

上記請求項8記載の発明では、整流板を設けることにより、溶解槽における炭酸ガスの溶解が促進されるようになる。   In the invention according to the eighth aspect, by providing the current plate, the dissolution of carbon dioxide gas in the dissolution tank is promoted.

以上詳説のとおり本発明によれば、帯水層の地盤条件等に応じて炭酸ガス溶解水に混入する適正な未溶解炭酸ガスの質量割合を決定することにより、未溶解炭酸ガスを帯水層に安定的かつ長期的に貯留・隔離するとともに、溶媒の使用量を大幅に削減した炭酸ガスの地中貯留方法が提供できる。   As described above in detail, according to the present invention, the undissolved carbon dioxide gas is removed from the aquifer by determining the appropriate mass ratio of the undissolved carbon dioxide gas mixed in the carbon dioxide-dissolved water according to the ground conditions of the aquifer. In addition, it is possible to provide a method for underground storage of carbon dioxide gas that can be stored and sequestered stably and for a long period of time and the amount of solvent used is greatly reduced.

地中貯留システム1A(第1形態例)の概念図である。It is a key map of underground storage system 1A (the 1st form example). その溶解槽4の縦断面図である。It is a longitudinal cross-sectional view of the dissolution tank 4. 分離槽6の縦断面図である。3 is a longitudinal sectional view of a separation tank 6. FIG. 帯水層における貯留領域の平面概念図である。It is a plane conceptual diagram of the storage area in an aquifer. 帯水層における貯留領域の断面概念図である。It is a cross-sectional conceptual diagram of the storage area | region in an aquifer. 帯水層における炭酸ガスの貯留状態を示す模式図である。It is a schematic diagram which shows the storage state of the carbon dioxide gas in an aquifer. 炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rを決定するフロー図(第1形態例)である。It is a flowchart (1st form example) which determines the mass ratio R of the undissolved carbon dioxide mixed in carbon dioxide dissolved water. 実験装置の概念図である。It is a conceptual diagram of an experimental apparatus. 充填材A、試験温度25℃における炭酸ガスの体積飽和率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the volume saturation of the carbon dioxide gas in the filler A and the test temperature of 25 degreeC. 充填材A、試験温度33℃における炭酸ガスの体積飽和率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the volume saturation of the carbon dioxide gas in the filler A and the test temperature of 33 degreeC. 充填材B、試験温度25℃における炭酸ガスの体積飽和率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the volume saturation of the carbon dioxide gas in the filler B and the test temperature of 25 degreeC. 充填材B、試験温度33℃における炭酸ガスの体積飽和率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the volume saturation of the carbon dioxide gas in the filler B and the test temperature of 33 degreeC. 充填材A、試験温度25℃における炭酸ガスの溶解量の経時変化を示すグラフである。Fillers A, is a graph showing the time course of the amount of dissolution of carbon dioxide in the test temperature 25 ° C.. 充填材A、試験温度33℃における炭酸ガスの溶解量の経時変化を示すグラフである。Fillers A, is a graph showing the time course of the amount of dissolution of carbon dioxide in the test temperature 33 ° C.. 充填材B、試験温度25℃における炭酸ガスの溶解量の経時変化を示すグラフである。Fillers B, and a graph showing the temporal change of the amount of dissolution of carbon dioxide in the test temperature 25 ° C.. 充填材B、試験温度33℃における炭酸ガスの溶解量の経時変化を示すグラフである。Fillers B, and a graph showing the temporal change of the amount of dissolution of carbon dioxide in the test temperature 33 ° C.. 炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rの算出例を示すグラフである。Is a graph showing an example of calculation of the mass ratio R of undissolved carbon dioxide gas to be mixed into the carbon dioxide gas dissolved water. 地中貯留システム1B(第2形態例)の概念図である。It is a conceptual diagram of underground storage system 1B (second embodiment). 細泡化装置7Aの縦断面図である。It is a longitudinal cross-sectional view of 7 A of fine foaming apparatuses. 細泡化装置7Bの縦断面図である。It is a longitudinal cross-sectional view of the fine foaming apparatus 7B. 細泡化装置7Cの縦断面図である。It is a longitudinal cross-sectional view of 7 C of fine bubble apparatuses. 溶解槽4の縦断面図である。3 is a longitudinal sectional view of the dissolution tank 4. FIG. 炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rを決定するフロー図(第2形態例)である。It is a flowchart (2nd form example) which determines the mass ratio R of the undissolved carbon dioxide mixed in carbon dioxide dissolved water. 実施例1における温度29℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the particle size and salt water flow rate in the temperature of 29 degreeC in Example 1, and a carbon dioxide dissolved amount. 実施例1における温度33℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the particle size and salt water flow rate in the temperature of 33 degreeC in Example 1, and a carbon dioxide dissolved amount. 実施例1における温度25℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the pressure in 25 degreeC in Example 1, and the flow rate of salt water, and a carbon dioxide dissolved amount. 実施例1における温度29℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio and the amount of carbon dioxide dissolved when the pressure at a temperature of 29 ° C. and the salt water flow rate in Example 1 are changed. 実施例1における温度33℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide gas / salt water weight ratio when changing the conditions of the pressure in 33 degreeC in Example 1, and the flow rate of salt water, and a carbon dioxide dissolved amount. 実施例1における温度と炭酸ガス溶解量との関係を示すグラフである。It is a graph which shows the relationship between the temperature in Example 1, and a carbon dioxide gas dissolution amount. 実施例1における充填材の平均粒径と炭酸ガス溶解量との関係との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the filler in Example 1, and the relationship between a carbon dioxide gas dissolution amount. 実施例2−1における細泡化装置7での溶解効果及び溶解槽4での溶解効果の定量的に検証実験結果を示すグラフである。It is a graph which shows a verification experiment result quantitatively about the melt | dissolution effect in the fine foaming apparatus 7 in Example 2-1, and the melt | dissolution effect in the dissolution tank 4. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その1)である。Graph showing the relationship between the overall capacity coefficient K X a water cross section molar flow rate in Example 2-2; FIG. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その2)である。Is a graph (part 2) showing the relationship between overall capacity coefficient K X a water cross section molar flow rate in Example 2-2. 実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その3)である。Graph showing the relationship between the overall capacity coefficient K X a water cross section molar flow rate in Example 2-2 is a third. 実施例2−3における総括容量係数比Ka(B)/Ka(NB)とウェーバー数Weとの関係を表すグラフである。Is a graph showing the relationship between the overall capacity coefficient ratio K x a (B) / K x a (NB) and Weber number We in Example 2-3.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る炭酸ガスの地中貯留方法は、炭酸ガスの大規模な排出源等から分離・回収した炭酸ガスを溶媒(海水及び/又は水)に飽和濃度レベル付近の高い濃度で溶解させた炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入し、前記炭酸ガス溶解水及び未溶解炭酸ガスを長期的かつ安定的に地中に貯留・隔離するためのものである。   In the underground storage method for carbon dioxide gas according to the present invention, carbon dioxide gas separated and recovered from a large-scale emission source of carbon dioxide gas, etc. is dissolved in a solvent (seawater and / or water) at a high concentration near the saturation concentration level. Undissolved carbon dioxide gas is mixed in a predetermined ratio with respect to the carbon dioxide-dissolved water and pressed into the underground aquifer, and the carbon dioxide-dissolved water and undissolved carbon dioxide are brought into the ground stably and for a long time. It is for storage and isolation.

〔第1形態例〕
先ずはじめに、第1形態例に係る炭酸ガスの地中貯留方法について説明する。本第1形態例では、後述の第2形態例と比較して、使用する地中貯留システムが相違する。具体的に本第1形態例では、溶解槽から注入井に至る流路の途中に、炭酸ガスが飽和濃度で溶解した炭酸ガス溶解水に対して、未溶解炭酸ガスを混入する合流点が設けられている。
[First embodiment]
First, the carbon dioxide underground storage method according to the first embodiment will be described. In this 1st form example, compared with the below-mentioned 2nd form example, the underground storage system to be used is different. Specifically, in the first embodiment, a junction where undissolved carbon dioxide gas is mixed with carbon dioxide-dissolved water in which carbon dioxide gas is dissolved at a saturated concentration is provided in the middle of the flow path from the dissolution tank to the injection well. It has been.

以下、炭酸ガスの地中貯留システム1A、それを用いた地中貯留方法の順に説明する。
(炭酸ガスの地中貯留システム1A)
図1に示される炭酸ガスの地中貯留システム1Aは、炭酸ガスの大規模な排出源等から分離・回収した炭酸ガスを、飽和濃度レベル付近の高い濃度で溶媒(海水及び/又は水)に溶解させた状態で地中の帯水層に封じ込め、長期的かつ安定的に貯留・隔離するためのものである。
Hereinafter, the underground storage system 1A for carbon dioxide and the underground storage method using the same will be described in this order.
(Carbon dioxide underground storage system 1A)
The carbon dioxide underground storage system 1A shown in FIG. 1 converts carbon dioxide separated and recovered from a large-scale emission source of carbon dioxide into a solvent (seawater and / or water) at a high concentration near the saturation concentration level. It is for containment in the ground aquifer in a dissolved state, and for long-term and stable storage and isolation.

すなわち、溶媒に炭酸ガスを飽和濃度レベルの高い濃度で溶解させることにより、周辺地下水より比重を重くした状態とし、帯水層に炭酸ガスを長期的かつ安定的に貯留・隔離させるというものである。このため、炭酸ガスの溶解量は、溶媒1m当たり40〜50kg、好ましくは45〜50kgを目標とする。 That is, by dissolving carbon dioxide in the solvent at a high saturation concentration level, the specific gravity is heavier than that of the surrounding groundwater, and carbon dioxide is stored and sequestered in the aquifer for a long time and stably. . For this reason, the amount of carbon dioxide dissolved is 40 to 50 kg, preferably 45 to 50 kg per 1 m 3 of the solvent.

また、系内の圧力は、炭酸ガスが液体又は超臨界状態を維持した状態で溶解が行われるようにするとともに、炭酸ガス溶解水を地下の帯水層に圧入するための帯水層内の注入圧力と配管系の圧力損失とを考慮して、8MPa以上の高圧状態を維持するようにすることが望ましい。なお、一般的に帯水層内においては5MPa以上の地下水圧を確保できれば効率的に貯留が可能である。   The pressure in the system is such that the carbon dioxide is dissolved in a liquid or supercritical state, and the carbon dioxide dissolved water is injected into the underground aquifer. Considering the injection pressure and the pressure loss of the piping system, it is desirable to maintain a high pressure state of 8 MPa or more. In general, in an aquifer, if a groundwater pressure of 5 MPa or more can be secured, it can be efficiently stored.

本地中貯留システム1Aは、図1に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4、4…と、生成された炭酸ガス溶解水を地中の帯水層に圧入するために地表面から前記帯水層まで貫入させた注入井5とから主に構成されている。   As shown in FIG. 1, the underground storage system 1 </ b> A includes a carbon dioxide gas compression device 2 that compresses carbon dioxide gas to a liquid or supercritical state, and a pressure feed pump 3 that compresses and conveys a solvent composed of seawater and / or water. The compressed carbon dioxide gas and solvent are injected, the carbon dioxide gas is dissolved in the solvent to form carbon dioxide-dissolved water, and the generated carbon dioxide-dissolved water is submerged in the ground. In order to press fit into the aquifer, it is mainly composed of an injection well 5 that penetrates from the ground surface to the aquifer.

さらに、前記溶解槽4,4…から注入井5に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解の炭酸ガスと、炭酸ガスが飽和濃度で溶解した状態の炭酸ガス溶解水とを分離する分離槽6と、該分離槽6で分離された未溶解炭酸ガスを圧送する未溶解炭酸ガス圧送装置8と、該未溶解炭酸ガス圧送装置から圧送された未溶解炭酸ガスを分岐する分岐装置32と、前記分離槽6で分離された炭酸ガス溶解水に前記分岐装置32にて分岐された未溶解炭酸ガスを混入する合流点9とを設け、前記分岐装置32にて前記未溶解炭酸ガスのうち前記炭酸ガス溶解水に混入する所定量を分岐して前記合流点9に圧送することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入するようにしたものである。   Further, in the middle of the flow path from the dissolution tanks 4, 4... To the injection well 5, undissolved carbon dioxide and carbon dioxide dissolved at a saturated concentration with respect to the total amount of carbon dioxide dissolved water fed. The separation tank 6 for separating the carbon dioxide-dissolved water in the state, the undissolved carbon dioxide pumping apparatus 8 for pumping the undissolved carbon dioxide separated in the separation tank 6, and the pumping from the undissolved carbon dioxide pump A branch device 32 for branching undissolved carbon dioxide gas, and a junction 9 for mixing the undissolved carbon dioxide gas branched in the branch device 32 into the carbon dioxide-dissolved water separated in the separation tank 6 are provided. A predetermined amount of the undissolved carbon dioxide gas mixed into the carbon dioxide-dissolved water is branched and pumped to the junction 9 by the device 32, whereby the undissolved carbon dioxide gas is predetermined with respect to the carbon dioxide-dissolved water. Will mix and press into the underground aquifer It is obtained by the.

前記分離槽6にて分離した未溶解炭酸ガスのうち、前記分岐装置32にて、前記合流点9に分岐した残りの未溶解炭酸ガスは、前記溶解槽4に戻すようにしている。   Of the undissolved carbon dioxide separated in the separation tank 6, the remaining undissolved carbon dioxide branched to the junction 9 by the branch device 32 is returned to the dissolution tank 4.

なお、本形態例では、前記溶解槽4は、炭酸ガスの溶解を促進するため複数設置したが、処理能力に応じた数とすればよい。   In the present embodiment, a plurality of dissolution tanks 4 are installed to promote the dissolution of carbon dioxide gas, but the number may be set according to the processing capacity.

また、前記溶解槽4の前段には、溶解槽4での炭酸ガスの溶媒への溶解を促進するため、後段の第2形態例で詳述する細泡化装置7を設けてもよい。   Moreover, in order to accelerate | stimulate melt | dissolution to the solvent of the carbon dioxide gas in the melt | dissolution tank 4 in the front | former stage of the said dissolution tank 4, you may provide the foaming apparatus 7 explained in full detail in the 2nd form example of a back | latter stage.

前記溶解槽4は、図2に示されるように、密閉された容器10の下部に、前記炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、前記溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。   As shown in FIG. 2, the dissolution tank 4 includes a carbon dioxide gas inlet 11 into which a carbon dioxide gas sent from the carbon dioxide gas compression device 2 is injected into a lower portion of a sealed container 10, and the solvent pressure pump. 3 is formed, and a discharge port 13 for discharging the carbon dioxide-dissolved water is formed in the upper portion of the container 10. The perforated plates 14 and 14 partitioning the inside of the container 10 in the vertical direction are respectively arranged on the upper side, and a granular filler 16 is filled between the perforated plates 14 and 14.

前記充填材16は、溶媒と炭酸ガスとの撹拌を促し、炭酸ガスの溶解を効率化するためのものであり、例えば、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとすることができる。前記ラシヒリングとは、セラミック、プラスチック、メタル、カーボンなどからなる円筒形状をした、充填塔で使用される充填物で、一般に広く用いられているものを使用することができる。前記サドルとは、セラミックなどからなる馬鞍形状をした、充填塔で使用される充填物で、一般に前記ラシヒリングより圧力損失が小さくなるように形成されている。   The filler 16 is for accelerating the stirring of the solvent and the carbon dioxide gas and improving the efficiency of the dissolution of the carbon dioxide gas. For example, the filler 16 may be any one or a combination of sand, crushed stone, Raschig ring, and saddle. it can. The Raschig ring is a cylinder-shaped packing made of ceramic, plastic, metal, carbon, etc., which is used in packed towers and can be used in general. The saddle is a horseshoe-shaped packing made of ceramic or the like, and is generally formed so that the pressure loss is smaller than that of the Raschig ring.

また、前記充填材16は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定する最適な平均粒径とすることが好ましい。具体的には、充填材の種類ごとに、充填材の平均粒径に対する、下記の2つの関係(1)(2)を実験的に得た上で、溶解槽において許容される圧力損失(溶解槽の注入口と吐出口の間の圧力差)に対して、最も溶解量が多くなる平均粒径のものを最適な平均粒径として選定する。
(1)所定の炭酸ガス及び溶媒の流量及び溶解槽の形状において、充填材の平均粒径に対する炭酸ガス溶解量の関係。
(2)充填材の平均粒径に対する溶解槽の圧力損失の関係。
Moreover, the said filler 16 is the optimal average determined from the amount of carbon dioxide dissolution determined based on the flow volume of a carbon dioxide gas and a solvent, and the shape of the said dissolution tank, and the pressure loss in the said dissolution tank for every kind of filler. It is preferable to use a particle size. Specifically, for each type of filler, the following two relations (1) and (2) with respect to the average particle diameter of the filler are obtained experimentally, and then the pressure loss (dissolution) allowed in the dissolution tank With respect to the pressure difference between the inlet and the outlet of the tank), an average particle size that has the largest amount of dissolution is selected as the optimum average particle size.
(1) The relationship of the amount of carbon dioxide dissolved with respect to the average particle diameter of the filler in the predetermined flow rate of carbon dioxide gas and solvent and the shape of the dissolution tank.
(2) Relationship between dissolution tank pressure loss and average filler particle size.

一般に、前記充填材の平均粒径に対する特性は、(1)炭酸ガス及び溶媒の流量と溶解槽の形状とが与えられれば、充填材の平均粒径を細かくするほど、炭酸ガスの溶解量は増加する。(2)一方、充填材の平均粒径を細かくするほど、溶解槽内の炭酸ガス及び溶媒の流れによる圧力損失が大きくなり、一定の流量を確保するために使用するエネルギーが増加する、という傾向がある。したがって、上記炭酸ガス及び溶媒の流量と溶解槽の形状とを総合的に勘案した上で、充填材の平均粒径を選定する。上記の最適な平均粒径の充填材16を用いることにより、炭酸ガスの溶解効率に優れるようになる。   Generally, the properties of the filler with respect to the average particle size are as follows: (1) Given the flow rate of carbon dioxide gas and solvent and the shape of the dissolution tank, the smaller the average particle size of the filler, the more the dissolved amount of carbon dioxide gas. To increase. (2) On the other hand, as the average particle size of the filler becomes finer, the pressure loss due to the flow of carbon dioxide and solvent in the dissolution tank increases, and the energy used to secure a constant flow rate tends to increase. There is. Therefore, the average particle size of the filler is selected after comprehensively considering the flow rates of the carbon dioxide gas and the solvent and the shape of the dissolution tank. By using the filler 16 having the optimum average particle diameter, the carbon dioxide gas is efficiently dissolved.

前記容器10は、図2に示されるように、密閉された縦長の管型とすることが好ましい。これにより、溶解槽4における炭酸ガスと溶媒の滞留時間を確保することが可能になる。また、系内の前記設定圧力に対して耐圧性を有する構造とすることができるとともに、短時間で連続的かつ安定的な炭酸ガス溶解水の生成が可能となる。   As shown in FIG. 2, the container 10 is preferably a sealed vertically long tube. Thereby, it becomes possible to ensure the residence time of the carbon dioxide gas and the solvent in the dissolution tank 4. Moreover, it can be set as the structure which has pressure | voltage resistance with respect to the said setting pressure in a system, and the production | generation of a carbon dioxide dissolved water can be continuously and stably in a short time.

ここで、溶解槽4内の流れについて説明すると、前記炭酸ガス注入口11及び溶媒注入口12から容器10内に圧送された炭酸ガス及び溶媒は、下方ホッパー部17で混合されるとともに下方側多孔板14から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板14に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板14から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。   Here, the flow in the dissolution tank 4 will be described. The carbon dioxide gas and the solvent pumped into the container 10 from the carbon dioxide injection port 11 and the solvent injection port 12 are mixed in the lower hopper 17 and the lower side porous. The plate 14 uniformly enters the filling region of the filler 16. In the filling region of the filler 16, the solvent and carbon dioxide are sufficiently stirred together with the flow between the fillers 16 to dissolve the carbon dioxide in the solvent and flow upward. By this action, when the upper porous plate 14 is reached, carbon dioxide-dissolved water in which carbon dioxide is substantially dissolved in the solvent is generated, and reaches the saturated dissolution level of the solvent. Thereafter, the carbon dioxide-dissolved water that has entered the upper hopper 18 from the upper porous plate 14 is discharged from the discharge port 13.

前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。   In the dissolution tank 4, it is desirable to provide one or a plurality of rectifying plates 19 in which a large number of openings are formed so as to partition the flow path in the filling region of the filler 16. By providing the rectifying plate 19, the flow of the carbon dioxide gas and the solvent by the filler 16 is made uniform, and the dissolution of the carbon dioxide gas in the dissolution tank 4 is improved by increasing the chance of contact between them. The residence time in the dissolution tank 4 and the carbon dioxide gas dissolution amount are in a generally proportional relationship up to the saturation concentration level. Therefore, the apparatus scale is set so that the residence time according to the target dissolution amount is obtained under predetermined operating conditions. It is desirable to set.

前記分離槽6は、図3に示されるように、密閉された容器20の内部に下面から所定高さで立設し、前記溶解槽4を通過した炭酸ガス溶解水の流路と接続した流入管21が設けられ、概ね前記炭酸ガス溶解水で容器20内が満たされて、未溶解炭酸ガスが上方側に重力分離されるとともに、前記容器20の上部に、前記未溶解炭酸ガスを吐出する未溶解炭酸ガス吐出口22が形成され、前記容器20の下方に、前記未溶解炭酸ガスが分離された後の炭酸ガス溶解水を吐出する炭酸ガス溶解水吐出口23が形成されて構成されている。   As shown in FIG. 3, the separation tank 6 is erected in a sealed container 20 at a predetermined height from the lower surface and connected to a flow path of carbon dioxide dissolved water that has passed through the dissolution tank 4. A tube 21 is provided, and the inside of the container 20 is substantially filled with the carbon dioxide-dissolved water so that the undissolved carbon dioxide is gravity separated upward, and the undissolved carbon dioxide gas is discharged to the upper part of the container 20. An undissolved carbon dioxide gas discharge port 22 is formed, and a carbon dioxide gas-dissolved water discharge port 23 for discharging the carbon dioxide-dissolved water after the undissolved carbon dioxide gas is separated is formed below the container 20. Yes.

溶解槽1基当たりの溶媒及び炭酸ガスの各流量は、溶解槽4の容積と炭酸ガス及び溶媒の溶解槽4内の滞留時間によって定めた全体流量に対して、注入する炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)から求めることができる。この際、炭酸ガス及び溶媒の重量比は、所望の炭酸ガスの溶解量に基づいて定められる。この炭酸ガス及び溶媒の重量比と炭酸ガスの溶解量との関係については、予め行われる通水試験によって求めておく。   Each flow rate of the solvent and carbon dioxide gas per dissolution tank is the weight of the injected carbon dioxide gas and solvent with respect to the total flow rate determined by the volume of the dissolution tank 4 and the residence time of the carbon dioxide gas and solvent in the dissolution tank 4. It can be determined from the ratio (carbon dioxide weight / solvent weight). At this time, the weight ratio between the carbon dioxide gas and the solvent is determined based on the desired amount of carbon dioxide dissolved. The relationship between the weight ratio of the carbon dioxide gas and the solvent and the dissolved amount of the carbon dioxide gas is determined by a water flow test performed in advance.

後段の実施例で詳述するように、前記溶解槽4での溶解濃度は、注入される炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)に影響する。具体的には、注入される前記重量比が大きくなると、溶解槽4での溶解濃度が大きくなる傾向にあるため、炭酸ガスの溶解を促進させる目的で、炭酸ガス及び溶媒の注入重量比は、前記炭酸ガス溶解濃度の目標値より大きく設定することが好ましい。   As will be described in detail in an example at a later stage, the dissolution concentration in the dissolution tank 4 affects the weight ratio of the injected carbon dioxide gas and the solvent (carbon dioxide weight / solvent weight). Specifically, as the weight ratio to be injected increases, the dissolution concentration in the dissolution tank 4 tends to increase. For the purpose of promoting the dissolution of carbon dioxide, the injection weight ratio of carbon dioxide and solvent is: It is preferable to set it larger than the target value of the carbon dioxide gas dissolution concentration.

(炭酸ガスの地中貯留方法)
次に、上記第1形態例に係る地中貯留システム1Aを用いて炭酸ガス溶解水及び未溶解炭酸ガスを地中に貯留・隔離する地中貯留方法について説明する。
(Carbon dioxide underground storage method)
Next, an underground storage method for storing and isolating carbon dioxide-dissolved water and undissolved carbon dioxide in the ground using the underground storage system 1A according to the first embodiment will be described.

先ずはじめに、地中貯留システム1Aによって注入された炭酸ガス溶解水及び未溶解炭酸ガスの帯水層内における貯留・隔離の原理について説明する。   First, the principle of storage / separation in the aquifer of carbon dioxide dissolved water and undissolved carbon dioxide injected by the underground storage system 1A will be described.

前記未溶解炭酸ガスを所定の割合で混入した炭酸ガス溶解水を地中の帯水層に圧入すると、前記炭酸ガス溶解水及び未溶解炭酸ガスは、帯水層内において、2相流体の相対浸透率に従い、所定の貯留領域を形成して貯留・隔離される。具体的には、図4及び図5に示されるように、注入井5の周囲に前記炭酸ガス溶解水とともに前記未溶解炭酸ガスを貯留・隔離する第1貯留領域が形成されるとともに、この第1貯留領域を取り囲むように略同心円状に前記炭酸ガス溶解水のみを貯留・隔離する第2貯留領域が形成される。なお、図5では模式的に各貯留領域が高さhに亘って同一の断面積A1、A2を形成し、均等に平面状に拡散するように図示されているが、実際には注入井5の帯水層における開口部を中心として前記第1貯留領域及び第2貯留領域が略同心円状に拡散すると予測される。   When carbon dioxide-dissolved water mixed with the undissolved carbon dioxide gas at a predetermined ratio is pressed into the aquifer in the ground, the carbon dioxide-dissolved water and undissolved carbon dioxide gas are relative to the two-phase fluid in the aquifer. according permeability, it is stored, isolated by forming a predetermined storage area. Specifically, as shown in FIGS. 4 and 5, a first storage region for storing and isolating the undissolved carbon dioxide gas together with the carbon dioxide dissolved water is formed around the injection well 5. A second storage region for storing and isolating only the carbon dioxide-dissolved water is formed substantially concentrically so as to surround one storage region. In FIG. 5, each storage region is schematically illustrated so as to form the same cross-sectional area A1 and A2 over the height h and spread evenly in a planar shape. It is predicted that the first storage region and the second storage region will diffuse substantially concentrically around the opening in the aquifer.

さらに具体的に帯水層内における流動について詳述すると、前記炭酸ガス溶解水に混入して圧入された未溶解炭酸ガスは、図6に示されるように、注入井5付近から地盤材料(砂、砂岩など)の間隙に、地盤条件に応じた一定割合の炭酸ガス飽和率で捕捉(トラップ)される。ある区間に、地盤条件に応じた一定割合の炭酸ガス飽和率を超えて未溶解炭酸ガスが圧入されると、未溶解炭酸ガスが捕捉(トラップ)される範囲は、注入井5より順次遠方に拡大していく。   More specifically, the flow in the aquifer will be described in detail. As shown in FIG. 6, undissolved carbon dioxide mixed in the carbon dioxide-dissolved water is ground material (sand) from the vicinity of the injection well 5. , Sandstone, etc.) are trapped at a certain rate of carbon dioxide saturation depending on the ground conditions. When undissolved carbon dioxide gas is injected into a section over a certain rate of carbon dioxide saturation according to the ground conditions, the range in which the undissolved carbon dioxide gas is captured (trapped) is gradually distant from the injection well 5. Expand.

一方、炭酸ガス溶解水は、圧入により、注入井5付近から地盤材料の間隙内の地下水と置換されて、注入地点よりその注入範囲が順次遠方へ拡大していく。   On the other hand, the carbon dioxide-dissolved water is replaced with groundwater in the gap between the ground material from the vicinity of the injection well 5 by the press-fitting, and the injection range is gradually expanded farther from the injection point.

すなわち、炭酸ガス溶解水と未溶解炭酸ガスとの質量割合を適切に決定して地中に圧入することにより、未溶解炭酸ガスを地盤材料の間隙内に一定割合で残留トラップさせることができるとともに、飽和濃度レベル付近の高い濃度で炭酸ガスが溶解され、周辺地下水より比重が大きくなった炭酸ガス溶解水を帯水層内に溶解トラップさせることができる。このように、圧入された炭酸ガス溶解水及び未溶解炭酸ガスは、それぞれ長期的かつ安定的に帯水層内に貯留・隔離させることができるようになる。   That is, by appropriately determining the mass ratio of the carbon dioxide-dissolved water and the undissolved carbon dioxide and press-fitting it into the ground, the undissolved carbon dioxide can be trapped at a constant rate in the gap between the ground materials. Carbon dioxide dissolved at a high concentration near the saturation concentration level can be dissolved and trapped in the aquifer. Thus, the injected carbon dioxide-dissolved water and undissolved carbon dioxide can be stored and isolated in the aquifer for a long time and stably.

このような条件の下、本地中貯留方法において、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rを決定する方法について詳説する。   Under such conditions, the method for determining the mass ratio R of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water in the underground storage method will be described in detail.

前記質量割合Rを決定する手順は、図7に示されるように、大きく分けて次の3つの手順からなる。
(1)第1手順:帯水層の炭酸ガスの体積飽和率SCO2の設定
第1手順では、帯水層の間隙率、地下水圧、温度等を考慮して、前記帯水層から採取した原地盤材料を用いた室内試験によって、帯水層の間隙体積に占める貯留可能な未溶解炭酸ガスの体積割合として定義付けられる炭酸ガスの体積飽和率SCO2を測定するか、蓄積された実績データに基づいて前記炭酸ガスの体積飽和率SCO2を推定する。
The procedure for determining the mass ratio R is roughly divided into the following three procedures as shown in FIG.
(1) First procedure: Setting of carbon dioxide gas volume saturation rate S CO2 in the aquifer In the first procedure, the aquifer was taken from the aquifer in consideration of porosity, groundwater pressure, temperature, etc. The volume saturation rate S CO2 of carbon dioxide gas, which is defined as the volume ratio of undissolved carbon dioxide gas that can be stored in the gap volume of the aquifer, is measured or accumulated by laboratory tests using raw ground materials. Based on the above, the volume saturation rate S CO2 of the carbon dioxide gas is estimated.

前記室内試験による炭酸ガスの体積飽和率SCO2の設定方法について説明すると、実験では、図8に示されるように、炭酸ガスボンベ30の炭酸ガスを炭酸ガス圧縮装置33によって加圧して溶解槽35に注入するとともに、塩水タンク31の塩水を溶媒圧送ポンプ34によって加圧して溶解槽35に注入したとき、この溶解槽35に充填された充填材を帯水層内の地盤材料に見立てて、溶解槽35内に存在している未溶解炭酸ガスの量を推定することにより、炭酸ガスの体積飽和率の経時変化を求めた。ここで、溶解槽35の容積は410mlとし、地盤材料を模擬した充填材は、充填材Aとして材質がガラスビーズ、平均粒径が0.60mmのもの、充填材Bとして材質が粒状体砂、平均粒径が0.18mmのものの2種類について実験を行った。前記溶解槽35の後段には「炭酸ガス溶解水」と「未溶解炭酸ガス」とに分離する分離槽36が設置されている。試験圧力を10MPa、塩水流量を15ml/分一定とし、試験温度及び充填材16の種類をそれぞれ変化させたとき、炭酸ガスの体積飽和率及び分離槽36にて分離した炭酸ガス溶解水を大気圧に開放することにより炭酸ガス溶解量の経時変化を測定した。 The method for setting the volume saturation rate S CO2 of the carbon dioxide gas by the laboratory test will be described. In the experiment, as shown in FIG. 8, the carbon dioxide gas in the carbon dioxide cylinder 30 is pressurized by the carbon dioxide gas compression device 33 and is added to the dissolution tank 35. When the salt water in the salt water tank 31 is pressurized by the solvent pressure pump 34 and injected into the dissolution tank 35, the filler filled in the dissolution tank 35 is regarded as the ground material in the aquifer. By estimating the amount of undissolved carbon dioxide gas present in 35, the change with time in the volume saturation of carbon dioxide gas was determined. Here, the volume of the dissolution tank 35 is 410 ml, and the filler simulating the ground material is made of glass beads as the filler A, an average particle size of 0.60 mm, and the material as the filler B is granular sand, Experiments were conducted on two types having an average particle size of 0.18 mm. A separation tank 36 that separates into “carbon dioxide-dissolved water” and “undissolved carbon dioxide” is installed at the subsequent stage of the dissolution tank 35. When the test pressure is 10 MPa, the salt water flow rate is constant at 15 ml / min, and the test temperature and the type of the filler 16 are changed, the carbon dioxide volume saturation and the carbon dioxide dissolved water separated in the separation tank 36 are atmospheric pressure. The change over time in the amount of carbon dioxide dissolved was measured.

前記炭酸ガスの体積飽和率SCO2は、〔溶解槽4内に存在している未溶解炭酸ガスの体積〕/〔多孔質体の間隙体積〕から求めた。ここで、〔溶解槽4内に存在している未溶解炭酸ガスの体積〕は、σ:溶解槽4に注入した炭酸ガス量、σ:溶解槽4から流出する未溶解炭酸ガス量、σ:溶解槽4から溶媒に溶解して流出する炭酸ガス量、σ:溶解槽4内で溶媒に溶解して存在している炭酸ガス量とすると、(σ−(σ+σ+σ))により推定可能である。 The volume saturation rate S CO2 of the carbon dioxide gas was obtained from [volume of undissolved carbon dioxide gas existing in the dissolution tank 4] / [gap volume of the porous body]. Here, [volume of undissolved carbon dioxide gas existing in the dissolution tank 4] is σ 1 : amount of carbon dioxide gas injected into the dissolution tank 4, σ 2 : amount of undissolved carbon dioxide gas flowing out from the dissolution tank 4, Assuming that σ 3 is the amount of carbon dioxide dissolved in the solvent from the dissolution tank 4 and σ 4 is the amount of carbon dioxide present dissolved in the solvent in the dissolution tank 4, (σ 1 − (σ 2 + σ 3 + Σ 4 )).

この結果、図9〜図12に示されるように、地盤材料(充填材)の間隙内に留まる未溶解炭酸ガスの体積(炭酸ガスの体積飽和率)は、経時的に増加した後、一定値に収束する。この収束した値を前記炭酸ガスの体積飽和率SCO2とすることができる。 As a result, as shown in FIGS. 9 to 12, the volume of undissolved carbon dioxide gas (volume saturation rate of carbon dioxide gas) remaining in the gap between the ground materials (fillers) increases with time, and then reaches a constant value. Converge to. This converged value can be used as the volume saturation rate S CO2 of the carbon dioxide gas.

一方、図9〜図12の結果からも明らかなように、多孔質体のような地盤では、未溶解炭酸ガスを混入して圧入することにより、前記未溶解炭酸ガスが地中の間隙内に残留トラップして、安定的に捕捉可能となることが確認された。   On the other hand, as is clear from the results of FIGS. 9 to 12, in the ground such as the porous body, the undissolved carbon dioxide gas is injected into the underground gap by mixing and injecting the undissolved carbon dioxide gas. remaining trapped, it was confirmed that a stable capturable.

また、図13〜図16に示されるように、多孔質体の間隙内に留まる未溶解炭酸ガスの体積飽和率が一定になることにより、炭酸ガスの溶媒への溶解量も一定になる。   Further, as shown in FIGS. 13 to 16, the volume saturation rate of the undissolved carbon dioxide gas remaining in the gap between the porous bodies becomes constant, so that the amount of carbon dioxide dissolved in the solvent becomes constant.

(2)第2手順:帯水層における第1貯留領域の体積Vと第2貯留領域の体積Vの設定
第2手順では、帯水層の分布(面積、層厚)、間隙率、地下水圧、温度、炭酸ガスの飽和率、炭酸ガス溶解水の炭酸ガスの質量割合等を考慮して、帯水層において、注入井5の周囲に炭酸ガス溶解水とともに未溶解炭酸ガスを貯留・隔離する第1貯留領域の体積Vと、この第1貯留領域を取り囲むように略同心円状に炭酸ガス溶解水を貯留・隔離する第2貯留領域の体積Vとの体積比V/Vを設定する。ここで、帯水層に形成される第1貯留領域及び第2貯留領域が、図4及び図5に示されるように、所定高さhに亘って同一の断面積A、Aであるとすると、第1貯留領域の体積V=A×h、第2貯留領域の体積V=A×hであるから、前記体積比V/Vは面積比A/Aで表すことができる。
(2) Second procedure: Setting the volume V 1 of the first reservoir region and the volume V 2 of the second reservoir region in the aquifer In the second procedure, the distribution (area, layer thickness), porosity, In consideration of the groundwater pressure, temperature, carbon dioxide saturation rate, carbon dioxide mass ratio of carbon dioxide dissolved water, etc., in the aquifer, undissolved carbon dioxide is stored around the injection well 5 together with carbon dioxide dissolved water. Volume ratio V 2 / V between the volume V 1 of the first storage area to be isolated and the volume V 2 of the second storage area that stores and isolates the carbon dioxide-dissolved water substantially concentrically so as to surround the first storage area. 1 is set. Here, as shown in FIGS. 4 and 5, the first storage region and the second storage region formed in the aquifer have the same cross-sectional areas A 1 and A 2 over a predetermined height h. Then, since the volume V 1 = A 1 × h of the first storage region and the volume V 2 = A 2 × h of the second storage region, the volume ratio V 2 / V 1 is the area ratio A 2 / A 1. Can be expressed as

前記体積比V/V(面積比A/A)を設定することにより、下式(1)、(2)から各領域の炭酸ガスの貯留質量が求まり、必要な未溶解炭酸ガスの注入量を設定することができるようになる。 By setting the volume ratio V 2 / V 1 (area ratio A 2 / A 1 ), the stored mass of carbon dioxide gas in each region is obtained from the following formulas (1) and (2), and the necessary undissolved carbon dioxide gas The amount of injection can be set.

(3)第3手順:注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rの決定
第3手順では、帯水層の分布(面積、層厚)、間隙率、地下水圧、温度、浸透率、炭酸ガス溶解水及び炭酸ガスの相対浸透率、毛管圧特性、地下水塩濃度等の帯水層における各種特性や、炭酸ガス溶解水及び未溶解炭酸ガスの圧入量等を考慮して、注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rを決定する。
(3) Third procedure: Determination of mass ratio R of undissolved carbon dioxide mixed in carbon dioxide dissolved water to be injected In the third procedure, aquifer distribution (area, layer thickness), porosity, groundwater pressure, temperature In consideration of various characteristics in the aquifer such as permeability, relative permeability of carbon dioxide-dissolved water and carbon dioxide, capillary pressure characteristics, groundwater salt concentration, and the amount of pressurization of carbon dioxide-dissolved water and undissolved carbon dioxide The mass ratio R of undissolved carbon dioxide mixed in the carbon dioxide-dissolved water to be injected is determined.

前記質量割合Rは、以下の計算方法による。
CO2:未溶解炭酸ガスの体積飽和率(帯水層間隙に占める未溶解炭酸ガスの体積割合)
:炭酸ガス溶解水の体積飽和率(帯水層間隙に占める炭酸ガス溶解水の体積割合)
ρCO2:未溶解炭酸ガスの密度
ρ:炭酸ガス溶解水の密度
CO2 :炭酸ガス溶解水に溶解している炭酸ガスの質量割合(炭酸ガスの質量分率)
×h:第1貯留領域の体積
×h:第2貯留領域の体積
φ:帯水層の間隙率
この場合、第1貯留領域における炭酸ガス(未溶解炭酸ガス及び炭酸ガス溶解水に溶解している炭酸ガス)の貯留質量Wは、次式(1)により計算できる。なお、添字Iは、第1貯留領域における各値であることを示す。

Figure 2011005378
The mass ratio R is based on the following calculation method.
S CO2 : Volume saturation of undissolved carbon dioxide (volume ratio of undissolved carbon dioxide in the aquifer gap)
S S : Volume saturation of carbon dioxide-dissolved water (volume ratio of carbon dioxide-dissolved water in the aquifer gap)
ρ CO2 : density of undissolved carbon dioxide ρ S : density of carbon dioxide dissolved water X CO2 S : mass ratio of carbon dioxide dissolved in carbon dioxide dissolved water (mass fraction of carbon dioxide)
A 1 × h: Volume of the first storage region A 2 × h: Volume of the second storage region φ: Porosity of the aquifer In this case, carbon dioxide gas in the first storage region (undissolved carbon dioxide and carbon dioxide dissolved water) reservoir mass W 1 of the carbon dioxide gas) dissolved in can be calculated by the following equation (1). Note that the subscript I indicates each value in the first storage area.
Figure 2011005378

また、第2貯留領域における炭酸ガス(炭酸ガス溶解水に溶解している炭酸ガス)の貯留質量Wは、次式(2)により計算できる。なお、添字IIは、第2貯留領域における各値であることを示す。

Figure 2011005378
In addition, the storage mass W 2 of carbon dioxide gas (carbon dioxide dissolved in carbon dioxide-dissolved water) in the second storage region can be calculated by the following equation (2). The subscript II indicates each value in the second storage area.
Figure 2011005378

上式(1)、(2)から、注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rは、次式(3)により算定できる。

Figure 2011005378
From the above formulas (1) and (2), the mass ratio R of the undissolved carbon dioxide mixed in the carbon dioxide dissolved water to be injected can be calculated by the following formula (3).
Figure 2011005378

ここで、前記質量割合Rの変化を見るために、
SI=1−SCO2I
SII=1
ρSI=ρSII
CO2I =XCO2II
とすると、前記質量割合Rは、次式(4)のように変形できる。

Figure 2011005378
Here, in order to see the change of the mass ratio R,
S SI = 1-S CO2I
S SII = 1
ρ SI = ρ SII
X CO2I S = X CO2 II S
Then, the mass ratio R can be transformed as the following formula (4).
Figure 2011005378

以上の通り、帯水層の炭酸ガスの体積飽和率SCO2を設定するとともに、帯水層における第1貯留領域と第2貯留領域の体積比V/V(面積比A/A)を設定することにより、上式(3)又は(4)から、注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rが算定できるようになる。 As described above, the volume saturation rate S CO2 of the carbon dioxide gas in the aquifer is set, and the volume ratio V 2 / V 1 (area ratio A 2 / A 1) of the first storage region and the second storage region in the aquifer. ), The mass ratio R of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water to be injected can be calculated from the above formula (3) or (4).

このとき、第2貯留領域と第1貯留領域の面積比A/Aと炭酸ガスの体積飽和率SCO2をパラメータとして、帯水層の水圧を10MPa、温度を40℃とした場合について、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rの変化を計算した結果を図17に示す。 At this time, using the area ratio A 2 / A 1 of the second storage region and the first storage region and the volume saturation rate S CO2 of carbon dioxide as parameters, the water pressure of the aquifer is 10 MPa, and the temperature is 40 ° C. FIG. 17 shows the result of calculating the change in the mass ratio R of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water.

同図17に示されるように、前記第2手順において目標とする第1貯留領域と第2貯留領域の体積を設定することにより、地盤条件に応じた炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rが算定できる。この図17の結果、同時に圧入する未溶解の炭酸ガスと溶媒質量の割合は、帯水層における炭酸ガスの貯留量、炭酸ガス飽和率、帯水層の間隙率・地下水圧・温度等の条件に応じて、最大25%程度まで上げることが可能と判断される。   As shown in FIG. 17, undissolved carbon dioxide mixed in carbon dioxide-dissolved water according to the ground conditions by setting the volumes of the first storage region and the second storage region targeted in the second procedure. Mass ratio R can be calculated. As a result of FIG. 17, the ratio of the undissolved carbon dioxide gas and the solvent mass that are simultaneously injected depends on conditions such as the amount of carbon dioxide stored in the aquifer, the carbon dioxide saturation rate, the porosity of the aquifer, the groundwater pressure, and the temperature. depending on, is determined can be increased up to about 25%.

このように、飽和濃度付近で溶解した炭酸ガス溶解水と併せて未溶解炭酸ガスを帯水層に圧入できるため、溶媒の使用量を減らすことが可能となり、溶媒を確保するために必要なコスト及び溶媒を圧送するコストを削減することが可能となる。例えば、帯水層へ圧入する未溶解炭酸ガスの質量を溶媒質量の5%とすると、溶媒に溶解する炭酸ガスの質量比率が4〜5%、未溶解で貯留される炭酸ガスの質量比率が5%となる。この場合、炭酸ガスを全量溶解する場合に比べて、貯留に必要な溶媒の質量比率は、約44〜50%に抑えることができる。   In this way, since undissolved carbon dioxide can be injected into the aquifer together with carbon dioxide-dissolved water dissolved near the saturation concentration, the amount of solvent used can be reduced, and the cost required to secure the solvent In addition, the cost of pumping the solvent can be reduced. For example, if the mass of the undissolved carbon dioxide gas injected into the aquifer is 5% of the solvent mass, the mass ratio of the carbon dioxide gas dissolved in the solvent is 4 to 5%, and the mass ratio of the undissolved carbon dioxide gas is 5%. In this case, the mass ratio of the solvent necessary for storage can be suppressed to about 44 to 50%, compared with the case where the entire amount of carbon dioxide gas is dissolved.

また、帯水層の地質状況が複雑な場合(場所によって地盤条件が異なる場合など)には、地質状況に応じて区分して、各区分における炭酸ガスの貯留状況を計算し、集約することで同様に求めることができる。   In addition, when the geological situation of the aquifer is complex (such as when the ground conditions vary depending on the location), the storage status of carbon dioxide gas in each division is calculated and aggregated by dividing according to the geological situation. It can be obtained similarly.

上式(3)又は(4)によって算定した質量割合Rについて、次に述べるように種々の判断要素を考慮して、帯水層に注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rを最終的に決定する。   Regarding the mass ratio R calculated by the above equation (3) or (4), the mass of undissolved carbon dioxide mixed in the carbon dioxide-dissolved water injected into the aquifer is considered in consideration of various judgment factors as described below. The ratio R is finally determined.

第1の判断要素として、図7に示されるように、圧入浸透流解析による帯水層内における炭酸ガス溶解水と未溶解炭酸ガスの貯留状況を確認した上で注入可能か判断する。すなわち、帯水層の地盤条件について、水飽和率に対する炭酸ガス溶解水の相対浸透率及び未溶解炭酸ガスの相対浸透率を表す線図を得ておき、任意の水飽和率における炭酸ガス溶解水及び未溶解炭酸ガスの浸透率から帯水層内の流動をシミュレーションし、注入可能か否かを判別する。例えば、注入圧力が実現可能な圧力を超えた等の場合、未溶解炭酸ガスの混入割合及び/又は注入範囲を変更して再度前記質量割合Rを算定する。   As a first determination factor, as shown in FIG. 7, it is determined whether or not injection is possible after confirming the storage state of carbon dioxide-dissolved water and undissolved carbon dioxide gas in the aquifer by the intrusion flow analysis. That is, for the ground conditions of the aquifer, a graph showing the relative permeability of carbon dioxide-dissolved water relative to the water saturation and the relative permeability of undissolved carbon dioxide is obtained, and the carbon dioxide-dissolved water at an arbitrary water saturation is obtained. The flow in the aquifer is simulated from the permeability of undissolved carbon dioxide gas, and it is determined whether or not injection is possible. For example, when the injection pressure exceeds a realizable pressure, the mixing ratio of undissolved carbon dioxide gas and / or the injection range is changed, and the mass ratio R is calculated again.

第2の判断要素として、同図7に示されるように、注入可能な注入条件を得た場合に、未溶解炭酸ガスを混入する効果について、主に経済性などの面から評価する。例えば、未溶解炭酸ガスを混入するための設備建設コストや使用エネルギー、さらには混入させる溶媒(海水及び/又は水)の使用量などを考慮して、これらのコスト及びエネルギーが過大とならないか、最適な貯留条件であるかを判断する。最適な貯留条件でない場合には、未溶解炭酸ガスの混入割合を変更して再度前記質量割合Rを算定する。最適な貯留条件である場合には、その質量割合Rを、注入する炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合Rとして決定する。   As a second determination factor, as shown in FIG. 7, when an injectable injection condition is obtained, the effect of mixing undissolved carbon dioxide gas is evaluated mainly from the aspect of economy. For example, considering the construction cost and energy used for mixing undissolved carbon dioxide, and the amount of solvent used (seawater and / or water) to be mixed, are these costs and energy excessive? Determine whether the storage conditions are optimal. If it is not the optimum storage condition, the mixing ratio of undissolved carbon dioxide gas is changed and the mass ratio R is calculated again. In the case of the optimal storage conditions, the mass ratio R is determined as the mass ratio R of the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water to be injected.

〔第2形態例〕
次に、第2形態例に係る炭酸ガスの地中貯留方法について説明する。本第2形態例では、前述の第1形態例と比較して、使用する地中貯留システムが相違している。具体的には、本第2形態例では、溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入している。
[Second embodiment]
Next, the underground storage method for carbon dioxide gas according to the second embodiment will be described. The second embodiment is different from the first embodiment described above in the underground storage system to be used. Specifically, in the second embodiment, the carbon dioxide-dissolved water discharged from the dissolution tank is pressed into the underground aquifer while containing undissolved carbon dioxide.

(炭酸ガスの地中貯留システム1B)
炭酸ガスの地中貯留システム1Bは、図18に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4、4…と、生成された炭酸ガス溶解水を地中の帯水層に圧入するために地表面から前記帯水層まで貫入させた注入井5とから主に構成され、前記溶解槽4から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしたものである。また、前記溶解槽4の前段には、液体又は超臨界状態まで圧縮された炭酸ガスを細泡化して溶媒中に混入させる細泡化装置7、7…が設けられている。
(Carbon dioxide underground storage system 1B)
As shown in FIG. 18, the carbon dioxide underground storage system 1 </ b> B includes a carbon dioxide compression device 2 that compresses carbon dioxide to a liquid or supercritical state, and a pressure feed that compresses and conveys a solvent composed of seawater and / or water. The pump 3, the compressed carbon dioxide gas and the solvent are injected, a plurality of dissolution tanks 4, 4... To dissolve the carbon dioxide gas in the solvent to obtain carbon dioxide-dissolved water, and the generated carbon dioxide-dissolved water It is mainly composed of an injection well 5 that penetrates from the ground surface to the aquifer in order to press-fit it into the underground aquifer. Carbon dioxide dissolved water discharged from the dissolution tank 4 is converted into undissolved carbon dioxide. In this state, it is pressed into the underground aquifer. Further, in the previous stage of the dissolution tank 4, there are provided fine foaming devices 7, 7... For finely forming a liquid or carbon dioxide gas compressed to a supercritical state and mixing it into a solvent.

前記細泡化装置7は、液体又は超臨界状態まで圧縮した炭酸ガスを細泡化して溶媒中に混入させ、炭酸ガスと溶媒との接触面積の増大化により炭酸ガスの溶解を促進させるためのものである。この細泡化装置7は、単独で使用されるか、好ましくは後述のように、溶解槽4と組み合わせて使用される。   The fine foaming device 7 is used to promote the dissolution of carbon dioxide gas by increasing the contact area between the carbon dioxide gas and the solvent by making the carbon dioxide gas compressed to a liquid or supercritical state into fine bubbles and mixing in the solvent. Is. This fine foaming device 7 is used alone or preferably in combination with the dissolution tank 4 as described later.

前記細泡化装置7としては、図19に示されるように、海水及び/又は水を溶媒として、これらの溶媒を所定の高流速で流した主流管路30に対して、これを外嵌する炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は主流管路30の管路壁面に細孔30a、30a…を形成し、前記主流管路30を流れる溶媒のせん断力によって、液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させる細泡化装置7Aとすることができる。   As shown in FIG. 19, the fine foaming device 7 is externally fitted to a main flow line 30 in which seawater and / or water is used as a solvent and these solvents are flowed at a predetermined high flow rate. A carbon dioxide gas supply pipe 31 is provided, and pores 30a, 30a... Are formed on a pipe wall surface for partitioning the solvent and carbon dioxide gas, in the illustrated example, on the pipe wall surface of the main flow pipe 30. By the shearing force of the solvent flowing through the passage 30, it is possible to obtain a fine foaming device 7A that mixes liquid or carbon dioxide gas compressed to a supercritical state while fine foaming.

前記細孔30aは、複数配置する場合は、図示されるように、主流管路30の管路壁面に、周方向に均等配置としかつ軸方向に間隔を空けて多段配置で複数設けるのが望ましい。   When a plurality of the pores 30a are arranged, as shown in the figure, it is desirable that the pores 30a are arranged on the pipe wall surface of the mainstream pipe 30 uniformly in the circumferential direction and in a multistage arrangement at intervals in the axial direction. .

前記溶媒の流速、前記細孔30aの孔径は、後述の実施例2−3に従って、下式(5)によって求められるウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、8×10−2m/s以上であることを条件とする。

Figure 2011005378
The flow rate of the solvent and the pore diameter of the pores 30a are desirably set so that the Weber number (We) obtained by the following formula (5) is 10 or more according to Example 2-3 described later. However, the flow rate of the carbon dioxide gas from the pore is required to be 8 × 10 −2 m / s or more.
Figure 2011005378

なお、前記細泡化された炭酸ガスの径は、概ね0.05〜0.2mm程度で十分であり、特にマイクロレベル(10〜数十μm)までは細泡化する必要はない。   The diameter of the fine carbon dioxide gas is about 0.05 to 0.2 mm, and it is not necessary to make it fine up to the micro level (10 to several tens of μm).

また、細泡化装置7B、7Cとして、図20及び図21に示されるように、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させるものであってもよい。   Further, as shown in FIG. 20 and FIG. 21, as the foaming devices 7B and 7C, a carbon dioxide gas supply line 31 is disposed inside the main flow line 30 in which the solvent is flowed at a predetermined high flow rate. The pores 31 a, 31 a... Are formed on the wall surface of the pipe line that separates the solvent and the carbon dioxide gas, in the illustrated example, the pipe wall surface of the carbon dioxide gas supply pipe 31, and the shearing force of the solvent flowing through the main flow line 30 A carbon dioxide gas compressed to a liquid state or a supercritical state may be mixed while being finely bubbled.

この細泡化装置7を地中貯留システム1Bに組み込む場合、図22に示されるように、各溶解槽4の下部に設置され、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させる細泡化装置7とすることができる。   When this fine foaming device 7 is incorporated into the underground storage system 1B, as shown in FIG. 22, it is installed in the lower part of each dissolution tank 4 and is placed inside the main flow line 30 through which the solvent flows at a predetermined high flow rate. The carbon dioxide gas supply pipe 31 is disposed, and pores 31a, 31a,... Are formed on the pipe wall surface of the carbon dioxide gas supply pipe 31 that partitions the solvent and the carbon dioxide gas, and the solvent flowing through the main flow pipe 30 is formed. It can be set as the fine foaming apparatus 7 which mixes liquid or the carbon dioxide gas compressed to the supercritical state by shear force, making it fine foam.

前記溶解槽4は、同図22に示されるように、密閉された容器10の下部に、前記細泡化装置7によって細泡化された炭酸ガスが混入された溶媒が注入される注入口9とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。また、前記注入口9にはメッシュ板15が設置されている。   In the dissolution tank 4, as shown in FIG. 22, an inlet 9 into which a solvent mixed with carbon dioxide gas finely bubbled by the fine bubbler 7 is injected into the lower part of a sealed container 10. And a discharge port 13 through which the carbon dioxide-dissolved water is discharged is formed in the upper part of the container 10, and a porous partitioning the inside of the container 10 vertically in the lower and upper parts of the container 10, respectively. Plates 14 and 14 are arranged, respectively, and a granular filler 16 is filled between the porous plates 14 and 14. Furthermore, the mesh plate 15 is installed on the inlet 9.

(炭酸ガスの地中貯留方法)
次に、上記第2形態例に係る地中貯留システム1Bを用いた炭酸ガスの地中貯留方法について、上記第1形態例に係る地中貯留方法と異なる点を説明する。
(Carbon dioxide underground storage method)
Next, regarding the underground storage method for carbon dioxide using the underground storage system 1B according to the second embodiment, differences from the underground storage method according to the first embodiment will be described.

図23に示されるように、第2形態例に係る地中貯留方法は、上記第1形態例に係る地中貯留方法に対して、未溶解炭酸ガスの質量割合Rを決定する手順において、第1手順と第2手順との間に第1’手順を有する点で相違する。   As shown in FIG. 23, the underground storage method according to the second embodiment is the first in the procedure for determining the mass ratio R of the undissolved carbon dioxide gas with respect to the underground storage method according to the first embodiment. It differs between the 1 procedures and second procedures in that it has a first 'procedure.

前記第1’手順では、本第2形態例に係る地中貯留システム1Bが溶解槽4から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で地中の帯水層に圧入するため、溶解槽4にて炭酸ガス溶解水に溶解する炭酸ガスの質量割合XCO2 を設定するものである。これにより、炭酸ガス溶解水に混入することになる未溶解炭酸ガスの質量割合が算定可能となる。 In the first 'procedure, the underground storage system 1B according to the second embodiment is used to convert the carbon dioxide dissolved water discharged from the dissolution tank 4 into the underground aquifer while containing undissolved carbon dioxide. In order to press-fit, the mass ratio X CO2 S of the carbon dioxide dissolved in the carbon dioxide-dissolved water in the dissolution tank 4 is set. Thereby, the mass ratio of the undissolved carbon dioxide gas mixed in the carbon dioxide-dissolved water can be calculated.

炭酸ガス溶解水に溶解している質量割合XCO2 は、溶解槽4にて溶媒に溶解させる炭酸ガスの質量分率であり、圧入後においては帯水層での水圧・温度・希釈等を考慮して設定される。 The mass ratio X CO2 S dissolved in the carbon dioxide-dissolved water is the mass fraction of carbon dioxide dissolved in the solvent in the dissolution tank 4, and the water pressure, temperature, dilution, etc. in the aquifer after injection Set in consideration.

前記炭酸ガス溶解水に溶解している炭酸ガスの質量割合XCO2 を設定することにより、溶媒に溶解する炭酸ガスの量と混入する未溶解炭酸ガスの量とを合計した量の炭酸ガスを炭酸ガス圧縮装置2で圧送すればよく、地中貯留システム1Bに供給する炭酸ガスの量を一元的に管理できるようになる。 By setting the mass ratio X CO2 S of the carbon dioxide dissolved in the carbon dioxide-dissolved water, the amount of carbon dioxide is the sum of the amount of carbon dioxide dissolved in the solvent and the amount of undissolved carbon dioxide mixed. The amount of carbon dioxide supplied to the underground storage system 1B can be centrally managed by pumping with the carbon dioxide compressor 2.

本地中貯留システム1による炭酸ガスの溶解状態を実証するため、図8に示される実験装置を用いて炭酸ガスの溶解実験を行った。なお、細泡化装置7は後述の実施例2の細泡化装置有りのケースにおいて設置した。   In order to verify the state of carbon dioxide dissolution by the underground storage system 1, a carbon dioxide dissolution experiment was performed using the experimental apparatus shown in FIG. In addition, the fine foaming apparatus 7 was installed in the case with the fine foaming apparatus of Example 2 mentioned later.

実験装置は、炭酸ガスボンベ30の炭酸ガスを炭酸ガス圧縮装置33によって加圧して溶解槽35に注入するとともに、塩水タンク31の塩水を溶媒圧送ポンプ34によって加圧して溶解槽35に注入し、溶解槽35で炭酸ガスの溶解処理を行い、この炭酸ガス溶解水を分離槽36で未溶解炭酸ガスを分離した後の炭酸ガス溶解水をサンプリングする。ここで、溶解槽35の容積は850mlとし、充填材16は、平均粒径が0.18mm(粒度1)、0.63mm(粒度2)、1.32mm(粒度3)の砂状のものを使用した。実験では、温度、圧力、塩水流量、充填材16の粒度及び炭酸ガスと塩水の重量比(炭酸ガス重量/塩水重量)をそれぞれ変化させたとき、サンプリングした炭酸ガス溶解水の炭酸ガス溶解量を測定した。   The experimental apparatus pressurizes the carbon dioxide gas in the carbon dioxide gas cylinder 30 by the carbon dioxide gas compression device 33 and injects it into the dissolution tank 35, and pressurizes the salt water in the salt water tank 31 by the solvent pressure pump 34 and injects it into the dissolution tank 35 to dissolve it. Carbon dioxide dissolved in the tank 35 is sampled, and the carbon dioxide-dissolved water after the undissolved carbon dioxide is separated in the separation tank 36 is sampled. Here, the volume of the dissolution tank 35 was 850 ml, and the filler 16 used was a sand-like one having an average particle size of 0.18 mm (particle size 1), 0.63 mm (particle size 2), and 1.32 mm (particle size 3). In the experiment, when the temperature, pressure, salt water flow rate, particle size of the filler 16 and the weight ratio of carbon dioxide and salt water (carbon dioxide weight / salt water weight) were changed, the amount of carbon dioxide dissolved in the sampled carbon dioxide dissolved water was changed. It was measured.

図24、図25は、各温度における塩水流量及び充填材16の粒度をそれぞれ変化させたときの溶解槽35に注入する炭酸ガス及び塩水の重量比(炭酸ガス重量/塩水重量)と炭酸ガス溶解量との関係を示すグラフである。この結果、温度29℃、33℃のいずれの試験温度においても、炭酸ガスと塩水の重量比を増大させるほど、また充填材16の粒度を小さくするほど炭酸ガス溶解量が大きくなる傾向にある。   24 and 25 show the weight ratio of carbon dioxide gas and salt water (carbon dioxide gas weight / salt water weight) injected into the dissolution tank 35 and the dissolution of carbon dioxide gas when the flow rate of salt water at each temperature and the particle size of the filler 16 are changed. It is a graph which shows the relationship with quantity. As a result, at any of the test temperatures of 29 ° C. and 33 ° C., the amount of carbon dioxide dissolved tends to increase as the weight ratio of carbon dioxide to salt water increases and the particle size of the filler 16 decreases.

図26〜図28は、各温度における塩水流量及び圧力をそれぞれ変化させたときの前記重量比と炭酸ガス溶解量との関係を示すグラフである。この結果、前述と同様に、炭酸ガスと塩水の重量比を増大させるほど、炭酸ガス溶解量が増大する傾向にあるが、ある重量比以上では炭酸ガス溶解量がほぼ一定の飽和濃度レベルとなり、本地中貯留システムの有効性が確認された。   26 to 28 are graphs showing the relationship between the weight ratio and the amount of dissolved carbon dioxide gas when the salt water flow rate and pressure at each temperature are changed. As a result, as described above, as the weight ratio of carbon dioxide and salt water increases, the amount of dissolved carbon dioxide tends to increase, but at a certain weight ratio or more, the amount of dissolved carbon dioxide becomes a substantially constant saturation concentration level, The effectiveness of the underground storage system was confirmed.

図29は、各圧力における温度と炭酸ガス溶解量との関係を示すグラフである。この結果、25℃〜40℃の範囲の一般的な温度条件においては、炭酸ガス溶解量に大きく影響を及ぼさないことが確認された。また、15℃〜20℃の相対的低温条件では、炭酸ガスの溶解が促進されることが確認された。   Figure 29 is a graph showing the relationship between temperature and carbon dioxide dissolved amount at each pressure. As a result, it was confirmed that, under general temperature conditions in the range of 25 ° C. to 40 ° C., the carbon dioxide dissolution amount was not greatly affected. Further, it was confirmed that the dissolution of carbon dioxide gas was promoted at a relatively low temperature condition of 15 ° C. to 20 ° C.

図30は、各塩水流量における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。この結果、本実施例では、充填材の平均粒径は、平均粒径1.0mm以下とすることにより、炭酸ガスの溶解効率に優れるようになる。   FIG. 30 is a graph showing the relationship between the average particle diameter of the filler and the amount of carbon dioxide dissolved at each brine flow rate. As a result, in this example, the average particle size of the filler is excellent in the dissolution efficiency of carbon dioxide gas by setting the average particle size to 1.0 mm or less.

(実施例2−1)
本実施例2−1では、本地中貯留システム1による前記細泡化装置7での溶解効果、前記溶解槽35での溶解効果を定量的に検証するための実験を行った。
(Example 2-1)
In Example 2-1, an experiment for quantitatively verifying the dissolution effect in the fine foaming device 7 and the dissolution effect in the dissolution tank 35 by the underground storage system 1 was performed.

実験は、ケース1:溶解槽35の充填材無し及び細泡化装置7無し、ケース2:溶解槽35の充填材無し及び細泡化装置7有り、ケース3:溶解槽35の充填材有り及び細泡化装置7有りの3ケースとし、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の2種類について溶解試験を行った。   The experiments were: Case 1: No filler in the dissolution tank 35 and no foaming device 7, Case 2: No filler in the dissolution tank 35 and a fine foaming device 7, Case 3: With a filler in the dissolution tank 35, and (1) Test pressure: 15 MPa, test temperature: 29 ° C., (carbon dioxide / brine water) weight ratio: about 8%, (2) Test pressure: 15 MPa, test temperature: 33 A dissolution test was conducted on two types of C, and (carbon dioxide / salt water) weight ratio: about 8%.

その結果を図31に示す。同図31より、細泡化装置7単独によってもかなり炭酸ガスの溶解が促進されている事、更に細泡化装置7と溶解槽35とを組合せることによって、更に溶解が促進されることが実証できた。   The result is shown in FIG. From FIG. 31, the dissolution of carbon dioxide gas is considerably promoted by the fine foaming device 7 alone, and further, the dissolution is further promoted by combining the fine foaming device 7 and the dissolution tank 35. I was able to prove.

(実施例2−2)
本実施例2−2では、前記細泡化装置7による溶解促進効果の検証実験を行った。
(Example 2-2)
In the present Example 2-2, verification experiment of the melt | dissolution promotion effect by the said bubble reduction apparatus 7 was conducted.

一般に、炭酸ガス溶解量と溶解槽の容器高さZとの間には、下式(6)の関係が成り立つことが判明している。

Figure 2011005378
In general, it has been found that the relationship of the following equation (6) holds between the amount of carbon dioxide dissolved and the container height Z of the dissolution tank.
Figure 2011005378

溶解に要する容器の高さZは、総括容量係数Kaに依存しており、この総括容量係数Kaを溶解効率を表す指標とした。実験は、細泡化装置無しと細泡化装置有りの各ケースについて、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約10%、(3)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の3種類について試験を行い、図32〜図34に示されるように、縦軸を総括容量係数Ka(mol/m3・s)とし、横軸を水の断面モル流速(mol/(m2・s))とするグラフを得た。同図32〜図34のグラフによれば、水の断面モル流速(mol/(m2・s))の高い領域においては、細泡化装置有りのケースが細泡化装置無しのケースに比べて、総括容量係数Kaが1.5倍以上になることが判明した。 The height Z of the container required for dissolution is dependent on overall capacity coefficient K X a, and the overall capacity coefficient K X a as an index representing the dissolution efficiency. The experiment is for each case without a foaming device and with a foaming device. (1) Test pressure: 15 MPa, Test temperature: 29 ° C, (Carbon dioxide / salt water) Weight ratio: About 8%, (2) Test Pressure: 15 MPa, test temperature: 29 ° C., (carbon dioxide / salt water) weight ratio: about 10%, (3) test pressure: 15 MPa, test temperature: 33 ° C., (carbon dioxide / salt water) weight ratio: about 8% As shown in FIGS. 32 to 34, tests were performed on three types. The vertical axis represents the overall capacity coefficient K x a (mol / m 3 · s), and the horizontal axis represents the cross-sectional molar flow velocity (mol / (m A graph of 2 · s)) was obtained. According to the graphs of FIGS. 32 to 34, in the region where the cross-sectional molar flow velocity (mol / (m 2 · s)) of water is high, the case with the foaming device is compared with the case without the foaming device. Thus, it has been found that the overall capacity coefficient K x a is 1.5 times or more.

(実施例2−3)
上記実施例2−2の実験結果を上式(5)に示すウェーバー数Weを用いて整理し直して、図35に示されるように、縦軸を総括容量係数比Ka(B)/Ka(NB)[ここに、Ka(B):細泡化装置有りの総括容量係数、Ka(NB):細泡化装置無しの総括容量係数]、横軸をウェーバー係数Weとするグラフを得た。
(Example 2-3)
The experimental results of Example 2-2 were rearranged using the Weber number We shown in the above equation (5), and as shown in FIG. 35, the vertical axis represents the overall capacity coefficient ratio K x a (B) / K x a (NB) [where K x a (B): overall capacity coefficient with a finer, K x a (NB): overall capacity without a finer], the horizontal axis is the Weber coefficient A graph of We was obtained.

同図35より、ウェーバー数Weが10以上の領域で細泡化による溶解効率が高いことが判明した。従って、前記細泡化装置7においては、溶媒の流速、細孔30a(31a)の孔径は、ウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、同実験によれば、8×10−2m/s以上であることを条件とする。 From FIG. 35, it was found that the dissolution efficiency by the fine bubble formation is high in the region where the Weber number We is 10 or more. Therefore, in the fine foaming device 7, the solvent flow rate and the pore diameter of the pores 30a (31a) are preferably set so that the Weber number (We) is 10 or more. However, according to the same experiment, the flow rate of carbon dioxide from the pores is 8 × 10 −2 m / s or more.

1・1A・1B…地中貯留システム、2…炭酸ガス圧縮装置、3…溶媒圧送ポンプ、4…溶解槽、5…注入井、6…分離槽、7…細泡化装置、8…未溶解炭酸ガス圧送装置、9…合流点、10…容器、11…炭酸ガス注入口、12…溶媒注入口、13…吐出口、14…多孔板、15…メッシュ板、16…充填材、19…整流板、20…容器、21…流入管、22…未溶解炭酸ガス吐出口、23…炭酸ガス吐出口、30…主流管路、31…炭酸ガス供給管路、30a・31a…細孔、32…分岐装置   1 · 1A · 1B: underground storage system, 2 ... carbon dioxide compression device, 3 ... solvent pump, 4 ... dissolution tank, 5 ... injection well, 6 ... separation tank, 7 ... foaming device, 8 ... undissolved Carbon dioxide gas feeding device, 9 ... confluence, 10 ... container, 11 ... carbon dioxide gas inlet, 12 ... solvent inlet, 13 ... discharge port, 14 ... porous plate, 15 ... mesh plate, 16 ... filler, 19 ... rectifying Plate 20, container 21, inflow pipe 22, undissolved carbon dioxide gas outlet 23, carbon dioxide gas outlet 30, main stream pipe 31, carbon dioxide supply pipe, 30 a, 31 a, pore 32, Branching device

Claims (8)

炭酸ガスを溶媒に飽和濃度付近で溶解させた炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入し、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中に貯留・隔離するための炭酸ガスの地中貯留方法であって、
前記帯水層内において、注入井の周囲に前記炭酸ガス溶解水とともに、前記未溶解炭酸ガスを貯留・隔離する第1貯留領域と、この第1貯留領域を取り囲むように略同心円状に前記炭酸ガス溶解水のみによる第2貯留領域とを夫々形成するように前記炭酸ガス溶解水と未溶解炭酸ガスとを貯留・隔離する条件の下で、前記炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を下記(1)〜(3)の手順によって決定することを特徴とする炭酸ガスの地中貯留方法。
(1)前記帯水層から採取した原地盤材料を用いた室内試験によって、帯水層の間隙体積に占める貯留可能な未溶解炭酸ガスの体積割合として定義付けられる炭酸ガスの体積飽和率を測定するか、蓄積された実績データに基づいて前記炭酸ガスの体積飽和率を推定する第1手順。
(2)前記第1貯留領域の体積と、前記第2貯留領域の体積とを設定する第2手順。
(3)前記炭酸ガスの体積飽和率と前記第1貯留領域及び第2貯留領域の体積とに基づいて、炭酸ガス溶解水に混入する未溶解炭酸ガスの質量割合を決定する第3手順。
Carbon dioxide gas dissolved in a solvent in the vicinity of the saturated concentration is mixed with undissolved carbon dioxide gas at a predetermined ratio and pressed into the underground aquifer. A carbon dioxide underground storage method for storing and sequestering carbon dioxide underground,
In the aquifer, the carbon dioxide dissolved water and the undissolved carbon dioxide gas are stored and separated around the injection well, and the carbon dioxide is concentrically formed so as to surround the first reservoir area. Under the condition of storing and isolating the carbon dioxide-dissolved water and the undissolved carbon dioxide so as to form the second storage region only by the gas-dissolved water, the undissolved carbon dioxide mixed in the carbon dioxide-dissolved water is obtained. A method for underground storage of carbon dioxide, wherein the mass ratio is determined by the following procedures (1) to (3).
(1) The volume saturation rate of carbon dioxide gas, defined as the volume ratio of undissolved carbon dioxide gas that can be stored in the gap volume of the aquifer, is measured by laboratory tests using raw ground material collected from the aquifer. Or a first procedure for estimating the volume saturation of the carbon dioxide gas based on the accumulated performance data.
(2) A second procedure for setting the volume of the first storage area and the volume of the second storage area.
(3) A third procedure for determining a mass ratio of undissolved carbon dioxide mixed in carbon dioxide-dissolved water based on the volume saturation rate of the carbon dioxide and the volumes of the first storage region and the second storage region.
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中の帯水層に圧入するために地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガスの地中貯留システムを用いて、
前記溶解槽から注入井に至る流路の途中に、送給された炭酸ガス溶解水の全量に対して、未溶解炭酸ガスと、炭酸ガスが飽和濃度で溶解した炭酸ガス溶解水とを分離する分離槽と、該分離槽で分離された未溶解炭酸ガスを圧送する未溶解炭酸ガス圧送装置と、該未溶解炭酸ガス圧送装置から圧送された未溶解炭酸ガスを分岐する分岐装置と、前記分離槽で分離された炭酸ガス溶解水に前記分岐装置にて分岐された未溶解炭酸ガスを混入する合流点とを設け、前記分岐装置にて前記未溶解炭酸ガスのうち前記炭酸ガス溶解水に混入する所定量を分岐して前記合流点に圧送することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入する請求項1記載の炭酸ガスの地中貯留方法。
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is One or more dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and from the ground surface to the aquifer in order to press-fit the carbon dioxide-dissolved water and undissolved carbon dioxide into the underground aquifer It consists of an injection well that penetrates,
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a carbon dioxide underground storage system in which a discharge port for discharging the carbon dioxide-dissolved water is formed in the upper part of the container, and the container is filled with a granular filler. make use of,
In the middle of the flow path from the dissolution tank to the injection well, undissolved carbon dioxide gas and carbon dioxide-dissolved water in which carbon dioxide gas is dissolved at a saturated concentration are separated from the total amount of carbon dioxide-dissolved water fed. A separation tank, an undissolved carbon dioxide pressure feeding device that pumps the undissolved carbon dioxide gas separated in the separation tank, a branching device that branches the undissolved carbon dioxide gas fed from the undissolved carbon dioxide pressure feeding device, and the separation The carbon dioxide dissolved water separated in the tank is provided with a junction for mixing the undissolved carbon dioxide branched by the branching device, and mixed in the carbon dioxide dissolved water among the undissolved carbon dioxide by the branching device. 2. A predetermined amount to be branched and pumped to the confluence point to mix the undissolved carbon dioxide with the carbon dioxide dissolved water at a predetermined ratio and press-fit into the underground aquifer. Of underground storage of carbon dioxide gas.
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽と、前記炭酸ガス溶解水及び未溶解炭酸ガスを地中の帯水層に圧入するために地表面から前記帯水層まで貫通した注入井とから構成され、
前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成され、
前記溶解槽から吐出された炭酸ガス溶解水を未溶解炭酸ガスを含んだそのままの状態で、地中の帯水層に圧入するようにしてある炭酸ガスの地中貯留システムを用いて、
前記炭酸ガス圧縮装置によって圧送する炭酸ガスの質量と前記溶媒圧送ポンプによって圧送する溶媒の質量とをそれぞれ制御することによって、前記炭酸ガス溶解水に対して、未溶解炭酸ガスを所定の割合で混入して地中の帯水層に圧入する請求項1記載の炭酸ガスの地中貯留方法。
A carbon dioxide gas compression device that compresses carbon dioxide gas to a liquid or supercritical state, a pressure feed pump that compresses and conveys a solvent composed of seawater and / or water, and the compressed carbon dioxide gas and solvent are injected, and the solvent is One or more dissolution tanks that dissolve carbon dioxide to form carbon dioxide-dissolved water, and from the ground surface to the aquifer in order to press-fit the carbon dioxide-dissolved water and undissolved carbon dioxide into the underground aquifer It consists of an injection well that penetrates,
The dissolution tank includes a carbon dioxide gas inlet through which a carbon dioxide gas sent from the carbon dioxide compressor is injected into a lower part of a sealed container, and a solvent inlet through which a solvent sent from the solvent pump is injected. And a discharge port through which the carbon dioxide-dissolved water is discharged is formed at the top of the container, and the container is filled with a granular filler,
Using the carbon dioxide underground storage system in which the carbon dioxide dissolved water discharged from the dissolution tank is injected into the underground aquifer in the state containing undissolved carbon dioxide as it is,
By controlling the mass of the carbon dioxide gas fed by the carbon dioxide compressor and the mass of the solvent fed by the solvent pump, respectively, undissolved carbon dioxide is mixed in the carbon dioxide-dissolved water at a predetermined ratio. The underground storage method for carbon dioxide gas according to claim 1, which is press-fitted into the underground aquifer.
前記溶解槽の前段に、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置が設置されている請求項3記載の炭酸ガスの地中貯留方法。   The carbon dioxide gas supply pipe is disposed in the main stream line through which the solvent is flowed at a predetermined high flow rate, or the carbon dioxide gas supply pipe is externally fitted to the main stream line. A high-pressure carbon dioxide gas fine particle is formed in which a channel is formed, pores are formed on the wall surface of the pipeline that partitions the solvent and carbon dioxide gas, and the carbon dioxide gas is mixed while being bubbled by the shearing force of the solvent flowing through the mainstream pipeline. underground storage method of claim 3 wherein the carbon dioxide gas bubbling device is installed. 下式(5)によって求められるウェーバー数(We)が10以上となるように、前記溶媒の流速、前記細孔の孔径が設定されている請求項4記載の炭酸ガスの地中貯留方法。
Figure 2011005378
The carbon dioxide underground storage method according to claim 4, wherein the flow rate of the solvent and the pore diameter are set so that the Weber number (We) obtained by the following formula (5) is 10 or more.
Figure 2011005378
前記溶解槽に充填される粒状の充填材として、砂、砕石、ラシヒリング、サドルの内のいずれか又は組合せとする請求項2〜5いずれかに記載の炭酸ガスの地中貯留方法。   The method for underground storage of carbon dioxide gas according to any one of claims 2 to 5, wherein the granular filler filled in the dissolution tank is any one or a combination of sand, crushed stone, Raschig ring, and saddle. 前記溶解槽に充填される粒状の充填材は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定される最適な平均粒径とする請求項2〜6いずれかに記載の炭酸ガスの地中貯留方法。   For each type of filler, the granular filler filled in the dissolution tank is calculated from the amount of carbon dioxide dissolved based on the flow rates of carbon dioxide and solvent and the shape of the dissolution tank, and the pressure loss in the dissolution tank. The carbon dioxide underground storage method according to any one of claims 2 to 6, wherein the optimum average particle diameter is determined. 前記溶解槽において、前記充填材の充填領域内に、流路を仕切るように多数の開孔が形成された整流板が1又は複数設けられている請求項2〜7いずれかに記載の炭酸ガスの地中貯留方法。   The carbon dioxide gas according to any one of claims 2 to 7, wherein in the dissolution tank, one or a plurality of rectifying plates in which a large number of openings are formed so as to partition the flow path are provided in the filling region of the filler. Underground storage method.
JP2009149354A 2009-06-24 2009-06-24 Carbon dioxide gas storage method Expired - Fee Related JP5267810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149354A JP5267810B2 (en) 2009-06-24 2009-06-24 Carbon dioxide gas storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149354A JP5267810B2 (en) 2009-06-24 2009-06-24 Carbon dioxide gas storage method

Publications (2)

Publication Number Publication Date
JP2011005378A true JP2011005378A (en) 2011-01-13
JP5267810B2 JP5267810B2 (en) 2013-08-21

Family

ID=43562690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149354A Expired - Fee Related JP5267810B2 (en) 2009-06-24 2009-06-24 Carbon dioxide gas storage method

Country Status (1)

Country Link
JP (1) JP5267810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043195A (en) * 2016-09-14 2018-03-22 株式会社大林組 Gas recovery system and gas recovery method
JP2018043176A (en) * 2016-09-12 2018-03-22 株式会社大林組 Gas injection system and storage method in carbon dioxide ground
CN115523783A (en) * 2022-09-19 2022-12-27 西南交通大学 Method for integrating carbon dioxide sequestration and carbon dioxide energy storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175364A1 (en) 2022-03-15 2023-09-21 Totalenergies One Tech Method for carbon dioxide injection into a subterranean reservoir

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001101A (en) * 2001-06-18 2003-01-07 Research Institute Of Innovative Technology For The Earth Equipment for feeding liquid carbon dioxide in deep ocean water and the method
JP2008006367A (en) * 2006-06-28 2008-01-17 Hitoshi Koide Treatment method for underground storage of carbon dioxide and treatment system therefor
JP2008238054A (en) * 2007-03-27 2008-10-09 Tokyo Electric Power Co Inc:The Underground storage system of carbon dioxide gas
JP2009112995A (en) * 2007-11-09 2009-05-28 Tokyo Electric Power Co Inc:The Apparatus for forming fine bubbles of carbon dioxide in high pressure and underground storage system of carbon dioxide using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001101A (en) * 2001-06-18 2003-01-07 Research Institute Of Innovative Technology For The Earth Equipment for feeding liquid carbon dioxide in deep ocean water and the method
JP2008006367A (en) * 2006-06-28 2008-01-17 Hitoshi Koide Treatment method for underground storage of carbon dioxide and treatment system therefor
JP2008238054A (en) * 2007-03-27 2008-10-09 Tokyo Electric Power Co Inc:The Underground storage system of carbon dioxide gas
JP2009112995A (en) * 2007-11-09 2009-05-28 Tokyo Electric Power Co Inc:The Apparatus for forming fine bubbles of carbon dioxide in high pressure and underground storage system of carbon dioxide using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043176A (en) * 2016-09-12 2018-03-22 株式会社大林組 Gas injection system and storage method in carbon dioxide ground
JP2018043195A (en) * 2016-09-14 2018-03-22 株式会社大林組 Gas recovery system and gas recovery method
CN115523783A (en) * 2022-09-19 2022-12-27 西南交通大学 Method for integrating carbon dioxide sequestration and carbon dioxide energy storage

Also Published As

Publication number Publication date
JP5267810B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5062527B2 (en) High pressure carbon dioxide foaming device and carbon dioxide underground storage system using the same
CN110821448B (en) Exploitation method and exploitation device for marine natural gas hydrate
US8783364B2 (en) Method for production, substitution, or mining of gas hydrate
JP4924140B2 (en) Carbon dioxide underground storage system
JP2009274047A (en) Underground storage system of carbon dioxide gas
JP5267810B2 (en) Carbon dioxide gas storage method
EP2695671B1 (en) Retention device for retained substance and retention method
Akbarabadi et al. Co-sequestration of SO2 with supercritical CO2 in carbonates: An experimental study of capillary trapping, relative permeability, and capillary pressure
JP2010239962A (en) Method for producing methane gas using carbon dioxide
CN103648615A (en) Sequestration of greenhouse gasses by generating an unstable gas/saline front within a formation
Heeschen et al. Production Method under Surveillance: Laboratory Pilot-Scale Simulation of CH4–CO2 Exchange in a Natural Gas Hydrate Reservoir
US20230038432A1 (en) Enhanced oil recovery method using injection well including two passages
JP5360820B2 (en) Carbon dioxide storage method
Drozdov et al. Investigation of SWAG injection and prospects of its implementation with the usage of pump-ejecting systems at existing oil-field infrastructure
JP2010119962A (en) Carbon dioxide storage in shallow aquifer
JP2010201330A (en) Underground storage system for carbon dioxide
JP5208862B2 (en) Emulsion production / injection apparatus and method, and methane hydrate mining method
Kwelle Experimental studies on resistance to fluid displacement in single pores
US20230295487A1 (en) Method for stabilizing co2 microbubble by injecting nanoparticles to enhance geological storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Ref document number: 5267810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees