JP2008236638A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2008236638A
JP2008236638A JP2007076759A JP2007076759A JP2008236638A JP 2008236638 A JP2008236638 A JP 2008236638A JP 2007076759 A JP2007076759 A JP 2007076759A JP 2007076759 A JP2007076759 A JP 2007076759A JP 2008236638 A JP2008236638 A JP 2008236638A
Authority
JP
Japan
Prior art keywords
gradation
image
image forming
value
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076759A
Other languages
English (en)
Inventor
Teruyoshi Yamamoto
照義 山本
Tatsunari Sato
達成 佐藤
Takeshi Shibuya
竹志 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Ricoh Printing Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Printing Systems Ltd filed Critical Ricoh Printing Systems Ltd
Priority to JP2007076759A priority Critical patent/JP2008236638A/ja
Publication of JP2008236638A publication Critical patent/JP2008236638A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】 スキャナを用いたキャリブレーションは階調パッチの位置や階調値を自由に規定できるため、キャリブレーション精度は高いが、用紙を出力する必要があるのでコストが高くなる。
【解決手段】 環境や経年変動によるエンジン濃度変動が発生した場合に、必要に応じてスキャナによるキャリブレーションを実施し、その読込データの平均、分散処理を行い、その処理結果を用いて反射輝度センサによるキャリブレーションのパッチ階調値を調整することで、階調特性パラメータを生成するために必要な出力階調値を得られることができるようになるため、反射輝度センサによる反射輝度キャリブレーションの精度向上を図れる。
【選択図】 図10

Description

この発明は、複数の線数による網点階調処理をサポートした複写機、プリンタ、プリンタ複合機などの画像形成装置の階調特性キャリブレーションを行う画像形成装置に関する。
印刷装置では環境や機差、経年変化により濃度変動が発生するため、その濃度変動を長期間に渡って一定に維持するためにキャリブレーションが実施される。キャリブレーションには主に反射輝度センサを用いた方法とスキャナを用いた方法がある。反射輝度センサを用いた方法では用紙に印刷する必要がないため1日に数回実施できる。
しかし、階調パッチを特定の位置に形成しなければならず、多くの階調パッチを形成することができない。また固定階調値であり階調パッチ数が少ないため、キャリブレーション精度が低い。スキャナを用いた方法では階調パッチの位置や階調値を自由に規定できるため、キャリブレーション精度は高いが、用紙を出力する必要があるのでコストが高くなる。また、ユーザによるスキャナの読込作業が必要になるので手間がかかる。
特開2004−104712号公報
特許文献1ではキャリブレーションを実施しようとする度に毎回スキャナで読み取った結果から階調補正データを計算しているため、用紙を印刷するコストがかかる。また必ずユーザによる操作が必要となるため、その手間もかかってしまう。
また、他の従来技術では、スキャナのキャリブレーションと輝度センサのキャリブレーションを併用しているものもあるが、輝度センサを用いたキャリブレーションでは常に同一階調のデータしか印刷できないため、環境や機差、経年変動によって濃度ずれが生じた場合に、階調特性パラメータを生成するために必要な出力階調値を得られなくなる。
上記課題を解決するために、請求項1記載の発明では、幾つかの異なる線数の網点パターンから選択された網点パターンに従って、入力階調値を出力画像の網点の面積率に対応付ける階調処理手段と、前記複数の網点パターンから特定の網点を選択する網点選択手段と、該階調処理手段への入力階調値を階調補正データに従って補正する階調補正手段と、前記階調処理手段の出力に従って画像形成を行う画像形成手段と、前記画像形成手段によって形成される画像の濃淡を検出する手段を備えた画像形成装置において、該画像形成手段によって感光体あるいは転写体上に形成される第1の基準画像の画像濃度を検出する濃度検出手段と、該画像形成手段によって形成され、印刷媒体に印刷される第2の基準画像を読み取る画像読取手段を備え、第2の基準画像を読み取り、読み取り結果を入力値が同一階調であるパッチ毎に平均化し、該パッチ平均値を用い、第1の基準画像の階調パッチを調整し、第1の基準画像として登録し、第1の基準画像の画像濃度を検出する濃度検出手段によって階調特性を生成するための階調特性パラメータを決定することを特徴とする。
請求項記載2の発明では、請求項1の画像形成装置において、前記第1の基準画像は、基準画像データの用紙中心に点対称になるように同一濃度を配置した画像データとする。
請求項記載3の発明では、請求項1または2の画像形成装置において、前記第2の基準画像を読み取る画像読取手段によって複数の同一階調値を読み取り、その読み取り値の平均、分散を求め、不適切な読み取り値を削除し、適切な読み取り値のみで再度平均化する。
請求項記載4の発明では、請求項1の画像形成装置において、前記第2の基準画像を読み取る画像読取手段は読取結果と、前記画像形成装置の本体記憶領域、または外部記憶媒体に保存された読取結果のうち少なくとも1つと比較して読取結果を計算する。
請求項5記載の発明では、請求項1〜4の画像形成装置において、階調特性モデルが、少なくとも最大値、階調の立ち上がり初めの入力値であるハイライトオフセット値と階調特性の立ち上がりの傾きである階調勾配により規制する。
請求項6記載の発明では、請求項1〜4の画像形成装置において、基準画像のパッチ濃度の生成方法や、パッチ読取結果から印刷環境や状態に依存する異常値を決定するためのパラメータをユーザに決定させるためのユーザインタフェースを提供する。
環境や経年変動によるエンジン濃度変動が発生した場合に、必要に応じてスキャナによるキャリブレーションを実施し、その読込データの平均、分散処理を行い、その処理結果を用いて反射輝度センサによるキャリブレーションのパッチ階調値を調整することで、階調特性パラメータを生成するために必要な出力階調値を得られることができるようになるため、反射輝度センサによる反射輝度キャリブレーションの精度向上を図れる。
主なキャリブレーションを濃度センサで実施し、時折スキャナによるキャリブレーションを実施することでユーザへの作業負担の軽減を図れる。
以下、本発明の実施例について図面を参照して説明する。なお、以下の説明で、”濃度”を必ずしも正確な意味での濃度に限らず、色の濃さを表現する概念として用いている。この意味での濃度としては、本来の意味での濃度の他に、反射輝度の補数や、印刷結果における紙面からの色差ΔE等が上げられるが、特に、以下の実施例においては、主に印刷結果における紙面からのCIE色差ΔEの意味で使用する。
図1は、本発明の画像形成装置の例としての600dpiカラーレーザMFPの構成概要を示している。画像形成手段であるプリンタエンジン9は、感光体34と中間転写体36を用い、感光体34上に順次1色ずつ形成した異なる4色のトナー画像を、中間転写体36の一回転毎に1色ずつ転写し、中間転写体36の4回転で1枚のカラー画像を形成する中間転写体方式を採用している。
図1において、ベルト形状の感光体34は、プリンタエンジン9の中央部に配置され、その一方の面に感光体34と接触させて中間転写体36が配置されている。縦に長く張った感光体34の中間転写体36と反対側の面には、それぞれ異なる色のトナーを格納する4つの現像器、即ちイエロー(Y)現像器33Y、マゼンタ(M)現像器33M、シアン(C)現像器33C、ブラック(K)現像器33Kが縦に積層して配置されている。
感光体34の周囲には回転方向に沿って、感光体34上にトナー画像を形成するプロセス部品である、帯電器30、露光器32、現像器33および、感光体34上のトナー付着量を検出する反射輝度センサ35が配置されている。
また、プリンタエンジン9の筐体側面には、破線で示したコントローラ31の基板が、取り付けられている。
反射輝度センサ35による検出信号は、このコントローラ31に搭載された換算テーブルにより画像出力10の濃度値に換算される。この意味で反射輝度センサ35は、濃度検出手段となっている。
一方、中間転写体36の周囲にはトナー画像形成、用紙の搬送を行うプロセス部品である、転写ローラ37が配置されている。
用紙を搬送する搬送経路は、本体下部に配置している用紙カセット39から中間転写体36の外側を通って本体上面に排出する構成としており、その搬送経路に沿って、転写ローラ37、用紙除電器(図示せず)、定着器38が配置されている。
また、筐体外部に面して、基準パッチ生成手段を兼ねるユーザインタフェースである操作パネル40が設けられており、この操作パネル40を通して、ユーザによる手動のキャリブレーション命令などがコントローラ31に送られる。
スキャナはプリンタエンジンの上部に設置されている。操作パネル40を通して、読取リーダ42では、原稿台43にセットされた原稿に対して光源44から光を照射し、その反射光を光電変換装置に出力される。光電変換装置(図示せず)により変換された信号をアナログデジタル変換器(図示せず)でデジタルデータに変換した後にデジタルデータをPCへ送信する。
図2は、本発明の画像形成装置における画像処理の流れを示している。(ただし、図2の一点鎖線22は、信号の流れではなく処理の反復を表す)。
まず、通常印刷時における画像処理の流れについて説明する。印刷対象となる画像データ1は、画像展開手段2および、色補正手段3を介して、1ページ分の点順次のRGBデータとして、画像バッファ4に蓄えられる。
色選択信号11は、プリンタエンジン側からの同期信号(図示せず)に従って、各色面の出力が完了する毎に1づつ自動的にインクリメントされる2bit信号であり、ページ印刷開始時点では0に初期化される。
また、線数選択信号12は、後述の図12におけるプリンタドライバあるいは操作パネル40による基準パッチ生成手段53であるユーザインタフェース45を通じて選択される0,1,2いずれかの値であり、0が階調優先、1が標準、2が解像度優先の各モードとして意味付けられている。
画像バッファ4に蓄えられたRGB画像データは、4色分解手段5により、ブラック(K),シアン(C),マゼンタ(M),イエロー(Y)の4色の信号に分解される。
選択手段6は、先の色選択信号11の値が、0,1,2,3のいずれかに従って、それぞれK,C,M,Yの出力値を4色分解手段5の出力から選択する。
階調補正手段7は、階調補正データ13に従って0〜255の1画素8bitの画像信号を同じく8bitの出力階調値に補正する。ここで、階調補正データ13は、256個の8bitエントリを持つルックアップテーブル(LUT)として実装されている。
階調処理手段8は、閾値配列14を用いて階調補正手段7から出力される1画素の8bit階調値を、1画素4bitのパルス幅変調(PWM)信号として出力する。
また、階調補正データ13の値は、画像バッファ4からのデータの読み出しに先だって、色選択信号11および、線数選択信号12を合成した選択信号23に従って、階調補正データテーブル16から対応するLUTを一つ選択し、階調補正データ13にロードする。同様に、閾値配列テーブル15からも対応する閾値配列を一つ選択し、閾値配列14にロードする。
ここで、階調補正データ13にロードされる階調補正テーブル値は、各色毎の階調処理手段8の入力値に対して出力される画像出力10の濃度が、概ね線形になる様に補正されるよう、後述するキャリブレーション動作時に、階調補正データ生成手段18により閾値配列14に対応付けて生成されるものである。
また、閾値配列テーブル15に保持される各閾値配列は、正確には配列サイズおよび網点線数の情報を伴って保持されるものであり、閾値配列14には、これらの情報と共にロードされる。
閾値配列テーブル15の要素となる多様な線数の網点を形成する閾値配列は、基本閾値パターンと、それを用いた閾値配列の構成方法により予め構築した閾値配列値とともに配列サイズおよび網点線数を固定値として保持している。
コントローラ31は、図2の画像バッファ4以降の処理を、自動的に切り替わる色選択信号11に従って、KCMYの4面分4回繰り返すことで、プリンタエンジン9に対するKCMYの4色分の現像プロセスに必要な、各色面毎のデータを生成する。
プリンタエンジン9は、これらの色の重ね合わせによるフルカラー画像を紙面上に形成し、画像出力10として出力する。
次に、キャリブレーション時の動作について、主に図2の破線で示す流れに従って説明する。スキャナを用いたキャリブレーション動作と、反射輝度センサを用いたキャリブレーション動作の2つがある。スキャナを用いたキャリブレーション動作は、操作パネルからのユーザの指示により起動される。反射輝度センサ35を用いたキャリブレーション動作は、プリンタの起動時や出力枚数が所定値に達した場合、あるいは操作パネル40(図12)からのユーザ指示により起動される。
スキャナを用いたキャリブレーション動作時には基準画像データとして、図3に示す画像を利用する。図3は色補正2と階調補正手段7の処理をスルーする場合に、KCMYの各色16パッチずつが用紙中心60で点対称になるように作成されたデータである。
各パッチの濃度値は、図4の入力階調値に示すとおり、0〜255までを16間隔ずつ分割してあり、低濃度側から16,32,48・・・240,255の全16階調となっている。例えば、シアンについては、g,bをg=b=255に固定して、rを振ったデータを用意することで、c=255−rの信号値に対応するシアン単色のパッチ画像が作成できる。マゼンタ、イエローに対しても同様であるが、ブラックについては、r=g=b=255−kのデータを用意することで、kの信号値に対応するパッチ画像が作成できる。
また、前に述べたように、図3の入力パッチは0〜255を等間隔にしているが、濃度0〜10近くの低階調部やベタ濃度に近い高階調部のパッチ数を多くするなど、濃度毎にパッチ数の調整をしても良い。この基準画像データを色補正3及び階調補正手段7の処理を実行せずにスルーし、その他の2〜8までの処理は通常印刷と同様に実施する。プリンタエンジン9では通常印刷と同様のプロセスを実行し、用紙に画像を出力する。
次に、出力した画像をスキャナで読み取り、その読み取り結果を基準画像生成手順に送信する。送られてきた読み取り結果からパッチ濃度を計算し、パッチデータを登録する。その後、反射輝度センサ35を用いたキャリブレーションを実施する。
図4に、図3を第1の読み取り手段によって読み込んだ結果(図4上)と出力濃度1と出力濃度1〜4の平均の読み込み結果(図4下)を示す。第1の読込結果はそれぞれの入力階調に対して、平均、分散を計算する。分散が2以上かつ平均が2以上の場合にその値を削除し、それ以外の値で平均化する。2以上としているのは経験上、同じ印刷条件で出力した画像上で同階調の濃度が2以上となる場合はエンジン側の不具合が発生している場合のみであるためであって、印刷環境に合わせて変更してもよい。この条件で図4を見ると、入力階調が80における分散が28.3となっており、異常値となる。その中で平均が2以上の値を探すと35.3の値を見つけることができるので、この値を削除し、その他の3パターンから平均及び分散を再計算することで精度の高い結果を得ることができる。ここで計算された濃度値により第1の基準画像データの出力濃度が5、10、15及びベタ濃度となる入力階調値を逆算し、第1の基準画像データの階調値を基準画像保持手段20に登録する。
次に、反射輝度センサ35を用いたキャリブレーション時の動作について説明する。反射輝度センサ35を用いたキャリブレーション動作は、プリンタの起動時や出力枚数が所定値に達した場合、あるいは操作パネル40(図1)からのユーザ指示により起動される。
反射輝度センサ35を用いたキャリブレーション動作時には、図2の画像バッファ4に対して、基準画像生成手段21は、基準画像保持手段20に登録されている上記の階調値データ(パッチデータ)に基づいて、生成したパッチ画像データを直接書き込む。
一方で、4色分解手段5は内部処理を、RGB信号(r,g,b)に対して、(c,m,y,k)=(255−r,255−g,255−b,min{c,m,y})のCMYK信号に対応付ける処理に切り替える。また、階調補正手段7の処理は実行することなくスルーされる。
これによりスキャナを用いたキャリブレーションで説明した通り、各色単色のパッチ画像を作成でき、プリンタエンジン9に送出される。
反射輝度センサ35を用いたキャリブレーション動作モードでは、プリンタエンジン9は、用紙のピックアップを行わないことと、用紙への転写以降のプロセスを実行しないことを除いては、通常印刷と同様のプロセスが実行される。これにより、用紙への画像出力10を行うこと無しに、プリンタエンジン9の感光体34上に図5に示すようなパッチ画像41が形成される。
図1のプリンタエンジン9に搭載された反射輝度センサ35は、このパッチ画像41の反射輝度信号を検出し、コントローラ31上の階調補正データ生成手段18に送信する(図2)。
階調補正データ生成手段18は、送られてきたパッチ画像41のパッチそれぞれに対応する反射輝度信号に基づいて、後述する方法によって、閾値配列テーブル15に登録された閾値配列の網点線数のそれぞれに対応した階調補正データを生成し、階調補正データテーブル16に登録する。
本実施例では、画像補正LUT生成手段18は、コントローラ31上に搭載された画像処理CPU25および周辺メモリ26と、それに対して予め組み込まれたプログラムによって実現されている。また、図2では便宜上かき分けているが、閾値配列テーブル15、階調補正データテーブル16、履歴データ保持手段19、および基準画像保持手段20は、メモリ26の特定のアドレス空間として実現されている。また、基準画像生成手段21も同様にCPU25に対するプログラムとして実現されている。
次に、画像補正LUT生成手段18による階調補正データの生成方法について説明する。
図6は、本実施例の画像形成装置の階調特性モデルである。図6で横軸はレンジを0〜1の範囲に正規化した階調処理手段8に対する入力階調値、縦軸Dは、画像出力10の紙面からの色差ΔEをその最大値ΔEmaxで正規化した相対値D=ΔE/ΔEmaxである。以下ではDを相対濃度と呼ぶことにする。
このとき、入力階調値xに対する相対濃度Dの階調特性D(x)は、K,C,M,Yの各色毎に適当なxおよびγを用いて、
D(x)=0 (0≦x<x
D(x)=1−{1−((x−x)/(1−x))γ}(x<x≦1)・・・(1)
により近似される。
ここで、相対濃度の立ち上がり階調値x0をハイライトオフセット、γをガンマ値、ハイライトオフセット付近での傾きg=γ/(1−x)を階調勾配と呼んでいる。
上記モデルにより、中間階調の特性はハイライトオフセットx0と階調勾配g、および、ΔEmaxの3つのパラメータにより特徴付けられることになる。
特に、紙面からの色差の最大値ΔEmaxは、別途プリンタエンジン9側で一定値になるように制御(例えば現像バイアスの制御)することにより、階調補正データは、xとgの2つのパラメータにより特徴付けられることになる。
また、この場合の階調補正関数は、(1)式を逆に解いて得られる次式、
−1(x)=x+(1−x){1−(1−x)1/{(1−x0)g}} ・・・(2)
で与えられる。
従って、x、gが与えられれば、上式を用いて、階調補正データを生成することができる。
次に、これらハイライトオフセットxおよび、階調勾配gを特定線数f=fから推定する方法について説明する。なお、階調特性補正は、各色毎に行われる補正なので、以下の説明では、単色の出力画像を用いて説明する。
図7(a)は、3×3の9画素で一つの網点領域53を構成した階調処理画像出力の概念図である。斜線のハッチングで示した網点52に含まれる最小の正方形は、論理的な画素単位を表すもので、実際には印画されない補助線である。同様に、3×3画素毎に太線で示した網点領域53も、隣接する網点の領域の区切りを概念的に示す物であって、実際には印画されない補助線である。
この図7(a)の網点52は、入力階調値が、ちょうど論理画素1つ分に相当する場合に対して形成される網点を概念的に示している。このときの入力階調値xは、ちょうど網点領域53の面積Sの逆数x=1/9である。
入力階調値xが増加するに従って、この網点52の面積は増加し、x=1で3×3の領域53全体を埋め尽くすベタ画像となる。
同様に図7(b)は、4×4の16画素で1つの網点を構成した階調処理画像出力の概念図である。この場合、網点領域55の面積は、S=4×4=16であり、論理画素1つ分に相当する階調処理手段8への入力階調値は、x=1/16となる。
一方で、網点52,54がいずれも、隣接する網点から十分に分離されたものであるならば、図7(a)の網点52も、図7(b)の網点54も網点一つ当たりの印画面積は等しいと考えることができる。
従って、仮に網点52,54が、画像出力10の網点として再現されるぎりぎりの濃度であったならば、ハイライトオフセットx0は、図7(a)のケースでは、x=1/9、図7(b)のケースではx=1/16であることになる。
これらの考察から、ハイライトオフセット値xは、網点領域面積Sに反比例することが理解される。一方で、網点領域Sの面積は、網点間隔をdとするとS=d^2であり、プリンタエンジンの解像度が600(dpi)の場合、網点間隔dは網点線数fにより、d=600/fと表されることから、S=(600/f)となる。結果として、ハイライトオフセットxは、網点線数fの二乗に比例することが分かる。
図8は、感光体34上に形成するパッチ画像41の例である。キャリブレーション動作に先だって、図2での閾値配列テーブル15には、予め定めた中庸な線数f(例えばf=150lpi)の網点に対応する閾値配列がロードされているものとする。
パッチ画像41は、K,C,M,Yの現像プロセス毎に基準画像保持手段20に保持されたパッチデータに基づいて、基準画像生成手段21により生成される単色画像である。
図8の矢印で示した方向が、感光体34の送り方向である。マーカー60は、パッチ書き出し位置を検出するためのベタパターンであり、これに続くパッチ61a〜64dの反射率を反射輝度センサ35が順次8bitデジタル値として検出する。
ここで、パッチ61a,61b,61c,61dは、いずれも入力階調値x=2/16に対応して、感光体34上に形成された線数fの網点画像である。これらに対応する4点分の反射輝度センサ35の出力値の平均をxに対する出力値refとする。
同様に、パッチ62a,62b,62c,62dは、入力階調値x=3/16に対応し、パッチ63a,63b,63c,63dは、入力階調値x=4/16に対応し、また、パッチ64a,64b,64c,64dは、入力階調値x=16/16に対応する。
これらに対応する反射輝度センサ35出力値をそれぞれ平均することにより、ref,ref,refが得られる。
ただし、上述のx,x,xとして具体的に選択した値は、これから求めようとする特徴量であるハイライトオフセットxおよび、階調勾配gを推定するのに適切な値として選択されたものであれば、必ずしも上記値に限られるものではない。
次いで、各色毎に予め求めておいた紙面からのΔE値への換算テーブルを用いて、それぞれのi=1,2,3,4に対する輝度値refをΔEに変換し、最後に最大値ΔEで正規化することで、相対濃度D=ΔE/ΔEが得られる。
図9に示すように、この様にして求めた、点65=(x,D)、点66=(x,D)、点67=(x,D)についての最小2乗解としてえられる近似直線69のx切片、および傾きから、それぞれハイライトオフセットx、階調勾配gが求められる。
以上の図8,図9の説明と先の図2の全体の処理を踏まえて、図10に階調補正データ生成手段18に関連する処理の流れを示す。全体の処理は、KCMYの4色分のプロセスに対応して4回反復される。
先ず、ステップ100で、キャリブレーション動作として前述したように、閾値配列14への線数f=f(例えばf=150lpi)に対応する閾値配列のロードや、図8の説明で述べた反射輝度センサ値からΔEへの変換テーブルの初期化等の各種パラメータの初期化を、対応する現像プロセスの色に対応して行う。
次のステップ101で、基準画像保持手段20に保持されたパッチデータに基づいてパッチ生成手段21生成したパッチ画像に対して、図2の階調処理手段8までの画像処理を通して、プリンタエンジン9の感光体34上に形成する。
ステップ102でプリンタエンジン9の反射輝度センサ35からの出力値ref,(i=1,2,3,4)を得る。
ステップ103で、センサ出力値refから前述の方法で、相対濃度Diを得る。
ステップ104で、図9の方法に従って相対濃度D,(i=1,2,3)の近似直線を得る。
ステップ105で、得られた近似直線のx切片と傾きから、ハイライトオフセットxと、階調勾配gを得る。
ステップ106、107で、得られたx、gが、明らかな不正値の場合と、各色毎に履歴データ保持手段19に保持されている過去3回分のx,gそれぞれの平均値からの偏差が、予めきめられた許容値を超える場合に、ステップ105の算出値を異常値と判定する。
ステップ107で異常値と判定されなかった場合には、ステップ108で、ステップ105のxおよびgの値を、履歴データ保持手段19の最も古いデータと入れ替える。
次いで、閾値配列テーブル15に登録されている各々の閾値配列の線数fに対して、先の(2)式によるステップ109の階調補正データ生成と、ステップ110の階調補正データテーブル16に対する階調補正データの更新を反復する。
全ての線数fに対して階調補正データの更新が完了すると、ステップ112で、K,C,M,Yの全色について処理が完了するまで、K,C,M,Yの現像プロセスに従って、ステップ100からステップ112の一連の処理を反復する。
先のステップ107で、異常値と判定された場合には、ステップ113で、パネル40や、印刷命令を実行したPC側に継続の可否の判断を促すメッセージとともに警告出力を促し、ステップ114で、ユーザからの継続可否の判断に従って、継続可の場合には、階調補正データの更新に関わるステップ108〜111をスキップしてステップ112へと継続し、継続不可の場合には、ステップ115の以上終了処理で、サービスコールや、別方法によるキャリブレーションの実行をユーザに促すメッセージを発行して終了する。
図11には、本発明を搭載した画像形成装置であるプリンタエンジン9にスキャナユニット46を一体化し、PC47を接続してシステム構築した例を示す。この例では、操作パネル40は、スキャナユニット46側のインタフェースと統合している。
また、操作パネル40は、タッチパネルと一体化された液晶表示画面であり、操作パネル40を通じて、図10における警告出力などのシステムメッセージの表示や、平均分散の指定やパッチの生成方法などユーザからのパラメータ指定が可能となっている。
図12には、基準パッチ生成手段51としてのユーザインタフェース45の表示例を示す。ラジオボタン49は、排他的なオンオフスイッチとして機能し、等間隔、低濃度重視、高濃度重視、カスタムのいずれかのモードが選択可能となっており、カスタムを選択した場合には右隣にある入力エディットボックス50で自由に濃度を指定できる。
本発明の実施例の一つであるカラープリンタの構成概略図である。 本発明に関する画像処理の流れの説明図である。 スキャナで読み込むための基準パッチ画像の説明図である。 スキャナで読み込み平均を計算した結果と、その平均及び入力濃度1のグラフである。 現像器上に形成されたパッチ画像の説明図である。 相対濃度階調特性モデルの説明図である。 ハイライトオフセットと網点領域面積の関係についての説明図である。 パッチ画像の構成例を示す図である。 ハイライトオフセットと階調勾配の推定方法の説明図である。 階調補正データテーブル更新手段の動作の流れを示す図である。 システムとしての構成例である。 基準パッチ生成手段の例を示す図である。
符号の説明
1・・・画像データ、2・・・画像展開手段、3・・・色補正手段、4・・・画像バッファ、5・・・4色分解手段、6・・・選択手段、7・・・階調補正手段、8・・・階調処理手段、9・・・プリンタエンジン(画像形成手段)、10・・・画像出力、11・・・色選択信号、12・・・線数選択信号、13・・・階調補正データ、14・・・閾値配列、15・・・閾値配列テーブル、16・・・階調補正データテーブル、17・・・階調特性パラメータ生成手段、18・・・階調補正データ生成手段、19・・・履歴データ保持手段、20・・・基準画像保持手段、21・・・基準画像生成手段、22・・・一点鎖線、23・・・選択信号、25・・・CPU、26・・・メモリ、27・・・スキャナ、30・・・帯電器、31・・・コントローラ、32・・・露光器、33・・・現像器、34・・・感光体、35・・・反射輝度センサ、36・・・中間転写体、37・・・転写ローラ、38・・・定着器、39・・・用紙カセット、40・・・操作パネル、41・・・パッチ画像、42・・・読取リーダ、43・・・原稿台、44・・・光源、45・・・ユーザインタフェース、46・・・スキャナユニット、47・・・PC、48・・・モニタ、49・・・ラジオボタン、50・・・入力エディットボックス、51・・・基準パッチ生成手段、52・・・網点、53・・・網点領域、54・・・網点、55・・・網点領域、56・・・網点、57・・・論理網点、60・・・用紙中心、61・・・階調パッチ。

Claims (6)

  1. 幾つかの異なる線数の網点パターンから選択された網点パターンに従って入力階調値を出力画像の網点の面積率に対応付ける階調処理手段と、
    前記複数の網点パターンから特定の網点を選択する網点選択手段と、
    前記階調処理手段への入力階調値を階調補正データに従って補正する階調補正手段と、
    感光体への帯電、露光、現像プロセスにより形成した画像を直接あるいは転写体を介して印刷媒体に転写する画像形成手段と、
    前記画像形成手段によって形成される画像の濃淡を検出する濃淡検出手段を備えた画像形成装置において、
    前記画像形成手段によって感光体あるいは転写体上に形成される第1の基準画像の画像濃度を検出する濃度検出手段と、
    前記画像形成手段によって形成され、印刷媒体に印刷される第2の基準画像を読み取る画像読取手段を備え、
    前記第2の基準画像を読み取り、読み取り結果を入力値が同一階調であるパッチ毎に平均化し、これらのパッチ平均値を用い、前記第1の基準画像の階調パッチの階調値を調整し、第1の基準画像として登録し、第1の基準画像の画像濃度を検出する濃度検出手段によって階調特性を生成するための階調特性パラメータを決定することを特徴とする画像形成装置。
  2. 請求項1記載の画像形成装置において、前記第1の基準画像は、基準画像データの用紙中心に点対称になるように同一濃度を配置した画像データであることを特徴とする画像形成装置。
  3. 請求項1または2記載の画像形成装置において、前記第2の基準画像を読み取る画像読取手段によって複数の同一階調値を読み取り、その読み取り値の平均、分散を求め、不適切な読み取り値を削除し、適切な読み取り値のみで再度平均化することを特徴とする画像形成装置。
  4. 請求項1記載の画像形成装置において、前記第2の基準画像を読み取る画像読取手段は読取結果と、前記画像形成装置の本体記憶領域、または外部記憶媒体に保存された読取結果のうち少なくとも1つと平均、分散を求め、不適切な読み取り値を削除し、適切な読み取り値のみで再度平均化することを特徴とする画像形成装置。
  5. 請求項1乃至4のいずれか1項記載の画像形成装置において、階調特性モデルが、少なくとも最大値、階調の立ち上がり初めの入力値であるハイライトオフセット値と階調特性の立ち上がりの傾きである階調勾配により規制することを特徴とする画像形成装置。
  6. 請求項1乃至4のいずれか1項記載の画像形成装置において、基準画像のパッチ濃度の生成方法やパッチ読取結果から印刷環境や状態に依存する異常値を決定するためのパラメータをユーザに決定させるためのユーザインタフェースを提供することを特徴とする画像形成装置。
JP2007076759A 2007-03-23 2007-03-23 画像形成装置 Pending JP2008236638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076759A JP2008236638A (ja) 2007-03-23 2007-03-23 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076759A JP2008236638A (ja) 2007-03-23 2007-03-23 画像形成装置

Publications (1)

Publication Number Publication Date
JP2008236638A true JP2008236638A (ja) 2008-10-02

Family

ID=39908828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076759A Pending JP2008236638A (ja) 2007-03-23 2007-03-23 画像形成装置

Country Status (1)

Country Link
JP (1) JP2008236638A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547596B2 (en) 2010-07-23 2013-10-01 Ricoh Company, Ltd. Image forming apparatus, image forming method, and computer program product
US9148525B2 (en) 2011-01-27 2015-09-29 Ricoh Company, Ltd. Image testing apparatus, image forming apparatus and computer readable information recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547596B2 (en) 2010-07-23 2013-10-01 Ricoh Company, Ltd. Image forming apparatus, image forming method, and computer program product
US9148525B2 (en) 2011-01-27 2015-09-29 Ricoh Company, Ltd. Image testing apparatus, image forming apparatus and computer readable information recording medium

Similar Documents

Publication Publication Date Title
EP2408189B1 (en) Image processing apparatus and its control method
US8179576B2 (en) Image processing apparatus
US7911645B2 (en) Apparatus and method for adjusting density in image forming
US7431210B2 (en) Image forming apparatus, image processing apparatus and method
US8553288B2 (en) Image forming apparatus capable of performing accurate gradation correction
US9094642B2 (en) Color image processing apparatus and method for processing color image
JP4814820B2 (ja) 画像形成装置、画像形成方法、及び画像形成プログラム
JP2008066923A (ja) キャリブレーション方法、および画像形成装置
US8717639B2 (en) Image processing for position deviation correction
JP6361359B2 (ja) 画像形成システム、制御装置およびプログラム
EP2405303A2 (en) Image forming apparatus with calibration function
US9516196B2 (en) Image forming apparatus that performs calibration for maintaining image quality
US8610981B2 (en) Device, method, and computer-readable storage medium for correcting tone in an image
WO2010116631A1 (en) Image processing apparatus, image processing method and program
JP5247058B2 (ja) 画像形成装置
JP3885056B2 (ja) 画像処理装置およびその制御方法
JP2008236638A (ja) 画像形成装置
JP2008254341A (ja) 画像形成装置および画像形成方法
JP2008042223A (ja) 画像濃度補正方法、画像形成装置、濃度補正システム、濃度補正装置、及び濃度補正プログラム及びそのプログラムを記録した記録媒体
JP2008061159A (ja) キャリブレーション方法、および画像形成装置
JP2001180090A (ja) 画像形成システム、画像出力装置およびキャリブレーション方法
JP2005043445A (ja) 画像形成装置
JP2002199145A (ja) 画像形成装置およびキャリブレーション方法
JP2011199409A (ja) 画像処理装置、画像形成装置およびプログラム
JP2017198973A (ja) 画像形成装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081028