JP2008235947A - MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL - Google Patents

MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL Download PDF

Info

Publication number
JP2008235947A
JP2008235947A JP2008175377A JP2008175377A JP2008235947A JP 2008235947 A JP2008235947 A JP 2008235947A JP 2008175377 A JP2008175377 A JP 2008175377A JP 2008175377 A JP2008175377 A JP 2008175377A JP 2008235947 A JP2008235947 A JP 2008235947A
Authority
JP
Japan
Prior art keywords
polycrystalline
power generation
film
generation film
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175377A
Other languages
Japanese (ja)
Inventor
Masayuki Kureya
真之 呉屋
Yoshimichi Yonekura
義道 米倉
Shoji Morita
章二 森田
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008175377A priority Critical patent/JP2008235947A/en
Publication of JP2008235947A publication Critical patent/JP2008235947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an Si photovoltaic cell having an Si power generating film with low defect rate and high quality, and with high photovoltaic conversion efficiency. <P>SOLUTION: The manufacturing method of an μc-Si (microcrystalline silicon) or polycrystalline Si photovoltaic cell comprises a step of laminating a first transparent conductive film, and a p/i/n-type or an n/i/p-type μc-Si or polycrystalline Si power generating film on the substrate; soaking a support substrate into a cyan solution, containing a crown ether, and bringing CN ions into the μc-Si or polycrystalline Si power generating film; cleaning the support substrate; and sequentially forming a second transparent conductive film and a backside electrode on the μc-Si or polycrystalline Si power generating film. The thickness of the μc-Si or polycrystalline Si power generating film is 1 μm or larger, and the CN ions are brought into the μc-Si or polycrystalline Si power generating film, while soaking the support substrate in the crown ether. At the same time, a voltage is applied to the μc-Si or polycrystalline Si power generating film that promotes pulling in of the CN ions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Si太陽電池の製造方法及び太陽電池に関する。   The present invention relates to a method for manufacturing a Si solar cell and a solar cell.

従来、μc−Si太陽電池としては、例えば図4に示すものが知られている。   Conventionally, as a μc-Si solar cell, for example, the one shown in FIG. 4 is known.

図中の付番1は、例えば厚みが約1mmのガラス基板を示す。この基板1上には、ITO,SnO等からなる膜厚0.6〜1.0μmの第1の透明導電膜2、μc−Si発電膜3、ITO,ZnO等からなる膜厚10〜200nmの第2の透明導電膜4、裏面電極5が順次形成されている。ここで、μc−Si発電膜3は、p型のμc−Si発電膜3aと、i型のμc−Si発電膜3bと、n型のμc−Si発電膜3cとから構成されている。前記μc−Si発電膜の膜厚は、計1μm以上である。前記基板1上の第1の透明導電膜2上の一部上には、集電用電極6が形成されている。 Number 1 in the figure indicates a glass substrate having a thickness of about 1 mm, for example. On this substrate 1, a first transparent conductive film 2 having a film thickness of 0.6 to 1.0 μm made of ITO, SnO 2 or the like, a μc-Si power generation film 3, a film thickness of 10 to 200 nm made of ITO, ZnO or the like. The second transparent conductive film 4 and the back electrode 5 are sequentially formed. Here, the μc-Si power generation film 3 includes a p-type μc-Si power generation film 3a, an i-type μc-Si power generation film 3b, and an n-type μc-Si power generation film 3c. The film thickness of the μc-Si power generation film is 1 μm or more in total. A current collecting electrode 6 is formed on a part of the first transparent conductive film 2 on the substrate 1.

こうした構成の太陽電池において、太陽光はガラス基板1側から入射して透明電極膜2を透過してμc−Si発電膜3に入射する。太陽光は、発電膜3bに吸収されて、透明導電膜2と裏面電極5との間に起電力が発生し、電力を外部に取り出すことができる。   In the solar cell having such a configuration, sunlight enters from the glass substrate 1 side, passes through the transparent electrode film 2, and enters the μc-Si power generation film 3. The sunlight is absorbed by the power generation film 3b, and an electromotive force is generated between the transparent conductive film 2 and the back electrode 5, and the power can be taken out to the outside.

ところで、上記太陽電池において、μc−Si発電膜3の一構成であるi型のμc−Si発電膜3bは、一般にプラズマCVDを利用して成膜される。投入電力を上げて高速製膜を行なうと、低速製膜時に比べてSiダンベリングボンドなどの欠陥が増大してしまう。従って、高速製膜において低欠陥で高品質のμc−Si発電膜を得ることができなかった。数百nmの膜厚を対象としてCN基を使用した薄膜Si太陽電池として、特許文献1(特開2001−189484号公報)がある。
特開2001−189484号公報(段落[0044]〜[0048]及び図1参照)
By the way, in the solar cell, the i-type μc-Si power generation film 3b, which is one component of the μc-Si power generation film 3, is generally formed using plasma CVD. When high-speed film formation is performed by increasing the input power, defects such as Si dumbbelling bonds increase as compared to low-speed film formation. Therefore, a high-quality μc-Si power generation film with low defects cannot be obtained in high-speed film formation. As a thin film Si solar cell using a CN group for a film thickness of several hundred nm, there is Patent Document 1 (Japanese Patent Laid-Open No. 2001-189484).
JP 2001-189484 A (see paragraphs [0044] to [0048] and FIG. 1)

本発明は上記事情を考慮してなされたもので、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を形成した後、該μc−Si又は多結晶Si発電膜をシアン処理することにより、低欠陥で高品質のμc−Si又は多結晶Si発電膜が成膜でき、もって高効率のμc−Si又は多結晶Si太陽電池が得られるμc−Si又は多結晶Si太陽電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and after forming a p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film, the μc-Si or polycrystalline Si is formed. By performing cyan treatment on the power generation film, it is possible to form a high-quality μc-Si or polycrystalline Si power generation film with low defects, thereby obtaining a highly efficient μc-Si or polycrystalline Si solar cell. It aims at providing the manufacturing method of a crystalline Si solar cell.

また、本発明は、上記製造方法により、高い光電変換効率のμc−Si又は多結晶Si太陽電池を提供することを目的とする。   Another object of the present invention is to provide a μc-Si or polycrystalline Si solar cell with high photoelectric conversion efficiency by the above production method.

本願第1の発明は、支持基板上に第1の透明導電膜、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を積層する工程と、前記支持基板をクラウンエーテルを含むシアン溶液中に浸し、前記μc−Si又は多結晶Si発電膜内にCNイオンを引き込む工程と、前記支持基板を洗浄する工程と、前記μc−Si又は多結晶Si発電膜上に第2の透明導電膜、裏面電極を順次形成する工程とを具備し、前記μc−Si又は多結晶Si発電膜の膜厚が1μm以上であり、前記支持基板をクラウンエーテルを含むシアン溶液中に浸しながら、前記μc−Si又は多結晶Si発電膜内に前記CNイオンを引き込むとともに、前記μc−Si又は多結晶Si発電膜に電圧を印加して前記CNイオンの引き込みを促進することを特徴とするμc−Si又は多結晶Si太陽電池の製造方法である。   The first invention of the present application includes a step of laminating a first transparent conductive film, p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film on a support substrate, and the support substrate Is immersed in a cyan solution containing crown ether, CN ions are drawn into the μc-Si or polycrystalline Si power generation film, the support substrate is washed, and the μc-Si or polycrystalline Si power generation film is formed. A step of sequentially forming a second transparent conductive film and a back electrode, wherein the μc-Si or polycrystalline Si power generation film has a thickness of 1 μm or more, and the support substrate is in a cyan solution containing crown ether. The CN ions are drawn into the μc-Si or polycrystalline Si power generation film while being immersed in the film, and a voltage is applied to the μc-Si or polycrystalline Si power generation film to promote the pulling of the CN ions. Μc− It is a manufacturing method of Si or a polycrystal Si solar cell.

本願第2の発明は、支持基板上に第1の透明導電膜、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を積層する工程と、前記支持基板をHCN溶液中に浸し、前記μc−Si又は多結晶Si発電膜内にCNイオンを引き込む工程と、前記支持基板を洗浄する工程と、前記μc−Si又は多結晶Si発電膜上に第2の透明導電膜、裏面電極を順次形成する工程とを具備し、前記μc−Si又は多結晶Si発電膜の膜厚が1μm以上であり、前記支持基板をHCN溶液中に浸して前記μc−Si又は多結晶Si発電膜内に前記CNイオンを引き込むとともに、前記μc−Si又は多結晶Si発電膜に電圧を印加して前記CNイオンの引き込みを促進することを特徴とするμc−Si又は多結晶Si太陽電池の製造方法である。   The second invention of the present application includes a step of laminating a first transparent conductive film, p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film on a support substrate, and the support substrate Is immersed in the HCN solution, CN ions are drawn into the μc-Si or polycrystalline Si power generation film, a step of cleaning the support substrate, and a second step on the μc-Si or polycrystalline Si power generation film. A step of sequentially forming a transparent conductive film and a back electrode, wherein the μc-Si or polycrystalline Si power generation film has a film thickness of 1 μm or more, and the support substrate is immersed in an HCN solution so that the μc-Si or The CN ions are attracted into the polycrystalline Si power generation film and a voltage is applied to the μc-Si or polycrystalline Si power generation film to promote the attraction of the CN ions. It is a manufacturing method of a solar cell.

本願第3の発明は、請求項1又は2の製造方法により得られたことを特徴とするμc−Si又は多結晶Si太陽電池である。   A third invention of the present application is a μc-Si or polycrystalline Si solar cell obtained by the manufacturing method of claim 1 or 2.

本発明によれば、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を形成した後、該μc−Si又は多結晶Si発電膜をシアン処理することにより、μc−Si又は多結晶Si発電膜におけるi型のμc−Si又は多結晶Si発電層中でSi−CNという強固な手が作られるので、低欠陥で高品質のμc−Si又は多結晶Si発電膜を有する、高い光電変換効率を有するμc−Si又は多結晶Si太陽電池を得ることができる。   According to the present invention, by forming a p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film, the μc-Si or polycrystalline Si power generation film is subjected to cyan treatment. In this case, a strong hand called Si-CN is made in the i-type μc-Si or polycrystalline Si power generation layer in the μc-Si or polycrystalline Si power generation film, so that high-quality μc-Si or polycrystalline Si with low defects is produced. A μc-Si or polycrystalline Si solar cell having a power generation film and high photoelectric conversion efficiency can be obtained.

また、本発明は、上記製造方法により、高い光電変換効率を有するμc−Si又は多結晶Si太陽電池を提供できる。   In addition, the present invention can provide a μc-Si or polycrystalline Si solar cell having high photoelectric conversion efficiency by the above production method.

以下、本発明のSi太陽電池について更に詳しく説明する。   Hereinafter, the Si solar cell of the present invention will be described in more detail.

図1は、本発明の太陽電池の一構成である発電膜の製膜装置を示す。図中の符番11は、ガス排出口12を有する真空容器を示す。この真空容器11の空間13の上部側、下部側には、下面に基板14を支持しながら加熱するヒータ15と電極16が対向して配置されている。前記電極16は、上部が開口したガス混合箱17に支持されている。   FIG. 1 shows a film forming apparatus for a power generation film, which is one configuration of the solar cell of the present invention. Reference numeral 11 in the figure indicates a vacuum vessel having a gas discharge port 12. On the upper side and the lower side of the space 13 of the vacuum vessel 11, a heater 15 and an electrode 16 are disposed so as to face each other while supporting the substrate 14 on the lower surface. The electrode 16 is supported by a gas mixing box 17 having an open top.

前記電極16には、インピーダンス整合器18、高周波電源19が順次電気的に接続されている。前記ガス混合箱17内の底部には、上部に多数の貫通孔(図示せず)が格子状に形成されたガス供給盤20が配置されている。このガス供給盤20には原料ガス供給源21からガス供給管22を経て原料ガスが供給されるようになっている。前記ガス排出口12には、真空容器11内を排気する真空ポンプ23が接続されている。   An impedance matching unit 18 and a high frequency power source 19 are electrically connected to the electrode 16 in sequence. A gas supply board 20 having a large number of through holes (not shown) formed in a lattice shape at the top is disposed at the bottom of the gas mixing box 17. The gas supply board 20 is supplied with a source gas from a source gas supply source 21 through a gas supply pipe 22. A vacuum pump 23 that exhausts the inside of the vacuum vessel 11 is connected to the gas discharge port 12.

図2は、本発明の太陽電池の一構成である他の発電膜の製膜装置を示す。但し、図1と同部材は同符番を付して説明を省略する。図中の符番24は真空容器(又は加圧容器)を示す。また、符番25は、処理ガスをガス供給管22を介してガス供給盤20へ供給する処理ガス供給源を示す。但し、図2の真空ポンプ23においては、加圧処理の場合は封じ切り(真空ポンプを使用せず)となる。   FIG. 2 shows another power generation film forming apparatus which is one configuration of the solar cell of the present invention. However, the same members as those in FIG. Reference numeral 24 in the figure indicates a vacuum vessel (or a pressurized vessel). Reference numeral 25 denotes a processing gas supply source that supplies the processing gas to the gas supply board 20 via the gas supply pipe 22. However, in the vacuum pump 23 of FIG. 2, in the case of a pressurizing process, it is sealed (no vacuum pump is used).

本発明において、p/i/n型又はn/i/p型μc−Si発電膜又は多結晶Si発電膜を形成した後のシアン処理としては、下記の1)、2)の方法が挙げられる。   In the present invention, the cyan treatment after forming the p / i / n type or n / i / p type μc-Si power generation film or the polycrystalline Si power generation film includes the following methods 1) and 2). .

1)Si発電膜を積層した後、支持基板をクラウンエーテルを含むシアン溶液中に浸し、Si発電膜内にCNイオンを引き込み、前記支持基板を洗浄する手段。但し、Si発電膜の膜厚が1μm以上の場合には、Si発電膜内にCNイオンを引き込む際に、Si発電膜に電圧を印加してCNイオンの引き込みを促進することが必要である。この理由は、Si発電膜の膜厚が1μm以上のため、CNイオンがSi発電膜内に充分に入り込まず、Si発電膜中でSi−CNという強固な手が作られないからである。なお、シアン溶液の液温は室温〜100℃、印加電圧:0〜40V、処理時間:10秒〜30分とすることが好ましい。上記範囲でCN基による欠陥抑制が効果的である。   1) Means for cleaning the support substrate by laminating the Si power generation film, immersing the support substrate in a cyan solution containing crown ether, drawing CN ions into the Si power generation film. However, when the film thickness of the Si power generation film is 1 μm or more, it is necessary to promote the pulling of CN ions by applying a voltage to the Si power generation film when CN ions are drawn into the Si power generation film. This is because the Si power generation film has a film thickness of 1 μm or more, so CN ions do not sufficiently enter the Si power generation film, and a strong hand called Si—CN cannot be made in the Si power generation film. In addition, it is preferable that the liquid temperature of a cyan solution shall be room temperature-100 degreeC, applied voltage: 0-40V, and processing time: 10 second-30 minutes. In the above range, defect suppression by the CN group is effective.

2)Si発電膜を積層した後、支持基板をHCN溶液中に浸し、Si発電膜内にCNイオンを引き込み、前記支持基板を洗浄する手段。但し、上記1)の場合と同様に、Si発電膜の膜厚が1μm以上のため、Si発電膜内にCNイオンを引き込む際に、Si発電膜に電圧を印加してCNイオンの引き込みを促進することが必要である。この理由は上記4)の場合と同様である。なお、HCN溶液の液温は室温〜100℃、印加電圧:0〜40V、処理時間:10秒〜30分とすることが好ましい。上記範囲でCN基による欠陥抑制が効果的である。   2) Means for cleaning the support substrate after laminating the Si power generation film, immersing the support substrate in an HCN solution, drawing CN ions into the Si power generation film. However, as in the case of 1) above, since the film thickness of the Si power generation film is 1 μm or more, when CN ions are drawn into the Si power generation film, a voltage is applied to the Si power generation film to promote the pulling of the CN ions. It is necessary to. The reason is the same as in the case of 4) above. The liquid temperature of the HCN solution is preferably room temperature to 100 ° C., applied voltage: 0 to 40 V, and treatment time: 10 seconds to 30 minutes. In the above range, defect suppression by the CN group is effective.

本発明においては、Si発電膜をシアン処理することにより、Si発電膜の一構成であるμc−Si又は多結晶Si層内にCNイオンを引き込み、CNによりSiダングリングボンドを終端する。これにより、i型Si発電層中でSi−CNという強固な手が作られるので、低欠陥で高品質のSi発電膜を形成することができる。また、こうしたのSi発電膜を有したSi太陽電池によれば、高い光電変換効率を得ることができる。   In the present invention, by performing cyan treatment on the Si power generation film, CN ions are drawn into the μc-Si or polycrystalline Si layer, which is one component of the Si power generation film, and the Si dangling bonds are terminated by CN. Thereby, since a strong hand called Si-CN is made in the i-type Si power generation layer, a high-quality Si power generation film with low defects can be formed. Moreover, according to the Si solar cell having such a Si power generation film, high photoelectric conversion efficiency can be obtained.

以下、本発明の各実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
図3(A),(B)を参照する。ここで、図3(A)はガラス基板上にμc−Si発電膜を形成した基体の断面図、図3(B)はこの基体をクラウンエーテル溶液を含むシアン溶液に浸漬した状態の説明図を示す。
Example 1
Reference is made to FIGS. Here, FIG. 3A is a cross-sectional view of a substrate on which a μc-Si power generation film is formed on a glass substrate, and FIG. 3B is an explanatory view of the substrate immersed in a cyan solution containing a crown ether solution. Show.

1)まず、支持基板としてのガラス基板31上に第1の透明導電膜32、更にp型のμc−Si層33a、i型のμc−Si層33b及びn型のμc−Si層33cからなるμc−Si発電膜33を形成し、基体34を形成した(図3(A)参照)。   1) First, a first transparent conductive film 32, a p-type μc-Si layer 33a, an i-type μc-Si layer 33b, and an n-type μc-Si layer 33c are formed on a glass substrate 31 as a support substrate. A μc-Si power generation film 33 was formed, and a substrate 34 was formed (see FIG. 3A).

2)次に、この基体34を、図3(B)に示すように、可変電源35及びPt製電極36を用いて正電圧を印加しながら、電解槽37に収容されたシアン溶液38中に浸した。なお、クラウンエーテルはKCNと同等以上の量を使用し、溶液としてはキシレンを使用する。これは、純水を使用した場合、シリコンのエッチングが生じるためである。   2) Next, as shown in FIG. 3B, the base 34 is placed in a cyan solution 38 accommodated in an electrolytic cell 37 while applying a positive voltage using a variable power source 35 and a Pt electrode 36. Soaked. Note that the amount of crown ether used is equal to or greater than that of KCN, and xylene is used as the solution. This is because silicon etching occurs when pure water is used.

3)つづいて、シアン処理後、前記基体34をシアン溶液38から取り出し、アセトン、純水により順次洗浄を行った。この後、図示しないが、μc−Si発電膜33上に、第2の透明導電膜、Ag製の裏面電極を順次形成してμc−Si太陽電池を製造した。   3) Subsequently, after the cyan treatment, the substrate 34 was taken out of the cyan solution 38 and washed sequentially with acetone and pure water. Thereafter, although not shown, a μc-Si solar cell was manufactured by sequentially forming a second transparent conductive film and a back electrode made of Ag on the μc-Si power generation film 33.

実施例1によれば、ガラス基板31上に第1の透明導電膜32、p/i/n型μc−Si発電膜33を積層した後、前記ガラス基板31をHCN溶液中に浸すことにより、i型μc−Si発電膜33内にCNイオンを引き込み、Si発電膜におけるi型μc−Si発電層中でSi−CNという強固な手が作られる。従って、低欠陥で高品質のSi発電膜を得ることができる。また、こうしたSi発電膜を有するSi太陽電池によれば、高い光電変換効率を得ることができる。   According to Example 1, after laminating the first transparent conductive film 32 and the p / i / n type μc-Si power generation film 33 on the glass substrate 31, the glass substrate 31 is immersed in the HCN solution, CN ions are attracted into the i-type μc-Si power generation film 33, and a strong hand called Si-CN is made in the i-type μc-Si power generation layer in the Si power generation film. Therefore, a high-quality Si power generation film with low defects can be obtained. Moreover, according to the Si solar cell having such a Si power generation film, high photoelectric conversion efficiency can be obtained.

事実、実施例1によるμc−Si太陽電池及び従来のシアン処理を行っていないμc−Si太陽電池について、形状因子について調べたところ、本発明の場合従来と比べて形状因子が6%増加し、その結果変換効率が4%向上することが確認された。   In fact, when the μc-Si solar cell according to Example 1 and the conventional μc-Si solar cell not subjected to the cyan treatment were examined for the form factor, the present invention increased the form factor by 6% compared to the conventional case. As a result, it was confirmed that the conversion efficiency was improved by 4%.

(実施例2)
図示しないが、本実施例2は、上記実施例1と比べ、ガラス基板上にμc−Si発電膜を形成した基体を、クラウンエーテル溶液を含むシアン溶液に浸漬する代わりに、HCN溶液に浸漬する点を除いて、全て実施例1と同様の工程を行ってSi発電膜を形成した。
(Example 2)
Although not shown in the figure, in Example 2, as compared with Example 1, the substrate in which the μc-Si power generation film is formed on the glass substrate is immersed in the HCN solution instead of the cyan solution containing the crown ether solution. Except for this point, the same process as in Example 1 was performed to form a Si power generation film.

事実、実施例2によるμc−Si太陽電池及び従来のシアン処理を行っていないμc−Si太陽電池について調べたところ、短絡電流密度が5%低下したが、開放電圧が5%、形状因子が3%増加し、その結果変換効率が4.5%向上することを確認した。   In fact, when the μc-Si solar cell according to Example 2 and the conventional μc-Si solar cell not subjected to the cyan treatment were examined, the short-circuit current density was reduced by 5%, but the open-circuit voltage was 5% and the shape factor was 3 As a result, it was confirmed that the conversion efficiency was improved by 4.5%.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の太陽電池の一構成である発電膜の製膜装置の説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の太陽電池の一構成である発電膜の他の製膜装置の説明図。Explanatory drawing of the other film forming apparatus of the electric power generation film which is one structure of the solar cell of this invention. 本発明の実施例1に係るμc−Si太陽電池の製造方法の説明図。Explanatory drawing of the manufacturing method of the (micro | micron | mu) -Si solar cell which concerns on Example 1 of this invention. 従来のμc−Si太陽電池の概略的な断面図。FIG. 6 is a schematic cross-sectional view of a conventional μc-Si solar cell.

符号の説明Explanation of symbols

11,24…真空容器、 12…ガス排出口、 13…真空容器の空間、
14,31…基板、 15…ヒータ、 16…電極、
17…ガス混合箱、 18…インピーダンス整合器、
19…高周波電源、 20…ガス供給盤、 21…原料ガス供給源、
22…ガス供給管、 23…真空ポンプ、 25…処理ガス供給源、
32…第1の透明導電膜、 33…μc−Si発電膜、
33a…p型μc−Si発電層、 33b…i型μc−Si発電層、
33c…n型μc−Si発電層、 35…可変電源、 36…Pt製電極。
11, 24 ... Vacuum container, 12 ... Gas outlet, 13 ... Vacuum container space,
14, 31 ... Substrate, 15 ... Heater, 16 ... Electrode,
17 ... Gas mixing box, 18 ... Impedance matching device,
19 ... high frequency power supply, 20 ... gas supply panel, 21 ... source gas supply source,
22 ... Gas supply pipe, 23 ... Vacuum pump, 25 ... Process gas supply source,
32... First transparent conductive film, 33... Μc-Si power generation film,
33a ... p-type μc-Si power generation layer, 33b ... i-type μc-Si power generation layer,
33c ... n-type [mu] c-Si power generation layer, 35 ... Variable power supply, 36 ... Pt electrode.

Claims (3)

支持基板上に第1の透明導電膜、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を積層する工程と、前記支持基板をクラウンエーテルを含むシアン溶液中に浸し、前記μc−Si又は多結晶Si発電膜内にCNイオンを引き込む工程と、前記支持基板を洗浄する工程と、前記μc−Si又は多結晶Si発電膜上に第2の透明導電膜、裏面電極を順次形成する工程とを具備し、
前記μc−Si又は多結晶Si発電膜の膜厚が1μm以上であり、前記支持基板をクラウンエーテルを含むシアン溶液中に浸しながら、前記μc−Si又は多結晶Si発電膜内に前記CNイオンを引き込むとともに、前記μc−Si又は多結晶Si発電膜に電圧を印加して前記CNイオンの引き込みを促進することを特徴とするμc−Si又は多結晶Si太陽電池の製造方法。
A step of laminating a first transparent conductive film, p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film on a support substrate; and a cyan solution containing crown ether on the support substrate. A step of drawing CN ions into the μc-Si or polycrystalline Si power generation film, a step of cleaning the support substrate, and a second transparent conductive film on the μc-Si or polycrystalline Si power generation film. And sequentially forming the back electrode,
The μc-Si or polycrystalline Si power generation film has a thickness of 1 μm or more, and the CN ions are introduced into the μc-Si or polycrystalline Si power generation film while the support substrate is immersed in a cyan solution containing crown ether. A method of manufacturing a μc-Si or polycrystalline Si solar cell, wherein the pulling of the CN ions is promoted by applying a voltage to the μc-Si or polycrystalline Si power generation film.
支持基板上に第1の透明導電膜、p/i/n型又はn/i/p型のμc−Si又は多結晶Si発電膜を積層する工程と、前記支持基板をHCN溶液中に浸し、前記μc−Si又は多結晶Si発電膜内にCNイオンを引き込む工程と、前記支持基板を洗浄する工程と、前記μc−Si又は多結晶Si発電膜上に第2の透明導電膜、裏面電極を順次形成する工程とを具備し、
前記μc−Si又は多結晶Si発電膜の膜厚が1μm以上であり、前記支持基板をHCN溶液中に浸して前記μc−Si又は多結晶Si発電膜内に前記CNイオンを引き込むとともに、前記μc−Si又は多結晶Si発電膜に電圧を印加して前記CNイオンの引き込みを促進することを特徴とするμc−Si又は多結晶Si太陽電池の製造方法。
Laminating a first transparent conductive film, p / i / n-type or n / i / p-type μc-Si or polycrystalline Si power generation film on a support substrate, immersing the support substrate in an HCN solution, A step of drawing CN ions into the μc-Si or polycrystalline Si power generation film; a step of cleaning the support substrate; and a second transparent conductive film and a back electrode on the μc-Si or polycrystalline Si power generation film. A step of sequentially forming,
The film thickness of the μc-Si or polycrystalline Si power generation film is 1 μm or more, the support substrate is immersed in an HCN solution to draw the CN ions into the μc-Si or polycrystalline Si power generation film, and the μc A method for producing a μc-Si or polycrystalline Si solar cell, wherein a voltage is applied to a Si or polycrystalline Si power generation film to promote the attraction of the CN ions.
請求項1又は2の製造方法により得られたことを特徴とするμc−Si又は多結晶Si太陽電池。   A μc-Si or polycrystalline Si solar cell obtained by the manufacturing method according to claim 1.
JP2008175377A 2003-02-05 2008-07-04 MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL Pending JP2008235947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175377A JP2008235947A (en) 2003-02-05 2008-07-04 MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028206 2003-02-05
JP2008175377A JP2008235947A (en) 2003-02-05 2008-07-04 MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003382764A Division JP4494759B2 (en) 2003-02-05 2003-11-12 Method of manufacturing μc-Si or polycrystalline Si solar cell and solar cell

Publications (1)

Publication Number Publication Date
JP2008235947A true JP2008235947A (en) 2008-10-02

Family

ID=39908276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175377A Pending JP2008235947A (en) 2003-02-05 2008-07-04 MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL

Country Status (1)

Country Link
JP (1) JP2008235947A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289886A (en) * 2001-03-27 2002-10-04 Hikari Kobayashi Method of treating semiconductor film, method of manufacturing photovoltaic element and the photovoltaic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289886A (en) * 2001-03-27 2002-10-04 Hikari Kobayashi Method of treating semiconductor film, method of manufacturing photovoltaic element and the photovoltaic element

Similar Documents

Publication Publication Date Title
CN1188898C (en) Method for producing semiconductor unit, method for producing solar cell and anodizing process equipment
CN1122317C (en) Process for producing semiconductor substrate
US6566235B2 (en) Process for producing semiconductor member, and process for producing solar cell
CN109216509A (en) A kind of interdigitation back contacts heterojunction solar battery preparation method
TW201246320A (en) Method for cleaning silicon substrate, and method for producing solar cell
TW201703277A (en) Preparation method of localized back contact solar cell
JP6815532B2 (en) PERC solar cell capable of improving photoelectric conversion efficiency and its manufacturing method
JP5064767B2 (en) Method for manufacturing solar cell element
CN106409977B (en) A kind of cleaning method of silicon chip of solar cell, the preparation method of solar cell
JPH11214720A (en) Manufacture of thin-film crystal solar cell
CN109402653A (en) InGaN nano-pillar@Au Nanocomposites structure and the preparation method and application thereof on a kind of Si substrate
TWI390755B (en) Method of fabricating solar cells
CN109132997A (en) (In) the GaN nano-pillar and the preparation method and application thereof being grown on Ti substrate
CN111509089A (en) Double-sided solar cell and manufacturing method thereof
CN109545656B (en) Preparation method of hydrogenated amorphous silicon film
CN107316917A (en) A kind of method for the monocrystalline silicon suede structure for preparing antiradar reflectivity
CN104112795B (en) A kind of production method of silicon heterogenous solar cell
JP2014075418A (en) Silicon substrate for solar cell and manufacturing method therefor, and solar cell
JP2008235947A (en) MANUFACTURING METHOD OF muc-Si OR POLYCRYSTALLINE Si PHOTOVOLTAIC CELL, AND PHOTOVOLTAIC CELL
JPH0878709A (en) Solar battery
CN104600159A (en) High-frequency discharge preparation method of rejection PID crystalline silicon cell
US20220173264A1 (en) Method for producing back contact solar cell
CN209507579U (en) The InGaN nano-pillar being grown on Ti substrate
JP2004260134A (en) Manufacturing method of silicon solar cell, and solar cell
JP2011066213A (en) Photoelectric converter and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124