JP2008235926A - Mounting board and electronic equipment - Google Patents

Mounting board and electronic equipment Download PDF

Info

Publication number
JP2008235926A
JP2008235926A JP2008114977A JP2008114977A JP2008235926A JP 2008235926 A JP2008235926 A JP 2008235926A JP 2008114977 A JP2008114977 A JP 2008114977A JP 2008114977 A JP2008114977 A JP 2008114977A JP 2008235926 A JP2008235926 A JP 2008235926A
Authority
JP
Japan
Prior art keywords
electronic device
mounting
substrate
flexible substrate
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114977A
Other languages
Japanese (ja)
Inventor
Wataru Ito
伊藤  渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008114977A priority Critical patent/JP2008235926A/en
Publication of JP2008235926A publication Critical patent/JP2008235926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/76Apparatus for connecting with build-up interconnects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/24011Deposited, e.g. MCM-D type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7615Means for depositing
    • H01L2224/76151Means for direct writing
    • H01L2224/76155Jetting means, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting a build-up interconnect during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • H01L2224/82102Forming a build-up interconnect by additive methods, e.g. direct writing using jetting, e.g. ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01093Neptunium [Np]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting board, on which electronic equipment and electronic devices to be mounted onto electronic components are mounted, which can be thinned, having flexibility, and being resistant to bending. <P>SOLUTION: A circuit board 10FD is a mounting board on which a semiconductor chip 2, whose one face side is made to be a terminal forming face 2a provided with a pad 7, is mounted on a flexible substrate 1. The pad 7 is electrically connected with a metal wiring 4 formed on the flexible substrate 1. The terminal forming face 2a of the semiconductor chip 2 is arranged in such a way to almost correspond to a neutral plane np in the thickness direction of the concerned mounting board 10FD. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、実装基板及び電子機器に関するものである。   The present invention relates to a mounting board and an electronic device.

近年、カードサイズの電子機器をはじめ、各種の電子機器は、薄くかつ軽くなってきている。このような電子機器の薄厚化、軽量化に伴い、これに実装される各種電子デバイスも、薄い状態のままで実装されることが求められている。電子デバイスの一例としてシリコン製のICチップ(半導体チップ)を例にすると、近時、シリコンウエハの状態で裏面を削り、厚さ50μm以下の極薄のICチップを形成することが可能となっている。   In recent years, various electronic devices including card-sized electronic devices have become thinner and lighter. As such electronic devices become thinner and lighter, various electronic devices mounted thereon are also required to be mounted in a thin state. Taking a silicon IC chip (semiconductor chip) as an example of an electronic device, it has recently become possible to form a very thin IC chip with a thickness of 50 μm or less by scraping the back surface in the state of a silicon wafer. Yes.

ところで、このような電子デバイスとこれを実装する基板との間で電気的な接続をなす接続方法としては、従来、異方性導電材料(ACFまたはACP)を用いる方法や、ワイヤボンディング(WB)による方法が知られている。しかし、異方性導電材料を用いる方法では、この異方性導電材料によって厚みが10〜30μm程度加算されてしまい、その分、このデバイスを実装した電子機器や電子部品の厚さが厚くなってしまう。また、ワイヤボンディングによる方法では、ワイヤを引き回すために1mm以上の空間が必要となることから、やはりこの電子デバイスを実装した電子機器や電子部品の厚さが厚くなってしまう。   By the way, as a connection method for making an electrical connection between such an electronic device and a substrate on which the electronic device is mounted, a method using an anisotropic conductive material (ACF or ACP), a wire bonding (WB), or the like has been conventionally used. The method by is known. However, in the method using an anisotropic conductive material, a thickness of about 10 to 30 μm is added by the anisotropic conductive material, and accordingly, the thickness of the electronic device or electronic component on which the device is mounted is increased. End up. In addition, since the wire bonding method requires a space of 1 mm or more to route the wire, the thickness of the electronic device or electronic component on which the electronic device is mounted is also increased.

したがって、これら従来の方法では、電子機器やその部品となる電子部品の薄厚化、さらにこれに伴う軽量化を、十分に達成し得ないのである。また、これらの方法では、特に前記の極薄のICチップに適用した場合に、接合時の超音波や圧力により、極薄ICチップ(極薄電子デバイス)の破壊や接続信頼性の低下が起こるおそれもある。
このような背景のもとに、従来、弾力性を有する導電部材を用いて端子間の電気的な接続を行い、接続構造の信頼性を向上させる実装方法が提案されている(例えば、特許文献1参照)。
Therefore, with these conventional methods, it is not possible to sufficiently reduce the thickness of the electronic device and the electronic component that is the component, and further the weight reduction associated therewith. Also, in these methods, particularly when applied to the above-mentioned ultra-thin IC chip, the ultra-thin IC chip (ultra-thin electronic device) is broken or the connection reliability is lowered due to the ultrasonic wave or pressure at the time of bonding. There is also a fear.
Against this background, conventionally, a mounting method has been proposed in which electrical connection between terminals is performed using a conductive member having elasticity to improve the reliability of the connection structure (for example, Patent Documents). 1).

特開2001−230001号公報Japanese Patent Laid-Open No. 2001-230001

しかしながら、上記従来技術文献に記載の実装方法にあっても、実装基板の曲げに対する耐性が十分でなく、したがって繰り返し使用に対する信頼性が低いという課題がある。
厚さ50μm程度にまでICチップを薄層化すると、チップ自体の薄さのほか、加工による微小欠陥が半導体チップの破損に繋がることもあるため、特にチップ近傍の曲げ耐性を向上させることが望まれる。
本発明は前記事情に鑑みてなされたもので、その目的とするところは、電子機器や電子部品に搭載される電子デバイスを実装した実装基板であって、薄厚化を実現するとともにフレキシブル性を有して曲げに対する耐性も強い実装基板を提供することにある。
However, even in the mounting method described in the above-mentioned prior art document, there is a problem that the mounting substrate is not sufficiently resistant to bending, and therefore, the reliability for repeated use is low.
When the thickness of the IC chip is reduced to about 50 μm, in addition to the thinness of the chip itself, minute defects due to processing may lead to damage of the semiconductor chip, so it is desirable to improve the bending resistance particularly in the vicinity of the chip. It is.
The present invention has been made in view of the above circumstances, and an object of the present invention is a mounting substrate on which an electronic device mounted on an electronic device or an electronic component is mounted. Thus, it is to provide a mounting substrate having a high resistance to bending.

本発明は、上記課題を解決するために、接続端子を具備した端子形成面を有する電子デバイスをフレキシブル基板上に実装してなる実装基板であって、前記接続端子が、前記フレキシブル基板上に形成された配線パターンに対し直接又は導電部材を介して電気的に接続されており、前記端子形成面が、当該実装基板の厚さ方向における中立面に略一致して配置されていることを特徴とする実装基板を提供する。
この実装基板は、フレキシブル基板を基体として用いていることで可撓性を有し、比較的自由に撓曲させることが可能なものである。そして、前記電子デバイスの端子形成面と、実装基板の中立面とが略一致するように電子デバイスが実装されているので、実装基板を曲げる際に生じるひずみが、中立面に配置された電子デバイスの端子形成面でほぼゼロになる。したがって電子デバイスの接続端子と実装基板上の配線パターンとが電気的に接続された部位に曲げ応力が作用することがない。これにより、曲げに対する耐性に優れ、信頼性に優れた実装基板を実現することができる。
In order to solve the above-mentioned problems, the present invention is a mounting board formed by mounting an electronic device having a terminal forming surface provided with a connection terminal on a flexible board, and the connection terminal is formed on the flexible board. The wiring pattern is electrically connected directly or via a conductive member, and the terminal forming surface is disposed substantially coincident with the neutral surface in the thickness direction of the mounting board. A mounting board is provided.
This mounting substrate has flexibility by using a flexible substrate as a base, and can be bent relatively freely. And since the electronic device is mounted so that the terminal forming surface of the electronic device and the neutral surface of the mounting substrate substantially coincide, the strain generated when the mounting substrate is bent is disposed on the neutral surface. Nearly zero on the terminal forming surface of the electronic device. Therefore, bending stress does not act on the part where the connection terminal of the electronic device and the wiring pattern on the mounting substrate are electrically connected. As a result, it is possible to realize a mounting substrate that has excellent resistance to bending and excellent reliability.

本発明の実装基板では、当該実装基板の厚さ方向において、前記電子デバイスの端子形成面を挟み両側にそれぞれ配された構成部材が、略等しい曲げ弾性率を有していることが好ましい。前記中立面の位置は、実装基板の厚さ方向で曲げ弾性率が釣り合う位置に相当するので、このような構成とすることで、前記端子形成面と中立面とを略一致させることができる。   In the mounting board of the present invention, it is preferable that the constituent members respectively disposed on both sides of the terminal formation surface of the electronic device have substantially the same bending elastic modulus in the thickness direction of the mounting board. Since the position of the neutral surface corresponds to a position where the bending elastic modulus is balanced in the thickness direction of the mounting substrate, the terminal forming surface and the neutral surface can be substantially matched by adopting such a configuration. it can.

本発明の実装基板では、前記電子デバイスが、前記端子形成面を前記フレキシブル基板側に向けた状態で実装されており、前記電子デバイスが、前記フレキシブル基板と、該フレキシブル基板と前記端子形成面との間に形成された構成部材とを合わせた曲げ弾性率と略等しい曲げ弾性率を有している構成とすることができる。電子デバイスがその端子形成面を基板側(下側)に向けて実装される場合、この電子デバイス自体の曲げ弾性率と、電子デバイスが実装される基板側の構成部材(例えばフレキシブル基板とその表面に形成された絶縁層との積層体)の曲げ弾性率とを略等しくすることで、前記端子形成面と中立面とを略一致させることができる。   In the mounting substrate of the present invention, the electronic device is mounted with the terminal formation surface facing the flexible substrate, and the electronic device includes the flexible substrate, the flexible substrate, and the terminal formation surface. It can be set as the structure which has a bending elastic modulus substantially equal to the bending elastic modulus which match | combined the structural member formed between these. When an electronic device is mounted with its terminal formation surface facing the substrate side (lower side), the bending elastic modulus of the electronic device itself and the component on the substrate side on which the electronic device is mounted (for example, a flexible substrate and its surface) The terminal-forming surface and the neutral surface can be made substantially coincident with each other by making the bending elastic modulus of the laminate with the insulating layer formed in the above substantially the same.

本発明の実装基板では、前記配線パターン上に、前記電子デバイス側へ突出する導体ポストが形成されており、前記電子デバイスが、前記導体ポストを取り囲むように設けられた接着層を介して前記フレキシブル基板上に実装され、前記電子デバイスの接続端子が、前記導体ポストに電気的に接続されている構成とすることもできる。このような構成とすることで、ACF(異方性導電フィルム)やACP(異方性導電ペースト)等を用いることなく電子デバイスを基板に実装することができる。特に、前記導体ポストが、金属微粒子を焼成してなるものであるならば、電子デバイスの実装時に電子デバイスの破損等を生じ難く、また接続端子と配線パターンとの良好な接合性を得ることができる。   In the mounting board of the present invention, a conductor post protruding to the electronic device side is formed on the wiring pattern, and the electronic device is interposed between the flexible post via an adhesive layer provided so as to surround the conductor post. It is also possible to adopt a configuration in which the connection terminal of the electronic device is mounted on a substrate and electrically connected to the conductor post. With such a configuration, the electronic device can be mounted on the substrate without using ACF (anisotropic conductive film), ACP (anisotropic conductive paste), or the like. In particular, if the conductor post is formed by firing metal fine particles, it is difficult to cause damage to the electronic device during mounting of the electronic device, and good bondability between the connection terminal and the wiring pattern can be obtained. it can.

本発明の実装基板では、前記フレキシブル基板上であって、前記電子デバイスの外側の領域に、前記配線パターンを覆う絶縁層が形成されていることが好ましい。このような構成とすれば、前記絶縁層によって配線パターンを保護することができ、実装基板の信頼性を向上させることができる。   In the mounting substrate of the present invention, it is preferable that an insulating layer is formed on the flexible substrate and covering the wiring pattern in a region outside the electronic device. With such a configuration, the wiring pattern can be protected by the insulating layer, and the reliability of the mounting substrate can be improved.

本発明の実装基板では、前記絶縁層が、前記電子デバイス上にも形成されている構成としてもよい。このような構成とすることで、前記絶縁層によって前記電子デバイスを保護することができ、また電子デバイスの脱離等も効果的に防止することができる。   In the mounting substrate of the present invention, the insulating layer may be formed on the electronic device. With such a configuration, the electronic device can be protected by the insulating layer, and detachment of the electronic device can be effectively prevented.

本発明の実装基板では、前記電子デバイスが、前記端子形成面を前記フレキシブル基板と反対側に向けて実装されるとともに、該電子デバイスを覆う絶縁層が形成されており、前記電子デバイス上に形成された絶縁層が、前記電子デバイスと、前記フレキシブル基板と、該電子デバイスとフレキシブル基板との間に設けられた構成部材とを合わせた曲げ弾性率と略等しい曲げ弾性率を有している構成とすることもできる。電子デバイスの端子形成面は、フレキシブル基板と反対側に向けて配置されていてもよい。この場合、端子形成面のフレキシブル基板側に、電子デバイスの本体とフレキシブル基板とが配置されるため、これらを合わせた曲げ弾性率に対して、電子デバイス上に設けられる絶縁層の曲げ弾性率を一致させることで、端子形成面に中立面を一致させることができる。   In the mounting substrate of the present invention, the electronic device is mounted with the terminal forming surface facing away from the flexible substrate, and an insulating layer covering the electronic device is formed on the electronic device. The insulating layer formed has a bending elastic modulus substantially equal to a bending elastic modulus obtained by combining the electronic device, the flexible substrate, and a constituent member provided between the electronic device and the flexible substrate. It can also be. The terminal formation surface of the electronic device may be arranged toward the side opposite to the flexible substrate. In this case, since the main body of the electronic device and the flexible substrate are arranged on the flexible substrate side of the terminal formation surface, the bending elastic modulus of the insulating layer provided on the electronic device is set to the bending elastic modulus obtained by combining them. By making them coincide, the neutral surface can coincide with the terminal forming surface.

本発明の実装基板では、前記電子デバイスの側面部に、当該側面部から外側に延びる斜面部を有するスロープ材が形成されており、前記接続端子と配線パターンとが、前記スロープ材の斜面部と当接して設けられた接続配線を介して電気的に接続されている構成とすることが好ましい。このような構成とすれば、フレキシブル基板上に載置した電子デバイスの端子形成面と、フレキシブル基板表面との段差を前記スロープ材により緩和することができるので、接続端子からスロープ材の斜面部を経由して配線パターンに至る基板上に配線を引き回すことができ、電子デバイスの実装構造の薄型化を実現できる。   In the mounting substrate of the present invention, a slope material having a slope portion extending outward from the side surface portion is formed on the side surface portion of the electronic device, and the connection terminal and the wiring pattern are connected to the slope portion of the slope material. It is preferable that the connection is made through a connection wiring provided in contact therewith. With such a configuration, the slope between the terminal forming surface of the electronic device placed on the flexible substrate and the surface of the flexible substrate can be relaxed by the slope material. The wiring can be routed on the substrate that reaches the wiring pattern via the wiring pattern, and the electronic device mounting structure can be thinned.

本発明の実装基板では、前記電子デバイスの外側の領域において、該電子デバイスの端子形成面の延長面を挟んで両側にそれぞれ配された当該実装基板の構成部材が、互いに略等しい曲げ弾性率を有していることが好ましい。すなわち、電子デバイスが実装された領域の外側においても、電子デバイスの端子形成面と面一な位置に中立面が配されるようにすることが好ましい。これにより、曲げ応力によるトランジスタ特性の変化を抑制し、さらにより優れた接続信頼性を得ることができる。   In the mounting substrate of the present invention, in the outer region of the electronic device, the constituent members of the mounting substrate respectively disposed on both sides of the extension surface of the terminal forming surface of the electronic device have substantially the same bending elastic modulus. It is preferable to have. That is, it is preferable that the neutral surface is arranged at a position flush with the terminal formation surface of the electronic device even outside the region where the electronic device is mounted. As a result, changes in transistor characteristics due to bending stress can be suppressed, and even better connection reliability can be obtained.

本発明の実装基板では、前記電子デバイスの厚さが50μm以下であることが好ましい。このような構成とすれば、実装基板全体で良好な可撓性が得られる。   In the mounting substrate of the present invention, it is preferable that the electronic device has a thickness of 50 μm or less. With such a configuration, good flexibility can be obtained over the entire mounting substrate.

次に、本発明は、先に記載の本発明の実装基板を製造する方法であって、前記フレキシブル基板上に、配線パターンを含む配線層を形成する工程と、前記配線パターン上、及び/又は前記電子デバイスの接続端子上に、液滴吐出法を用いて金属微粒子を含む液状体を配する工程と、前記液状体を介して前記配線パターンと前記接続端子とを接合する工程と、前記液状体を乾燥固化することで導電体を形成し、前記配線パターンと接続端子とを導通させる工程と、を含むことを特徴とする実装基板の製造方法を提供する。この製造方法によれば、配線パターンの接続部と電子デバイスの接続端子との間に配した液状体を焼成し、その金属微粒子を焼結することにより、前記配線パターンの接続部と前記電子デバイスの接続端子とを接続するとともに電気的に導通させるので、接続および導通に要する厚さが金属微粒子焼結体分の極めて薄い厚さとなり、したがって得られる実装構造を薄厚化することができる。また、基本的に電子デバイスを加圧することなく焼成処理のみで前記接続部と端子との間の導通を確保することが可能となり、したがって、例えば極薄の半導体チップを実装する場合にも、これを加圧することなく実装処理を行うことが可能になる。よって、加圧による半導体チップの破壊や接続信頼性の低下といった不都合を回避することができる。よって、得られる実装構造についての曲げ性および接続信頼性を確保することができる。   Next, the present invention is a method for manufacturing the mounting substrate of the present invention described above, the step of forming a wiring layer including a wiring pattern on the flexible substrate, and the wiring pattern, and / or A step of disposing a liquid material containing metal fine particles on a connection terminal of the electronic device using a droplet discharge method; a step of bonding the wiring pattern and the connection terminal through the liquid material; And a step of forming a conductor by drying and solidifying the body and electrically connecting the wiring pattern and the connection terminal. According to this manufacturing method, the liquid material disposed between the connection portion of the wiring pattern and the connection terminal of the electronic device is fired, and the metal fine particles are sintered, whereby the connection portion of the wiring pattern and the electronic device are sintered. Since the connection terminals are electrically connected to each other and electrically conductive, the thickness required for connection and conduction is very thin as much as the metal fine particle sintered body, and thus the obtained mounting structure can be thinned. In addition, it is basically possible to ensure electrical continuity between the connecting portion and the terminal by only firing without applying pressure to the electronic device. Therefore, for example, even when an ultra-thin semiconductor chip is mounted. It is possible to perform the mounting process without pressurizing. Therefore, inconveniences such as destruction of the semiconductor chip due to pressurization and a decrease in connection reliability can be avoided. Therefore, the bendability and connection reliability of the obtained mounting structure can be ensured.

本発明の実装基板の製造方法では、前記配線パターン上、及び/又は前記接続端子上に前記液状体を配することで、前記配線パターン又は前記接続端子上に導体ポストを立設することが好ましい。このように導体ポストを立設するようにすれば、電子デバイスを実装する際のアライメントが容易になるという利点が得られる。   In the mounting substrate manufacturing method of the present invention, it is preferable that a conductor post is erected on the wiring pattern or the connection terminal by arranging the liquid material on the wiring pattern and / or the connection terminal. . If the conductor posts are erected in this way, there is an advantage that alignment when mounting the electronic device is facilitated.

本発明の実装基板の製造方法では、前記導体ポストを露出させた状態で前記配線パターンを覆う接着層を形成し、当該接着層上に前記電子デバイスを載置することで、前記フレキシブル基板上に電子デバイスを実装することが好ましい。このような製造方法とすれば、電子デバイスとフレキシブル基板との接着性を良好なものとすることができ、得られる実装基板の信頼性を高めることができる。また導体ポストの上面を露出させた状態で接着層を形成するので、電子デバイスの接続端子を導体ポストに対して容易にアライメントすることができ、製造を正確かつ容易に行えるようになる。   In the mounting substrate manufacturing method of the present invention, an adhesive layer covering the wiring pattern is formed in a state where the conductor posts are exposed, and the electronic device is placed on the adhesive layer, whereby the flexible substrate is placed on the flexible substrate. It is preferable to mount an electronic device. With such a manufacturing method, the adhesiveness between the electronic device and the flexible substrate can be improved, and the reliability of the obtained mounting substrate can be improved. In addition, since the adhesive layer is formed with the upper surface of the conductor post exposed, the connection terminals of the electronic device can be easily aligned with the conductor post, and manufacturing can be performed accurately and easily.

また、本発明は、上記課題を解決するために、接続端子を具備した端子形成面を有する電子デバイスをフレキシブル基板上に実装してなる実装基板であって、前記電子デバイスが、前記端子形成面を前記フレキシブル基板に対し反対側に向けて配置されており、前記電子デバイスの端子形成面と反対側の載置面が、当該実装基板の厚さ方向における中立面に略一致して配置されていることを特徴とする実装基板を提供する。
この実装基板は、フレキシブル基板を基体として用いていることで可撓性を有し、比較的自由に撓曲させることが可能なものである。そして、前記電子デバイスの端子形成面と反対側の載置面と、実装基板の中立面とが略一致するように電子デバイスが実装されているので、実装基板を曲げる際に生じるひずみが、中立面に配置された電子デバイスの載置面でほぼゼロになる。したがって、電子デバイスを薄層化する際の研削面となる端子形成面と反対側の載置面に曲げ応力が作用することがない。これにより、研削時に微小な割れ(研削割れ)が導入されている可能性のある載置面において、研削割れの伸展等に起因する破損が生じるのを防止でき、曲げに対する耐性に優れ、信頼性に優れた実装基板を実現することができる。
In order to solve the above-mentioned problem, the present invention is a mounting substrate formed by mounting an electronic device having a terminal formation surface provided with a connection terminal on a flexible substrate, wherein the electronic device is the terminal formation surface. Is disposed facing the flexible substrate, and the mounting surface opposite to the terminal forming surface of the electronic device is disposed substantially coincident with the neutral surface in the thickness direction of the mounting substrate. Provided is a mounting board.
This mounting substrate has flexibility by using a flexible substrate as a base, and can be bent relatively freely. And, since the electronic device is mounted so that the mounting surface opposite to the terminal forming surface of the electronic device and the neutral surface of the mounting substrate are substantially coincident with each other, the strain generated when the mounting substrate is bent is It becomes almost zero on the mounting surface of the electronic device arranged on the neutral surface. Therefore, bending stress does not act on the mounting surface opposite to the terminal forming surface that becomes the ground surface when the electronic device is thinned. As a result, it is possible to prevent damage caused by the extension of grinding cracks on the mounting surface that may have introduced micro cracks (grinding cracks) during grinding, and has excellent bending resistance and reliability. An excellent mounting board can be realized.

本発明の実装基板では、当該実装基板の厚さ方向において、前記電子デバイスの載置面を挟み両側にそれぞれ配された構成部材が、略等しい曲げ弾性率を有していることが好ましい。前記中立面の位置は、実装基板の厚さ方向で曲げ弾性率が釣り合う位置に相当するので、このような構成とすることで、前記載置面と中立面とを略一致させることができる。   In the mounting board of the present invention, it is preferable that the constituent members respectively disposed on both sides of the mounting surface of the electronic device have substantially the same bending elastic modulus in the thickness direction of the mounting board. Since the position of the neutral surface corresponds to a position where the flexural modulus is balanced in the thickness direction of the mounting substrate, the above-described configuration surface and the neutral surface can be substantially matched by adopting such a configuration. it can.

本発明の実装基板では、前記フレキシブル基板上であって、前記電子デバイスの外側の領域に、前記配線パターンを覆う絶縁層が形成されていることが好ましい。このような構成とすれば、前記絶縁層によって配線パターンを保護することができ、実装基板の信頼性を向上させることができる。   In the mounting substrate of the present invention, it is preferable that an insulating layer is formed on the flexible substrate and covering the wiring pattern in a region outside the electronic device. With such a configuration, the wiring pattern can be protected by the insulating layer, and the reliability of the mounting substrate can be improved.

本発明の実装基板では、前記絶縁層が、前記電子デバイス上にも形成されている構成としてもよい。このような構成とすることで、前記絶縁層によって前記電子デバイスを保護することができ、また電子デバイスの脱離等も効果的に防止することができる。   In the mounting substrate of the present invention, the insulating layer may be formed on the electronic device. With such a configuration, the electronic device can be protected by the insulating layer, and detachment of the electronic device can be effectively prevented.

本発明の実装基板では、前記電子デバイスの側面部に、当該側面部から外側に延びる斜面部を有するスロープ材が形成されており、前記接続端子と配線パターンとが、前記スロープ材の斜面部と当接して設けられた接続配線を介して電気的に接続されている構成とすることが好ましい。このような構成とすれば、フレキシブル基板上に載置した電子デバイスの端子形成面と、フレキシブル基板表面との段差を前記スロープ材により緩和することができるので、接続端子からスロープ材の斜面部を経由して配線パターンに至る基板上に配線を引き回すことができ、電子デバイスの実装構造の薄型化を実現できる。   In the mounting substrate of the present invention, a slope material having a slope portion extending outward from the side surface portion is formed on the side surface portion of the electronic device, and the connection terminal and the wiring pattern are connected to the slope portion of the slope material. It is preferable that the connection is made through a connection wiring provided in contact therewith. With such a configuration, the slope between the terminal forming surface of the electronic device placed on the flexible substrate and the surface of the flexible substrate can be relaxed by the slope material. The wiring can be routed on the substrate that reaches the wiring pattern via the wiring pattern, and the electronic device mounting structure can be thinned.

本発明の実装基板では、前記電子デバイスの厚さが50μm以下であることが好ましい。このような構成とすれば、実装基板全体で良好な可撓性が得られる。   In the mounting substrate of the present invention, it is preferable that the electronic device has a thickness of 50 μm or less. With such a configuration, good flexibility can be obtained over the entire mounting substrate.

次に、本発明の実装基板の製造方法は、一面側が接続端子を具備した端子形成面とされた電子デバイスをフレキシブル基板上に実装してなる実装基板の製造方法であって、前記フレキシブル基板上に接着層を介して電子デバイスを載置する工程と、前記電子デバイスの側面部に、前記端子形成面からフレキシブル基板上に延びる斜面部を有するスロープ材を形成する工程と、前記スロープ材の斜面部の表面を経由して前記接続端子と前記配線パターンとを電気的に接続する接続配線を形成する工程と、を含み、前記電子デバイスの載置面を挟んでそれぞれ両側に配された構成部材の曲げ弾性率を、互いに略等しくすることを特徴とする。   Next, a method for manufacturing a mounting board according to the present invention is a method for manufacturing a mounting board in which an electronic device having a terminal-forming surface provided with a connection terminal on one side is mounted on a flexible board, A step of placing the electronic device through an adhesive layer, a step of forming a slope material having a slope portion extending from the terminal forming surface onto the flexible substrate on the side surface portion of the electronic device, and a slope surface of the slope material Forming a connection wiring that electrically connects the connection terminal and the wiring pattern via the surface of the part, and each of the components disposed on both sides of the mounting surface of the electronic device The bending elastic moduli are substantially equal to each other.

次に、本発明の電子機器は、先に記載の本発明の実装基板を具備したことを特徴とする。この構成によれば、薄型で可撓性を有し、電気的接続の信頼性にも優れた実装基板により、薄型、高信頼性の電子機器が提供される。   Next, an electronic apparatus according to the present invention includes the mounting substrate according to the present invention described above. According to this configuration, a thin and highly reliable electronic device is provided by a mounting substrate that is thin and flexible, and has excellent electrical connection reliability.

(第1の実施形態)
以下、本発明の実施の形態を図面を参照して詳しく説明する。
図1は、本発明における実装基板の一実施形態を示す部分断面構成図である。図1に示すように、実装基板10FDは、フレキシブル基板1上に半導体チップ(一面側に接続端子を備えた電子デバイス)2を実装した構造を備えている。フレキシブル基板1は、ポリイミド等の樹脂からなるもので、テープ状またはシート状など、各種の形状に形成されたものが用いられている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial cross-sectional configuration diagram showing an embodiment of a mounting board according to the present invention. As shown in FIG. 1, the mounting substrate 10FD has a structure in which a semiconductor chip (an electronic device having a connection terminal on one surface side) 2 is mounted on a flexible substrate 1. The flexible substrate 1 is made of a resin such as polyimide, and is formed in various shapes such as a tape shape or a sheet shape.

フレキシブル基板1上には、金属配線(配線パターン)4が形成されている。この金属配線4は、フレキシブル基板に形成された配線、あるいは後述するように液滴吐出法を用いて形成されたもので、銀微粒子等の金属微粒子の焼結体により形成されている。なお、この金属配線4は、フレキシブル基板1の端縁側にて図示しない配線に接続し、この配線を介してフレキシブル基板1とは別の外部端子(図示せず)に接続されるようになっている。また、この金属配線4は、フレキシブル基板1の中央部側の端部が、半導体チップ2の端子に接続する接続部4aとなっており、この接続部4a上には、高さ数十μm程度の導電性を有する柱状の導体ポスト5が形成されている。   A metal wiring (wiring pattern) 4 is formed on the flexible substrate 1. The metal wiring 4 is a wiring formed on a flexible substrate or formed using a droplet discharge method as will be described later, and is formed of a sintered body of metal fine particles such as silver fine particles. The metal wiring 4 is connected to a wiring (not shown) on the edge side of the flexible substrate 1 and is connected to an external terminal (not shown) different from the flexible substrate 1 through the wiring. Yes. In addition, the metal wiring 4 has a connecting portion 4a that is connected to the terminal of the semiconductor chip 2 at the end on the central side of the flexible substrate 1, and has a height of several tens of μm on the connecting portion 4a. A columnar conductor post 5 having the above conductivity is formed.

導体ポスト5は、液滴吐出法で形成されたもので、銀微粒子等の金属微粒子が焼結されて形成されたものである。
また、フレキシブル基板1上には、熱硬化性の絶縁性樹脂からなる接着層6が形成されている。この接着層6は、後述するように前記導体ポスト5の上面を露出させた状態で金属配線4を覆い、これによってフレキシブル基板1と半導体チップ2との間を接着しているものである。この接着層6を形成する熱硬化性樹脂としては、例えばエポキシ系樹脂材料等が用いられる。
The conductor post 5 is formed by a droplet discharge method, and is formed by sintering metal fine particles such as silver fine particles.
An adhesive layer 6 made of a thermosetting insulating resin is formed on the flexible substrate 1. As will be described later, the adhesive layer 6 covers the metal wiring 4 with the upper surface of the conductor post 5 exposed, thereby bonding the flexible substrate 1 and the semiconductor chip 2 together. For example, an epoxy resin material or the like is used as the thermosetting resin for forming the adhesive layer 6.

そして、この接着層6上には半導体チップ2が、その端子形成面(能動面)2aをフレキシブル基板1側に向けた状態で配設されている。半導体チップ2は、本実施形態では50μm以下の厚さに形成された極薄のもので、パッド(接続端子)7をフレキシブル基板1側に向けた状態で実装された、すなわちフェースダウンボンディングされたものである。この半導体チップ2のパッド7は、例えば、半導体チップ2内の集積回路(図示せず)から引き出されたアルミニウム合金からなる基層(図示せず)上に、Ni、Auがこの順にメッキされて形成されたものである。なお、パッド7において実質的な接合層となる最外層(最上層)については、Au以外にも、例えばAg、Cu、Sn、Inとしてもよく、さらにこれらの複数からなる積層構造としてもよい。   The semiconductor chip 2 is disposed on the adhesive layer 6 with its terminal forming surface (active surface) 2a facing the flexible substrate 1 side. In this embodiment, the semiconductor chip 2 is an extremely thin one formed to a thickness of 50 μm or less, and is mounted with the pads (connection terminals) 7 facing the flexible substrate 1 side, that is, face-down bonded. Is. For example, the pads 7 of the semiconductor chip 2 are formed by plating Ni and Au in this order on a base layer (not shown) made of an aluminum alloy drawn from an integrated circuit (not shown) in the semiconductor chip 2. It has been done. In addition, the outermost layer (uppermost layer) which is a substantial bonding layer in the pad 7 may be, for example, Ag, Cu, Sn, In other than Au, or may have a laminated structure including a plurality of these.

このパッド7が前記導体ポスト5に直接当接し、接合されていることにより、前記金属配線4との導電接続構造が形成されている。また、このようにパッド7が導体ポスト5を介して金属配線4に接続されるとともに、半導体チップ2の下面が接着層6を介してフレキシブル基板1に接続することにより、半導体チップ2はフレキシブル基板1に対し強固に固着されたものとなっている。   The pad 7 is in direct contact with and joined to the conductor post 5, thereby forming a conductive connection structure with the metal wiring 4. In addition, the pad 7 is connected to the metal wiring 4 through the conductor post 5 in this way, and the lower surface of the semiconductor chip 2 is connected to the flexible substrate 1 through the adhesive layer 6. 1 is firmly fixed to 1.

また、半導体チップ2の外側の領域の金属配線4を覆うように、アクリル樹脂やエポキシ樹脂等の有機絶縁材料からなる絶縁層8が形成されている。この絶縁層8は、金属配線4を保護する機能を奏する、いわゆるパッシべーション膜であり、外部との接触による金属配線4の短絡や環境の水分や反応性ガスによる金属配線4の腐食等を防止するようになっている。なお、この絶縁層8は、金属配線4のみならず半導体チップ2の表面も覆うように形成されていてもよい。すなわち、絶縁層8とフレキシブル基板1との間に半導体チップ2が封止された構造としてもよい。この場合、半導体チップ2の破損や脱離を防止する機能も奏する。   Further, an insulating layer 8 made of an organic insulating material such as an acrylic resin or an epoxy resin is formed so as to cover the metal wiring 4 in the region outside the semiconductor chip 2. This insulating layer 8 is a so-called passivation film that functions to protect the metal wiring 4, and prevents short-circuiting of the metal wiring 4 due to contact with the outside, corrosion of the metal wiring 4 due to environmental moisture or reactive gas, and the like. It comes to prevent. The insulating layer 8 may be formed so as to cover not only the metal wiring 4 but also the surface of the semiconductor chip 2. In other words, the semiconductor chip 2 may be sealed between the insulating layer 8 and the flexible substrate 1. In this case, the semiconductor chip 2 is also prevented from being damaged or detached.

上記構成を具備した本実施形態の実装基板10FDは、可撓性を有するフレキシブル基板1上に薄層の半導体チップ2を実装したものであるので、例えば側面視U形に曲げた状態で電子機器に装着したり、電子ペーパーなどの変形可能な表示装置の制御部等に好適に使用することができる。そして、図1に示すように、本実施形態の実装基板10FDでは、その中立面(実装基板10FDに曲げ応力を作用させたときひずみεがゼロになる面)npが、半導体チップ2の端子形成面2aに略一致している。すなわち、実装基板10FDの厚さ方向において、端子形成面2aを挟んで両側にそれぞれ配された構成部材(フレキシブル基板1、半導体チップ2、接着層6等)の曲げ弾性率が略等しくなるように調整されている。このような構成とされていることで、本実施形態の実装基板10FDは、半導体チップ2と導体ポスト5との接続部分において、基板を曲げたときのひずみがほぼゼロになり、ひずみによって生じるトランジスタ特性の変化がなく、さらに当該接続部分での電気的接続が損なわれるのを効果的に防止することができる。これにより、優れた曲げ耐性を具備した高信頼性の実装基板となっている。   Since the mounting substrate 10FD of the present embodiment having the above-described configuration is obtained by mounting the thin semiconductor chip 2 on the flexible substrate 1 having flexibility, for example, the electronic device is bent in a U shape in a side view. It can be suitably used for a control unit or the like of a display device that can be mounted on or deformable such as electronic paper. As shown in FIG. 1, in the mounting substrate 10FD of the present embodiment, the neutral surface (surface in which the strain ε becomes zero when a bending stress is applied to the mounting substrate 10FD) np is the terminal of the semiconductor chip 2. It substantially coincides with the formation surface 2a. That is, in the thickness direction of the mounting substrate 10FD, the bending elastic moduli of the constituent members (the flexible substrate 1, the semiconductor chip 2, the adhesive layer 6 and the like) disposed on both sides of the terminal formation surface 2a are substantially equal. It has been adjusted. With such a configuration, the mounting substrate 10FD of the present embodiment has a transistor in which the distortion when the substrate is bent becomes substantially zero at the connection portion between the semiconductor chip 2 and the conductor post 5, and the transistor is generated by the distortion. There is no change in characteristics, and it is possible to effectively prevent the electrical connection at the connection portion from being impaired. Thereby, it is a highly reliable mounting board having excellent bending resistance.

上記曲げ弾性率は、3点曲げ試験において求めた荷重−たわみ曲線を用いて計算される弾性率Ebをいい、次式(1)により算出される。ただし、式(1)において、Lは支点(支持ロール)間の距離、wは試験片の幅、tは試験片の厚さ、Fは荷重−たわみ曲線の弾性変形領域で任意に選択した荷重、Yは前記荷重Fでのたわみ(変位)である。なお、式(1)において、荷重Fを2点の荷重P1、P2の差(P1−P2)とし、Yを前記荷重P1、P2にそれぞれ対応する変位y1、y2の差(y1−y2)としてもよい。   The bending elastic modulus is an elastic modulus Eb calculated using a load-deflection curve obtained in a three-point bending test, and is calculated by the following equation (1). In Equation (1), L is the distance between the fulcrums (support rolls), w is the width of the test piece, t is the thickness of the test piece, and F is a load arbitrarily selected in the elastic deformation region of the load-deflection curve. , Y is the deflection (displacement) at the load F. In Equation (1), the load F is the difference between the two loads P1, P2 (P1-P2), and Y is the difference between the displacements y1, y2 corresponding to the loads P1, P2, respectively (y1-y2). Also good.

Eb=L3F/4wt3Y … (1) Eb = L 3 F / 4 wt 3 Y (1)

図1に示す実装基板10FDの場合、端子形成面2aから図示下側に配されている接着層6とフレキシブル基板1とからなる積層構造物の曲げ弾性率と、半導体チップ2の曲げ弾性率とが略等しくなるように調整されている。曲げ弾性率は、フレキシブル基板1の厚さやヤング率により調整することができる。なお、本実施形態において、前記金属配線4が液滴吐出法を用いて形成されたものであるならば、その膜厚が極めて薄く形成されることから、上記曲げ弾性率にはほとんど影響しない。   In the case of the mounting substrate 10FD shown in FIG. 1, the bending elastic modulus of the laminated structure composed of the adhesive layer 6 and the flexible substrate 1 arranged on the lower side of the drawing from the terminal forming surface 2a, and the bending elastic modulus of the semiconductor chip 2 Are adjusted to be substantially equal. The flexural modulus can be adjusted by the thickness of the flexible substrate 1 and the Young's modulus. In the present embodiment, if the metal wiring 4 is formed using a droplet discharge method, the bending elastic modulus is hardly affected because the film thickness is formed extremely thin.

また本実施形態の実装基板10FDでは、半導体チップ2の外側の領域においても、半導体チップ2の端子形成面2aと面一になる位置に、実装基板の中立面が配されていることが好ましい。実装基板上の部位により中立面の位置が異なっていると、実装基板を曲げたときに部位によって変位の大小が生じ、均一な曲げ性が得られなくなり、また局所的に大きな荷重がかかるおそれもあるからである。
図示のように、半導体チップ2の外側の領域は、フレキシブル基板1上に金属配線4と絶縁層8とが積層されており、端子形成面2aと面一の中立面npは絶縁層8中に位置する。したがって、中立面の位置を調整するための曲げ弾性率の調整は、主に絶縁層8の厚さ調整により行うことができる。
Further, in the mounting substrate 10FD of this embodiment, it is preferable that the neutral surface of the mounting substrate is arranged at a position that is flush with the terminal formation surface 2a of the semiconductor chip 2 also in the region outside the semiconductor chip 2. . If the position of the neutral surface differs depending on the location on the mounting board, the size of the displacement may vary depending on the location when the mounting board is bent, and uniform bendability may not be obtained, and a large load may be applied locally. Because there is also.
As shown in the drawing, in the region outside the semiconductor chip 2, the metal wiring 4 and the insulating layer 8 are laminated on the flexible substrate 1, and the neutral surface np flush with the terminal formation surface 2 a is in the insulating layer 8. Located in. Therefore, the adjustment of the bending elastic modulus for adjusting the position of the neutral surface can be performed mainly by adjusting the thickness of the insulating layer 8.

以上説明したように、本実施形態の実装基板10FDは、半導体チップ2の端子形成面2aと略一致する中立面を有するものとされたことで、基板を曲げたときの端子形成面2aにおけるひずみがほとんどないものとなっている。これにより、半導体チップ2と金属配線4との導電接続部において、曲げ応力に対し優れた耐性を得ることができる高信頼性の実装基板となっている。   As described above, the mounting substrate 10FD of the present embodiment has a neutral surface that is substantially coincident with the terminal formation surface 2a of the semiconductor chip 2, and thus the terminal formation surface 2a when the substrate is bent. There is almost no distortion. As a result, the conductive connection portion between the semiconductor chip 2 and the metal wiring 4 is a highly reliable mounting substrate that can obtain excellent resistance to bending stress.

(第2の実施形態)
次に、本発明の第2の実施形態に係る実装基板の構成につき、図2を参照して説明する。図2は、本実施形態の実装基板の部分断面構成図である。
なお、本実施形態の実装基板10FUは、電子デバイスである半導体チップ2の実装構造が異なっている以外は、先の第1実施形態に係る実装基板10FDと同様の構造であるから、図2において図1と共通の符号が付された構成要素は、同一の構成要素として説明を省略する。
(Second Embodiment)
Next, the configuration of the mounting substrate according to the second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a partial cross-sectional configuration diagram of the mounting substrate of the present embodiment.
The mounting substrate 10FU of the present embodiment has the same structure as the mounting substrate 10FD according to the first embodiment except that the mounting structure of the semiconductor chip 2 that is an electronic device is different. The components denoted by the same reference numerals as those in FIG.

図2に示す実装基板10FUは、フレキシブル基板1上に、金属配線4が形成され、接着層6を介して半導体チップ2が実装された構成を備えている。半導体チップ2は、その端子形成面2aをフレキシブル基板1と反対側に向けた状態で接着され、フレキシブル基板1に対してフェースアップボンディングされている。   A mounting substrate 10FU shown in FIG. 2 has a configuration in which a metal wiring 4 is formed on a flexible substrate 1 and a semiconductor chip 2 is mounted via an adhesive layer 6. The semiconductor chip 2 is bonded with its terminal formation surface 2 a facing away from the flexible substrate 1 and is face-up bonded to the flexible substrate 1.

半導体チップ2の側面部には、端子形成面2aから外側に延びてフレキシブル基板1上に至る斜面部を具備したスロープ材9が形成されており、このスロープ材9の斜面部の表面を経由してパッド7と金属配線4とを電気的に接続する接続配線4cが形成されている。接続配線4cは、液滴吐出法を用いて形成されたものであり、金属微粒子を焼結してなる薄膜である。スロープ材9は半導体チップ2の端子形成面2aとフレキシブル基板1表面との段差を緩和する作用を奏するものであり、液滴吐出法を用いて形成される接続配線4cの断線等を防止する機能を奏する。   On the side surface portion of the semiconductor chip 2, a slope material 9 having a slope portion extending outward from the terminal forming surface 2 a and reaching the flexible substrate 1 is formed, via the slope portion surface of the slope material 9. Thus, a connection wiring 4c for electrically connecting the pad 7 and the metal wiring 4 is formed. The connection wiring 4c is formed using a droplet discharge method, and is a thin film formed by sintering metal fine particles. The slope material 9 has an effect of relaxing the step between the terminal formation surface 2a of the semiconductor chip 2 and the surface of the flexible substrate 1, and functions to prevent disconnection of the connection wiring 4c formed by using the droplet discharge method. Play.

スロープ材9は、例えばポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂、シリコーン変性エポキシ樹脂、ベンゾシクロブテン(BCB;benzocyclobutene)、ポリベンゾオキサゾール(PBO;polybenzoxazole)等の樹脂材料を、ディスペンサ等の液体材料塗布手段を用いてフレキシブル基板1上に塗布することで形成することができる。あるいは、液滴吐出法やドライフィルムを固着する方法により形成してもよい。   The slope material 9 is made of, for example, a resin material such as polyimide resin, silicone-modified polyimide resin, epoxy resin, silicone-modified epoxy resin, benzocyclobutene (BCB), polybenzoxazole (PBO), or a liquid material such as a dispenser. It can form by apply | coating on the flexible substrate 1 using an application | coating means. Alternatively, it may be formed by a droplet discharge method or a method of fixing a dry film.

半導体チップ2、金属配線4、接続配線4c等を含むフレキシブル基板1上に、アクリル樹脂やエポキシ樹脂等の有機絶縁材料からなる絶縁層8aが形成されている。絶縁層8aは、図示したように、半導体チップ2上とその外側の領域とで膜厚が異なっており、本実施形態の場合、半導体チップ2上で薄く、半導体チップ2の外側で厚くなるように形成されている。   An insulating layer 8a made of an organic insulating material such as acrylic resin or epoxy resin is formed on the flexible substrate 1 including the semiconductor chip 2, the metal wiring 4, the connection wiring 4c, and the like. As shown in the drawing, the insulating layer 8a has different film thicknesses on the semiconductor chip 2 and the outer region. In the present embodiment, the insulating layer 8a is thin on the semiconductor chip 2 and thick on the outside of the semiconductor chip 2. Is formed.

上記構成を具備した本実施形態の実装基板10FUにおいても、半導体チップ2の端子形成面2aと、実装基板10FUの中立面npとが略一致するように、各構成部材の曲げ弾性率が調整されている。本実施形態の場合、端子形成面2aの図示下側に、フレキシブル基板1と接着層6と半導体チップ2とが配置され、図示上側には絶縁層8aのみが配されているから、上記中立面の調整に際しては、主として絶縁層8aの材質変更及び/又は厚さ調整により行うことができる。   Also in the mounting substrate 10FU of the present embodiment having the above-described configuration, the flexural modulus of each component is adjusted so that the terminal forming surface 2a of the semiconductor chip 2 and the neutral surface np of the mounting substrate 10FU substantially coincide with each other. Has been. In the case of this embodiment, the flexible substrate 1, the adhesive layer 6, and the semiconductor chip 2 are disposed on the lower side of the terminal formation surface 2a, and only the insulating layer 8a is disposed on the upper side of the terminal. The surface can be adjusted mainly by changing the material and / or adjusting the thickness of the insulating layer 8a.

また、本実施形態の実装基板10FUにおいても、半導体チップ2の外側の領域における中立面は、半導体チップ2の端子形成面2aと面一となるように調整されていることが好ましい。係る領域における中立面の調整も、絶縁層8aの材質変更及び/又は厚さ調整により行うことができる。   Also in the mounting substrate 10FU of the present embodiment, it is preferable that the neutral surface in the region outside the semiconductor chip 2 is adjusted to be flush with the terminal formation surface 2a of the semiconductor chip 2. Adjustment of the neutral plane in such a region can also be performed by changing the material and / or adjusting the thickness of the insulating layer 8a.

このように第2実施形態に係る実装基板10FUにおいても、半導体チップ2の端子形成面2aと、実装基板の中立面npとが略一致しているから、実装基板10FUを曲げた場合に、接続配線4cとパッドとの接合部におけるひずみがほとんど無く、優れた接続信頼性を得られるようになっている。また、接続配線4cが液滴吐出法を用いて形成されたものであることから、ワイヤボンディングに比して極めて薄く電子デバイスが実装されたものとなっており、係る実装基板を搭載する電子機器の薄型化に大いに寄与するものとなっている。   Thus, also in the mounting substrate 10FU according to the second embodiment, since the terminal formation surface 2a of the semiconductor chip 2 and the neutral surface np of the mounting substrate are substantially coincident, when the mounting substrate 10FU is bent, There is almost no distortion at the joint between the connection wiring 4c and the pad, and excellent connection reliability can be obtained. In addition, since the connection wiring 4c is formed by using a droplet discharge method, an electronic device is mounted extremely thinly compared to wire bonding, and an electronic device on which such a mounting substrate is mounted. This greatly contributes to reducing the thickness of the product.

(実装基板の製造方法)
次に、図1に示した第1実施形態に係る実装基板10FDの製造方法につき、図3を参照して説明する。
まず、図3(a)に示すようにフレキシブル基板1を用意し、フレキシブル基板1上の所定位置に、液滴吐出法によって金属微粒子を分散液に分散させてなる液状体を吐出し配置する。液滴吐出法としては、インクジェット法やディスペンサ法などが採用可能であるが、特にインクジェット法が、所望位置に所望量の液状材料を配することができるため好ましく、本実施形態ではインクジェット法を用いるものとする。
(Manufacturing method of mounting substrate)
Next, a method for manufacturing the mounting substrate 10FD according to the first embodiment shown in FIG. 1 will be described with reference to FIG.
First, as shown in FIG. 3A, a flexible substrate 1 is prepared, and a liquid material in which metal fine particles are dispersed in a dispersion liquid is ejected and arranged at a predetermined position on the flexible substrate 1 by a droplet ejection method. As the droplet discharge method, an inkjet method, a dispenser method, or the like can be adopted. In particular, the inkjet method is preferable because a desired amount of liquid material can be disposed at a desired position. In this embodiment, the inkjet method is used. Shall.

ここで、インクジェット法による吐出を行うのに好適に用いられる液滴吐出ヘッド(インクジェットヘッド)について説明する。液滴吐出ヘッド34は、図4(a)に示すように例えばステンレス製のノズルプレート12と振動板13とを備え、両者を仕切部材(リザーバプレート)14を介して接合したものである。ノズルプレート12と振動板13との間には、仕切部材14によって複数の空間15と液溜まり16とが形成されている。各空間15と液溜まり16の内部は液状材料で満たされており、各空間15と液溜まり16とは供給口17を介して連通したものとなっている。また、ノズルプレート12には、空間15から液状材料を噴射するためのノズル孔18が縦横に整列させられた状態で複数形成されている。一方、振動板13には、液溜まり16に液状材料を供給するための孔19が形成されている。   Here, a liquid droplet ejection head (inkjet head) that is preferably used for performing ejection by the inkjet method will be described. As shown in FIG. 4A, the droplet discharge head 34 includes, for example, a stainless nozzle plate 12 and a vibration plate 13, and both are joined via a partition member (reservoir plate) 14. A plurality of spaces 15 and a liquid reservoir 16 are formed between the nozzle plate 12 and the diaphragm 13 by the partition member 14. Each space 15 and the liquid reservoir 16 are filled with a liquid material, and each space 15 and the liquid reservoir 16 communicate with each other via a supply port 17. In addition, a plurality of nozzle holes 18 for injecting the liquid material from the space 15 are formed in the nozzle plate 12 in a state of being aligned vertically and horizontally. On the other hand, a hole 19 for supplying a liquid material to the liquid reservoir 16 is formed in the diaphragm 13.

また、振動板13の空間15に対向する面と反対側の面上には、図4(b)に示すように圧電素子(ピエゾ素子)20が接合されている。この圧電素子20は、一対の電極21の間に位置し、通電するとこれが外側に突出するようにして撓曲するよう構成されたものである。そして、このような構成のもとに圧電素子20が接合されている振動板13は、圧電素子20と一体になって同時に外側へ撓曲するようになっており、これによって空間15の容積が増大するようになっている。したがって、空間15内に増大した容積分に相当する液状材料が、液溜まり16から供給口17を介して流入する。また、このような状態から圧電素子20への通電を解除すると、圧電素子20と振動板13はともに元の形状に戻る。したがって、空間15も元の容積に戻ることから、空間15内部の液状材料の圧力が上昇し、ノズル孔18からフレキシブル基板1に向けて液状材料(液状体)の液滴22が吐出される。   Further, a piezoelectric element (piezo element) 20 is joined to the surface of the diaphragm 13 opposite to the surface facing the space 15 as shown in FIG. The piezoelectric element 20 is positioned between a pair of electrodes 21 and is configured to bend so that when it is energized, it projects outward. The diaphragm 13 to which the piezoelectric element 20 is bonded in such a configuration is bent integrally with the piezoelectric element 20 at the same time so that the volume of the space 15 is increased. It is going to increase. Therefore, the liquid material corresponding to the increased volume in the space 15 flows from the liquid reservoir 16 through the supply port 17. Further, when energization to the piezoelectric element 20 is released from such a state, both the piezoelectric element 20 and the diaphragm 13 return to their original shapes. Therefore, since the space 15 also returns to its original volume, the pressure of the liquid material in the space 15 rises, and the liquid material (liquid material) droplet 22 is discharged from the nozzle hole 18 toward the flexible substrate 1.

吐出する液状体としては、金、銀、銅、パラジウム、ニッケル等の金属微粒子を、分散液に分散させてなるものが用いられる。ここで、金属微粒子については、その分散性を向上させるため、表面に有機物などをコーティングして用いることもできる。金属微粒子の表面にコーティングするコーティング材としては、例えば立体障害や静電反発を誘発するようなポリマーが挙げられる。また、金属微粒子の粒径は5nm以上、0.1μm以下であるのが好ましい。0.1μmより大きいと、吐出ヘッドのノズルの目詰まりが起こりやすく、インクジェット法による吐出が困難になるからである。また5nmより小さいと、金属微粒子に対するコーティング材の体積比が大きくなり、得られる膜中の有機物の割合が過多となるからである。   As the liquid to be discharged, a material obtained by dispersing metal fine particles such as gold, silver, copper, palladium, nickel, etc. in a dispersion liquid is used. Here, in order to improve the dispersibility of the metal fine particles, the surface can be used by coating an organic substance or the like. Examples of the coating material for coating the surface of the metal fine particles include polymers that induce steric hindrance and electrostatic repulsion. The particle size of the metal fine particles is preferably 5 nm or more and 0.1 μm or less. If it is larger than 0.1 μm, the nozzle of the ejection head is likely to be clogged, and it becomes difficult to eject by the ink jet method. On the other hand, when the thickness is smaller than 5 nm, the volume ratio of the coating material to the metal fine particles is increased, and the ratio of the organic matter in the obtained film becomes excessive.

金属微粒子を分散させる分散液としては、室温での蒸気圧が0.001mmHg以上、200mmHg以下(約0.133Pa以上、26600Pa以下)であるものが好ましい。蒸気圧が200mmHgより高い場合には、吐出後に分散液が急激に蒸発してしまい、良好な膜(配線膜)を形成することが困難となるためである。
また、分散液の蒸気圧は、0.001mmHg以上、50mmHg以下(約0.133Pa以上、6650Pa以下)であることがより好ましい。蒸気圧が50mmHgより高い場合には、インクジェット法(液滴吐出法)で液滴を吐出する際に乾燥によるノズル詰まりが起こり易く、安定な吐出が困難となるからである。一方、室温での蒸気圧が0.001mmHgより低い分散液の場合、乾燥が遅くなって膜中に分散液が残留しやすくなり、後工程の加熱処理後に良質の導電膜(配線)が得られにくくなるからである。
As the dispersion for dispersing the metal fine particles, those having a vapor pressure at room temperature of 0.001 mmHg or more and 200 mmHg or less (about 0.133 Pa or more and 26600 Pa or less) are preferable. This is because when the vapor pressure is higher than 200 mmHg, the dispersion rapidly evaporates after discharge, making it difficult to form a good film (wiring film).
The vapor pressure of the dispersion is more preferably 0.001 mmHg or more and 50 mmHg or less (about 0.133 Pa or more and 6650 Pa or less). This is because when the vapor pressure is higher than 50 mmHg, nozzle clogging due to drying tends to occur when droplets are ejected by the ink jet method (droplet ejection method), and stable ejection becomes difficult. On the other hand, in the case of a dispersion having a vapor pressure lower than 0.001 mmHg at room temperature, the drying is slow and the dispersion tends to remain in the film, and a high-quality conductive film (wiring) is obtained after the heat treatment in the subsequent process. This is because it becomes difficult.

使用する分散液としては、前記の金属微粒子を分散できるもので、凝集を起こさないものであれば特に限定されないが、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n−ヘプタン、n−オクタン、デカン、テトラデカン、デカリン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、又はエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、p−ジオキサンなどのエーテル系化合物、更にプロピレンカーボネート、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を挙げることができる。これらのうち、微粒子の分散性と分散液の安定性、また、インクジェット法への適用のし易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、更に好ましい分散液としては水、炭化水素系化合物を挙げることができる。これらの分散液は、単独でも、あるいは2種以上の混合物としても使用できる。   The dispersion to be used is not particularly limited as long as it can disperse the metal fine particles and does not cause aggregation. In addition to water, alcohols such as methanol, ethanol, propanol and butanol, n-heptane , N-octane, decane, tetradecane, decalin, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydronaphthalene, cyclohexylbenzene and other hydrocarbon compounds, or ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene Glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2 Methoxyethyl) ether, p- ether compounds such as dioxane, propylene carbonate, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, may be mentioned polar compounds such as cyclohexanone. Of these, water, alcohols, hydrocarbon compounds, and ether compounds are preferred, and further preferred dispersions are preferred in view of dispersibility of the fine particles, stability of the dispersion, and ease of application to the inkjet method. Examples thereof include water and hydrocarbon compounds. These dispersions can be used alone or as a mixture of two or more.

前記金属微粒子を分散液に分散する場合の分散質濃度、すなわち金属微粒子濃度は、1質量%以上、80質量%以下であり、所望の金属配線4の膜厚に応じて調整することができる。1質量%未満では後の加熱による焼成処理に長時間を要することになり、また、80質量%を超えると凝集をおこしやすくなって均一な膜が得られにくくなるからである。   The dispersoid concentration when the metal fine particles are dispersed in the dispersion, that is, the metal fine particle concentration is 1% by mass or more and 80% by mass or less, and can be adjusted according to the desired film thickness of the metal wiring 4. If it is less than 1% by mass, it will take a long time for the subsequent baking treatment by heating, and if it exceeds 80% by mass, aggregation tends to occur and it becomes difficult to obtain a uniform film.

前記金属微粒子を分散液に分散させてなる液状体の表面張力は、0.02N/m以上、0.07N/m以下の範囲に入ることが好ましい。インクジェット法にて液状体を吐出する際、表面張力が0.02N/m未満であると、この液状体のノズル面に対する濡れ性が増大するため飛行曲りが生じ易くなり、0.07N/mを超えるとノズル先端でのメニスカスの形状が安定しないため吐出量、吐出タイミングの制御が困難になるからである。   The surface tension of a liquid obtained by dispersing the metal fine particles in a dispersion is preferably in the range of 0.02 N / m or more and 0.07 N / m or less. When the liquid material is ejected by the ink jet method, if the surface tension is less than 0.02 N / m, the wettability of the liquid material to the nozzle surface increases, and thus flight bending easily occurs, and 0.07 N / m. This is because if it exceeds, the shape of the meniscus at the tip of the nozzle is not stable, and it becomes difficult to control the discharge amount and discharge timing.

上記液状体の粘度は、1mPa・s以上、50mPa・s以下であるのが好ましい。インクジェット法にて吐出する際、粘度が1mPa・sより小さい場合には、吐出ヘッドのノズル周辺部がインク(液状体)の流出によって汚染されやすく、また、粘度が50mPa・sより大きい場合には、ノズル孔での目詰まり頻度が高くなって円滑な液滴の吐出が困難になるからである。   The viscosity of the liquid is preferably 1 mPa · s or more and 50 mPa · s or less. When discharging by the ink jet method, if the viscosity is less than 1 mPa · s, the nozzle periphery of the discharge head is likely to be contaminated by the outflow of ink (liquid), and if the viscosity is greater than 50 mPa · s. This is because the frequency of clogging at the nozzle holes increases, and it becomes difficult to smoothly discharge droplets.

本実施形態では、金属微粒子として銀微粒子を用いてなる液状体の液滴22を、図3(a)に示したように液滴吐出ヘッド34から吐出し、フレキシブル基板1上の配線を形成すべき場所に滴下し、焼成後に金属配線4となる中間構造体4bを形成する。本実施形態の場合、この中間構造体4bは、基板上に滴下された液状体ないしこの液状体の乾燥物を指すものである。前記液状体の吐出配置に際しては、液だまり(バルジ)が生じないように、続けて吐出する液滴の重なり程度を制御することが好ましい。また、一回目の吐出では複数の液滴を互いに接しないように離間して吐出し、2回目以降の吐出によって、その間を埋めていくような吐出方法を採用することもできる。   In the present embodiment, a liquid droplet 22 using silver fine particles as metal fine particles is discharged from a droplet discharge head 34 as shown in FIG. 3A to form wiring on the flexible substrate 1. An intermediate structure 4b that is dropped in a place and becomes the metal wiring 4 after firing is formed. In the present embodiment, the intermediate structure 4b refers to a liquid dropped on the substrate or a dried product of the liquid. In the discharge arrangement of the liquid material, it is preferable to control the overlapping degree of the liquid droplets to be continuously discharged so that a liquid bulge does not occur. Further, it is also possible to employ a discharge method in which a plurality of droplets are discharged so as not to contact each other in the first discharge, and the space is filled by the second and subsequent discharges.

このようにして金属配線4の中間構造体4bを形成したならば、これを200℃程度で加熱することによって焼成し、金属微粒子(銀微粒子)を焼結して図3(b)に示すように金属配線4を形成する。なお、金属配線4の中間構造体4bについても、金属微粒子(銀微粒子)を焼結させることによる本硬化処理でなく、液状体中の分散液を蒸発させる程度の仮硬化処理にとどめておいてもよい。   When the intermediate structure 4b of the metal wiring 4 is thus formed, it is fired by heating at about 200 ° C., and the metal fine particles (silver fine particles) are sintered, as shown in FIG. 3B. The metal wiring 4 is formed on the substrate. Note that the intermediate structure 4b of the metal wiring 4 is not limited to the main curing process by sintering the metal fine particles (silver fine particles), but is only a temporary curing process to evaporate the dispersion liquid in the liquid. Also good.

次いで、得られた金属配線4の接続部4a、すなわちフレキシブル基板1の中央部側の端部からなる接続部4a上に、金属配線4の形成と同様にして液滴吐出ヘッド34から前記液状体を柱状に吐出して配し、導体ポスト5の中間構造体5aを形成する。続いて、この中間構造体5aを乾燥させることで、接続部4a上にて柱状を保持するようにしておく。この乾燥処理としては、数十℃程度での加熱処理や、ドライヤーなどによる温風または熱風の吹き付け処理、さらに減圧処理などが採用可能である。   Next, on the connection portion 4 a of the obtained metal wiring 4, that is, the connection portion 4 a consisting of the end portion on the central side of the flexible substrate 1, the liquid material is discharged from the droplet discharge head 34 in the same manner as the formation of the metal wiring 4. Are disposed in a columnar shape to form the intermediate structure 5a of the conductor post 5. Subsequently, the intermediate structure 5a is dried to keep the columnar shape on the connection portion 4a. As this drying process, a heat process at about several tens of degrees Celsius, a process of blowing warm air or hot air with a drier or the like, and a decompression process can be employed.

このようにして導体ポスト5の中間構造体5aを乾燥したら、フレキシブル基板1上に、前記金属配線4を覆った状態に前述した熱硬化性樹脂を塗布し、図3(c)に示すように未硬化状態での接着層6aを形成する。塗布法については、特に限定されることなく、ロールコータ法や液滴吐出法など公知の塗布法を採用することができる。また、この接着層6aの形成にあたっては、特に前記導体ポスト5の中間構造体5aの上面については、これを露出させるようにしておく。   After the intermediate structure 5a of the conductor post 5 is dried in this manner, the thermosetting resin described above is applied to the flexible substrate 1 so as to cover the metal wiring 4, and as shown in FIG. The adhesive layer 6a in an uncured state is formed. The coating method is not particularly limited, and a known coating method such as a roll coater method or a droplet discharge method can be employed. In forming the adhesive layer 6a, the upper surface of the intermediate structure 5a of the conductor post 5 is exposed.

次いで、この未硬化状態の接着層6a上に半導体チップ2を位置合わせし、図3(d)に示すように前記導体ポスト5の中間構造体5aにパッド7を接合させた状態で該半導体チップ2を載置する。このとき、半導体チップ2についてはこれを加圧することなく、ほぼその自重のみの圧で、そのパッド7を前記ポスト5の前駆体5aに接合させる。すると、中間構造体5aは仮硬化状態であるので、半導体チップ2が50μm以下の厚さに形成された極薄のものであり、軽量であるにもかかわらず、これの自重による圧で容易に変形し、パッド7に良好に当接する。同様に、接着層6aも未硬化状態であるので、半導体チップ2の下面に良好に当接する。   Next, the semiconductor chip 2 is aligned on the uncured adhesive layer 6a, and the semiconductor chip 2 is bonded to the intermediate structure 5a of the conductor post 5 as shown in FIG. 2 is placed. At this time, the semiconductor chip 2 is joined to the precursor 5a of the post 5 with almost the pressure of its own weight without being pressurized. Then, since the intermediate structure 5a is in a pre-cured state, the semiconductor chip 2 is an extremely thin one formed to a thickness of 50 μm or less, and it is easy to use with its own weight even though it is lightweight. Deforms and makes good contact with the pad 7. Similarly, since the adhesive layer 6a is also in an uncured state, it is in good contact with the lower surface of the semiconductor chip 2.

その後、200℃で2時間程度加熱処理することにより、乾燥状態の前記中間構造体5aを焼成して金属微粒子(銀微粒子)を焼結し、導体ポスト5とする。これにより、この導体ポスト5を介して前記金属配線4の接続部4aと前記半導体チップ2のパッド7とが接続されるとともに、電気的に導通する。また、これと同時に接着層6aを硬化させて接着層6とし、この接着層6を介して半導体チップ2の下面をフレキシブル基板1に密着固定し、図1に示した実装構造を具備した実装基板10FDを得る。
なお、前述したように金属配線4の中間構造体4bについて、本硬化処理でなく仮硬化処理にとどめておいた場合には、ここでの導体ポスト5の中間構造体5aの焼成処理により、中間構造体4aの金属微粒子も焼結される。
Thereafter, the intermediate structure 5a in a dry state is fired at 200 ° C. for about 2 hours to sinter the metal fine particles (silver fine particles), thereby forming the conductor posts 5. Thereby, the connection portion 4a of the metal wiring 4 and the pad 7 of the semiconductor chip 2 are connected through the conductor post 5 and are electrically connected. At the same time, the adhesive layer 6 a is cured to form the adhesive layer 6, and the lower surface of the semiconductor chip 2 is tightly fixed to the flexible substrate 1 through the adhesive layer 6, and the mounting substrate having the mounting structure shown in FIG. 10FD is obtained.
As described above, in the case where the intermediate structure 4b of the metal wiring 4 is only subjected to the temporary curing process instead of the main curing process, the intermediate structure 5a of the conductor post 5 is subjected to a firing process, so that The metal fine particles of the structure 4a are also sintered.

上記工程により得られる実装基板10FDの製造に際しては、フレキシブル基板1の材質及び板厚、接着層6の材質及び膜厚、そして半導体チップ2の板厚等を適切に選択、調整することで、実装基板10FDの中立面が、半導体チップ2の端子形成面2aと略一致されるようになっている。そして、得られた実装基板10FDにあっては、基板を曲げた際に、パッド7と導体ポスト5との当接部におけるひずみがほとんど無くなることから、極めて優れた接続信頼性を得られるようになっている。
よって、この実装基板10FDにあっては、全体の曲げ性を確保することができるとともにその接続信頼性をも確保することができる。
When manufacturing the mounting substrate 10FD obtained by the above process, the material and thickness of the flexible substrate 1, the material and thickness of the adhesive layer 6, and the thickness of the semiconductor chip 2 are appropriately selected and adjusted. The neutral surface of the substrate 10FD is substantially coincident with the terminal formation surface 2a of the semiconductor chip 2. In the obtained mounting substrate 10FD, when the substrate is bent, distortion at the contact portion between the pad 7 and the conductor post 5 is almost eliminated, so that extremely excellent connection reliability can be obtained. It has become.
Therefore, in the mounting substrate 10FD, the entire bendability can be ensured and the connection reliability can be ensured.

また、導体ポスト5を介して金属配線4の接続部4aとパッド7とを電気的に接続する構造を採用しており、導体ポスト5(中間構造体5a)の上面を露出させるように未硬化の接着層6aを形成するので、半導体チップ2を実装する際、パッド7を接続部4a上に接続させるうえでのアライメントが容易になり、さらに、導体ポスト5が金属微粒子の焼結体からなっていることにより、接続部4aとパッド7との接続強度が高まって接続信頼性が向上したものとなる。また、フレキシブル基板1と半導体チップ2との間に配された接着層6により、フレキシブル基板1と半導体チップ2との間で良好な接合性および封止性を得ることができるという利点も有している。   Moreover, the structure which electrically connects the connection part 4a of the metal wiring 4 and the pad 7 via the conductor post 5 is employ | adopted, and it is unhardened so that the upper surface of the conductor post 5 (intermediate structure 5a) may be exposed. When the semiconductor chip 2 is mounted, the alignment for connecting the pad 7 on the connection portion 4a is facilitated, and the conductor post 5 is made of a sintered body of metal fine particles. As a result, the connection strength between the connection portion 4a and the pad 7 is increased, and the connection reliability is improved. In addition, the adhesive layer 6 disposed between the flexible substrate 1 and the semiconductor chip 2 has an advantage that good bondability and sealing performance can be obtained between the flexible substrate 1 and the semiconductor chip 2. ing.

また、このような実装基板の製造方法にあっては、金属配線4の接続部4aと半導体チップ2のパッド7との間に配した導体ポスト5の中間構造体5aとしての液状体を焼成し、その金属微粒子を焼結することにより、前記接続部4aと前記パッド7とを接続するとともに電気的に導通させるようにしているので、導電接続に要する厚さが金属微粒子焼結体分の極めて薄い厚さとなり、したがって得られる実装構造を薄厚化することができる。   Further, in such a manufacturing method of the mounting substrate, the liquid material as the intermediate structure 5a of the conductor post 5 disposed between the connection portion 4a of the metal wiring 4 and the pad 7 of the semiconductor chip 2 is fired. Since the metal fine particles are sintered, the connecting portion 4a and the pad 7 are connected and electrically conducted, so that the thickness required for the conductive connection is extremely large as much as the metal fine particle sintered body. Therefore, the thickness of the mounting structure obtained can be reduced.

また、基本的に半導体チップ2を加圧することなく焼成処理のみで、前記接続部4aとパッド7との間の導通を確保することができ、したがって、例えば極薄の半導体チップ2を実装する場合にも、これを加圧することなく実装処理を行うことができる。よって、加圧による半導体チップ2の破壊や接続信頼性の低下といった不都合を回避することができる。よって、特に本発明は、各種の電子機器やその部品(電子部品)における、超薄型パッケージの製造に好適に採用される。   In addition, the conduction between the connection portion 4a and the pad 7 can be ensured basically only by baking without pressing the semiconductor chip 2, and therefore, for example, when mounting an extremely thin semiconductor chip 2 In addition, the mounting process can be performed without applying pressure thereto. Therefore, inconveniences such as destruction of the semiconductor chip 2 due to pressurization and a decrease in connection reliability can be avoided. Therefore, especially this invention is suitably employ | adopted for manufacture of an ultra-thin package in various electronic devices and its components (electronic component).

また、金属配線4の接続部4aに、液滴吐出法で金属微粒子を分散させた液状体を配することにより柱状の導体ポスト5を形成し、前記接続部4aと前記パッド7とを接続するとともに電気的に導通させるようにしているので、半導体チップ2を実装する際、パッド7を接続部4a上に接続させるうえでのアライメントを容易にすることができ、さらに、接続部4aとパッド7との接続強度を高めて接続信頼性を向上することができる。   Further, a columnar conductor post 5 is formed by disposing a liquid material in which metal fine particles are dispersed by a droplet discharge method to the connection portion 4a of the metal wiring 4, and the connection portion 4a and the pad 7 are connected. In addition, when the semiconductor chip 2 is mounted, the alignment for connecting the pad 7 on the connection portion 4a can be facilitated, and the connection portion 4a and the pad 7 can be easily connected. Connection strength can be increased and connection reliability can be improved.

また、前記金属配線4を、金属微粒子を分散させた液状体を用いる液滴吐出法で形成するようにしたので、この金属配線4についても十分薄厚化でき、したがって実装構造全体の薄厚化をより進めることができる。また、金属配線4の形成を、金属配線4と前記パッド7との接合のための液状体の吐出と、同じ装置で連続して行うことができるので、生産性を高めることができる。   Further, since the metal wiring 4 is formed by a droplet discharge method using a liquid material in which metal fine particles are dispersed, the metal wiring 4 can also be sufficiently thinned, and thus the entire mounting structure can be further thinned. Can proceed. In addition, the formation of the metal wiring 4 can be continuously performed with the same apparatus as the discharge of the liquid material for joining the metal wiring 4 and the pad 7, so that productivity can be improved.

また、前記液状体を介して前記金属配線4の接続部4aと前記半導体チップ2のパッド7とを接合する工程に先立ち、前記接続部4aを露出させた状態で熱硬化性の絶縁性樹脂からなる接着層6aを形成するようにしたので、接続および導通のための液状体の焼成処理によって熱硬化性樹脂からなる接着層6aも同時に硬化するので、フレキシブル基板1と半導体チップ2との間の接合および封止をより良好にすることができ、さらにアンダーフィルの使用により封止を行う場合などに比べ、硬化処理時間をなくすことで生産性を向上することができる。   In addition, prior to the step of bonding the connecting portion 4a of the metal wiring 4 and the pad 7 of the semiconductor chip 2 through the liquid material, the thermosetting insulating resin is used with the connecting portion 4a exposed. Since the adhesive layer 6a is formed, the adhesive layer 6a made of a thermosetting resin is simultaneously cured by baking the liquid for connection and conduction. Bonding and sealing can be made better, and productivity can be improved by eliminating the curing treatment time compared to the case where sealing is performed by using an underfill.

なお、前記実施形態では、金属配線4の接続部4a上に導体ポスト5を形成し、この導体ポスト5を介して接続部4aとパッド7とを接続し導通させるようにしたが、本発明はこれに限定されることなく、接続部4a上に金属微粒子を含む液状体を配し、係る液状体に対して直接パッド7を接続するようにしてもよい。その場合、液状体については、接合部4a上に配しても、パッド7上に配してもよい。いずれの場合にも、金属微粒子を分散させた液状体は同じく金属からなる接続部4aあるいはパッド7のいずれに対しても濡れ性が良いので、液滴吐出法等によって選択的に配すことにより、接続部4a上あるいはパッド7上に良好に塗着される。
また、導体ポスト5についてはこれを金属微粒子を含む液状体を用いた液相法により形成することなく、メッキ等による金属導電体で形成してもよく、その場合には、やはりこの導体ポスト上に金属微粒子を分散させた液状体を配し、係る液状体を介してパッド7を接続するようにすればよい。
In the above embodiment, the conductor post 5 is formed on the connection portion 4a of the metal wiring 4, and the connection portion 4a and the pad 7 are connected through the conductor post 5 so as to be conductive. Without being limited thereto, a liquid material containing metal fine particles may be disposed on the connection portion 4a, and the pad 7 may be directly connected to the liquid material. In that case, the liquid material may be disposed on the bonding portion 4 a or the pad 7. In any case, the liquid in which the metal fine particles are dispersed has good wettability with respect to both the connection portion 4a and the pad 7 made of the same metal. It is applied satisfactorily on the connecting portion 4a or the pad 7.
The conductor post 5 may be formed of a metal conductor by plating or the like without forming it by a liquid phase method using a liquid containing metal fine particles. A liquid material in which metal fine particles are dispersed is disposed on the pad 7, and the pad 7 may be connected via the liquid material.

また、前記実施形態ではフレキシブル基板1上に接着層6を形成し、これによってフレキシブル基板1と半導体チップ2との間の接合および封止を行うようにしたが、本発明はこれに限定されることなく、例えばアンダーフィル材によってフレキシブル基板1と半導体チップ2との間の封止を行うようにしてもよい。   Moreover, in the said embodiment, although the contact bonding layer 6 was formed on the flexible substrate 1 and this performed joining and sealing between the flexible substrate 1 and the semiconductor chip 2, this invention is limited to this. Instead, for example, sealing between the flexible substrate 1 and the semiconductor chip 2 may be performed with an underfill material.

(第3の実施形態)
次に、本発明の第3の実施形態に係る実装基板の構成につき、図5を参照して説明する。図5は、本実施形態の実装基板の部分断面構成図である。
なお、本実施形態においては、先の実施形態に係る実装基板と共通の符号が付された構成要素は、同一の構成要素として説明を省略する。
(Third embodiment)
Next, the configuration of the mounting substrate according to the third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a partial cross-sectional configuration diagram of the mounting substrate of the present embodiment.
In the present embodiment, the constituent elements denoted by the same reference numerals as those of the mounting substrate according to the previous embodiment are the same constituent elements, and the description thereof is omitted.

図5に示すように、実装基板110は、フレキシブル基板1上に半導体チップ2を実装した構造を備えている。フレキシブル基板1は、ポリイミド等の樹脂からなるもので、テープ状またはシート状など、各種の形状に形成されたものが用いられている。   As shown in FIG. 5, the mounting substrate 110 has a structure in which the semiconductor chip 2 is mounted on the flexible substrate 1. The flexible substrate 1 is made of a resin such as polyimide, and is formed in various shapes such as a tape shape or a sheet shape.

フレキシブル基板1上には、金属配線4が形成され、半導体チップ2のパッド7と、接続配線4cを介して接続されるようになっている。またフレキシブル基板1上には、熱硬化性の絶縁性樹脂からなる接着層6が形成されている。この接着層6は、フレキシブル基板1と半導体チップ2との間を接着しているものであり、接着層6を形成する熱硬化性樹脂としては、例えばエポキシ系樹脂材料等が用いられる。   A metal wiring 4 is formed on the flexible substrate 1 and is connected to the pad 7 of the semiconductor chip 2 via the connection wiring 4c. An adhesive layer 6 made of a thermosetting insulating resin is formed on the flexible substrate 1. This adhesive layer 6 adheres between the flexible substrate 1 and the semiconductor chip 2, and as the thermosetting resin for forming the adhesive layer 6, for example, an epoxy resin material or the like is used.

そして、この接着層6上には半導体チップ2が、その端子形成面(能動面)2aと反対側の載置面2bをフレキシブル基板1側に向けた状態で接着されている。半導体チップ2は、本実施形態では50μm以下の厚さに形成された極薄のもので、能動面である端子形成面2aをフレキシブル基板1と反対側に向けた状態で実装された、すなわちフェースアップボンディングされたものである。   The semiconductor chip 2 is bonded onto the adhesive layer 6 with the mounting surface 2b opposite to the terminal forming surface (active surface) 2a facing the flexible substrate 1 side. In the present embodiment, the semiconductor chip 2 is an extremely thin one formed to a thickness of 50 μm or less, and is mounted with the terminal forming surface 2a, which is an active surface, facing away from the flexible substrate 1, that is, a face Up-bonded.

半導体チップ2のパッド7は、例えば、半導体チップ2内の集積回路(図示せず)から引き出されたアルミニウム合金からなる基層(図示せず)上に、Ni、Auがこの順にメッキされて形成されたものである。なお、パッド7において実質的な接合層となる最外層(最上層)については、Au以外にも、例えばAg、Cu、Sn、Inとしてもよく、さらにこれらの複数からなる積層構造としてもよい。   The pads 7 of the semiconductor chip 2 are formed by, for example, plating Ni and Au in this order on a base layer (not shown) made of an aluminum alloy drawn from an integrated circuit (not shown) in the semiconductor chip 2. It is a thing. In addition, the outermost layer (uppermost layer) which is a substantial bonding layer in the pad 7 may be, for example, Ag, Cu, Sn, In other than Au, or may have a laminated structure including a plurality of these.

半導体チップ2の側面部には、端子形成面2aから外側に延びてフレキシブル基板1上に至る斜面部を形成するスロープ材9が形成されており、このスロープ材9の斜面部の表面を経由してパッド7と金属配線4とを結ぶ接続配線4cが形成されている。接続配線4cは、液滴吐出法を用いて形成されたものであり、金属微粒子を焼結してなる配線である。スロープ材9は半導体チップ2の端子形成面2aとフレキシブル基板1表面との段差を緩和する作用を奏するものであり、液滴吐出法を用いて形成される接続配線4cの断線等を防止する機能を奏する。   A slope material 9 is formed on the side surface of the semiconductor chip 2 to form an inclined surface extending outward from the terminal forming surface 2 a and reaching the flexible substrate 1, and passes through the surface of the inclined surface of the slope material 9. Then, a connection wiring 4 c that connects the pad 7 and the metal wiring 4 is formed. The connection wiring 4c is formed by using a droplet discharge method, and is a wiring formed by sintering metal fine particles. The slope material 9 has an effect of relaxing the step between the terminal formation surface 2a of the semiconductor chip 2 and the surface of the flexible substrate 1, and functions to prevent disconnection of the connection wiring 4c formed by using the droplet discharge method. Play.

スロープ材9は、例えばポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂、シリコーン変性エポキシ樹脂、ベンゾシクロブテン(BCB;benzocyclobutene)、ポリベンゾオキサゾール(PBO;polybenzoxazole)等の樹脂材料を、ディスペンサ等の液体材料塗布手段を用いてフレキシブル基板1上に塗布することで形成することができる。あるいは、液滴吐出法やドライフィルムを固着する方法により形成してもよい。   The slope material 9 is made of, for example, a resin material such as polyimide resin, silicone-modified polyimide resin, epoxy resin, silicone-modified epoxy resin, benzocyclobutene (BCB), polybenzoxazole (PBO), or a liquid material such as a dispenser. It can form by apply | coating on the flexible substrate 1 using an application | coating means. Alternatively, it may be formed by a droplet discharge method or a method of fixing a dry film.

半導体チップ2、金属配線4、接続配線4c等を含むフレキシブル基板1上に、アクリル樹脂やエポキシ樹脂等の有機絶縁材料からなる絶縁層8aが形成されている。絶縁層8aは、金属配線4及び半導体チップ2を保護する、いわゆるパッシべーション膜であり、外部との接触による金属配線4の短絡、水分や反応性ガスによる金属配線4、接続配線4c等の腐食、及び半導体チップ2の破損等を防止する機能を奏する。絶縁層8aは、図示したように、半導体チップ2上とその外側の領域とで膜厚が異なっており、本実施形態の場合、半導体チップ2上で薄く、半導体チップ2の外側で厚くなるように形成されている。   An insulating layer 8a made of an organic insulating material such as acrylic resin or epoxy resin is formed on the flexible substrate 1 including the semiconductor chip 2, the metal wiring 4, the connection wiring 4c, and the like. The insulating layer 8a is a so-called passivation film that protects the metal wiring 4 and the semiconductor chip 2. The short circuit of the metal wiring 4 due to contact with the outside, the metal wiring 4 due to moisture or reactive gas, the connection wiring 4c, etc. It functions to prevent corrosion and damage to the semiconductor chip 2. As shown in the drawing, the insulating layer 8a has different film thicknesses on the semiconductor chip 2 and the outer region. In the present embodiment, the insulating layer 8a is thin on the semiconductor chip 2 and thick on the outside of the semiconductor chip 2. Is formed.

上記構成を具備した本実施形態の実装基板110は、可撓性を有するフレキシブル基板1上に薄層の半導体チップ2を実装したものであるので、例えば側面視U形に曲げた状態で電子機器に装着したり、電子ペーパーなどの変形可能な表示装置の制御部等に好適に使用することができる。そして、図5に示すように、本実施形態の実装基板110では、その中立面(実装基板110に曲げ応力を作用させたときひずみεがゼロになる面)npが、半導体チップ2の端子形成面2aに略一致している。すなわち、実装基板110の厚さ方向において、端子形成面2aを挟んで両側にそれぞれ配された構成部材(フレキシブル基板1、半導体チップ2、接着層6、絶縁層8a等)の曲げ弾性率が略等しくなるように調整されている。   Since the mounting substrate 110 of the present embodiment having the above-described configuration is obtained by mounting the thin semiconductor chip 2 on the flexible substrate 1 having flexibility, for example, the electronic device is bent in a U shape in a side view. It can be suitably used for a control unit or the like of a display device that can be mounted on or deformable such as electronic paper. As shown in FIG. 5, in the mounting substrate 110 of the present embodiment, the neutral surface (the surface where the strain ε becomes zero when a bending stress is applied to the mounting substrate 110) np is the terminal of the semiconductor chip 2. It substantially coincides with the formation surface 2a. That is, in the thickness direction of the mounting substrate 110, the bending elastic modulus of the constituent members (the flexible substrate 1, the semiconductor chip 2, the adhesive layer 6, the insulating layer 8a, etc.) disposed on both sides of the terminal formation surface 2a is substantially equal. It is adjusted to be equal.

上記中立面npが半導体チップ2の載置面2bと略一致するように調整されていることで、本実施形態の実装基板110は、優れた曲げ耐性を奏するものとなっている。半導体チップ2は厚さ50μm程度にまで薄層化された極薄の電子デバイスであるが、その薄層化に際しては、通常端子形成面(能動面)2aの反対側から半導体基板を研削する方法が用いられる。そのため、砥石等の研削手段を用いた加工によって半導体チップ2の載置面2bに、微小な割れ(研削割れ)が生じることがある。この研削割れは、半導体チップ2の動作自体には影響しないが、本実施形態の実装基板のように使用時に曲げられるものでは、半導体チップ2を弾性変形させたときに研削割れが進展してチップが破損するおそれもある。そこで本実施形態では、半導体チップ2の載置面2bと実装基板110の中立面npとが略一致するように各構成部材の材質及び/又は厚さを調整することで、実装基板110を曲げたときのひずみが、載置面2bでほぼゼロになるようにし、曲げ応力による研削割れの伸展を効果的に防止するようになっている。   Since the neutral surface np is adjusted so as to substantially coincide with the mounting surface 2b of the semiconductor chip 2, the mounting substrate 110 of this embodiment exhibits excellent bending resistance. The semiconductor chip 2 is an ultra-thin electronic device thinned to a thickness of about 50 μm. When thinning the semiconductor chip 2, a method of grinding the semiconductor substrate from the side opposite to the normal terminal forming surface (active surface) 2a Is used. Therefore, a minute crack (grinding crack) may occur on the mounting surface 2b of the semiconductor chip 2 by processing using a grinding means such as a grindstone. Although this grinding crack does not affect the operation itself of the semiconductor chip 2, when the semiconductor chip 2 is bent at the time of use like the mounting substrate of the present embodiment, the grinding crack progresses when the semiconductor chip 2 is elastically deformed. May be damaged. Therefore, in the present embodiment, the mounting substrate 110 is adjusted by adjusting the material and / or thickness of each component so that the mounting surface 2b of the semiconductor chip 2 and the neutral surface np of the mounting substrate 110 substantially coincide with each other. The strain at the time of bending is made substantially zero on the mounting surface 2b, and the extension of the grinding crack due to the bending stress is effectively prevented.

図5に示す実装基板110の場合、端子形成面2aと反対側の載置面2bから図示下側に配されている接着層6とフレキシブル基板1とからなる積層構造物の曲げ弾性率と、半導体チップ2と絶縁層8aとからなる積層構造物の曲げ弾性率とが略等しくなるように調整されている。曲げ弾性率は、フレキシブル基板1や接着層6の厚さやヤング率により調整することができる。
なお、本実施形態の場合、金属配線4は液滴吐出法を用いて形成されたものであることから極めて薄い厚さに形成されており、上記曲げ弾性率にはほとんど影響しない。
In the case of the mounting substrate 110 shown in FIG. 5, the bending elastic modulus of the laminated structure composed of the adhesive layer 6 and the flexible substrate 1 disposed on the lower side of the drawing from the mounting surface 2 b opposite to the terminal forming surface 2 a, The bending elastic modulus of the laminated structure composed of the semiconductor chip 2 and the insulating layer 8a is adjusted to be approximately equal. The bending elastic modulus can be adjusted by the thickness and Young's modulus of the flexible substrate 1 and the adhesive layer 6.
In the case of the present embodiment, the metal wiring 4 is formed by using a droplet discharge method, so that the metal wiring 4 is formed to be extremely thin and hardly affects the bending elastic modulus.

また本実施形態の実装基板110では、半導体チップ2の外側の領域においても、半導体チップ2の端子形成面2aと面一になる位置に、実装基板の中立面が配されていることが好ましい。実装基板上の部位により中立面の位置が異なっていると、実装基板を曲げたときに部位によって変位の大小が生じ、均一な曲げ性が得られなくなり、また局所的に大きな荷重がかかるおそれもあるからである。
図示のように、半導体チップ2の外側の領域は、フレキシブル基板1上に金属配線4と絶縁層8aとが積層されており、端子形成面2aと面一の中立面npは絶縁層8a中に位置する。したがって、中立面の位置を調整するための曲げ弾性率の調整は、主に絶縁層8aの厚さ調整により行うことができる。
Further, in the mounting substrate 110 of the present embodiment, it is preferable that a neutral surface of the mounting substrate is disposed at a position that is flush with the terminal formation surface 2 a of the semiconductor chip 2 even in the region outside the semiconductor chip 2. . If the position of the neutral surface differs depending on the location on the mounting board, the size of the displacement may vary depending on the location when the mounting board is bent, and uniform bendability may not be obtained, and a large load may be applied locally. Because there is also.
As shown in the figure, in the region outside the semiconductor chip 2, the metal wiring 4 and the insulating layer 8a are laminated on the flexible substrate 1, and the neutral surface np flush with the terminal formation surface 2a is in the insulating layer 8a. Located in. Therefore, the adjustment of the flexural modulus for adjusting the position of the neutral surface can be performed mainly by adjusting the thickness of the insulating layer 8a.

以上説明したように、本実施形態の実装基板110は、半導体チップ2の端子形成面2aと略一致する中立面を有するものとされたことで、基板を曲げたときの端子形成面2aにおけるひずみがほとんどないものとなっている。これにより、半導体チップ2と金属配線4との導電接続部において、曲げ応力に対し優れた耐性を得ることができる高信頼性の実装基板となっている。   As described above, the mounting substrate 110 of the present embodiment has a neutral surface that is substantially coincident with the terminal formation surface 2a of the semiconductor chip 2, and thus the terminal formation surface 2a when the substrate is bent. There is almost no distortion. As a result, the conductive connection portion between the semiconductor chip 2 and the metal wiring 4 is a highly reliable mounting substrate that can obtain excellent resistance to bending stress.

(実装基板の製造方法)
次に、図5に示した第3実施形態に係る実装基板110の製造方法につき、図6を参照して説明する。
まず、図6(a)に示すようにフレキシブル基板1を用意し、このフレキシブル基板1上の所定位置に、図6(a)に示すように液滴吐出法によって金属微粒子を分散液に分散させてなる液状体を吐出し配置する。液滴吐出法としては、インクジェット法やディスペンサ法などが採用可能であるが、特にインクジェット法が、所望位置に所望量の液状材料を配することができるため好ましい。本実施形態では先の実施形態と同様のインクジェット法を用いるものとする。
(Manufacturing method of mounting substrate)
Next, a manufacturing method of the mounting substrate 110 according to the third embodiment shown in FIG. 5 will be described with reference to FIG.
First, a flexible substrate 1 is prepared as shown in FIG. 6A, and metal fine particles are dispersed in a dispersion at a predetermined position on the flexible substrate 1 by a droplet discharge method as shown in FIG. 6A. The liquid material is discharged and arranged. As a droplet discharge method, an inkjet method, a dispenser method, or the like can be employed. In particular, the inkjet method is preferable because a desired amount of liquid material can be disposed at a desired position. In this embodiment, the same ink jet method as in the previous embodiment is used.

本実施形態では、金属微粒子として銀微粒子を用いてなる液状体の液滴22を、図6(a)に示したように液滴吐出ヘッド34から吐出し、フレキシブル基板1上の配線を形成すべき場所に滴下し、焼成後に金属配線4となる中間構造体4bを形成する。本実施形態の場合、この中間構造体4bは、基板上に滴下された液状体ないしこの液状体の乾燥物を指すものである。前記液状体の吐出配置に際しては、液だまり(バルジ)が生じないように、続けて吐出する液滴の重なり程度を制御することが好ましい。また、一回目の吐出では複数の液滴を互いに接しないように離間して吐出し、2回目以降の吐出によって、その間を埋めていくような吐出方法を採用することもできる。   In the present embodiment, a liquid droplet 22 using silver fine particles as metal fine particles is discharged from a droplet discharge head 34 as shown in FIG. 6A to form wiring on the flexible substrate 1. An intermediate structure 4b that is dropped in a place and becomes the metal wiring 4 after firing is formed. In the present embodiment, the intermediate structure 4b refers to a liquid dropped on the substrate or a dried product of the liquid. In the discharge arrangement of the liquid material, it is preferable to control the overlapping degree of the liquid droplets to be continuously discharged so that a liquid bulge does not occur. Further, it is also possible to employ a discharge method in which a plurality of droplets are discharged so as not to contact each other in the first discharge, and the space is filled by the second and subsequent discharges.

このようにして金属配線4の中間構造体4bを形成したならば、これを200℃程度で加熱することによって焼成し、金属微粒子(銀微粒子)を焼結して図6(b)に示すように金属配線4を形成する。なお、中間構造体4bについても、金属微粒子(銀微粒子)を焼結させて金属配線4とする本硬化処理ではなく、液状体中の分散液を蒸発させる程度の仮硬化処理にとどめておいてもよい。   When the intermediate structure 4b of the metal wiring 4 is thus formed, it is fired by heating at about 200 ° C., and the metal fine particles (silver fine particles) are sintered, as shown in FIG. 6B. The metal wiring 4 is formed on the substrate. Note that the intermediate structure 4b is not limited to the main curing process in which the metal fine particles (silver fine particles) are sintered to form the metal wirings 4, but the temporary curing process to the extent that the dispersion liquid in the liquid is evaporated. Also good.

次に、前記フレキシブル基板1上に熱硬化性樹脂を塗布し、図6(b)に示すように未硬化状態での接着層6aを形成する。塗布法については、特に限定されることなく、ロールコータ法や液滴吐出法など公知の塗布法を採用することができる。本実施形態では、金属配線4と重ならない位置に接着層6aを形成しているが、金属配線4の基板中央部側の端部を一部覆うように接着層6aを形成してもよく、この場合には、接着層6を介して接着される半導体チップ2の下側(フレキシブル基板1側)に接続配線4が配されることとなる。またかかる構成において、半導体チップ2の載置面2bに接続端子が形成されているならば、金属配線4と載置面2b側の接続端子とを半導体チップ2の実装領域内で接続することも可能である。   Next, a thermosetting resin is applied on the flexible substrate 1 to form an uncured adhesive layer 6a as shown in FIG. 6B. The coating method is not particularly limited, and a known coating method such as a roll coater method or a droplet discharge method can be employed. In the present embodiment, the adhesive layer 6a is formed at a position that does not overlap the metal wiring 4, but the adhesive layer 6a may be formed so as to partially cover the end of the metal wiring 4 on the substrate center side. In this case, the connection wiring 4 is arranged on the lower side (flexible substrate 1 side) of the semiconductor chip 2 bonded through the adhesive layer 6. In this configuration, if the connection terminal is formed on the mounting surface 2 b of the semiconductor chip 2, the metal wiring 4 and the connection terminal on the mounting surface 2 b side may be connected within the mounting region of the semiconductor chip 2. Is possible.

次いで、この未硬化状態の接着層6a上に半導体チップ2を位置合わせし、図6(c)に示すように、接着層6aと平面的に重なるように載置する。次に、図68d)に示すように、半導体チップ2の端子形成面2aと、金属配線4との間の段差を緩和するためのスロープ材9を形成する。このスロープ材30は、例えばポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂、シリコーン変性エポキシ樹脂、ベンゾシクロブテン(BCB;benzocyclobutene)、ポリベンゾオキサゾール(PBO;polybenzoxazole)等の樹脂材料を、ディスペンサ等の液体材料塗布手段を用いて塗布することにより形成する。スロープ材9は、図示のように、半導体チップ2の側面から外側に向かって薄くなるように形成し、半導体チップ2の端子形成面2aから金属配線4に至る傾斜面を有したものとする。またスロープ材9は、パッド7を覆わない限度でその一部が端子形成面2aに乗り上げていてもよい。   Next, the semiconductor chip 2 is aligned on the uncured adhesive layer 6a and placed so as to overlap the adhesive layer 6a in a plan view as shown in FIG. Next, as shown in FIG. 68 d), a slope material 9 is formed for relaxing the step between the terminal formation surface 2 a of the semiconductor chip 2 and the metal wiring 4. The slope material 30 is made of a resin material such as a polyimide resin, a silicone-modified polyimide resin, an epoxy resin, a silicone-modified epoxy resin, benzocyclobutene (BCB), polybenzoxazole (PBO), or a liquid such as a dispenser. It forms by apply | coating using a material application means. As shown in the figure, the slope material 9 is formed so as to become thinner from the side surface of the semiconductor chip 2 toward the outside, and has an inclined surface extending from the terminal forming surface 2 a of the semiconductor chip 2 to the metal wiring 4. Further, the slope material 9 may partially run on the terminal forming surface 2a as long as the pad 7 is not covered.

次に、図6(e)に示すように、接続配線4cを形成する。接続配線4cは、端子形成面2aに形成されたパッド7の上面からスロープ材9の斜面上を通って金属配線4上に至るように形成する。この接続配線4cは、先の金属配線4と同様の方法で形成することができる。具体的には、図6(e)に示すように、吐出ヘッド34から金属微粒子(銀微粒子)を含む液状体の液滴を所定位置に吐出して基板上に選択配置し、その後、乾燥工程、焼成工程を経て金属配線とする。   Next, as shown in FIG. 6E, the connection wiring 4c is formed. The connection wiring 4 c is formed so as to extend from the upper surface of the pad 7 formed on the terminal formation surface 2 a to the metal wiring 4 through the slope of the slope material 9. The connection wiring 4c can be formed by the same method as the metal wiring 4 described above. Specifically, as shown in FIG. 6E, a liquid droplet containing metal fine particles (silver fine particles) is discharged from a discharge head 34 to a predetermined position and selectively disposed on a substrate, and then a drying step. A metal wiring is obtained through a firing process.

また、上記接続配線4cの焼成と同時に接着層6aを硬化させて接着層6とし、この接着層6を介して半導体チップ2の載置面2bをフレキシブル基板1に密着固定する。その後、半導体チップ2及び金属配線4を覆う絶縁層8aを形成することで、図5に示した実装構造を具備した実装基板110を得る。
なお、前述したように金属配線4の中間構造体4bについて、本硬化処理でなく仮硬化処理にとどめておいた場合には、接続配線4cの焼成処理により、中間構造体4aの金属微粒子も焼結される。
Further, simultaneously with the firing of the connection wiring 4 c, the adhesive layer 6 a is cured to form the adhesive layer 6, and the mounting surface 2 b of the semiconductor chip 2 is tightly fixed to the flexible substrate 1 through the adhesive layer 6. Thereafter, an insulating layer 8a that covers the semiconductor chip 2 and the metal wiring 4 is formed, thereby obtaining the mounting substrate 110 having the mounting structure shown in FIG.
As described above, when the intermediate structure 4b of the metal wiring 4 is kept in the temporary curing process instead of the main curing process, the metal fine particles of the intermediate structure 4a are also sintered by the firing process of the connection wiring 4c. Tied.

上記工程により得られる実装基板110の製造に際しては、フレキシブル基板1の材質及び板厚、接着層6の材質及び膜厚、そして半導体チップ2の板厚等を適切に選択、調整することで、実装基板110の中立面が、半導体チップ2の載置面2bと略一致したものとされる。そして、得られた実装基板110にあっては、基板を曲げた際に、研削割れが生じている可能性のある載置面2bにおけるひずみがほとんど無くなることから、半導体チップ2の破損を効果的に防止でき、極めて優れた信頼性を得られるようになっている。   When manufacturing the mounting substrate 110 obtained by the above process, the material and plate thickness of the flexible substrate 1, the material and film thickness of the adhesive layer 6, the plate thickness of the semiconductor chip 2, and the like are appropriately selected and adjusted. The neutral surface of the substrate 110 is substantially coincident with the mounting surface 2 b of the semiconductor chip 2. Further, in the obtained mounting substrate 110, when the substrate is bent, there is almost no distortion on the mounting surface 2b that may cause grinding cracks, so that the semiconductor chip 2 is effectively damaged. Therefore, extremely excellent reliability can be obtained.

また、接続配線4cを介して金属配線4とパッド7とを電気的に接続する構造を採用しており、基本的に半導体チップ2を加圧することなく焼成処理のみで、金属配線4とパッド7との間の導通を確保することができる。したがって、例えば極薄の半導体チップ2を実装する場合にも、これを加圧することなく実装処理を行うことができる。よって、加圧による半導体チップ2の破壊や接続信頼性の低下といった不都合を回避することができる。よって、特に本発明は、各種の電子機器やその部品(電子部品)における、超薄型パッケージの製造に好適に採用される。   In addition, a structure in which the metal wiring 4 and the pad 7 are electrically connected via the connection wiring 4c is adopted, and the metal wiring 4 and the pad 7 are basically simply baked without applying pressure to the semiconductor chip 2. Can be secured. Therefore, for example, even when an extremely thin semiconductor chip 2 is mounted, the mounting process can be performed without pressurizing it. Therefore, inconveniences such as destruction of the semiconductor chip 2 due to pressurization and a decrease in connection reliability can be avoided. Therefore, especially this invention is suitably employ | adopted for manufacture of an ultra-thin package in various electronic devices and its components (electronic component).

また、前記金属配線4及び接続配線4cを、金属微粒子を分散させた液状体を用いる液滴吐出法で形成するようにしたので、これらの金属配線4及び接続配線4cについても十分薄厚化でき、したがって実装構造全体の薄厚化をより進めることができる。また、金属配線4や接続配線4cを形成するための液状体の吐出を同じ装置で行うことができるので、生産性を高めることができる。   Further, since the metal wiring 4 and the connection wiring 4c are formed by a droplet discharge method using a liquid material in which metal fine particles are dispersed, the metal wiring 4 and the connection wiring 4c can be sufficiently thinned, Therefore, it is possible to further reduce the thickness of the entire mounting structure. Moreover, since the discharge of the liquid material for forming the metal wiring 4 and the connection wiring 4c can be performed with the same apparatus, productivity can be improved.

また、前記液状体を介して前記金属配線4と前記半導体チップ2のパッド7とを接合する工程に先立ち、熱硬化性の絶縁性樹脂からなる接着層6aを半導体チップ2の下側に形成するようにしたので、接続および導通のための液状体の焼成処理によって熱硬化性樹脂からなる接着層6aも同時に硬化するので、フレキシブル基板1と半導体チップ2との間の接合および封止をより良好にすることができ、さらにアンダーフィルの使用により封止を行う場合などに比べ、硬化処理時間をなくすことで生産性を向上することができる。   Further, prior to the step of bonding the metal wiring 4 and the pad 7 of the semiconductor chip 2 through the liquid material, an adhesive layer 6a made of a thermosetting insulating resin is formed on the lower side of the semiconductor chip 2. As a result, the adhesive layer 6a made of a thermosetting resin is simultaneously cured by firing the liquid material for connection and conduction, so that the bonding and sealing between the flexible substrate 1 and the semiconductor chip 2 are better. Further, productivity can be improved by eliminating the curing processing time as compared with the case where sealing is performed by using an underfill.

(電子機器)
図7(a)は、本発明に係る電子機器の一例を示す斜視図である。この図に示す携帯電話1300は、筐体の内部或いは表示部1301に、前述の方法を用いて得られる実装基板を備えている。図中、符号1302は操作ボタン1302、符号1303は受話口、符号1304は送話口を示している。
図7(b)は、(a)に示す表示部1301の斜視構成図である。表示部1301は、液晶表示装置や有機EL表示装置からなる表示パネル1311の一辺端に、電子デバイス1312を実装した実装基板1313を接続してなる構成を備えている。そして、この実装基板1313には、本発明の実装方法を用いて電子デバイスを実装された実装基板が好適に用いられており、実装基板上に薄型に電子デバイスが実装されているので、携帯電話1300の薄型化、小型化を実現することができる。
(Electronics)
FIG. 7A is a perspective view showing an example of an electronic apparatus according to the present invention. A cellular phone 1300 shown in this figure is provided with a mounting substrate obtained by using the above-described method, inside a housing or in a display portion 1301. In the figure, reference numeral 1302 denotes an operation button 1302, reference numeral 1303 denotes a mouthpiece, and reference numeral 1304 denotes a mouthpiece.
FIG. 7B is a perspective configuration diagram of the display unit 1301 shown in FIG. The display unit 1301 has a configuration in which a mounting substrate 1313 on which an electronic device 1312 is mounted is connected to one end of a display panel 1311 made of a liquid crystal display device or an organic EL display device. The mounting substrate 1313 is preferably a mounting substrate on which an electronic device is mounted using the mounting method of the present invention, and the electronic device is mounted thinly on the mounting substrate. 1300 can be made thinner and smaller.

前記実施の形態の実装基板は、前記携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々、種々の電子機器に適用することができる。いずれの電子機器においても、本発明の実装基板を適用することで、薄型化、小型化を実現することができる。また、前記実施形態の実装基板は、液晶装置に限らず、有機EL装置、プラズマディスプレイ装置(PDP)、電界放出ディスプレイ(FED)等の電気光学装置などの電子機器の部品などとして好適に用いることができる。   The mounting board of the embodiment is not limited to the mobile phone, but an electronic book, a personal computer, a digital still camera, a liquid crystal television, a viewfinder type or a monitor direct-view type video tape recorder, a car navigation device, a pager, an electronic notebook, The present invention can be applied to various electronic devices such as a calculator, a word processor, a workstation, a video phone, a POS terminal, and a device equipped with a touch panel. In any electronic device, by using the mounting substrate of the present invention, it is possible to realize a reduction in thickness and size. In addition, the mounting substrate of the embodiment is not limited to the liquid crystal device, and is preferably used as a component of an electronic device such as an electro-optical device such as an organic EL device, a plasma display device (PDP), and a field emission display (FED). Can do.

第1実施形態に係る実装基板の部分断面構成図。The partial cross section block diagram of the mounting substrate which concerns on 1st Embodiment. 第2実施形態に係る実装基板の部分断面構成図。The partial cross section block diagram of the mounting substrate which concerns on 2nd Embodiment. 第1実施形態に係る実装基板の製造方法を示す断面構成図。The cross-sectional block diagram which shows the manufacturing method of the mounting substrate which concerns on 1st Embodiment. 液滴吐出ヘッドの説明図。Explanatory drawing of a droplet discharge head. 第3実施形態に係る実装基板の部分断面構成図。The partial cross section block diagram of the mounting substrate which concerns on 3rd Embodiment. 第3実施形態に係る実装基板の製造方法を示す断面構成図。Sectional block diagram which shows the manufacturing method of the mounting substrate which concerns on 3rd Embodiment. 電子機器の一例とそれに備えられた表示部の斜視構成図。FIG. 6 is a perspective configuration diagram of an example of an electronic device and a display unit provided in the electronic device.

符号の説明Explanation of symbols

10FD,10FU,110…実装基板、1…フレキシブル基板、2…半導体チップ、2a…端子形成面、4…金属配線(配線パターン)、4a…接続部、5…導体ポスト、6…接着層、7…パッド(接続端子)、8,8a…絶縁層、9…スロープ材。   10 FD, 10 FU, 110 ... mounting substrate, 1 ... flexible substrate, 2 ... semiconductor chip, 2a ... terminal formation surface, 4 ... metal wiring (wiring pattern), 4a ... connection part, 5 ... conductor post, 6 ... adhesive layer, 7 ... Pad (connection terminal), 8, 8a ... Insulating layer, 9 ... Slope material.

Claims (16)

接続端子を具備した端子形成面を有する電子デバイスをフレキシブル基板上に実装してなる実装基板であって、
前記接続端子が、前記フレキシブル基板上に形成された配線パターンに対し直接又は導電部材を介して電気的に接続されており、
前記端子形成面が、当該実装基板の厚さ方向における中立面に略一致して配置されていることを特徴とする実装基板。
A mounting substrate formed by mounting an electronic device having a terminal forming surface provided with a connection terminal on a flexible substrate,
The connection terminal is electrically connected to the wiring pattern formed on the flexible substrate directly or via a conductive member;
The mounting substrate, wherein the terminal forming surface is disposed substantially coincident with a neutral surface in the thickness direction of the mounting substrate.
当該実装基板の厚さ方向において、前記電子デバイスの端子形成面を挟み両側にそれぞれ配された構成部材が、略等しい曲げ弾性率を有していることを特徴とする請求項1に記載の実装基板。   2. The mounting according to claim 1, wherein in the thickness direction of the mounting substrate, the constituent members respectively disposed on both sides of the terminal forming surface of the electronic device have substantially the same bending elastic modulus. substrate. 前記電子デバイスが、前記端子形成面を前記フレキシブル基板側に向けた状態で実装されており、
前記電子デバイスが、前記フレキシブル基板と、該フレキシブル基板と前記端子形成面との間に形成された構成部材とを合わせた曲げ弾性率と略等しい曲げ弾性率を有していることを特徴とする請求項2に記載の実装基板。
The electronic device is mounted in a state where the terminal forming surface faces the flexible substrate side,
The electronic device has a bending elastic modulus substantially equal to a bending elastic modulus obtained by combining the flexible substrate and a component formed between the flexible substrate and the terminal forming surface. The mounting board according to claim 2.
前記配線パターン上に、前記電子デバイス側へ突出する導体ポストが形成されており、
前記電子デバイスが、前記導体ポストを取り囲むように設けられた接着層を介して前記フレキシブル基板上に実装され、
前記電子デバイスの接続端子が、前記導体ポストに電気的に接続されていることを特徴とする請求項3に記載の実装基板。
On the wiring pattern, a conductor post protruding to the electronic device side is formed,
The electronic device is mounted on the flexible substrate via an adhesive layer provided so as to surround the conductor post,
The mounting board according to claim 3, wherein the connection terminal of the electronic device is electrically connected to the conductor post.
前記フレキシブル基板上であって、前記電子デバイスの外側の領域に、前記配線パターンを覆う絶縁層が形成されていることを特徴とする請求項1から4のいずれか1項に記載の実装基板。   5. The mounting substrate according to claim 1, wherein an insulating layer that covers the wiring pattern is formed on the flexible substrate in a region outside the electronic device. 6. 前記絶縁層が、前記電子デバイス上にも形成されていることを特徴とする請求項5に記載の実装基板。   The mounting substrate according to claim 5, wherein the insulating layer is also formed on the electronic device. 前記電子デバイスが、前記端子形成面を前記フレキシブル基板と反対側に向けて実装されるとともに、該電子デバイスを覆う絶縁層が形成されており、
前記電子デバイス上に形成された絶縁層が、前記電子デバイスと、前記フレキシブル基板と、該電子デバイスとフレキシブル基板との間に設けられた構成部材とを合わせた曲げ弾性率と略等しい曲げ弾性率を有していることを特徴とする請求項2に記載の実装基板。
The electronic device is mounted with the terminal forming surface facing away from the flexible substrate, and an insulating layer covering the electronic device is formed,
The insulating elastic layer formed on the electronic device has a bending elastic modulus substantially equal to a bending elastic modulus obtained by combining the electronic device, the flexible substrate, and a component provided between the electronic device and the flexible substrate. The mounting substrate according to claim 2, further comprising:
前記電子デバイスの側面部に、当該側面部から外側に延びる斜面部を有するスロープ材が形成されており、
前記接続端子と配線パターンとが、前記スロープ材の斜面部と当接して設けられた接続配線を介して電気的に接続されていることを特徴とする請求項7に記載の実装基板。
A slope material having a slope portion extending outward from the side surface portion is formed on the side surface portion of the electronic device,
The mounting board according to claim 7, wherein the connection terminal and the wiring pattern are electrically connected via a connection wiring provided in contact with the slope portion of the slope material.
前記電子デバイスの外側の領域において、該電子デバイスの端子形成面の延長面を挟んで両側にそれぞれ配された当該実装基板の構成部材が、互いに略等しい曲げ弾性率を有していることを特徴とする請求項2から8のいずれか1項に記載の実装基板。   In the outer region of the electronic device, the components of the mounting substrate disposed on both sides of the extension surface of the terminal forming surface of the electronic device have substantially the same bending elastic modulus. The mounting substrate according to any one of claims 2 to 8. 接続端子を具備した端子形成面を有する電子デバイスをフレキシブル基板上に実装してなる実装基板であって、
前記電子デバイスが、前記端子形成面を前記フレキシブル基板に対し反対側に向けて配置されており、
前記電子デバイスの端子形成面と反対側の載置面が、当該実装基板の厚さ方向における中立面に略一致して配置されていることを特徴とする実装基板。
A mounting substrate formed by mounting an electronic device having a terminal forming surface provided with a connection terminal on a flexible substrate,
The electronic device is arranged with the terminal forming surface facing the flexible substrate,
A mounting substrate, wherein a mounting surface opposite to a terminal forming surface of the electronic device is disposed substantially coincident with a neutral surface in a thickness direction of the mounting substrate.
当該実装基板の厚さ方向において、前記電子デバイスの載置面を挟み両側にそれぞれ配された構成部材が、略等しい曲げ弾性率を有していることを特徴とする請求項10に記載の実装基板。   The mounting member according to claim 10, wherein in the thickness direction of the mounting substrate, the constituent members respectively disposed on both sides of the mounting surface of the electronic device have substantially the same bending elastic modulus. substrate. 前記フレキシブル基板上であって、前記電子デバイスの外側の領域に、前記配線パターンを覆う絶縁層が形成されていることを特徴とする請求項10又は11に記載の実装基板。   The mounting substrate according to claim 10, wherein an insulating layer that covers the wiring pattern is formed on the flexible substrate in a region outside the electronic device. 前記電子デバイスの実装領域の外側の領域において、
前記載置面を延長してなる面を挟んで両側にそれぞれ配された構成部材が、略等しい曲げ弾性率を有していることを特徴とする請求項12に記載の実装基板。
In a region outside the mounting region of the electronic device,
13. The mounting board according to claim 12, wherein the constituent members respectively disposed on both sides of the surface formed by extending the mounting surface have substantially the same bending elastic modulus.
前記絶縁層が、前記電子デバイス上にも形成されていることを特徴とする請求項12又は13に記載の実装基板。   The mounting substrate according to claim 12, wherein the insulating layer is also formed on the electronic device. 前記電子デバイスの側面部に、当該側面部から外側に延びる斜面部を有するスロープ材が形成されており、
前記接続端子と配線パターンとが、前記スロープ材の斜面部と当接して設けられた接続配線を介して電気的に接続されていることを特徴とする請求項10から14のいずれか1項に記載の実装基板。
A slope material having a slope portion extending outward from the side surface portion is formed on the side surface portion of the electronic device,
The connection terminal and the wiring pattern are electrically connected through a connection wiring provided in contact with the slope portion of the slope material. The mounting board described.
請求項1から15のいずれか1項に記載の実装基板を具備したことを特徴とする電子機器。   An electronic apparatus comprising the mounting substrate according to claim 1.
JP2008114977A 2004-11-11 2008-04-25 Mounting board and electronic equipment Pending JP2008235926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114977A JP2008235926A (en) 2004-11-11 2008-04-25 Mounting board and electronic equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004327710 2004-11-11
JP2004327711 2004-11-11
JP2008114977A JP2008235926A (en) 2004-11-11 2008-04-25 Mounting board and electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005204230A Division JP4386008B2 (en) 2004-11-11 2005-07-13 Mounting board and electronic equipment

Publications (1)

Publication Number Publication Date
JP2008235926A true JP2008235926A (en) 2008-10-02

Family

ID=39908265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114977A Pending JP2008235926A (en) 2004-11-11 2008-04-25 Mounting board and electronic equipment

Country Status (1)

Country Link
JP (1) JP2008235926A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
JP2010114221A (en) * 2008-11-05 2010-05-20 Seiko Epson Corp Electronic apparatus, and method of manufacturing the same
KR101511023B1 (en) 2013-10-04 2015-04-10 한국기계연구원 Manufacturing method for face-down type flexible device and flexible device manufactured by the same
WO2015034664A3 (en) * 2013-09-04 2015-07-23 Osram Sylvania Inc. System for attaching devices to flexible substrates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198896A (en) * 1989-01-27 1990-08-07 Toshiba Corp Portable electronic machinery
JPH07193174A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Package part and manufacture thereof
JPH11317067A (en) * 1999-02-19 1999-11-16 Seiko Epson Corp Portable type semiconductor device
JP2004055937A (en) * 2002-07-23 2004-02-19 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2004221372A (en) * 2003-01-16 2004-08-05 Seiko Epson Corp Semiconductor device, semiconductor module, method of manufacturing both the same and electronic apparatus
JP2004281880A (en) * 2003-03-18 2004-10-07 Seiko Epson Corp Method for manufacturing semiconductor device, semiconductor device and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198896A (en) * 1989-01-27 1990-08-07 Toshiba Corp Portable electronic machinery
JPH07193174A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Package part and manufacture thereof
JPH11317067A (en) * 1999-02-19 1999-11-16 Seiko Epson Corp Portable type semiconductor device
JP2004055937A (en) * 2002-07-23 2004-02-19 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2004221372A (en) * 2003-01-16 2004-08-05 Seiko Epson Corp Semiconductor device, semiconductor module, method of manufacturing both the same and electronic apparatus
JP2004281880A (en) * 2003-03-18 2004-10-07 Seiko Epson Corp Method for manufacturing semiconductor device, semiconductor device and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
JP4731340B2 (en) * 2006-02-02 2011-07-20 富士通株式会社 Manufacturing method of semiconductor device
JP2010114221A (en) * 2008-11-05 2010-05-20 Seiko Epson Corp Electronic apparatus, and method of manufacturing the same
WO2015034664A3 (en) * 2013-09-04 2015-07-23 Osram Sylvania Inc. System for attaching devices to flexible substrates
KR101511023B1 (en) 2013-10-04 2015-04-10 한국기계연구원 Manufacturing method for face-down type flexible device and flexible device manufactured by the same

Similar Documents

Publication Publication Date Title
JP4386008B2 (en) Mounting board and electronic equipment
US7964955B2 (en) Electronic device package and electronic equipment
JP3992038B2 (en) Electronic element mounting method, electronic device manufacturing method, circuit board, electronic device
JP3994262B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP5018024B2 (en) Electronic component mounting method, electronic substrate, and electronic device
JP2000299431A (en) Semiconductor device and its manufacture
WO2012176875A1 (en) Ink jet head and ink jet drawing device
JP2008235926A (en) Mounting board and electronic equipment
US8143728B2 (en) Electronic board and manufacturing method thereof, electro-optical device, and electronic apparatus
JP2004228375A (en) Method of forming bump, device and electronic apparatus
US8237258B2 (en) Semiconductor module including a semiconductor device, a device mounting board, and a protecting layer therebetween
JP2006114645A (en) Mounting method and mounting structure of semiconductor device
JP2006147646A (en) Method and system for forming wiring, and electronic apparatus
JP2005259848A (en) Semiconductor device and its manufacturing method
JP5061010B2 (en) Semiconductor module
JP2008147367A (en) Semiconductor device and its manufacturing method
JP4492629B2 (en) Electronic element mounting method, electronic device manufacturing method, circuit board, electronic device
JP2012093646A (en) Electronic device and manufacturing method thereof
JP2005072203A (en) Terminal electrode, semiconductor device, semiconductor module, electronic equipment, and method of manufacturing the semiconductor device
JP2006140270A (en) Mounting method of electronic device, circuit board, and electronic equipment
JP2004303885A (en) Mounting substrate and electronic device
JP2006147645A (en) Mounting method of electronic device, mounting structure of electronic device, circuit board, and electronic equipment
JP2006147643A (en) Bonding method of electronic element, mounting method of electronic element, manufacturing process of electronic device, circuit board, and electronic equipment
JP2006128338A (en) Semiconductor device and its manufacturing process
JP2005268713A (en) Manufacturing method of semiconductor device and semiconductor device formed therewith

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413