JP2008235642A - Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus - Google Patents

Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus Download PDF

Info

Publication number
JP2008235642A
JP2008235642A JP2007074209A JP2007074209A JP2008235642A JP 2008235642 A JP2008235642 A JP 2008235642A JP 2007074209 A JP2007074209 A JP 2007074209A JP 2007074209 A JP2007074209 A JP 2007074209A JP 2008235642 A JP2008235642 A JP 2008235642A
Authority
JP
Japan
Prior art keywords
oxygen
enriched air
compartment
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007074209A
Other languages
Japanese (ja)
Other versions
JP5114987B2 (en
Inventor
Norio Yamaguchi
典生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007074209A priority Critical patent/JP5114987B2/en
Publication of JP2008235642A publication Critical patent/JP2008235642A/en
Application granted granted Critical
Publication of JP5114987B2 publication Critical patent/JP5114987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas ventilation method and gas ventilation apparatus for stabilizing the generation of nitrogen gas and oxygen enrichment air in a nitrogen producing apparatus, stabilizing the supply of oxygen enrichment air to utilization equipment, and suppressing noise of an aspiration means. <P>SOLUTION: The gas ventilation apparatus includes: a nitrogen producing apparatus 1 for producing nitrogen gas by separation from raw material air; a blower 8 as an aspiration means for aspirating the oxygen enrichment air that is secondarily generated by the nitrogen producing apparatus 1; a compartment 5 for housing the blower 8; and an aerobic treatment vessel 19 as utilization equipment for utilizing the oxygen enrichment air. The oxygen enrichment air is caused to flow from an exhaust port 4a of the nitrogen producing apparatus 1 into the compartment 5 while the oxygen enrichment air is vented to the atmosphere, and the oxygen enrichment air in the compartment 5 is aspirated by the blower 8 housed in the compartment 5 and supplied to the aerobic treatment vessel 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒素製造装置で得られる酸素富化空気を、利用設備に供給する気体通風方法、気体通風装置に関するものである。   The present invention relates to a gas ventilation method and a gas ventilation device for supplying oxygen-enriched air obtained by a nitrogen production apparatus to utilization facilities.

従来、窒素製造装置の副生成ガスである酸素富化空気は、排水に曝気して浄化処理を行う排水処理装置、燃料の支燃空気として燃焼装置に利用されている。また、窒素製造装置としては、半導体製造設備や液晶製造設備等(以下、これらを総称して半導体製造設備という)に備える深冷式窒素製造方法、PSA(プレッシャースイング吸着方式)装置がある。従来、窒素製造装置の副生成ガスである酸素富化空気を利用する代表的なものとして下記のものが知られている。   Conventionally, oxygen-enriched air, which is a by-product gas of a nitrogen production apparatus, is used in a combustion apparatus as a wastewater treatment apparatus that performs purification treatment by aeration of wastewater and fuel support air. Examples of the nitrogen production apparatus include a deep cooling type nitrogen production method and a PSA (pressure swing adsorption method) apparatus provided in semiconductor production equipment, liquid crystal production equipment and the like (hereinafter collectively referred to as semiconductor production equipment). Conventionally, the following are known as typical ones using oxygen-enriched air which is a by-product gas of a nitrogen production apparatus.

原水流入部、活性汚泥流入部、酸素供給部、処理水流出部及び排ガス排出部を有する曝気槽と、前記酸素供給部に通常の処理負荷に対応した量の酸素を供給する酸素発生能力を備えた酸素発生手段と、この曝気槽内の液相部を撹拌して気液接触させるエアレータと、曝気槽内の圧力を測定し、測定した槽内圧力に応じて前記酸素供給部から曝気槽内に供給する酸素量を調整するとともに、曝気槽内から前記排ガス排出部に排出する排ガス量を調整する槽内圧力調整手段と、曝気槽の排ガス排出部側の酸素濃度を測定する酸素濃度測定手段と、該酸素濃度測定手段で測定した酸素濃度に応じて前記エアレータの回転速度を調整するエアレータ調整手段を備えている酸素活性汚泥処理による排水処理装置としたものである(例えば、特許文献1参照)。   An aeration tank having a raw water inflow section, an activated sludge inflow section, an oxygen supply section, a treated water outflow section, and an exhaust gas discharge section, and an oxygen generation capability for supplying oxygen to the oxygen supply section in an amount corresponding to a normal processing load The oxygen generating means, the aerator that stirs the liquid phase part in the aeration tank and makes the gas-liquid contact, and the pressure in the aeration tank is measured, and the oxygen supply part in the aeration tank is measured according to the measured tank internal pressure. Pressure adjusting means for adjusting the amount of oxygen supplied to the exhaust gas, adjusting the amount of exhaust gas discharged from the aeration tank to the exhaust gas discharge section, and oxygen concentration measuring means for measuring the oxygen concentration on the exhaust gas discharge section side of the aeration tank And a wastewater treatment apparatus by oxygen activated sludge treatment provided with an aerator adjusting means for adjusting the rotational speed of the aerator according to the oxygen concentration measured by the oxygen concentration measuring means (see, for example, Patent Document 1) ).

また、高純度窒素ガスを使用する半導体製造装置と、半導体製造装置から排出された排ガスを支燃用ガスとして酸素富化空気を使用した燃焼火炎で燃焼除害する燃焼式除害装置と、半導体製造装置で使用する高純度窒素ガスを製造するとともに、燃焼式除害装置で使用する酸素富化空気を製造する深冷分離式窒素製造装置とを備えた半導体製造設備であって、特に、深冷分離式窒素製造装置から燃焼式除害装置に供給する酸素富化空気の酸素濃度を支燃用ガスとして適当な濃度に調節する手段を備えている半導体製造設備としたものである(例えば、特許文献2参照)。
特開2001−137880号公報 特開2003−68595号公報
Also, a semiconductor manufacturing apparatus that uses high-purity nitrogen gas, a combustion-type abatement apparatus that burns and eliminates with a combustion flame that uses oxygen-enriched air with the exhaust gas discharged from the semiconductor manufacturing apparatus as a combustion gas, and a semiconductor A semiconductor manufacturing facility including a cryogenic separation type nitrogen manufacturing apparatus that manufactures high-purity nitrogen gas used in a manufacturing apparatus and oxygen-enriched air used in a combustion-type abatement apparatus. It is a semiconductor manufacturing facility equipped with means for adjusting the oxygen concentration of oxygen-enriched air supplied from the cold separation type nitrogen production device to the combustion type detoxification device to an appropriate concentration as a combustion support gas (for example, Patent Document 2).
JP 2001-137880 A JP 2003-68595 A

前記特許文献1、2に記載されたものは、PSA式または深冷分離式の窒素製造装置に接続した配管に設けた流量調節弁を介して酸素富化空気量を調節して排水処理装置または燃焼装置に供給している。流量調節弁により酸素富化空気量を調節することによって、窒素製造装置からの酸素富化空気の吐出に対して流路抵抗が変わり圧力が変動することになる。このため窒素製造装置での窒素ガスおよび酸素富化空気の生成が不安定になるおそれがあり、窒素ガスを利用する設備においても好ましくない。また流量調節弁の詰まりや、この流量調節弁を制御する制御器の故障が発生した場合には、窒素製造装置からの酸素富化空気の吐出を遮断してしまう恐れもある。さらに窒素製造装置からの酸素富化空気の吐出圧力変動および流量調節弁のバラツキにより、利用設備への酸素富化空気の供給量が変動しやすく、供給精度に課題がある。特に酸素富化空気を燃焼装置に利用する場合、燃料と空気との混合比率を所定の範囲内に維持できなくなり、安定した燃焼が得られない恐れがある。   Patent Documents 1 and 2 describe that a wastewater treatment apparatus or a wastewater treatment apparatus that adjusts the amount of oxygen-enriched air through a flow control valve provided in a pipe connected to a PSA or cryogenic separation type nitrogen production apparatus. Supply to combustion equipment. By adjusting the amount of oxygen-enriched air with the flow rate control valve, the flow path resistance changes and the pressure fluctuates with respect to the discharge of oxygen-enriched air from the nitrogen production apparatus. For this reason, there is a possibility that the generation of nitrogen gas and oxygen-enriched air in the nitrogen production apparatus may become unstable, which is not preferable in facilities using nitrogen gas. Further, when the flow control valve is clogged or the controller for controlling the flow control valve is broken, the discharge of oxygen-enriched air from the nitrogen production apparatus may be interrupted. Furthermore, due to fluctuations in the discharge pressure of oxygen-enriched air from the nitrogen production apparatus and variations in the flow rate control valve, the supply amount of oxygen-enriched air to the equipment used tends to fluctuate, and there is a problem in supply accuracy. In particular, when oxygen-enriched air is used in a combustion apparatus, the mixing ratio of fuel and air cannot be maintained within a predetermined range, and stable combustion may not be obtained.

本発明は、前記従来の課題を解決するもので、窒素製造装置における窒素ガスおよび酸素富化空気の生成の安定化および利用設備への酸素富化空気の供給安定化と吸引手段の騒音を抑制した気体通風方法を提供することを目的とするものである。   The present invention solves the above-described conventional problems, stabilizes the generation of nitrogen gas and oxygen-enriched air in a nitrogen production apparatus, stabilizes the supply of oxygen-enriched air to the equipment used, and suppresses noise in the suction means. It is an object to provide a gas ventilation method.

本発明の気体通風方法は、原料空気から分離して窒素ガスを製造する窒素製造装置と、前記窒素製造装置で副次的に生成される酸素富化空気を吸引する吸引手段と、前記吸引手段を収納する区画室と、前記酸素富化空気を利用する利用設備を備え、前記窒素製造装置と接続した配管の吐出口から酸素富化空気を、大気開放状態で前記区画室内に流入させ、前記区画室に収納した吸引手段により区画室内の酸素富化空気を吸引して前記利用設備に供給することを特徴とするものである。   The gas ventilation method of the present invention includes a nitrogen production apparatus that produces nitrogen gas by separating from raw material air, a suction means that sucks oxygen-enriched air that is secondarily generated in the nitrogen production apparatus, and the suction means A compartment for storing the oxygen, and a facility for using the oxygen-enriched air, and oxygen-enriched air is allowed to flow into the compartment from an outlet of a pipe connected to the nitrogen production apparatus, The oxygen-enriched air in the compartment is sucked by the suction means housed in the compartment and supplied to the utilization facility.

本発明の気体通風方法、気体通風装置によれば、窒素製造装置における窒素ガスおよび酸素富化空気の生成の安定化および利用設備への酸素富化空気の供給安定化と吸引手段の騒音を抑制することができる。   According to the gas ventilation method and the gas ventilation device of the present invention, the generation of nitrogen gas and oxygen-enriched air in the nitrogen production apparatus is stabilized, the supply of oxygen-enriched air to the utilization facility is stabilized, and the noise of the suction means is suppressed. can do.

第1の発明は、原料空気から分離して窒素ガスを製造する窒素製造装置と、前記窒素製造装置で副次的に生成される酸素富化空気を吸引する吸引手段と、前記吸引手段を収納する区画室と、前記酸素富化空気を利用する利用設備を備え、前記窒素製造装置の吐出口から酸素富化空気を大気開放状態で前記区画室内に流入させ、前記区画室に収納した吸引手段により区画室内の酸素富化空気を吸引して前記利用設備に供給することを特徴とする気体通風方法としたものである。これによって、酸素富化空気の吐出に対して流路抵抗の変化による吐出口内の圧力変動がなく、窒素製造装置における窒素ガスおよび酸素富化空気の生成の安定化を図ることができる。さらに区画室内の酸素富化空気を吸引手段により吸引することによって、利用設備への酸素富化空気の供給量の安定化を図ることができるとともに、吸引手段の騒音を抑制することができる。   According to a first aspect of the present invention, there is provided a nitrogen production apparatus for producing nitrogen gas separated from raw material air, a suction means for sucking oxygen-enriched air produced by the nitrogen production apparatus, and the suction means And a suction means for containing oxygen-enriched air from the discharge port of the nitrogen production apparatus into the compartment in an open state and storing the compartment in the compartment. Thus, a gas ventilation method is provided in which oxygen-enriched air in the compartment is sucked and supplied to the utilization facility. Accordingly, there is no pressure fluctuation in the discharge port due to a change in flow path resistance with respect to the discharge of oxygen-enriched air, and the generation of nitrogen gas and oxygen-enriched air in the nitrogen production apparatus can be stabilized. Further, by sucking the oxygen-enriched air in the compartment by the suction means, it is possible to stabilize the supply amount of the oxygen-enriched air to the use facility and to suppress the noise of the suction means.

また、窒素製造装置から吐出口に至る経路に開閉弁や流量調節弁を設ける必要がないので、開閉弁や流量調節弁およびこれらを制御する制御器の故障による窒素製造装置からの酸素富化空気の吐出を遮断してしまう恐れがない。さらに、窒素製造装置からの酸素富化空気の吐出圧力変動および流量調節弁のバラツキによる利用設備への酸素富化空気の供給量の変動がない。   In addition, since there is no need to provide an on-off valve or a flow rate control valve in the path from the nitrogen production device to the discharge port, oxygen-enriched air from the nitrogen production device due to a failure of the on-off valve, the flow rate control valve, or the controller that controls them. There is no risk of blocking the discharge. Furthermore, there is no fluctuation in the supply amount of oxygen-enriched air to the equipment used due to fluctuations in the discharge pressure of oxygen-enriched air from the nitrogen production apparatus and variations in the flow rate control valve.

第2の発明は、第1の発明において、吸引手段による酸素富化空気の吸引時および前記吸引手段の停止時において、前記区画室内の圧力を、窒素製造装置酸素富化空気を吐出する吐出口内の圧力よりも低く保つことを特徴とする気体通風方法としたものである。これによって、いかなる状況においても酸素富化空気の吐出に対して流路抵抗の変化による吐出口内の圧力変動がなく、窒素製造装置における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができるものである。   According to a second invention, in the first invention, when the oxygen-enriched air is sucked by the suction means and when the suction means is stopped, the pressure in the compartment is set in the discharge port for discharging the nitrogen production apparatus oxygen-enriched air. The gas ventilation method is characterized in that it is kept lower than the pressure. As a result, there is no fluctuation in the pressure in the discharge port due to the change in flow path resistance with respect to the discharge of oxygen-enriched air in any situation, and stable generation of high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus is performed. Is something that can be done.

第3の発明は、第1または2の発明において、区画室内の酸素富化空気の吸引量を調節して利用設備に供給することを特徴とする気体通風方法としたものである。これによって、利用設備への酸素富化空気の供給量をよりきめ細かく制御して利用設備の性能をより向上、安定化させることができる。   A third invention is a gas ventilation method according to the first or second invention, wherein the suction amount of oxygen-enriched air in the compartment is adjusted and supplied to the use facility. As a result, the amount of oxygen-enriched air supplied to the utilization facility can be controlled more finely, and the performance of the utilization facility can be further improved and stabilized.

第4の発明は、第1〜3の発明のいずれかにおいて、窒素製造装置は、深冷式窒素製造方法であることを特徴とする気体通風方法としたものである。これによって、窒素製造装置を深冷分離式とすることで、酸素富化空気を比較的大量に得られることにより、利用設備に安定して供給することができる。   A fourth invention is the gas ventilation method according to any one of the first to third inventions, wherein the nitrogen production apparatus is a deep-cooled nitrogen production method. Thus, by using a cryogenic separation system for the nitrogen production apparatus, a relatively large amount of oxygen-enriched air can be obtained, so that it can be stably supplied to the equipment used.

第5の発明は、原料空気から分離して窒素ガスを製造する窒素製造装置と、前記窒素製造装置で副次的に生成される酸素富化空気を吸引する吸引手段と、前記吸引手段を収納する区画室と、前記酸素富化空気を利用する利用設備を備え、前記窒素製造装置の吐出口から酸素富化空気を大気開放状態で前記区画室内に流入させ、前記区画室に収納した吸引手段により区画室内の酸素富化空気を吸引して前記利用設備に供給することを特徴とする気体通風装置としたものである。これによって、酸素富化空気の吐出に対して流路抵抗の変化による吐出口内の圧力変動がなく、窒素製造装置における窒素ガスおよび酸素富化空気の生成の安定化を図ることができる。さらに区画室内の酸素富化空気を吸引手段により吸引することによって、利用設備への酸素富化空気の供給量の安定化を図ることができるとともに、吸引手段の騒音を抑制することができる。   5th invention isolate | separates from raw material air, the nitrogen production apparatus which manufactures nitrogen gas, the suction means which attracts | sucks the oxygen-enriched air produced | generated by the said nitrogen production apparatus as a secondary, and the said suction means are accommodated And a suction means for containing oxygen-enriched air from the discharge port of the nitrogen production apparatus into the compartment in an open state and storing the compartment in the compartment. Thus, a gas ventilator is provided, wherein oxygen-enriched air in the compartment is sucked and supplied to the utilization facility. Accordingly, there is no pressure fluctuation in the discharge port due to a change in flow path resistance with respect to the discharge of oxygen-enriched air, and the generation of nitrogen gas and oxygen-enriched air in the nitrogen production apparatus can be stabilized. Further, by sucking the oxygen-enriched air in the compartment by the suction means, it is possible to stabilize the supply amount of the oxygen-enriched air to the use facility and to suppress the noise of the suction means.

第6の発明は、第5の発明において、吸引手段による酸素富化空気の吸引時および前記吸引手段の停止時において、前記区画室内の圧力を、窒素製造装置酸素富化空気を吐出する吐出口内の圧力よりも低く保つことを特徴とする気体通風装置としたものである。これによって、いかなる状況においても酸素富化空気の吐出に対して流路抵抗の変化による吐出口内の圧力変動がなく、窒素製造装置における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができるものである。   According to a sixth invention, in the fifth invention, when the oxygen-enriched air is sucked by the suction means and when the suction means is stopped, the pressure in the compartment is set in the discharge port for discharging the nitrogen-producing apparatus oxygen-enriched air. The gas ventilation device is characterized in that it is kept lower than the pressure. As a result, there is no fluctuation in the pressure in the discharge port due to the change in flow path resistance with respect to the discharge of oxygen-enriched air in any situation, and stable generation of high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus is performed. Is something that can be done.

第7の発明は、第5または6の発明において、区画室内の酸素富化空気の吸引量を調節して利用設備に供給することを特徴とする気体通風装置としたものである。これによって、利用設備への酸素富化空気の供給量をよりきめ細かく制御して利用設備の性能をより向上、安定化させることができる。   A seventh aspect of the present invention is the gas ventilation apparatus according to the fifth or sixth aspect of the present invention, wherein the amount of oxygen-enriched air in the compartment is adjusted and supplied to the use facility. As a result, the amount of oxygen-enriched air supplied to the utilization facility can be controlled more finely, and the performance of the utilization facility can be further improved and stabilized.

第8の発明は、第5〜7の発明のいずれかにおいて、窒素製造装置は、深冷式窒素製造方法であることを特徴とする気体通風装置としたものである。これによって、窒素製造装置を深冷分離式とすることで、酸素富化空気を比較的大量に得られることにより、利用設備に安定して供給することができる。   An eighth invention is the gas ventilation device according to any one of the fifth to seventh inventions, wherein the nitrogen production device is a deep-cooled nitrogen production method. Thus, by using a cryogenic separation system for the nitrogen production apparatus, a relatively large amount of oxygen-enriched air can be obtained, so that it can be stably supplied to the equipment used.

第9の発明は、第1〜8の発明のいずれかに記載の気体通風方法または気体通風装置により、酸素富化空気を好気性処理槽の被処理水に曝気用として供給することを特徴とする排水処理装置としたものである。これによって、区画室内に酸素富化空気を流入した酸素富化空気を、吸引手段により吸引して排水処理装置に安定して供給することができる。被処理水への曝気負荷の削減、迅速な目標溶存酸素濃度への制御を可能にして、浄化処理時間の短縮を図ることができる。さらに曝気用気体の送風量を抑えられることによる吸引手段の小型化、消費電力の削減、騒音の抑制を図ることができる。   A ninth invention is characterized in that oxygen-enriched air is supplied to the water to be treated in the aerobic treatment tank by the gas ventilation method or the gas ventilation device according to any one of the first to eighth inventions. This is a wastewater treatment device. As a result, the oxygen-enriched air that has flowed oxygen-enriched air into the compartment can be sucked by the suction means and stably supplied to the waste water treatment apparatus. It is possible to reduce the aeration load on the water to be treated and to quickly control the target dissolved oxygen concentration, thereby shortening the purification treatment time. Furthermore, the suction means can be reduced in size, power consumption can be reduced, and noise can be reduced by reducing the amount of aeration gas.

第10の発明は、第1〜8の発明のいずれかに記載の気体通風方法または気体通風装置により、酸素富化空気を燃焼用空気として供給することを特徴とする燃焼装置としたものである。これによって、区画室内に流入した酸素富化空気を、吸引手段により吸引して燃焼装置に安定して供給することができる。さらに吸引手段を制御することによって酸素富化空気の供給量を精度よく調節することができる。したがって安定した燃焼をさせることができるとともに、燃焼量の調節幅をより広くすることができる。   A tenth aspect of the invention is a combustion apparatus that supplies oxygen-enriched air as combustion air by the gas ventilation method or the gas ventilation apparatus according to any one of the first to eighth aspects of the invention. . As a result, the oxygen-enriched air that has flowed into the compartment can be sucked by the suction means and stably supplied to the combustion apparatus. Furthermore, the supply amount of oxygen-enriched air can be accurately adjusted by controlling the suction means. Therefore, stable combustion can be achieved, and the adjustment range of the combustion amount can be made wider.

第11の発明は、第1〜8のいずれかの発明に記載の気体通風装置を備えたことを特徴とする半導体製造設備としたものである。これによって、高純度窒素ガスを使用する半導体製造設備において、前記半導体製造設備に併設されている窒素製造装置で得られる副生成ガスである酸素富化空気を有効に利用し、前記半導体製造設備全体の設備費の削減および省エネルギー化、省スペース化を図ることができる。さらに高純度窒素ガスを使用する半導体製造設備に備えている窒素製造装置自体をそのまま使用することができるとともに、窒素製造装置からの酸素富化空気の吐出に対して流路抵抗の増加、圧力変動をなくし、窒素製造装置における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができる。   An eleventh aspect of the invention is a semiconductor manufacturing facility comprising the gas ventilation device according to any one of the first to eighth aspects of the invention. Thereby, in a semiconductor manufacturing facility using high-purity nitrogen gas, oxygen-enriched air that is a by-product gas obtained by a nitrogen manufacturing apparatus provided in the semiconductor manufacturing facility is effectively used, and the entire semiconductor manufacturing facility Equipment cost, energy saving, and space saving. Furthermore, the nitrogen production device itself provided in the semiconductor production facility using high-purity nitrogen gas can be used as it is, and the flow resistance increases and the pressure fluctuates with respect to the discharge of oxygen-enriched air from the nitrogen production device. Thus, it is possible to stably produce high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus.

以下、本発明の実施例の気体通風装置を図1〜図4を参照しながら説明する。図1は本発明の気体通風構成と排水処理装置の基本構成図、図2は窒素製造装置の構成を示す系統図、図3は気体通風構成と排水処理装置の他の実施例の基本構成図、図4は気体通風構成と燃焼装置の基本構成図である。なお図中の実線矢印は酸素富化空気の流れを示す。   Hereinafter, the gas ventilation apparatus of the Example of this invention is demonstrated, referring FIGS. 1-4. FIG. 1 is a basic configuration diagram of a gas ventilation configuration and a wastewater treatment apparatus according to the present invention, FIG. 2 is a system diagram showing a configuration of a nitrogen production apparatus, and FIG. 3 is a basic configuration diagram of another embodiment of the gas ventilation configuration and a wastewater treatment apparatus. FIG. 4 is a basic configuration diagram of a gas ventilation configuration and a combustion apparatus. In addition, the solid line arrow in a figure shows the flow of oxygen-enriched air.

図1、図2において、深冷分離式からなる窒素製造装置1で空気を深冷液化分離することによって得られた高純度窒素ガスは、配管2を介して半導体製造設備のユースポイント3へ供給する。また、窒素製造装置1において高純度窒素ガス生成と同時に得られる副生成ガスである酸素富化空気は、配管4を介してこの配管4の先端部の吐出口4aから吐出するよう構成している。   In FIG. 1 and FIG. 2, high-purity nitrogen gas obtained by cryogenic liquefaction separation of air by a cryogenic separation type nitrogen production apparatus 1 is supplied to a use point 3 of a semiconductor production facility via a pipe 2. To do. In addition, oxygen-enriched air, which is a by-product gas obtained simultaneously with high-purity nitrogen gas generation in the nitrogen production apparatus 1, is configured to be discharged from the discharge port 4 a at the tip of the pipe 4 through the pipe 4. .

窒素製造装置1で得られた酸素富化空気を吐出する配管4の先端部の吐出口4aを囲うように、区画室5に連通して設けた配管6の吸引口6aを位置させて開口7aを形成させ吸引部7を構成し、吐出口4aと開口7aは大気開放状態で連通させ、配管4の先端部の吐出口4aから区画室5内に酸素富化空気を流入させる。   The suction port 6a of the pipe 6 provided in communication with the compartment 5 is positioned so as to surround the discharge port 4a at the tip of the pipe 4 for discharging the oxygen-enriched air obtained by the nitrogen production apparatus 1, and the opening 7a The discharge port 4a and the opening 7a communicate with each other in an open state, and oxygen-enriched air is allowed to flow into the compartment 5 from the discharge port 4a at the tip of the pipe 4.

区画室5内に、酸素富化空気を吸入口8aから吸引する吸引手段であるブロア8を位置させている。ブロア8には区画室5の外部の大気中の空気を吸引する吸入口8bを設け、配管9および流量調節弁9aを接続している。ブロア8で吸引した酸素富化空気または空気は吐出口8cより吐出する。   A blower 8 which is a suction means for sucking oxygen-enriched air from the suction port 8a is located in the compartment 5. The blower 8 is provided with a suction port 8b for sucking air in the atmosphere outside the compartment 5, and is connected to a pipe 9 and a flow rate control valve 9a. Oxygen-enriched air or air sucked by the blower 8 is discharged from the discharge port 8c.

次に、酸素富化空気の利用設備を排水処理装置としてこの基本構成を説明する。有機物を含む排水を、配管12を介して流量調整槽10に供給し被処理水11として所定量貯留する。流量調整槽10の被処理水11中に位置して複数の散気孔16を有する散気管15を設け、散気管15は配管13を介してブロア14(吸引手段)に接続している。ブロア14により空気を散気管15の散気孔16から被処理水11中に噴出させて被処理水11の曝気を行うものである。   Next, this basic configuration will be described using the oxygen-enriched air utilization facility as a wastewater treatment device. Wastewater containing organic substances is supplied to the flow rate adjusting tank 10 via the pipe 12 and stored in a predetermined amount as the treated water 11. A diffuser pipe 15 having a plurality of diffuser holes 16 is provided in the water to be treated 11 of the flow rate adjusting tank 10, and the diffuser pipe 15 is connected to a blower 14 (suction means) via a pipe 13. The blower 14 is used to aerate the treated water 11 by ejecting air from the diffuser holes 16 of the diffuser pipe 15 into the treated water 11.

流量調整槽10内の被処理水11を、配管17を介してポンプ18により好気性処理槽19に供給し、好気性処理槽19内に被処理水20として所定量貯留する。好気性処理槽19内の被処理水20中に位置して複数の散気孔23を有する散気管22および溶存酸素濃度検出器24を設け、散気管22は配管21を介してブロア8(吸引手段)に接続している。ブロア8により吸引した区画室5内の酸素富化空気を散気管22の散気孔23から被処理水20中に噴出させて被処理水20の曝気を行うものである。   The water to be treated 11 in the flow rate adjustment tank 10 is supplied to the aerobic treatment tank 19 by the pump 18 via the pipe 17 and stored in the aerobic treatment tank 19 as the water to be treated 20 in a predetermined amount. A diffuser tube 22 having a plurality of diffuser holes 23 and a dissolved oxygen concentration detector 24 are provided in the water to be treated 20 in the aerobic treatment tank 19, and the diffuser tube 22 is connected to the blower 8 (suction means) via the pipe 21. ) Is connected. The oxygen-enriched air in the compartment 5 sucked by the blower 8 is ejected from the diffuser hole 23 of the diffuser tube 22 into the treated water 20 to aerate the treated water 20.

また、ブロア8の吸入口8bに接続した流量調節弁9aの開度を調節し、吸入口8aから吸引する酸素富化空気と配管9から吸引する大気との吸引量の混合比率を調節して散気管22の散気孔23から被処理水20中に噴出させて被処理水20の曝気を行う。   Further, the opening degree of the flow control valve 9a connected to the suction port 8b of the blower 8 is adjusted, and the mixing ratio of the suction amount of the oxygen-enriched air sucked from the suction port 8a and the air sucked from the pipe 9 is adjusted. The water to be treated 20 is aerated by being ejected into the water to be treated 20 from the air holes 23 of the air diffusion pipe 22.

好気性処理槽19内で生物処理された処理水は、配管25を介して落差圧により沈殿槽26に流れ、処理水27として所定量貯留する。沈殿槽26において汚泥分を沈殿させてこれを分離し配管28より放水する。沈殿槽26において沈殿した汚泥は配管29を介してポンプ30により好気性処理槽19に適宜返送するか、配管31を介して開閉弁31aより排出する。なお配管6、21は、金属、樹脂等の材質で構成すればよく、また屈曲自在なダクトを用いることができる。   The treated water that has been biologically treated in the aerobic treatment tank 19 flows into the settling tank 26 by the drop pressure through the pipe 25 and is stored as a treated water 27 in a predetermined amount. In the sedimentation tank 26, sludge is precipitated and separated and discharged from the pipe 28. The sludge precipitated in the settling tank 26 is appropriately returned to the aerobic treatment tank 19 by the pump 30 through the pipe 29 or discharged from the on-off valve 31a through the pipe 31. The pipes 6 and 21 may be made of a material such as metal or resin, and a bendable duct can be used.

次に、原料空気を深冷液化分離することによって高純度窒素ガスおよび酸素富化空気を製造する深冷分離式の窒素製造装置1の基本構成を図2により説明する。フィルター41で粉塵を除去し、吸入された原料空気は、圧縮機42で所定の圧力に圧縮され、クーラー43で圧縮熱を除去された後、配管44を介して吸着器45に導入され、ここで空気中の水分、二酸化炭素等の不純物が除去される。吸着器45を導出した精製原料空気は、配管46を経て熱交換器47に導入され、ここで冷流体である高純度窒素ガスの戻りガスと熱交換を行うことによって冷却され、配管48を経て精留塔49の下部に導入される。精留塔49での液化精留により、原料空気は塔上部の窒素ガスと塔下部の酸素富化液化空気とに分離し、精留塔49の上部に分離した窒素ガスは、通常99.99%以上の純度の高純度窒素ガスとなる。   Next, a basic configuration of a cryogenic separation type nitrogen production apparatus 1 that produces high-purity nitrogen gas and oxygen-enriched air by subjecting raw material air to cryogenic liquefaction separation will be described with reference to FIG. Dust is removed by a filter 41, and the sucked raw material air is compressed to a predetermined pressure by a compressor 42, heat of compression is removed by a cooler 43, and then introduced into an adsorber 45 through a pipe 44. Thus, impurities such as moisture and carbon dioxide in the air are removed. The purified raw material air led out from the adsorber 45 is introduced into a heat exchanger 47 through a pipe 46, where it is cooled by exchanging heat with a return gas of high-purity nitrogen gas, which is a cold fluid, and passes through a pipe 48. It is introduced into the lower part of the rectifying column 49. By liquefaction rectification in the rectifying column 49, the raw air is separated into nitrogen gas at the upper part of the tower and oxygen-enriched liquefied air at the lower part of the tower, and the nitrogen gas separated at the upper part of the rectifying tower 49 is usually 99.99. % High purity nitrogen gas with a purity of at least%.

前記窒素ガスは、精留塔49の上部から配管50に抜き出され、熱交換器47に導入される。この窒素ガスは、熱交換器47で前記原料空気と熱交換を行うことによって冷流体(冷温状態)の窒素ガスからの冷熱を回収された後、熱交換器47から配管2に導出され、前記配管2を通って各半導体製造装置のユースポイント3にそれぞれ供給される。   The nitrogen gas is extracted from the upper part of the rectifying column 49 into the pipe 50 and introduced into the heat exchanger 47. The nitrogen gas is heat-exchanged with the raw material air in the heat exchanger 47 to recover cold heat from the cold fluid (cold temperature) nitrogen gas, and is then led out from the heat exchanger 47 to the pipe 2. It is supplied to the use point 3 of each semiconductor manufacturing apparatus through the pipe 2.

一方、精留塔49の下部には、酸素濃度が略30%の酸素富化液化空気が分離する。この酸素富化液化空気は、精留塔49の下部から配管51に導出され、減圧弁52で例えば0.2〜0.5MPaに減圧された後、配管53を経て熱交換器47に導入され、ここで前記窒素ガスと熱交換を行い、加温されることにより気化して酸素富化空気となる。この酸素富化空気は配管4に導出される。   On the other hand, oxygen-enriched liquefied air having an oxygen concentration of about 30% is separated at the bottom of the rectifying column 49. This oxygen-enriched liquefied air is led out from the lower part of the rectifying column 49 to the pipe 51, and is decompressed to, for example, 0.2 to 0.5 MPa by the pressure reducing valve 52, and then introduced into the heat exchanger 47 through the pipe 53. Here, heat exchange is performed with the nitrogen gas, and it is vaporized by heating to become oxygen-enriched air. This oxygen-enriched air is led to the pipe 4.

窒素製造装置1と接続した酸素富化空気を吐出する配管4および吐出口4a内の圧力は、例えば0.2〜0.5MPaの陽圧とし、吐出口4aと開口7aを大気開放状態で接続していることにより、ブロア8の駆動の有無に関わらず区画室5内の圧力は配管4および吐出口4a内よりも常に低く保たれている。また窒素製造装置1で得られる酸素富化空気の発生量は、好気性処理槽19内の被処理水20の曝気に対して必要な量を確保することができる仕様に設定されているものである。   The pressure in the piping 4 and the discharge port 4a for discharging oxygen-enriched air connected to the nitrogen production apparatus 1 is, for example, a positive pressure of 0.2 to 0.5 MPa, and the discharge port 4a and the opening 7a are connected in an open state. Thus, the pressure in the compartment 5 is always kept lower than that in the pipe 4 and the discharge port 4a regardless of whether the blower 8 is driven. The amount of oxygen-enriched air generated in the nitrogen production apparatus 1 is set to a specification that can secure a necessary amount for aeration of the water to be treated 20 in the aerobic treatment tank 19. is there.

なお、前記吸引部7は、窒素製造装置1自体に有する配管4の吐出口4aの近傍に位置させている。さらに吸引部7は配管4、吐出口4aには何らの変更を加えずに構成しており、酸素富化空気を吐出する配管4の先端部の吐出口4aを囲うように配管6の吸引口6aを位置させ、吐出口4aと吸引口6aは開口7aを形成させて大気開放状態で連通させている。これによって、高純度窒素ガスを使用する半導体製造設備に備えている窒素製造装置1自体をそのまま使用することができ、さらに窒素製造装置1からの酸素富化空気の吐出に対して流路抵抗の増加、圧力変動をなくし、窒素製造装置1における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができる。   In addition, the said suction part 7 is located in the vicinity of the discharge port 4a of the piping 4 which the nitrogen manufacturing apparatus 1 itself has. Further, the suction part 7 is configured without any changes to the pipe 4 and the discharge port 4a, and the suction port of the pipe 6 is surrounded by the discharge port 4a at the tip of the pipe 4 that discharges oxygen-enriched air. 6a is positioned, and the discharge port 4a and the suction port 6a form an opening 7a and communicate with each other in an open state. As a result, the nitrogen production apparatus 1 itself provided in the semiconductor production facility using high-purity nitrogen gas can be used as it is, and further, the flow resistance is reduced against the discharge of oxygen-enriched air from the nitrogen production apparatus 1. The increase and pressure fluctuation can be eliminated, and the production of high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus 1 can be performed stably.

次に、本実施例における好気性処理槽19内の被処理水20の浄化処理についてその基本的な動作を説明する。窒素製造装置1で得られた酸素富化空気は、配管4を介して送られ先端部の吐出口4aから配管6の開口7aに吐出する。開口7aに吐出した酸素富化空気は吸引口6aから区画室5内に流入、充満する。区画室5内の酸素富化空気は、ブロア8の駆動により吸引され、配管21、散気管22、散気孔23を介して好気性処理槽19内の被処理水20に供給される。これにより好気性処理槽19内の被処理水20に酸素が供給され好気性微生物による浄化作用により被処理水20中の有機物を分解する。このとき流量調節弁9aは閉とし、酸素富化空気のみを被処理水20に供給する。   Next, the basic operation | movement is demonstrated about the purification process of the to-be-processed water 20 in the aerobic processing tank 19 in a present Example. The oxygen-enriched air obtained by the nitrogen production apparatus 1 is sent through the pipe 4 and discharged from the discharge port 4a at the tip to the opening 7a of the pipe 6. The oxygen-enriched air discharged to the opening 7a flows into the compartment 5 from the suction port 6a and fills up. The oxygen-enriched air in the compartment 5 is sucked by the drive of the blower 8 and supplied to the water to be treated 20 in the aerobic treatment tank 19 through the pipe 21, the diffuser pipe 22 and the diffuser holes 23. As a result, oxygen is supplied to the water to be treated 20 in the aerobic treatment tank 19 and the organic matter in the water to be treated 20 is decomposed by the purification action by the aerobic microorganisms. At this time, the flow control valve 9a is closed and only oxygen-enriched air is supplied to the water to be treated 20.

好気性処理槽19で有機物を分解し浄化処理した処理水は、配管25を介して沈殿槽26に入り汚泥(活性汚泥)を分離し、処理水の浄化レベルを確認した後、配管28より外部に放水するものである。沈殿槽26に沈殿した汚泥は、必要に応じ配管29を介してポンプ30を駆動し、好気性処理槽19に返送する。また余剰となった汚泥は、配管31を介して開閉弁31aを開として外部に排出する。   The treated water that decomposes and purifies the organic matter in the aerobic treatment tank 19 enters the sedimentation tank 26 through the pipe 25, separates sludge (activated sludge), confirms the purification level of the treated water, and then passes through the pipe 28 to the outside. It is intended to discharge water. The sludge precipitated in the sedimentation tank 26 is returned to the aerobic treatment tank 19 by driving the pump 30 through the pipe 29 as necessary. The surplus sludge is discharged to the outside through the pipe 31 by opening the on-off valve 31a.

好気性処理槽19で有機物を含む被処理水20の浄化処理量に応じて、流量調整槽10から配管17を介してポンプ18を駆動し被処理水11を好気性処理槽19に供給する。このときポンプ18を連続駆動またはか間欠的に駆動し、流量調整槽10から被処理水11を好気性処理槽19に供給する。   The pump 18 is driven from the flow rate adjusting tank 10 via the pipe 17 to supply the water to be treated 11 to the aerobic treatment tank 19 in accordance with the purification amount of the water to be treated 20 containing organic matter in the aerobic treatment tank 19. At this time, the pump 18 is driven continuously or intermittently, and the treated water 11 is supplied from the flow rate adjustment tank 10 to the aerobic treatment tank 19.

次に、好気性処理槽19で有機物を分解し浄化処理する際の、被処理水20への酸素富化空気の供給量の制御方法について説明する。溶存酸素濃度検出器24により検出した被処理水20の溶存酸素濃度が所定値よりも低い場合には、ブロア8の駆動回転数を上げ、酸素富化空気を区画室5内から吸引し、さらに配管21、散気管22、散気孔23を介して被処理水20中に供給し曝気を行う。このとき流量調節弁9aは閉としてある。   Next, a method for controlling the supply amount of oxygen-enriched air to the water to be treated 20 when the organic matter is decomposed and purified in the aerobic treatment tank 19 will be described. When the dissolved oxygen concentration of the water to be treated 20 detected by the dissolved oxygen concentration detector 24 is lower than a predetermined value, the drive rotation speed of the blower 8 is increased, oxygen-enriched air is sucked from the compartment 5, and Aeration is performed by supplying water into the water 20 to be treated through the pipe 21, the air diffusion pipe 22 and the air diffusion holes 23. At this time, the flow rate adjusting valve 9a is closed.

前記状態において、吐出口4aから吐出した酸素富化空気は、吸引口6aから区画室5内に流入し、この流入した酸素富化空気をブロア8の駆動により吸入口8aに吸引する。吐出口4aから吐出した酸素富化空気の量が、吸入口8aに吸引する酸素富化空気の量よりも多いので、開口7aから酸素富化空気の一部が大気中に放出される。したがって被処理水20には、窒素製造装置1で生成した酸素富化空気のみにより曝気を行い、余剰となった酸素富化空気の一部が開口7aから大気中に放出される。   In this state, the oxygen-enriched air discharged from the discharge port 4a flows into the compartment 5 from the suction port 6a, and the oxygen-enriched air that has flowed in is sucked into the suction port 8a by driving the blower 8. Since the amount of oxygen-enriched air discharged from the discharge port 4a is larger than the amount of oxygen-enriched air sucked into the suction port 8a, part of the oxygen-enriched air is released into the atmosphere from the opening 7a. Accordingly, the treated water 20 is aerated only with the oxygen-enriched air generated by the nitrogen production apparatus 1, and a part of the surplus oxygen-enriched air is released into the atmosphere from the opening 7a.

また、窒素製造装置1の運転状態により、吐出口4aから吐出した酸素富化空気の量が、ブロア8の吸入口8aに吸引する酸素富化空気の量よりも少ない状況となった場合には、開口7aから大気中の空気が吸引され吐出口4aから吐出した酸素富化空気と大気中の空気との混合空気として被処理水20中に供給し曝気を行う。   Further, when the amount of oxygen-enriched air discharged from the discharge port 4 a is less than the amount of oxygen-enriched air sucked into the suction port 8 a of the blower 8 due to the operating state of the nitrogen production apparatus 1. Then, air in the atmosphere is sucked from the opening 7a and supplied to the treated water 20 as a mixed air of oxygen-enriched air discharged from the discharge port 4a and air in the atmosphere, and aeration is performed.

また、溶存酸素濃度検出器24により検出した被処理水20の溶存酸素濃度が所定値に近似または高い場合には、ブロア8の駆動回転数を下げる。これによって区画室5内の酸素富化空気のブロア8の吸入口8aへの吸引量を減少させ、被処理水20への過剰な曝気を防止する。このとき開口7aから酸素富化空気の一部が大気中に放出される。   In addition, when the dissolved oxygen concentration of the water to be treated 20 detected by the dissolved oxygen concentration detector 24 is close to or higher than a predetermined value, the drive rotational speed of the blower 8 is decreased. This reduces the amount of oxygen-enriched air in the compartment 5 that is sucked into the suction port 8a of the blower 8 and prevents excessive aeration of the water 20 to be treated. At this time, part of the oxygen-enriched air is released into the atmosphere from the opening 7a.

さらに、この状況における運転においても被処理水20への過剰な曝気となる場合には、流量調節弁9aを開とし、大気中の空気もブロア8の吸入口8bに吸引して酸素富化空気と混合させて被処理水20に供給する。さらに過剰な曝気となる場合にはブロア8の駆動を停止する。   Further, even in the operation in this situation, when excessive aeration to the water to be treated 20 is performed, the flow rate control valve 9a is opened, and air in the atmosphere is sucked into the suction port 8b of the blower 8 to be oxygen-enriched air. And is supplied to the water to be treated 20. If excessive aeration occurs, the drive of the blower 8 is stopped.

以上のように、ブロア8の駆動回転数を制御することによって、被処理水20への酸素富化空気の供給量を調節し、前記被処理水の溶存酸素濃度を制御する。さらに被処理水20への酸素富化空気の供給量の調節は、区画室5内からの酸素富化空気の吸引量と大気中の空気の吸引量の比率を、流量調節弁9aの開度調節によって行うことができる。この場合には酸素富化空気と大気中の空気との混合気体のうち、流量調節弁9aの開度調節によって酸素富化空気の量を無段階に調節し、酸素富化空気と大気中の空気の混合比率を調節して被処理水20に供給することによって、前記被処理水の溶存酸素濃度を制御するものである。   As described above, the amount of oxygen-enriched air supplied to the water to be treated 20 is adjusted by controlling the rotational speed of the blower 8 to control the dissolved oxygen concentration of the water to be treated. Furthermore, the amount of oxygen-enriched air supplied to the water to be treated 20 is adjusted by adjusting the ratio of the amount of oxygen-enriched air sucked from the compartment 5 and the amount of air sucked into the atmosphere by the opening of the flow control valve 9a. Can be done by adjusting. In this case, among the mixed gas of oxygen-enriched air and air in the atmosphere, the amount of oxygen-enriched air is adjusted steplessly by adjusting the opening of the flow control valve 9a, so that the oxygen-enriched air and the air in the atmosphere The dissolved oxygen concentration of the water to be treated is controlled by adjusting the air mixing ratio and supplying it to the water to be treated 20.

また、被処理水20へ供給する曝気用の酸素富化空気と大気中の空気との混合気体の量は、ブロア8の駆動回転数を制御することによって調節する。このように被処理水20への酸素富化空気の供給量を調節するとともに、曝気用の気体の総量を調節することを可能として、被処理水20の溶存酸素濃度をよりきめ細かく制御することができる。さらに曝気用の気体の総量を調節することで被処理水20の攪拌を促進して汚泥の沈降、凝集を防止し、好気性処理槽19内の被処理水20の浄化を促進することができる。   Further, the amount of the mixed gas of aeration oxygen-enriched air supplied to the water to be treated 20 and air in the atmosphere is adjusted by controlling the drive rotational speed of the blower 8. As described above, the supply amount of oxygen-enriched air to the water to be treated 20 can be adjusted, and the total amount of aeration gas can be adjusted, so that the dissolved oxygen concentration of the water to be treated 20 can be controlled more finely. it can. Furthermore, by adjusting the total amount of gas for aeration, the agitation of the water to be treated 20 can be promoted to prevent the sludge from settling and agglomerating, and the purification of the water to be treated 20 in the aerobic treatment tank 19 can be promoted. .

ブロア8、14、ポンプ18、30、流量調節弁9a、溶存酸素濃度検出器24の全体の制御は、制御器(図示なし)によって行うものである。またブロア8、14はこれに限定するものではなく、ポンプ、コンプレッサーを用いてもよい。   The whole control of the blowers 8 and 14, the pumps 18 and 30, the flow rate adjusting valve 9a, and the dissolved oxygen concentration detector 24 is performed by a controller (not shown). The blowers 8 and 14 are not limited to this, and a pump and a compressor may be used.

前記したように、窒素製造装置1で得られた酸素富化空気を吐出する配管4の先端部の吐出口4aを囲うように配管6の吸引口6aを位置させ、吐出口4aと吸引口6aは大気開放状態で連通させている。吐出口4aと開口7aは、窒素製造装置1で得られた酸素富化空気を吐出口4aから吐出する際に、流路抵抗の増加とならないように開口7aが十分な通路断面積を有するよう設定している。これにより、ブロア8の駆動の有無、ブロア8の駆動回転数の変化、流量調節弁9aを開として配管9から大気中の空気をブロア8で吸引する状況においても、区画室5内の圧力は配管4および吐出口4a内よりも常に低く保たれている。したがって、酸素富化空気の吐出に対して流路抵抗の変化による配管4および吐出口4a内の圧力変動がなく、窒素製造装置1における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができるものである。また、窒素製造装置1から配管4の吐出口4aに至る経路に開閉弁や流量調節弁を設ける必要がないので、開閉弁や流量調節弁およびこれらを制御する制御器の故障による窒素製造装置1からの酸素富化空気の吐出を遮断してしまう問題を生じることがない。   As described above, the suction port 6a of the pipe 6 is positioned so as to surround the discharge port 4a at the tip of the pipe 4 that discharges the oxygen-enriched air obtained by the nitrogen production apparatus 1, and the discharge port 4a and the suction port 6a. Communicates with the atmosphere open. The discharge port 4a and the opening 7a are formed so that the opening 7a has a sufficient passage cross-sectional area so that the flow resistance is not increased when the oxygen-enriched air obtained in the nitrogen production apparatus 1 is discharged from the discharge port 4a. It is set. As a result, the pressure in the compartment 5 is maintained even in the situation where the blower 8 is driven, the drive rotational speed of the blower 8 is changed, and the air is sucked by the blower 8 from the pipe 9 by opening the flow rate control valve 9a. It is always kept lower than the inside of the pipe 4 and the discharge port 4a. Therefore, there is no pressure fluctuation in the pipe 4 and the discharge port 4a due to the change in flow path resistance with respect to the discharge of oxygen-enriched air, and the generation of high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus 1 is stable. Is something that can be done. Further, since it is not necessary to provide an on-off valve or a flow rate control valve in the path from the nitrogen production device 1 to the discharge port 4a of the pipe 4, the nitrogen production device 1 due to a failure of the on-off valve, the flow rate control valve, or a controller that controls these valves. There is no problem of blocking the discharge of oxygen-enriched air from the air.

さらに、従来は窒素製造装置1からの酸素富化空気の吐出圧力変動および流量調節弁のバラツキにより、利用設備への酸素富化空気の供給量が変動しやすい。これに対して本実施例においては、区画室5内に流入した酸素富化空気を、ブロア8により吸引して吐出させるので、利用設備である排水処理装置の好気性処理槽19内の被処理水20に安定して供給することができる。   Furthermore, conventionally, the supply amount of oxygen-enriched air to the facility is likely to fluctuate due to fluctuations in the discharge pressure of oxygen-enriched air from the nitrogen production apparatus 1 and variations in the flow rate control valve. On the other hand, in this embodiment, the oxygen-enriched air that has flowed into the compartment 5 is sucked and discharged by the blower 8, so that the object to be treated in the aerobic treatment tank 19 of the wastewater treatment apparatus that is the utilization facility is used. The water 20 can be stably supplied.

また、ブロア8を区画室5内に収納したことによって、ブロア8を構成するモータ、羽根(図示なし)の回転による騒音の区画室5外への漏洩を防いで騒音を抑制することができる。さらに深冷分離式の窒素製造装置1を用いた場合には、吐出口4aから吐出する酸素富化空気の温度が例えば5〜15度Cと常温レベルより低い。この低温の酸素富化空気を区画室5内に収納したブロア8により吸入することにより、ブロア8のモータの発熱による区画室5内の室温上昇を抑制でき、区画室5内の換気が不要となる。   Further, by storing the blower 8 in the compartment 5, it is possible to prevent noise from leaking out of the compartment 5 due to rotation of motors and blades (not shown) constituting the blower 8, and to suppress noise. Further, when the cryogenic separation type nitrogen production apparatus 1 is used, the temperature of the oxygen-enriched air discharged from the discharge port 4a is, for example, 5 to 15 degrees C., which is lower than the normal temperature level. By inhaling the low-temperature oxygen-enriched air through the blower 8 housed in the compartment 5, the increase in the room temperature in the compartment 5 due to the heat generated by the motor of the blower 8 can be suppressed, and ventilation in the compartment 5 is unnecessary. Become.

また、酸素富化空気をその利用設備である排水処理装置に供給することによって、好気性処理槽19内の被処理水20への曝気負荷の削減、迅速な目標溶存酸素濃度への制御を可能にして、浄化処理時間の短縮を図ることができる。さらに曝気用気体の送風量を抑えられることによるブロア8の小型化、消費電力の削減、騒音の抑制を図ることができる。   In addition, by supplying oxygen-enriched air to the wastewater treatment equipment that is the equipment used, it is possible to reduce the aeration load on the water to be treated 20 in the aerobic treatment tank 19 and to quickly control the target dissolved oxygen concentration. Thus, the purification processing time can be shortened. Further, the blower 8 can be reduced in size, power consumption can be reduced, and noise can be reduced by suppressing the amount of aeration gas.

また、好気性処理槽19内の被処理水20への酸素富化空気の供給量を調節することによって、前記被処理水20の溶存酸素濃度を浄化処理に最適な値に制御することが可能となり、より処理時間の短縮を図ることができる。また酸素富化空気と大気中の空気の混合比率を調節することによって、被処理水20への酸素富化空気の供給量を調節するとともに、曝気用の気体の総量を調節することを可能として、被処理水20の溶存酸素濃度をよりきめ細かく制御することができる。さらに曝気用の気体の総量を調節することで好気性処理槽19内の被処理水20の攪拌を促進して汚泥の沈降、凝集を防止することができる。   Further, by adjusting the supply amount of oxygen-enriched air to the water to be treated 20 in the aerobic treatment tank 19, the dissolved oxygen concentration of the water to be treated 20 can be controlled to an optimum value for the purification treatment. Thus, the processing time can be further shortened. In addition, by adjusting the mixing ratio of oxygen-enriched air and air in the atmosphere, the supply amount of oxygen-enriched air to the water to be treated 20 can be adjusted, and the total amount of aeration gas can be adjusted. The dissolved oxygen concentration of the water to be treated 20 can be controlled more finely. Further, by adjusting the total amount of gas for aeration, the agitation of the water to be treated 20 in the aerobic treatment tank 19 can be promoted to prevent the sludge from settling and agglomerating.

また、特に高純度窒素ガスを使用する半導体製造設備において、前記半導体製造設備に併設されている窒素製造装置1で得られる副生成ガスである酸素富化空気を有効に利用し、前記半導体製造設備から排出される有機物を含む好気性処理槽19の被処理水20に供給することによって、専用の酸素富化空気供給源(例えば、酸素ガス供給設備)を不要とし、トータルシステムとしての設備費の削減および省エネルギー化、省スペース化を図ることができる。さらに半導体製造設備において窒素製造装置1は常時連続して稼動しており、酸素富化空気も連続して得られ、さらに窒素製造装置1を深冷分離式とすることで、酸素富化空気を比較的大量に得られることにより、好気性処理槽19の被処理水20に安定して供給することができる。   In particular, in a semiconductor manufacturing facility that uses high-purity nitrogen gas, oxygen-enriched air that is a by-product gas obtained by the nitrogen manufacturing apparatus 1 provided in the semiconductor manufacturing facility is effectively used, and the semiconductor manufacturing facility By supplying the water to be treated 20 of the aerobic treatment tank 19 containing the organic matter discharged from the tank, a dedicated oxygen-enriched air supply source (for example, oxygen gas supply equipment) is not required, and the equipment cost as a total system is reduced. Reduction, energy saving, and space saving can be achieved. Further, in the semiconductor manufacturing facility, the nitrogen production apparatus 1 is continuously operated, and oxygen-enriched air is also obtained continuously. Further, by making the nitrogen production apparatus 1 a cryogenic separation type, the oxygen-enriched air is obtained. By being obtained in a relatively large amount, the water to be treated 20 in the aerobic treatment tank 19 can be stably supplied.

なお、ブロア14を区画室5内に収納し、流量調整槽10内の被処理水11にも窒素製造装置1で得られた酸素富化空気を供給することによって、好気性処理槽19内の被処理水20への曝気負荷の削減、迅速な目標溶存酸素濃度への制御を可能にして、より一層浄化処理時間の短縮を図ることができる。さらに流量調整槽10、好気性処理槽19内の被処理水11、20への曝気用気体の送風量を抑えられることによるブロア8、14の小型化、消費電力の削減、騒音の抑制を図ることができる。   The blower 14 is accommodated in the compartment 5 and the oxygen-enriched air obtained by the nitrogen production apparatus 1 is also supplied to the water to be treated 11 in the flow rate adjusting tank 10, so that the inside of the aerobic processing tank 19 is maintained. Reduction of the aeration load on the water to be treated 20 and quick control to the target dissolved oxygen concentration are possible, and the purification treatment time can be further shortened. Furthermore, the blower 8 and 14 can be reduced in size, power consumption can be reduced, and noise can be reduced by suppressing the amount of aeration gas blown into the water to be treated 11 and 20 in the flow rate adjustment tank 10 and the aerobic treatment tank 19. be able to.

次に、気体通風構成の他の実施例を図3に示す。図1、図2に示す構成と異なるところは、区画室5に開口5a、5bを設けて大気と連通させたもので、図1、図2と同一箇所は同一番号を付し説明を省略する。開口5a、5bにより区画室5を大気開放状態とし、この区画室5内に吸引部7、配管6を介して配管4の先端部の吐出口4aから酸素富化空気を流入させる。区画室5内に収納したブロア8により酸素富化空気を吸入し好気性処理槽19の被処理水20に供給する。本実施例においても、前記図1、図2に示す構成と同様の効果が得られるが、特に区画室5に上下方向に開口5a、5bを設けることによって、ブロア8を停止した状況においても、窒素製造装置1からの酸素富化空気は開口5a、5bを介して大気中へ放出されることにより、窒素製造装置1からの酸素富化空気の吐出を妨げず、窒素製造装置1における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができる。   Next, another embodiment of the gas ventilation configuration is shown in FIG. The difference from the configuration shown in FIG. 1 and FIG. 2 is that the compartment 5 is provided with openings 5a and 5b to communicate with the atmosphere. The same parts as those in FIG. 1 and FIG. . The compartment 5 is opened to the atmosphere through the openings 5 a and 5 b, and oxygen-enriched air is caused to flow into the compartment 5 from the discharge port 4 a at the tip of the pipe 4 through the suction part 7 and the pipe 6. Oxygen-enriched air is sucked by the blower 8 housed in the compartment 5 and supplied to the treated water 20 in the aerobic treatment tank 19. Even in this embodiment, the same effect as the configuration shown in FIG. 1 and FIG. 2 can be obtained, but particularly in the situation where the blower 8 is stopped by providing the compartments 5 with the openings 5a and 5b in the vertical direction. The oxygen-enriched air from the nitrogen production apparatus 1 is discharged into the atmosphere through the openings 5a and 5b, so that the discharge of the oxygen-enriched air from the nitrogen production apparatus 1 is not hindered, and the high purity in the nitrogen production apparatus 1 Generation of nitrogen gas and oxygen-enriched air can be performed stably.

次に、気体通風構成と燃焼装置の実施例を図4に示す。図1、図2に示す構成と異なるところは、窒素製造装置1で得られた酸素富化空気を区画室5から配管58を介して燃焼装置57に供給し、液体燃料またはガス燃料を、燃料供給部59から配管60を介して燃焼装置57に供給して混合し燃焼させるものである。図1、図2と同一箇所は同一番号を付し説明を省略する。   Next, an embodiment of the gas ventilation configuration and the combustion apparatus is shown in FIG. 1 and FIG. 2 is different from the configuration shown in FIG. 1 in that oxygen-enriched air obtained by the nitrogen production apparatus 1 is supplied from the compartment 5 to the combustion apparatus 57 via the pipe 58, and liquid fuel or gas fuel is supplied to the fuel. The gas is supplied from the supply unit 59 to the combustion device 57 via the pipe 60 and mixed and burned. The same parts as those in FIG. 1 and FIG.

前記したように、従来は窒素製造装置1からの酸素富化空気の吐出圧力変動および流量調節弁のバラツキにより、利用設備である燃焼装置への酸素富化空気の供給量が変動しやすい。これによって燃料と空気との混合比率を所定の範囲内に維持できなくなり安定した燃焼が得られない恐れがある。これに対して本実施例においては、区画室5内に流入、充満した酸素富化空気を、吸引手段であるブロア8により吸引して燃焼装置57へ供給するので、酸素富化空気の供給量が安定し、さらにブロア8の回転数を制御することによって酸素富化空気の供給量を精度よく調節することができる。したがって安定した燃焼をさせることができるとともに、燃焼量の調節をより広くすることができる。   As described above, conventionally, the supply amount of oxygen-enriched air to the combustion apparatus, which is the equipment used, tends to fluctuate due to fluctuations in the discharge pressure of the oxygen-enriched air from the nitrogen production apparatus 1 and variations in the flow rate control valve. As a result, the mixing ratio of fuel and air cannot be maintained within a predetermined range, and stable combustion may not be obtained. On the other hand, in this embodiment, the oxygen-enriched air that has flowed into and filled into the compartment 5 is sucked by the blower 8 serving as the suction means and supplied to the combustion device 57, so the supply amount of oxygen-enriched air In addition, the supply amount of the oxygen-enriched air can be accurately adjusted by controlling the rotational speed of the blower 8. Therefore, stable combustion can be achieved and the amount of combustion can be adjusted more widely.

また、特に高純度窒素ガスを使用する半導体製造設備において、前記半導体製造設備に併設されている窒素製造装置1で得られる副生成ガスである酸素富化空気を有効に利用し、前記半導体製造設備から排出されるガスを燃焼させて無害化処理する燃焼装置57に供給することによって、専用の酸素富化空気供給源を不要とし、トータルシステムとしての設備費の削減および省エネルギー化、省スペース化を図ることができる。さらに半導体製造設備において窒素製造装置1は常時連続して稼動しており、酸素富化空気も連続して得られ、さらに窒素製造装置1を深冷分離式とすることで、酸素富化空気を比較的大量に得られることにより、燃焼装置57に安定して供給することができる。   In particular, in a semiconductor manufacturing facility that uses high-purity nitrogen gas, oxygen-enriched air that is a by-product gas obtained by the nitrogen manufacturing apparatus 1 provided in the semiconductor manufacturing facility is effectively used, and the semiconductor manufacturing facility By supplying to the combustion device 57 that burns the gas discharged from the chamber and detoxifies it, there is no need for a dedicated oxygen-enriched air supply source, reducing the total equipment cost, saving energy, and saving space. Can be planned. Further, in the semiconductor manufacturing facility, the nitrogen production apparatus 1 is continuously operated, and oxygen-enriched air is also obtained continuously. Further, by making the nitrogen production apparatus 1 a cryogenic separation type, the oxygen-enriched air is obtained. By being obtained in a relatively large amount, it can be stably supplied to the combustion device 57.

また、本発明の気体通風装置を半導体製造設備に備えることによって、前記半導体製造設備に併設されている窒素製造装置で得られる副生成ガスである酸素富化空気を有効に利用し、前記半導体製造設備全体の設備費の削減および省エネルギー化、省スペース化を図ることができる。さらに高純度窒素ガスを使用する半導体製造設備に備えている窒素製造装置自体をそのまま使用することができるとともに、窒素製造装置からの酸素富化空気の吐出に対して流路抵抗の増加、圧力変動をなくし、窒素製造装置における高純度窒素ガスおよび酸素富化空気の生成を安定して行うことができる。   Moreover, by providing the gas ventilation device of the present invention in a semiconductor manufacturing facility, oxygen-enriched air, which is a by-product gas obtained by a nitrogen manufacturing device provided in the semiconductor manufacturing facility, is effectively used, and the semiconductor manufacturing The equipment cost of the entire equipment can be reduced, energy saving and space saving can be achieved. Furthermore, the nitrogen production device itself provided in the semiconductor production facility using high-purity nitrogen gas can be used as it is, and the flow resistance increases and the pressure fluctuates with respect to the discharge of oxygen-enriched air from the nitrogen production device. Thus, it is possible to stably produce high-purity nitrogen gas and oxygen-enriched air in the nitrogen production apparatus.

酸素富化空気を必要とする広範囲の装置の用途にも適用できる。   It can also be applied to a wide range of apparatus applications that require oxygen-enriched air.

本発明の気体通風構成と排水処理装置の一実施例における基本構成図Basic configuration diagram of an embodiment of the gas ventilation configuration and waste water treatment apparatus of the present invention 窒素製造装置の構成を示す系統図System diagram showing the configuration of the nitrogen production system 気体通風構成と排水処理装置の他の実施例における基本構成図Basic configuration diagram in another embodiment of gas ventilation configuration and waste water treatment equipment 気体通風構成と燃焼装置の一実施例における基本構成図Basic configuration diagram of an embodiment of a gas ventilation configuration and a combustion apparatus

符号の説明Explanation of symbols

1 窒素製造装置
2、4、6、9、12、13、17、21、25、28、29、31、46、48、50、53、55、58、60 配管
3 ユースポイント
4a、8c 吐出口
5 区画室
5a、5b、7a 開口
6a 吸引口
7 吸引部
8、14 ブロア
8a、8b 吸入口
9a 流量調節弁
10 流量調整槽
11、20 被処理水
15、22 散気管
16、23 散気孔
18、30 ポンプ
19 好気性処理槽
24 溶存酸素濃度検出器
26 沈殿槽
27 処理水
31a 開閉弁
41 フィルター
42 圧縮機
43 クーラー
45 吸着器
47 熱交換器
49 精留塔
52 減圧弁
57 燃焼装置
59 燃料供給部
1 Nitrogen production equipment 2, 4, 6, 9, 12, 13, 17, 21, 25, 28, 29, 31, 46, 48, 50, 53, 55, 58, 60 Piping 3 Use point 4a, 8c Discharge port 5 compartment 5a, 5b, 7a opening 6a suction port 7 suction part 8, 14 blower 8a, 8b suction port 9a flow control valve 10 flow control tank 11, 20 treated water 15, 22 air diffuser 16, 16, air diffuser 18, DESCRIPTION OF SYMBOLS 30 Pump 19 Aerobic processing tank 24 Dissolved oxygen concentration detector 26 Precipitation tank 27 Treated water 31a On-off valve 41 Filter 42 Compressor 43 Cooler 45 Adsorber 47 Heat exchanger 49 Rectifying tower 52 Pressure reducing valve 57 Combustion device 59 Fuel supply part

Claims (11)

原料空気から分離して窒素ガスを製造する窒素製造装置と、前記窒素製造装置で副次的に生成される酸素富化空気を吸引する吸引手段と、前記吸引手段を収納する区画室と、前記酸素富化空気を利用する利用設備を備え、前記窒素製造装置の吐出口から酸素富化空気を大気開放状態で前記区画室内に流入させ、前記区画室に収納した吸引手段により区画室内の酸素富化空気を吸引して前記利用設備に供給することを特徴とする気体通風方法。 A nitrogen production apparatus for producing nitrogen gas by separating from the raw air, a suction means for sucking oxygen-enriched air produced by the nitrogen production apparatus, a compartment for storing the suction means, A use facility that utilizes oxygen-enriched air; oxygen-enriched air is allowed to flow into the compartment from the discharge port of the nitrogen production apparatus in an open state; and oxygen enrichment in the compartment is achieved by suction means stored in the compartment. A gas ventilation method characterized by sucking the chemical air and supplying it to the utilization facility. 吸引手段による酸素富化空気の吸引時および前記吸引手段の停止時において、前記区画室内の圧力を、窒素製造装置の酸素富化空気を吐出する吐出口内の圧力よりも低く保つことを特徴とする請求項1に記載の気体通風方法。 The pressure in the compartment is kept lower than the pressure in the discharge port for discharging the oxygen-enriched air of the nitrogen production apparatus when the oxygen-enriched air is sucked by the suction means and when the suction means is stopped. The gas ventilation method according to claim 1. 区画室内の酸素富化空気の吸引量を調節して利用設備に供給することを特徴とする請求項1または2に記載の気体通風方法。 The gas ventilation method according to claim 1 or 2, wherein the suction amount of the oxygen-enriched air in the compartment is adjusted and supplied to the use facility. 窒素製造装置は、深冷式窒素製造方法であることを特徴とする請求項1〜3のいずれか1項に記載の気体通風方法。 The gas ventilation method according to any one of claims 1 to 3, wherein the nitrogen production apparatus is a deep-cooled nitrogen production method. 原料空気から分離して窒素ガスを製造する窒素製造装置と、前記窒素製造装置で副次的に生成される酸素富化空気を吸引する吸引手段と、前記吸引手段を収納する区画室と、前記酸素富化空気を利用する利用設備を備え、前記窒素製造装置の吐出口から酸素富化空気を大気開放状態で前記区画室内に流入させ、前記区画室に収納した吸引手段により区画室内の酸素富化空気を吸引して前記利用設備に供給することを特徴とする気体通風装置。 A nitrogen production apparatus for producing nitrogen gas by separating from the raw air, a suction means for sucking oxygen-enriched air produced by the nitrogen production apparatus, a compartment for storing the suction means, A use facility that utilizes oxygen-enriched air; oxygen-enriched air is allowed to flow into the compartment from the discharge port of the nitrogen production apparatus in an open state; and oxygen enrichment in the compartment is achieved by suction means stored in the compartment. A gas ventilator characterized by sucking the gasified air and supplying it to the utilization facility. 吸引手段による酸素富化空気の吸引時および前記吸引手段の停止時において、前記区画室内の圧力を、窒素製造装置の酸素富化空気を吐出する吐出口内の圧力よりも低く保つことを特徴とする請求項5に記載の気体通風装置。 The pressure in the compartment is kept lower than the pressure in the discharge port for discharging the oxygen-enriched air of the nitrogen production apparatus when the oxygen-enriched air is sucked by the suction means and when the suction means is stopped. The gas ventilation device according to claim 5. 区画室内の酸素富化空気の吸引量を調節して利用設備に供給することを特徴とする請求項5または6に記載の気体通風装置。 The gas ventilation device according to claim 5 or 6, wherein the amount of oxygen-enriched air in the compartment is adjusted and supplied to the utilization facility. 窒素製造装置は、深冷式窒素製造方法であることを特徴とする請求項5〜7のいずれか1項に記載の気体通風装置。 The gas ventilation device according to any one of claims 5 to 7, wherein the nitrogen production device is a deep-cooled nitrogen production method. 請求項1〜8のいずれかに記載の気体通風方法または気体通風装置により、酸素富化空気を好気性処理槽の被処理水に曝気用として供給することを特徴とする排水処理装置。 A wastewater treatment apparatus characterized in that oxygen-enriched air is supplied to the treated water in an aerobic treatment tank by the gas ventilation method or gas ventilation apparatus according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の気体通風方法または気体通風装置により、酸素富化空気を燃焼用空気として供給することを特徴とする燃焼装置。 The combustion apparatus characterized by supplying oxygen-enriched air as combustion air by the gas ventilation method or gas ventilation apparatus in any one of Claims 1-8. 請求項5〜8のいずれかに記載の気体通風装置を備えたことを特徴とする半導体製造設備。 A semiconductor manufacturing facility comprising the gas ventilation device according to claim 5.
JP2007074209A 2007-03-22 2007-03-22 Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device Expired - Fee Related JP5114987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074209A JP5114987B2 (en) 2007-03-22 2007-03-22 Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074209A JP5114987B2 (en) 2007-03-22 2007-03-22 Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device

Publications (2)

Publication Number Publication Date
JP2008235642A true JP2008235642A (en) 2008-10-02
JP5114987B2 JP5114987B2 (en) 2013-01-09

Family

ID=39908077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074209A Expired - Fee Related JP5114987B2 (en) 2007-03-22 2007-03-22 Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device

Country Status (1)

Country Link
JP (1) JP5114987B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183353A (en) * 2010-03-11 2011-09-22 Hitachi Ltd Wastewater treatment apparatus and oxygen feed rate control method therefor
JP2012076031A (en) * 2010-10-04 2012-04-19 Panasonic Corp Method and system for treating wastewater
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas
JP2014227450A (en) * 2013-05-21 2014-12-08 株式会社Ihi Syngas production system, and syngas production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855094A (en) * 1981-09-28 1983-04-01 Osaka Gas Co Ltd Treatment for waste water by activated sludge
JP2001137880A (en) * 1999-11-16 2001-05-22 Nippon Sanso Corp Oxygen activated sludge treating device and running method for the same
JP2003068595A (en) * 2001-08-23 2003-03-07 Nippon Sanso Corp Semiconductor production facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855094A (en) * 1981-09-28 1983-04-01 Osaka Gas Co Ltd Treatment for waste water by activated sludge
JP2001137880A (en) * 1999-11-16 2001-05-22 Nippon Sanso Corp Oxygen activated sludge treating device and running method for the same
JP2003068595A (en) * 2001-08-23 2003-03-07 Nippon Sanso Corp Semiconductor production facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183353A (en) * 2010-03-11 2011-09-22 Hitachi Ltd Wastewater treatment apparatus and oxygen feed rate control method therefor
JP2012076031A (en) * 2010-10-04 2012-04-19 Panasonic Corp Method and system for treating wastewater
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas
JP2014227450A (en) * 2013-05-21 2014-12-08 株式会社Ihi Syngas production system, and syngas production method

Also Published As

Publication number Publication date
JP5114987B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US6962654B2 (en) Methods and apparatus for supplying high concentrations of dissolved oxygen and ozone for chemical and biological processes
JP4985002B2 (en) Waste water treatment method and waste water treatment equipment
US20130140232A1 (en) Method and system for ozone vent gas reuse in wastewater treatment
EP2445618B1 (en) Apparatus and method for introducing a gas into a liquid
US20080159061A1 (en) Mixers and the Submersible Aerators With Using These Mixers
JP5114987B2 (en) Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device
KR20000047823A (en) System for the dissolution of gas
US5772731A (en) Treatment of liquors
KR101410020B1 (en) Nitrogen gas generation device
JP2004188246A (en) System for manufacturing ozonized water
CN101535191B (en) treatment of aqueous liquid
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
JP2019048274A (en) Oxygen water manufacturing apparatus and oxygen water manufacturing method
CN104445569A (en) Method and system for seawater foam control
JP5657327B2 (en) Waste water treatment method and waste water treatment system
JP2011092868A (en) Sludge treatment apparatus and sludge treatment method
JP2010207726A (en) Apparatus and method for purifying gas
CN219036809U (en) Air conditioner
JP2001149945A (en) Algae controller
JP6818671B2 (en) Wastewater treatment system
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
JP2003190738A (en) Method for desulfurizing combustion exhaust gas
GB2390984A (en) Jet aeration system for dissolving gases into a liquid wherein the gases are introduced to the liquid before the liquid is pumped through a liquid nozzle
CA2181249C (en) Unit for treating water by ozonation, and corresponding ozonised water production apparatus
JP2005214572A (en) Purifier for waste ammonia water and ammonia refrigerator equipped with the purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R151 Written notification of patent or utility model registration

Ref document number: 5114987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees