JP2003068595A - Semiconductor production facility - Google Patents

Semiconductor production facility

Info

Publication number
JP2003068595A
JP2003068595A JP2001252779A JP2001252779A JP2003068595A JP 2003068595 A JP2003068595 A JP 2003068595A JP 2001252779 A JP2001252779 A JP 2001252779A JP 2001252779 A JP2001252779 A JP 2001252779A JP 2003068595 A JP2003068595 A JP 2003068595A
Authority
JP
Japan
Prior art keywords
oxygen
gas
air
enriched
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252779A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sugimori
由章 杉森
Yoshio Ishihara
良夫 石原
Iwao Shibata
巌 柴田
Shinichiro Yamamoto
伸一郎 山本
Osayasu Tomita
修康 富田
Shuichi Koseki
修一 小関
Hirotaka Mangyo
大貴 万行
Hiroyuki Ono
宏之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2001252779A priority Critical patent/JP2003068595A/en
Publication of JP2003068595A publication Critical patent/JP2003068595A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor production facility as a total system where by-product gas, i.e., oxygen rich air, from a cryogenic separation nitrogen production system provided in combination with a facility for making harmless the exhaust gas from a semiconductor production system or a liquid crystal production system using high purity nitrogen gas through a combustion type unharming system can be utilized effectively. SOLUTION: The semiconductor production facility comprises a semiconductor production system 10 using high purity nitrogen gas, a combustion type unharming system 11 for making harmless the exhaust gas from the semiconductor production system 10 by combustion flame using oxygen rich air as combustion assist gas, and a cryogenic separation nitrogen production system 12 for producing oxygen rich air being used in the combustion unharming system 11 plus high purity nitrogen gas being used in the semiconductor production system 10. The semiconductor production facility is further comprises means 16 for regulating the oxygen concentration of oxygen rich air being supplied, as combustion assist gas, from the cryogenic separation nitrogen production system 12 to the combustion type unharming system 11 to a level suitable as the combustion assist gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造設備に
関し、詳しくは、高純度窒素ガスを使用する半導体製造
装置から排出される排ガスの除害処理を燃焼式除害装置
で行う半導体製造設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing facility, and more particularly to a semiconductor manufacturing facility in which a combustion-type abatement system is used to perform a detoxification process of exhaust gas discharged from a semiconductor manufacturing system using high-purity nitrogen gas. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】高純度
窒素ガスを使用する半導体製造装置や液晶製造装置等
(本発明では、これらを総称して半導体製造装置とい
う)から排出される排ガスには、シラン,アルシン,ホ
スフィン,硫化水素,セレン化水素,三弗化ホウ素,三
塩化ホウ素,四フッ化珪素,ジクロロシラン,トリクロ
ロシラン,四塩化ケイ素,トリクロロアルシン,テトラ
エトキシシラン(TEOS),六フッ化タングステン等
の特殊材料ガスや、エッチング等に使用されるCF
,C,CHF,NF等のパーフルオ
ロコンパウンドガス(PFC)が含まれているため、こ
れらを含む排ガスは、外部に放出する前に無害化処理
(除害処理)を行う必要があり、除害処理を行う装置の
一つとして燃焼式除害装置が用いられている。
2. Description of the Related Art Exhaust gas discharged from a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus or the like using high-purity nitrogen gas (in the present invention, these are collectively referred to as semiconductor manufacturing apparatus) , Silane, arsine, phosphine, hydrogen sulfide, hydrogen selenide, boron trifluoride, boron trichloride, silicon tetrafluoride, dichlorosilane, trichlorosilane, silicon tetrachloride, trichloroarsine, tetraethoxysilane (TEOS), hexafluoride Special material gas such as tungsten oxide, CF 4 used for etching,
Since perfluoro compound gas (PFC) such as C 2 F 6 , C 3 F 8 , CHF 3 and NF 3 is contained, the exhaust gas containing these is detoxified (detoxification treatment) before being released to the outside. ) Is required, and a combustion-type abatement device is used as one of the devices for abatement processing.

【0003】この燃焼式除害装置は、支燃用ガスに酸素
富化空気を用いて高温の燃焼火炎を形成することによ
り、通常の除害処理では処理が困難なPFC類も処理で
きるという利点を有している。また、酸素富化空気を用
いると、支燃用ガスとして空気を用いた場合に比べて高
温の燃焼火炎が得られるだけでなく、燃焼効率の向上に
よる燃料の削減や、窒素量が少ないことからNOxの発
生を抑制できるなどの効果が得られる。
This combustion-type abatement system has an advantage that PFCs, which are difficult to treat by ordinary abatement treatment, can be treated by forming a high-temperature combustion flame by using oxygen-enriched air as a combustion-supporting gas. have. In addition, when oxygen-enriched air is used, not only is a combustion flame at a higher temperature obtained than when air is used as a combustion-supporting gas, but fuel is reduced by improving combustion efficiency and the amount of nitrogen is small. The effect of suppressing the generation of NOx can be obtained.

【0004】燃焼式除害装置で使用する酸素富化空気の
酸素濃度は、一般的に23〜60%程度、好ましくは2
3〜45%程度の酸素濃度を有するガスであって、従来
は、深冷分離法やPSA等の酸素製造装置で発生させた
酸素濃度95%以上の高濃度酸素を、燃焼式除害装置の
直前で空気と混合して所定酸素濃度に希釈するようにし
ていた。このため、高濃度酸素を得るためのコストだけ
でなく、希釈用空気を供給するための圧縮機や配管を設
置する必要があり、これらの設備コストや運転コストも
多大なものとなる。
The oxygen concentration of the oxygen-enriched air used in the combustion type abatement system is generally about 23 to 60%, preferably 2%.
It is a gas having an oxygen concentration of about 3 to 45%, and conventionally, high-concentration oxygen having an oxygen concentration of 95% or more generated by an oxygen production apparatus such as a cryogenic separation method or PSA is used in a combustion-type abatement apparatus. Immediately before, it was mixed with air to be diluted to a predetermined oxygen concentration. For this reason, not only the cost for obtaining high-concentration oxygen but also the compressor and piping for supplying the diluting air need to be installed, and the equipment cost and operating cost of these are enormous.

【0005】一方、前記高純度窒素を製造する深冷分離
式窒素製造装置では、精留塔の下部から酸素濃度が25
〜40%の酸素富化液化空気が得られるが、この酸素富
化液化空気は、大気圧程度に減圧されて凝縮器の冷熱源
となったり、膨張タービンに導入されて大気圧程度に膨
張することによって寒冷を発生させる寒冷発生源となっ
たりした後、略大気圧状態で装置外に廃ガスとして放出
されていた。このような大気圧状態の廃ガスを支燃用ガ
ス等として利用する場合は、適当な圧力に昇圧する必要
があるが、酸素富化ガスの圧縮には安全対策上の設備コ
ストが嵩むという問題がある。さらに、この廃ガスは、
深冷分離式窒素製造装置における窒素製造量等の運転条
件によって酸素濃度が変化するという難点もあった。
On the other hand, in the deep-separation-type nitrogen producing apparatus for producing the high-purity nitrogen, the oxygen concentration from the bottom of the rectification column is 25
-40% oxygen-enriched liquefied air can be obtained. This oxygen-enriched liquefied air is depressurized to atmospheric pressure and becomes a cold heat source of the condenser, or is introduced into the expansion turbine and expanded to atmospheric pressure. As a result, after becoming a cold source for generating cold, it was discharged as a waste gas to the outside of the device at about atmospheric pressure. When such waste gas under atmospheric pressure is used as combustion-supporting gas, etc., it is necessary to increase the pressure to an appropriate pressure, but the compression of oxygen-enriched gas requires a high facility cost for safety measures. There is. Furthermore, this waste gas
There is also a drawback that the oxygen concentration changes depending on operating conditions such as the nitrogen production amount in the cryogenic separation type nitrogen production apparatus.

【0006】そこで本発明は、高純度窒素ガスを使用す
る半導体製造装置や液晶製造装置等からの排出ガスを燃
焼式除害装置で無害化処理するにあたり、高純度窒素ガ
ス発生用の深冷分離式窒素製造装置の副生成ガスである
酸素富化空気を有効に利用できるトータルシステムとし
ての半導体製造設備を提供することを目的としている。
Therefore, the present invention, when the exhaust gas from a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus that uses high-purity nitrogen gas is detoxified by a combustion-type abatement device, is subjected to deep-chill separation for generating high-purity nitrogen gas. It is an object of the present invention to provide a semiconductor manufacturing facility as a total system that can effectively use oxygen-enriched air that is a by-product gas of a nitrogen production system.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体製造設備は、高純度窒素ガスを使用
する半導体製造装置と、半導体製造装置から排出された
排ガスを支燃用ガスとして酸素富化空気を使用した燃焼
火炎で燃焼除害する燃焼式除害装置と、前記半導体製造
装置で使用する高純度窒素ガスを製造するとともに、前
記燃焼式除害装置で使用する酸素富化空気を製造する深
冷分離式窒素製造装置とを備えていることを特徴とし、
特に、前記深冷分離式窒素製造装置と前記燃焼式除害装
置との間に、深冷分離式窒素製造装置から燃焼式除害装
置に供給する酸素富化空気の酸素濃度を調節する手段を
備えていることを特徴としている。さらに、前記酸素富
化空気の酸素濃度を調節する手段の下流側に、酸素濃度
調節後の酸素富化空気の一部をボイラーの支燃用ガスと
して供給する経路が分岐していることを特徴とする請求
項1記載の半導体製造設備。
In order to achieve the above object, the semiconductor manufacturing equipment of the present invention is a semiconductor manufacturing apparatus using high-purity nitrogen gas, and exhaust gas discharged from the semiconductor manufacturing apparatus as a combustion supporting gas. Combustion type detoxification device that burns and decontaminates with a combustion flame using oxygen-enriched air, and oxygen-enriched air used in the combustion type detoxification device while producing high-purity nitrogen gas used in the semiconductor manufacturing device And a cryogenic separation type nitrogen production device for producing
In particular, a means for adjusting the oxygen concentration of the oxygen-enriched air supplied to the combustion-type detoxification device from the deep-separation-type nitrogen production device is provided between the deep-separation-type nitrogen production device and the combustion-type detoxification device. It is characterized by having. Further, a path for supplying a part of the oxygen-enriched air after the oxygen concentration adjustment as a combustion supporting gas for the boiler is branched downstream of the means for adjusting the oxygen concentration of the oxygen-enriched air. The semiconductor manufacturing facility according to claim 1.

【0008】また、本発明において、前記深冷分離式窒
素製造装置は、原料空気を圧縮する原料空気圧縮機と、
該圧縮された原料空気を精製する精製器と、該精製後の
原料空気を製品ガス等の戻りガスと熱交換させて冷却す
る熱交換器と、該冷却された原料空気を液化精留によっ
て窒素ガスと酸素富化液化空気とに分離する精留塔と、
該窒素ガスと該酸素富化液化空気とを熱交換させて窒素
ガスを凝縮させるとともに酸素富化液化空気を気化させ
る凝縮器と、寒冷を発生する膨張タービンとを備えると
ともに、原料空気が前記原料空気圧縮機、前記精製器及
び前記熱交換器を経て前記精留塔に導入される経路と、
前記窒素ガスが前記精留塔から導出されて前記熱交換器
を経て常温となり製品窒素として取り出される経路と、
前記酸素富化液化空気が前記精留塔から導出されて凝縮
器で気化して酸素富化空気となった後、前記熱交換器を
経て常温となり製品酸素富化ガスとして取り出される経
路と、該製品酸素富化ガスの経路にあって、前記熱交換
器の中部から分岐して前記膨張タービンに酸素富化空気
の一部を導入する経路と、前記膨張タービンを出た酸素
富化空気が再度前記熱交換を経て常温となり排ガスとし
て取り出される経路とを備えていることを特徴としてい
る。
In the present invention, the deep-separation-type nitrogen producing apparatus comprises a raw material air compressor for compressing raw material air,
A purifier for purifying the compressed raw material air, a heat exchanger for cooling the purified raw material air by exchanging heat with a return gas such as a product gas, and nitrogen for liquefied rectification of the cooled raw material air. A rectification column for separating gas and oxygen-enriched liquefied air,
The raw material air is provided with a condenser that heat-exchanges the nitrogen gas and the oxygen-enriched liquefied air to condense the nitrogen gas and vaporizes the oxygen-enriched liquefied air, and an expansion turbine that generates cold. An air compressor, a path introduced into the rectification column through the purifier and the heat exchanger,
A path in which the nitrogen gas is discharged from the rectification column, passes through the heat exchanger, reaches room temperature, and is taken out as product nitrogen.
A path in which the oxygen-enriched liquefied air is discharged from the rectification column and vaporized in a condenser to become oxygen-enriched air, and then is passed through the heat exchanger to reach room temperature to be taken out as a product oxygen-enriched gas; In the product oxygen-enriched gas path, the path branched from the middle part of the heat exchanger to introduce a part of the oxygen-enriched air into the expansion turbine, and the oxygen-enriched air exiting the expansion turbine are It is characterized in that it has a path through which it becomes normal temperature through the heat exchange and is taken out as exhaust gas.

【0009】さらに、前記製品酸素富化ガスの経路が、
前記原料空気の経路にあって精製器の後流側から分岐し
た精製空気の経路と連結され、かつ、前記両経路に混合
後の製品酸素富化ガスの酸素濃度を調節する手段を備え
ていることを特徴としている。
Further, the path of the product oxygen-enriched gas is
A means for adjusting the oxygen concentration of the product oxygen-enriched gas after mixing is connected to the path of the purified air in the path of the raw material air and branched from the downstream side of the purifier, and to both the paths. It is characterized by that.

【0010】また、前記製品酸素富化ガスの経路におけ
る前記熱交換器から導出する経路を、前記熱交換器を経
て常温となり製品酸素富化ガスとして取り出される経路
に代えて、前記熱交換器の中部から前記膨張タービンへ
の経路と共に導出して膨張タービン導入前に分岐した低
温酸素富化ガスを製品酸素富化ガスとして導出する経路
とし、該経路に、酸素ガス及び/又は圧縮空気を混合す
る経路を連結するとともに、前記各経路に混合後の製品
酸素富化ガスの酸素濃度を調節する手段を備えているこ
とを特徴としている。
Further, instead of the path leading out from the heat exchanger in the path of the product oxygen-enriched gas, to the path of passing through the heat exchanger to reach room temperature and taken out as the product oxygen-enriched gas, The low-temperature oxygen-enriched gas branched from the middle part to the expansion turbine and branched before the expansion turbine is introduced is used as a product oxygen-enriched gas, and oxygen gas and / or compressed air is mixed in the path. It is characterized in that the passages are connected and a means for adjusting the oxygen concentration of the product oxygen-enriched gas after mixing is provided in each of the passages.

【0011】さらに、前記膨張タービン及び膨張タービ
ンに導入する経路及び排ガスの経路に代えて、液化窒素
を前記精留塔の上部に導入する経路を備えるとともに、
前記製品酸素富化ガスの経路の出口部から分岐して製品
酸素富化ガスを取出す経路と、圧縮空気及び/又は酸素
ガスを供給する経路と、該経路と前記分岐した経路とを
連結する経路と、前記各経路に混合後の製品酸素富化ガ
スの酸素濃度を調節する手段とを備えていることを特徴
としている。
Further, a path for introducing liquefied nitrogen into the upper part of the rectification column is provided in place of the expansion turbine and the path for introducing the expansion turbine and the path for the exhaust gas.
A path for extracting the product oxygen-enriched gas from the outlet of the product oxygen-enriched gas path, a path for supplying compressed air and / or oxygen gas, and a path for connecting the path and the branched path And a means for adjusting the oxygen concentration of the product oxygen-enriched gas after mixing in each of the paths.

【0012】[0012]

【発明の実施の形態】図1は本発明の半導体製造設備の
一形態例を示す概略系統図である。この半導体製造設備
は、高純度窒素ガスを使用する複数の半導体製造装置
(半導体製造装置、液晶製造装置、その他の付属設備を
含む)10と、これらの半導体製造装置10から排出さ
れる排ガスの除害処理を行う燃焼式除害装置11と、前
記半導体装置10で使用する前記高純度窒素ガス及び前
記燃焼式除害装置11の支燃用ガスとして使用する酸素
富化空気を製造する深冷分離式窒素製造装置12とを備
えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic system diagram showing an example of a semiconductor manufacturing facility according to the present invention. This semiconductor manufacturing equipment includes a plurality of semiconductor manufacturing equipments (including semiconductor manufacturing equipments, liquid crystal manufacturing equipments, and other auxiliary equipments) 10 that use high-purity nitrogen gas, and exhaust gas discharged from these semiconductor manufacturing equipments 10. Combustion-type detoxification device 11 for performing harm treatment, and cryogenic separation for producing the high-purity nitrogen gas used in the semiconductor device 10 and oxygen-enriched air used as a combustion-supporting gas for the combustion-type detoxification device 11 And a type nitrogen production device 12.

【0013】半導体製造装置10で使用する高純度窒素
は、深冷分離式窒素製造装置12で空気を深冷液化分離
することによって製造され、管路13を経て各半導体製
造装置10にそれぞれ供給される。この高純度窒素は、
半導体製造装置10において、シランやアルシンのよう
な半導体材料ガスの希釈用、ドーピングガスのキャリア
用、製造ラインのパージ用、基板搬送等の雰囲気用とい
った種々の機器で様々な用途に使用される。この中で、
半導体製造装置10での薄膜形成工程やドーピング工
程、エッチング工程等では、前述のような毒性ガス、腐
食性ガス、可燃性ガス、支燃性ガス等の有害ガスや地球
環境に悪影響を及ぼす不燃性ガスを使用するため、半導
体製造装置10から管路14に排出される排ガス中に
は、これらの有害成分が含まれている。
The high-purity nitrogen used in the semiconductor manufacturing apparatus 10 is manufactured by deep-chill liquefying and separating air in the deep-separation-type nitrogen manufacturing apparatus 12, and is supplied to each semiconductor manufacturing apparatus 10 via a pipeline 13. It This high-purity nitrogen is
The semiconductor manufacturing apparatus 10 is used for various purposes in various devices such as for diluting a semiconductor material gas such as silane or arsine, for a carrier of a doping gas, for purging a manufacturing line, and for atmospheres such as substrate transportation. In this,
In the thin film forming process, the doping process, the etching process, etc. in the semiconductor manufacturing apparatus 10, harmful gas such as toxic gas, corrosive gas, combustible gas, and combustion supporting gas as described above, or nonflammability that adversely affects the global environment Since gas is used, these harmful components are contained in the exhaust gas discharged from the semiconductor manufacturing apparatus 10 to the pipeline 14.

【0014】燃焼式除害装置11は、前記管路14に排
出された排ガス中の有害成分を除害処理するものであっ
て、LPG、水素、天然ガス、灯油等の燃料を燃焼させ
た高温の火炎中に前記排ガスを導入することにより、排
ガス中に存在する各種有害成分を燃焼させたり、熱分解
させたりして除害処理を行う。この燃焼式除害装置11
で前記燃料を燃焼させる支燃用ガスには、深冷分離式窒
素製造装置12から管路15に取り出した酸素富化空気
を、酸素濃度調節手段16で管路17から空気を導入し
て混合し、適当な酸素濃度に調節して使用している。
The combustion type abatement device 11 removes harmful components in the exhaust gas discharged to the pipe line 14, and is a high temperature obtained by burning a fuel such as LPG, hydrogen, natural gas or kerosene. By introducing the exhaust gas into the flame of No. 1, various harmful components existing in the exhaust gas are burned or thermally decomposed to perform the detoxification treatment. This combustion type abatement device 11
The oxygen-enriched air taken out from the cryogenic separation type nitrogen producing device 12 to the pipe 15 is mixed with the combustion-supporting gas for burning the fuel by introducing the air from the pipe 17 by the oxygen concentration adjusting means 16. However, it is used after adjusting to an appropriate oxygen concentration.

【0015】また、燃焼式除害装置11の前後には、支
燃用ガスの流量を調節する流量調節器18と、除害処理
後の処理ガス中の特定成分濃度を分析する分析計19と
が設けられており、分析計19で測定したNOx濃度や
フッ化物濃度等に応じて流量調節器18で支燃用ガスの
流量を調節することによってより確実な除害処理を行え
るようにしている。除害処理後のガスは、スクラバー2
0等による後処理が施された後、管路21から大気中に
放出される。また、分析計19には、前記管路14から
分岐した管路14aが接続されており、除害処理前の排
ガス中の除害対象ガス濃度、NOx濃度、フッ化物濃度
も分析するように形成されている。
Before and after the combustion-type abatement device 11, a flow rate controller 18 for adjusting the flow rate of the combustion-supporting gas and an analyzer 19 for analyzing the concentration of a specific component in the treated gas after the abatement process are provided. Is provided, and a more reliable detoxification process can be performed by adjusting the flow rate of the combustion supporting gas by the flow rate controller 18 according to the NOx concentration, the fluoride concentration, etc. measured by the analyzer 19. . Gas after scrubbing is scrubber 2
After being subjected to a post-treatment with 0 or the like, it is released into the atmosphere from the conduit 21. Further, the analyzer 19 is connected with a pipe line 14a branched from the pipe line 14 and is formed so as to analyze the concentration of target gas to be removed, NOx concentration, and fluoride concentration in the exhaust gas before the removal process. Has been done.

【0016】なお、半導体製造装置10及び燃焼式除害
装置11は、従来から用いられている様々な装置を使用
することが可能であり、半導体製造装置10には各種薄
膜製造装置や気相成長装置を、燃焼式除害装置11に
は、例えば、特開平10−110926号公報や特開2
001−82723号公報等に記載されている燃焼式除
害装置をはじめとして各種構成の燃焼式除害装置を、そ
れぞれ使用することができ、本発明では、これらの装置
の構造や使用方法、運転方法を特に限定するものではな
いため、これらの装置の詳細な図示及び説明は省略す
る。
The semiconductor manufacturing apparatus 10 and the combustion type detoxification apparatus 11 can use various apparatuses that have been conventionally used, and the semiconductor manufacturing apparatus 10 includes various thin film manufacturing apparatuses and vapor phase growth. For example, Japanese Patent Application Laid-Open No. 10-110926 and Japanese Patent Application Laid-Open No.
Combustion-type abatement devices having various configurations such as the combustion-type abatement device described in Japanese Patent Publication No. 001-82723 and the like can be used. In the present invention, the structure, usage method, and operation of these devices are used. Since the method is not particularly limited, detailed illustration and description of these devices are omitted.

【0017】図2は、前記深冷分離式窒素製造装置12
の第1形態例を示す系統図である。この窒素製造装置1
2は、原料となる空気を単精留塔31で液化精留分離す
ることにより、主製品としての高純度窒素ガスを製造す
るとともに、高純度窒素ガスを分離する際に単精留塔3
1から副生ガスとして導出される酸素富化空気を燃焼式
除害装置等の支燃用ガスとして有効利用できるようにし
たものである。
FIG. 2 shows the deep-separation separation type nitrogen production apparatus 12
It is a systematic diagram which shows the example of a 1st form. This nitrogen production equipment 1
No. 2 produces high-purity nitrogen gas as the main product by liquefying and rectifying and separating air as a raw material in the single-rectification column 31, and at the time of separating high-purity nitrogen gas, the single-rectification column 3
The oxygen-enriched air derived as a by-product gas from No. 1 can be effectively used as a combustion-supporting gas for a combustion-type abatement device or the like.

【0018】図2に示す窒素製造装置12において、フ
ィルター32から吸入された原料空気は、原料空気圧縮
機33で所定の圧力に圧縮され、アフタークーラー34
で圧縮熱を除去された後、管路35を経て精製器36に
導入され、ここで空気中の水分、二酸化炭素等の不純物
が除去される。精製器36を導出した精製原料空気は、
その大部分が管路37を経て熱交換器38に導入され、
ここで冷流体である製品ガス(高純度窒素ガス)等の戻
りガスと熱交換を行うことによって冷却され、管路39
を経て前記単精留塔31の下部に導入される。該精留塔
31での液化精留により、原料空気は、塔上部の窒素ガ
スと塔下部の酸素富化液化空気とに分離し、精留塔31
の上部に分離した窒素ガスは、通常、99.99%以上
の純度の高純度窒素ガスとなる。
In the nitrogen producing apparatus 12 shown in FIG. 2, the raw material air sucked from the filter 32 is compressed to a predetermined pressure by the raw material air compressor 33, and the after cooler 34 is used.
After the heat of compression is removed by the method, it is introduced into the purifier 36 through the pipe 35, and impurities such as water in the air and carbon dioxide are removed here. The purified raw material air led out of the purifier 36 is
Most of it is introduced into the heat exchanger 38 via the line 37,
Here, the product gas (high-purity nitrogen gas), which is a cold fluid, is cooled by exchanging heat with a return gas, and the conduit 39
It is introduced into the lower part of the single rectification column 31 via. By the liquefaction rectification in the rectification column 31, the raw material air is separated into nitrogen gas in the upper part of the column and oxygen-enriched liquefied air in the lower part of the column, and the rectification column 31
The nitrogen gas separated in the upper part of the is usually a high-purity nitrogen gas having a purity of 99.99% or more.

【0019】前記窒素ガスは、精留塔31の上部から管
路40に抜き出され、さらに管路41を経て熱交換器3
8に導入される。この窒素ガスは、熱交換器38で前記
原料空気と熱交換を行うことによって寒冷を回収された
後、熱交換器38から管路42に導出され、前記管路1
3を通って各半導体製造装置10にそれぞれ供給され
る。
The nitrogen gas is withdrawn from the upper part of the rectification column 31 into a pipe 40, and further through a pipe 41 to the heat exchanger 3
Introduced in 8. The nitrogen gas is subjected to heat exchange with the raw material air in the heat exchanger 38 to recover cold, and then is discharged from the heat exchanger 38 to the pipe 42, where the pipe 1
It is supplied to each semiconductor manufacturing apparatus 10 through 3 respectively.

【0020】また、精留塔31から管路40に抜き出さ
れた窒素ガスの一部は、管路40から管路43に分岐し
て凝縮器44に導入され、後述の酸素富化液化空気との
熱交換により冷却液化されて液化窒素となる。この液化
窒素の大部分は、管路45を通って精留塔31の上部に
導入され、精留の還流液となる。液化窒素の一部は、管
路45から分岐した管路46に抜き出されて液化窒素貯
槽47に貯留される。また、この管路46は、液化窒素
貯槽47の液化窒素を、管路45を通して精留塔31に
供給する管路として用いることもできる。
Further, a part of the nitrogen gas extracted from the rectification column 31 into the pipe 40 is branched from the pipe 40 into the pipe 43 and introduced into the condenser 44, and the oxygen-enriched liquefied air described later is obtained. The liquid is cooled and liquefied by heat exchange with liquefied nitrogen. Most of this liquefied nitrogen is introduced into the upper part of the rectification column 31 through a pipe 45 and becomes a reflux liquid for rectification. Part of the liquefied nitrogen is extracted into a pipe line 46 branched from the pipe line 45 and stored in a liquefied nitrogen storage tank 47. Further, the pipe line 46 can also be used as a pipe line for supplying the liquefied nitrogen in the liquefied nitrogen storage tank 47 to the rectification column 31 through the pipe line 45.

【0021】一方、精留塔31の下部には、酸素濃度が
25〜45%程度の酸素富化液化空気が分離する。この
酸素富化液化空気は、精留塔31の下部から管路48に
導出され、減圧弁49で0.1MPa(ゲージ圧、以下
同じ)以上、好ましくは0.2〜0.5MPaに減圧さ
れた後、管路50を経て前記凝縮器44に導入され、こ
こで前記窒素ガスと熱交換を行い、加温されることによ
り気化して酸素富化空気となる。凝縮器44で気化した
酸素富化空気は、その大部分が管路50及び管路51を
経て前記熱交換器38に導入される。一部の酸素富化空
気は、この熱交換器38の中部で管路52に分岐して導
出され、装置の運転を継続するために必要な寒冷を発生
させる膨張タービン53に導入される。管路52に分岐
しなかった残りの酸素富化空気は、熱交換器38で常温
まで寒冷を回収された後、前記減圧弁49で減圧した後
の圧力を保持した状態で管路54から導出され、前記酸
素濃度調節手段16に導入される。
On the other hand, in the lower part of the rectification column 31, oxygen-enriched liquefied air having an oxygen concentration of about 25 to 45% is separated. This oxygen-enriched liquefied air is led out from the lower part of the rectification column 31 to a pipe line 48, and is decompressed by a pressure reducing valve 49 to 0.1 MPa (gauge pressure, the same applies hereinafter) or more, preferably 0.2 to 0.5 MPa. After that, it is introduced into the condenser 44 through the pipe 50, where it exchanges heat with the nitrogen gas and is heated to be vaporized to become oxygen-enriched air. Most of the oxygen-enriched air vaporized in the condenser 44 is introduced into the heat exchanger 38 via the pipe line 50 and the pipe line 51. A part of the oxygen-enriched air is branched in the middle of the heat exchanger 38 into a line 52 and introduced into an expansion turbine 53 that produces the cold required for continuing the operation of the apparatus. The remaining oxygen-enriched air that has not branched to the pipe 52 is recovered from the pipe 54 by the heat exchanger 38 after recovering the cold to normal temperature and then depressurized by the pressure reducing valve 49 while maintaining the pressure. And is introduced into the oxygen concentration adjusting means 16.

【0022】また、管路51に向かわずに手前の管路5
5に分岐した酸素富化空気は、弁56で大気圧まで減圧
される。一方、膨張タービン53で大気圧まで膨張して
寒冷を発生させた酸素富化空気は、管路57を経て前記
減圧弁56で減圧後の酸素富化空気と合流し、管路58
を通って再度熱交換器38に導入され、原料空気と熱交
換することにより寒冷を回収された後、管路59に抜き
出され、その一部が精製器36の再生ガスとして使用さ
れる。
Further, the pipe line 5 in front of the pipe line 51 without going to the pipe line 51
The oxygen-enriched air branched into 5 is depressurized to the atmospheric pressure by the valve 56. On the other hand, the oxygen-enriched air that has been expanded to atmospheric pressure in the expansion turbine 53 to generate cold is merged with the oxygen-enriched air that has been decompressed by the pressure reducing valve 56 via the pipe 57, and the pipe 58.
It is again introduced into the heat exchanger 38 through the pipe, and after refrigeration is recovered by exchanging heat with the raw material air, it is extracted into the pipe 59, and a part of it is used as a regenerated gas of the purifier 36.

【0023】前記管路54から酸素濃度調節手段16に
導入された酸素富化空気は、管路17から供給される希
釈空気と混合して所定の酸素濃度、通常は23〜35%
の酸素濃度となり、管路60の流量調節器18で流量調
節されて前記燃焼式除害装置11に支燃用ガスとして供
給される。この支燃用ガス源として抜き出す酸素富化空
気量の流量は、前記膨張タービン53に分岐する酸素富
化空気量を必要寒冷量に応じて弁61で調節し、管路5
5に分岐する酸素富化空気量を弁56で調節するととも
に、管路54に設けた弁62を調節することによって設
定することができる。また、支燃用ガスの流量及び酸素
濃度は、弁62を経て酸素濃度調節手段16に流入する
酸素富化空気量に対して、管路17に設けた弁63で希
釈空気量を調節することによって設定することができ
る。
The oxygen-enriched air introduced into the oxygen concentration adjusting means 16 from the pipe 54 is mixed with the dilution air supplied from the pipe 17 to a predetermined oxygen concentration, usually 23 to 35%.
Oxygen concentration becomes, and the flow rate is adjusted by the flow rate controller 18 of the pipe 60, and the gas is supplied to the combustion type abatement device 11 as combustion supporting gas. The flow rate of the oxygen-enriched air amount extracted as the combustion-supporting gas source is adjusted by the valve 61 according to the required cold amount of the oxygen-enriched air amount branched to the expansion turbine 53, and the pipeline 5
The amount of oxygen-enriched air branched into 5 can be set by adjusting the valve 56 and the valve 62 provided in the conduit 54. Further, regarding the flow rate and oxygen concentration of the combustion-supporting gas, the dilution air amount is adjusted by the valve 63 provided in the pipe line 17 with respect to the oxygen-enriched air amount flowing into the oxygen concentration adjusting means 16 through the valve 62. Can be set by.

【0024】なお、本形態例では、酸素濃度を調節する
希釈空気として、前記精製器36で不純物を除去した後
の原料空気の一部を分岐し、弁63で圧力調節してから
使用することにより、フィルターやアフタークーラーを
含む圧縮機関係の機器を原料空気圧縮機33だけにして
設備の簡素化を図り、設備コストや保守コスト等を削減
するようにしているが、別の圧縮空気源からの空気を希
釈用に利用することもできる。このとき、窒素製造装置
12の副生ガスである酸素富化空気は、精製器36で水
分が除去された乾燥ガスであるため、酸素富化空気に混
合する圧縮空気が乾燥空気でない場合においても、ある
程度乾燥した状態の支燃用ガスを燃焼式除害装置11に
供給することができる。
In this embodiment, as the dilution air for adjusting the oxygen concentration, a part of the raw material air after the impurities are removed by the purifier 36 is branched and the pressure is adjusted by the valve 63 before use. By this, the equipment related to the compressor including the filter and the aftercooler is limited to the raw material air compressor 33 to simplify the equipment and reduce the equipment cost and the maintenance cost. The air can also be used for dilution. At this time, the oxygen-enriched air, which is a by-product gas of the nitrogen production apparatus 12, is a dry gas from which water has been removed by the purifier 36, and therefore even when the compressed air mixed with the oxygen-enriched air is not dry air. The combustion-supporting gas in a somewhat dry state can be supplied to the combustion-type abatement device 11.

【0025】このように、高純度窒素を使用する半導体
製造装置10を有する半導体製造設備に併設されている
深冷分離式窒素製造装置12から酸素富化空気を大気圧
以上、すなわち、0.1MPa以上、好ましくは0.2
〜0.5MPaで抜き出すようにし、この酸素富化空気
を燃焼式除害装置11の支燃用ガスとして用いることに
より、従来は廃ガスとして大気に放出されていた酸素富
化空気を支燃用ガスとして有効に利用することができ
る。さらに、支燃用ガスとして空気よりも酸素濃度の高
いガスを使用することによって火炎温度を上昇させるこ
とができ、高温でしか分解することができないPFC類
の処理も確実に行うことができる。
As described above, the oxygen-enriched air is supplied to the semiconductor manufacturing equipment having the semiconductor manufacturing equipment 10 using high-purity nitrogen, which is attached to the semiconductor manufacturing equipment 12. Or more, preferably 0.2
The oxygen-enriched air is used as a combustion-supporting gas for the combustion-type abatement system 11 so as to support the oxygen-enriched air that was conventionally released as waste gas into the atmosphere. It can be effectively used as gas. Furthermore, the flame temperature can be raised by using a gas having an oxygen concentration higher than that of air as the combustion supporting gas, and the PFCs that can be decomposed only at a high temperature can be surely treated.

【0026】そして、酸素濃度調節手段16で希釈空気
を混合することによって支燃用ガスの酸素濃度を調節す
ることにより、窒素製造装置12から抜き出す酸素富化
空気中の酸素濃度が変動しても支燃用ガスの酸素濃度を
一定に保つことができ、燃焼式除害装置11における燃
焼条件を一定にして安定した燃焼火炎が得られるので、
より効果的な除害処理を行うことができる。
By adjusting the oxygen concentration of the combustion-supporting gas by mixing the dilution air with the oxygen concentration adjusting means 16, even if the oxygen concentration in the oxygen-enriched air withdrawn from the nitrogen producing device 12 varies. Since the oxygen concentration of the combustion-supporting gas can be kept constant and the combustion conditions in the combustion-type abatement device 11 can be kept constant, a stable combustion flame can be obtained.
More effective detoxification treatment can be performed.

【0027】さらに、本形態例に示すように、希釈空気
として精製器36を経た原料空気の一部を使用すること
により、燃焼式除害装置11に水分や二酸化炭素をほと
んど含まない支燃用ガスを供給できるので、火炎温度を
上昇させることができるとともに、有害な一酸化炭素の
発生量も大幅に低減することができる。
Furthermore, as shown in the present embodiment, by using a part of the raw material air that has passed through the purifier 36 as the dilution air, the combustion type abatement device 11 for combustion support containing almost no water or carbon dioxide. Since gas can be supplied, the flame temperature can be raised and the amount of harmful carbon monoxide generated can be greatly reduced.

【0028】図3は、深冷分離式窒素製造装置12の第
2形態例を示す系統図である。なお、以下の説明におい
ては、図2に示した第1形態例の前記深冷分離式窒素製
造装置の構成要素と同一の構成要素には同一符号を付し
て詳細な説明は省略する。
FIG. 3 is a system diagram showing a second embodiment of the cryogenic separation type nitrogen producing apparatus 12. In the following description, the same components as those of the cryogenic separation type nitrogen manufacturing apparatus of the first embodiment shown in FIG. 2 are designated by the same reference numerals and detailed description thereof will be omitted.

【0029】本形態例では、支燃用ガス源となる酸素富
化空気の取出し位置を熱交換器38の中部とし、低温の
酸素富化空気を抜出すようにしている。すなわち、管路
51から熱交換器38に流入した酸素富化空気の全量
を、熱交換器38の中部に設けた管路52に0.1MP
a以上、好ましくは0.2〜0.5MPaで抜き出した
後、その一部を寒冷発生用として膨張タービン53に分
岐し、残部を管路71から酸素濃度調節手段16に低温
状態で抜き出すようにしている。酸素濃度調節手段16
に抜き出す酸素富化空気量は、前記弁56,61及び管
路71の弁72を調節することによって設定することが
できる。
In the present embodiment, the takeout position of the oxygen-enriched air, which is the combustion-supporting gas source, is in the middle of the heat exchanger 38, and the low-temperature oxygen-enriched air is withdrawn. That is, the total amount of the oxygen-enriched air that has flowed into the heat exchanger 38 from the pipe line 51 is fed to the pipe line 52 provided in the middle portion of the heat exchanger 38 by 0.1 MP.
After extracting at a or more, preferably 0.2 to 0.5 MPa, a part thereof is branched to the expansion turbine 53 for generating cold, and the rest is extracted from the pipe 71 to the oxygen concentration adjusting means 16 in a low temperature state. ing. Oxygen concentration adjusting means 16
The amount of oxygen-enriched air withdrawn into the chamber can be set by adjusting the valves 56 and 61 and the valve 72 of the conduit 71.

【0030】また、酸素濃度調節手段16には、希釈空
気供給用の管路73と酸素供給用の管路74とが設けら
れており、管路71の弁72を経て酸素濃度調節手段1
6に流入した酸素富化空気は、両管路73,74にそれ
ぞれ設けられている弁75,76を調節することによ
り、所望の流量及び所望の酸素濃度に調節されて管路6
0に流出する。このとき、酸素供給用の管路74から酸
素濃度95%以上の高濃度酸素を供給することにより、
管路60から燃焼式除害装置11に供給する支燃用ガス
の酸素濃度を、抜き出した酸素富化空気の酸素濃度より
も高くすることが可能であり、抜き出した酸素富化空気
に対する支燃用ガス供給量も任意に増量することができ
る。
The oxygen concentration adjusting means 16 is provided with a pipe 73 for supplying diluted air and a pipe 74 for supplying oxygen, and the oxygen concentration adjusting means 1 is passed through a valve 72 of the pipe 71.
The oxygen-enriched air flowing into 6 is adjusted to a desired flow rate and a desired oxygen concentration by adjusting valves 75 and 76 provided in both conduits 73 and 74, respectively.
Drains to zero. At this time, by supplying high-concentration oxygen having an oxygen concentration of 95% or more from the oxygen supply conduit 74,
It is possible to make the oxygen concentration of the combustion-supporting gas supplied from the pipe 60 to the combustion-type detoxification device 11 higher than the oxygen concentration of the extracted oxygen-enriched air. The supply amount of the gas for use can be arbitrarily increased.

【0031】図4は、窒素製造装置12の第3形態例を
示す系統図である。本形態例では、前記両形態例に設け
られていた膨張タービンを設けずに、装置の運転に必要
な寒冷を外部から液化窒素を導入することによって得る
ようにしている。寒冷源としての液化窒素は、液化窒素
貯槽47等から管路46を経て精留塔31の上部に供給
される。なお、管路45を利用して液化窒素を導入する
ことも可能である。
FIG. 4 is a system diagram showing a third embodiment of the nitrogen producing apparatus 12. In the present embodiment, the expansion turbine provided in both the embodiments is not provided, and the cold required for operating the apparatus is obtained by introducing liquefied nitrogen from the outside. Liquefied nitrogen as a cold source is supplied from the liquefied nitrogen storage tank 47 or the like to the upper part of the rectification column 31 via a pipe line 46. Note that it is also possible to introduce liquefied nitrogen using the conduit 45.

【0032】精留塔31で分離した酸素富化液化空気
は、凝縮器44で気化して0.1MPa以上、好ましく
は0.2〜0.5MPaの酸素富化空気となった後、管
路50を経て全量が熱交換器38に導入され、ここで寒
冷を回収されて管路81に導出される。管路81から
は、精製器36の再生ガスとして使用するガスを取り出
すための管路82と、支燃用ガス源となる酸素富化空気
を酸素濃度調節手段16に導入するための管路83とが
分岐しており、両管路82,83には、酸素富化空気の
分岐量を調節するための弁84,85がそれぞれ設けら
れている。管路83から導入された酸素富化空気と、弁
86で流量調節されて管路17から導入された希釈空気
とが酸素濃度調節手段16で混合することによって所定
酸素濃度の支燃用ガスが生成し、流量調節器18を経て
燃焼式除害装置11に供給される。このように、液化窒
素を寒冷源として使用することにより、0.1MPa以
上の酸素富化空気を前記両形態例に比べて大量に得るこ
とができ、支燃用ガスの供給量も増大させることができ
る。
The oxygen-enriched liquefied air separated in the rectification column 31 is vaporized in the condenser 44 to become oxygen-enriched air of 0.1 MPa or more, preferably 0.2 to 0.5 MPa, and then the pipeline. After 50, the whole amount is introduced into the heat exchanger 38, where cold is recovered and led to the pipe 81. From the pipe 81, a pipe 82 for taking out the gas used as the regeneration gas of the purifier 36 and a pipe 83 for introducing the oxygen-enriched air serving as the combustion supporting gas source into the oxygen concentration adjusting means 16. And are branched, and valves 84 and 85 for adjusting the branching amount of the oxygen-enriched air are provided in both pipe lines 82 and 83, respectively. The oxygen-enriched air introduced through the pipe 83 and the diluted air whose flow rate is adjusted by the valve 86 and introduced through the pipe 17 are mixed by the oxygen concentration adjusting means 16, whereby the combustion-supporting gas having a predetermined oxygen concentration is produced. It is generated and supplied to the combustion-type abatement system 11 via the flow rate controller 18. As described above, by using liquefied nitrogen as a cold source, a large amount of oxygen-enriched air of 0.1 MPa or more can be obtained as compared with the above-mentioned both examples, and the supply amount of the combustion-supporting gas can be increased. You can

【0033】次に、酸素富化空気に希釈空気や酸素を混
合して支燃用ガスの酸素濃度を所望濃度に調節する手段
について説明する。一般に、窒素製造装置から副生ガス
として抜出される酸素富化空気の酸素濃度は、窒素製造
装置の運転状態によって異なり、通常は25〜45%の
範囲で変動する。したがって、供給する支燃用ガスの酸
素濃度を一定に保つためには、酸素富化空気に混合する
希釈空気量や酸素量を酸素富化空気の流量及び酸素濃度
に応じて制御する必要がある。
Next, a means for adjusting the oxygen concentration of the combustion-supporting gas to a desired concentration by mixing diluted air or oxygen with oxygen-enriched air will be described. Generally, the oxygen concentration of the oxygen-enriched air extracted as a by-product gas from the nitrogen manufacturing apparatus varies depending on the operating state of the nitrogen manufacturing apparatus, and usually fluctuates within the range of 25 to 45%. Therefore, in order to keep the oxygen concentration of the supplied combustion-supporting gas constant, it is necessary to control the amount of dilution air and the amount of oxygen mixed with the oxygen-enriched air according to the flow rate and oxygen concentration of the oxygen-enriched air. .

【0034】まず、図5は、酸素濃度調節手段16の第
1形態例を示す系統図である。この酸素濃度調節手段1
6は、管路101から導入される酸素富化空気と、管路
102から導入される希釈空気とを混合して管路103
に所望の酸素濃度の支燃用ガスを送出する例を示すもの
である。酸素富化空気の管路101には、流量指示調節
計(FIC)104、酸素濃度計(QI)105及び流
量調節弁106が設けられており、希釈空気の管路10
2には、流量指示調節計107と流量調節弁108とが
設けられている。さらに、支燃用ガスを送出する管路1
03にも酸素濃度計109と流量調節弁110とが設け
られている。
First, FIG. 5 is a system diagram showing a first embodiment of the oxygen concentration adjusting means 16. This oxygen concentration adjusting means 1
Reference numeral 6 denotes a pipe 103 by mixing the oxygen-enriched air introduced from the pipe 101 and the dilution air introduced from the pipe 102.
An example in which a combustion-supporting gas having a desired oxygen concentration is delivered is shown in FIG. The oxygen-enriched air conduit 101 is provided with a flow rate indicator controller (FIC) 104, an oxygen concentration meter (QI) 105, and a flow rate adjustment valve 106, and the diluted air conduit 10 is provided.
2 is provided with a flow rate indicating controller 107 and a flow rate adjusting valve 108. Further, the conduit 1 for delivering the combustion supporting gas
Also in 03, an oxygen concentration meter 109 and a flow rate control valve 110 are provided.

【0035】流量指示調節計104で測定した酸素富化
空気の流量、酸素濃度計105で測定した酸素富化空気
の酸素濃度及び酸素濃度計109で測定した支燃用ガス
の酸素濃度は、濃度調節器(QIC)111にそれぞれ
入力され、濃度調節器111では、これらの測定値に基
づいて希釈空気の所要流量を演算し、演算結果を流量指
示調節計107に出力する。流量指示調節計107は、
現在の希釈空気流量と前記演算結果とに基づいて流量調
節弁108を制御し、希釈空気の流量を所定量に調節す
る。これにより、混合後の支燃用ガスの酸素濃度を所望
酸素濃度に維持することができる。また、支燃用ガスの
流量は、流量指示調節計104に酸素富化空気の流量を
設定することによって調節することができる。
The flow rate of the oxygen-enriched air measured by the flow rate indicator controller 104, the oxygen concentration of the oxygen-enriched air measured by the oxygen concentration meter 105, and the oxygen concentration of the combustion-supporting gas measured by the oxygen concentration meter 109 are The concentration adjuster 111 calculates the required flow rate of the dilution air based on these measured values, and outputs the calculation result to the flow rate indicator controller 107. The flow rate indicator controller 107 is
The flow rate control valve 108 is controlled based on the current dilution air flow rate and the calculation result, and the flow rate of the dilution air is adjusted to a predetermined amount. As a result, the oxygen concentration of the combustion-supporting gas after mixing can be maintained at the desired oxygen concentration. Further, the flow rate of the combustion supporting gas can be adjusted by setting the flow rate of the oxygen-enriched air in the flow rate indicating controller 104.

【0036】図6は酸素濃度調節手段16の第2形態例
を示す系統図である。この酸素濃度調節手段16は、管
路101からの酸素富化空気と、管路102からの希釈
空気と、管路112からの酸素ガスとを混合して管路1
03に所望の酸素濃度の支燃用ガスを送出する例を示す
ものである。前記形態例と同様に、酸素富化空気の管路
101には流量指示調節計104、酸素濃度計105及
び流量調節弁106が、希釈空気の管路102には流量
指示調節計107及び流量調節弁108が、支燃用ガス
を送出する管路103には酸素濃度計109及び流量調
節弁110が、それぞれ設けられるとともに、酸素濃度
95%以上の高濃度酸素が供給される酸素ガスの管路1
12にも、流量指示調節計113及び流量調節弁114
が設けられている。
FIG. 6 is a system diagram showing a second embodiment of the oxygen concentration adjusting means 16. The oxygen concentration adjusting means 16 mixes the oxygen-enriched air from the pipe 101, the diluted air from the pipe 102, and the oxygen gas from the pipe 112 to mix the pipe 1.
Reference numeral 03 shows an example in which a combustion-supporting gas having a desired oxygen concentration is delivered. As in the case of the above-described embodiment, a flow rate indicating controller 104, an oxygen concentration meter 105 and a flow rate adjusting valve 106 are provided in the oxygen-enriched air conduit 101, and a flow rate indicating controller 107 and a flow rate adjusting are provided in the diluting air conduit 102. The valve 108 is provided with an oxygen concentration meter 109 and a flow rate control valve 110 in the pipeline 103 for sending the combustion supporting gas, and a pipeline for oxygen gas to which high-concentration oxygen having an oxygen concentration of 95% or more is supplied. 1
12, a flow rate indicating controller 113 and a flow rate adjusting valve 114 are also provided.
Is provided.

【0037】本形態例においても、各流量指示調節計、
各酸素濃度計からの測定値が濃度調節器111にそれぞ
れ入力され、濃度調節器111からの信号によって流量
指示調節計107が流量調節弁108を、流量指示調節
計113が流量調節弁114をそれぞれ前記同様に制御
することにより、混合後の支燃用ガスの酸素濃度を、燃
焼式除害装置11の燃焼条件に応じた23〜90%の広
い範囲に任意に調節して供給することが可能となる。
Also in this embodiment, each flow rate indicating controller,
The measured value from each oxygen concentration meter is input to the concentration controller 111, respectively, and the signal from the concentration controller 111 causes the flow rate indicator controller 107 to control the flow rate control valve 108 and the flow rate indicator controller 113 to control the flow rate control valve 114, respectively. By controlling in the same manner as described above, the oxygen concentration of the combustion-supporting gas after mixing can be arbitrarily adjusted and supplied to a wide range of 23 to 90% according to the combustion conditions of the combustion-type abatement device 11. Becomes

【0038】このように、酸素富化空気に酸素ガスを添
加混合する系統を加えることにより、窒素製造装置12
で発生する酸素富化空気よりも酸素濃度が高い支燃用ガ
スが必要な場合にも対応が可能となる。この場合、単に
空気と酸素とを混合して酸素富化ガスを得た場合に比べ
て、酸素ガスの添加量を削減することが可能となり、酸
素発生設備のコストを削減することができる。また、支
燃用ガスとして必要な酸素濃度が窒素製造装置で発生す
る酸素富化空気より低い場合であっても、本形態例で示
すような酸素濃度調節手段を使用することにより対応が
可能であり、さらに、窒素製造装置12が保守点検等で
停止した場合にも、希釈空気と酸素ガスとを混合するこ
とによって所定酸素濃度の支燃用ガスを連続して供給す
ることができる。
In this way, by adding a system for adding and mixing oxygen gas to the oxygen-enriched air, the nitrogen production apparatus 12
It is also possible to cope with the case where a combustion supporting gas having an oxygen concentration higher than that of the oxygen-enriched air generated in the above is required. In this case, as compared with the case where the oxygen-enriched gas is simply obtained by mixing air and oxygen, the amount of oxygen gas added can be reduced, and the cost of oxygen generation equipment can be reduced. Further, even when the oxygen concentration required as the combustion supporting gas is lower than that of the oxygen-enriched air generated in the nitrogen production device, it is possible to deal with it by using the oxygen concentration adjusting means as shown in this embodiment. In addition, even when the nitrogen production apparatus 12 is stopped due to maintenance and inspection, it is possible to continuously supply the combustion-supporting gas having a predetermined oxygen concentration by mixing the dilution air and the oxygen gas.

【0039】また、支燃用ガスの酸素濃度を厳密に保つ
必要が無い場合には、図7の酸素濃度調節手段の第3形
態例を示す系統図に示すように、酸素富化空気の管路1
01と希釈空気の管路102とに弁115,116をそ
れぞれ設けて接続し、接続後の支燃用ガスの管路103
に支燃用ガスの酸素濃度を監視するための酸素濃度計1
17を設けるだけの単純な構成でも、支燃用ガスの酸素
濃度をある程度の範囲内に維持しておくことができる。
When it is not necessary to strictly maintain the oxygen concentration of the combustion supporting gas, as shown in the system diagram of the third embodiment of the oxygen concentration adjusting means of FIG. Road 1
01 and the pipe 102 for dilution air are provided with valves 115 and 116, respectively, and connected, and the pipe 103 for the combustion-supporting gas after connection is connected.
Oxygen concentration meter for monitoring the oxygen concentration of combustion supporting gas 1
Even with a simple configuration in which only 17 is provided, the oxygen concentration of the combustion supporting gas can be maintained within a certain range.

【0040】なお、以上の説明では、酸素富化空気の酸
素濃度調節後のガスの使用先を燃焼式除害装置11の支
燃用ガスとして説明したが、他の用途、例えばボイラー
の支燃用ガスとしても利用することができる。すなわ
ち、半導体製造設備における半導体製造工程には、恒温
恒湿に維持されている工程が数多くあり、例えば、クリ
ーンルーム等の空調用、純水温度保持用等の恒温恒湿を
得るための設備、ユーティリティーは、そのコストが相
当額になるため、コストダウンの検討対象になってい
る。一般に、加熱源としては、ボイラーからスチームを
供給しているが、このボイラー用加熱炉は、通常、重油
/空気バーナーで加熱を行っている。したがって、この
重油/空気バーナーの空気を前述のようにして得た支燃
用ガスに代えることにより、加熱炉の燃焼効率を大幅に
上昇させることが可能である。
In the above description, the gas used after the oxygen concentration of the oxygen-enriched air has been adjusted has been described as the combustion-supporting gas for the combustion-type abatement device 11. However, for other purposes, for example, combustion-supporting in a boiler. It can also be used as a gas for use. That is, in the semiconductor manufacturing process in the semiconductor manufacturing facility, there are many processes in which the constant temperature and constant humidity are maintained, and for example, equipment for obtaining a constant temperature and constant humidity for air conditioning in a clean room or the like, for maintaining pure water temperature, and utilities. Has become a target for cost reduction because its cost is considerable. In general, steam is supplied from a boiler as a heating source, but the heating furnace for the boiler usually performs heating with a heavy oil / air burner. Therefore, by replacing the air of the heavy oil / air burner with the combustion-supporting gas obtained as described above, it is possible to significantly increase the combustion efficiency of the heating furnace.

【0041】[0041]

【実施例】実施例 図2に示す構成で、高純度窒素発生量が100m/h
rの深冷分離式窒素製造装置から、酸素濃度35%前後
の酸素富化空気を0.2MPaで60m/hr抜き出
し、これに生成後の原料空気からなる希釈空気を流量調
節しながら混合して酸素濃度30%の支燃用ガスを発生
させた。この支燃用ガスの一部、約18m/hrをL
PGを燃料とする燃焼式除害装置に、燃空比が理論燃空
比の1倍となるように供給し、半導体製造装置から排出
される排ガスの除害処理を行った。このとき、燃焼式除
害装置における火炎温度は1150℃に達し、もっとも
分解しにくいCFの分解率は90%程度であった。ま
た、燃焼式除害装置で発生した一酸化炭素濃度は20p
pm程度であった。
EXAMPLES Example With the configuration shown in FIG. 2, the high-purity nitrogen generation rate is 100 m 3 / h.
60 m 3 / hr of oxygen-enriched air with an oxygen concentration of around 35% was extracted at 0.2 MPa from the cryogenic separation type nitrogen production device of r and mixed with it while adjusting the flow rate of diluted air consisting of the raw material air after production. A combustion supporting gas having an oxygen concentration of 30% was generated. About 18 m 3 / hr of this combustion-supporting gas is L
The combustion type abatement device using PG as a fuel was supplied so that the fuel-air ratio was 1 time the theoretical fuel-air ratio, and the abatement process of the exhaust gas discharged from the semiconductor manufacturing device was performed. At this time, the flame temperature in the combustion-type abatement device reached 1150 ° C., and the decomposition rate of CF 4 which was the most difficult to decompose was about 90%. In addition, the concentration of carbon monoxide generated by the combustion type abatement system is 20p.
It was about pm.

【0042】比較例 実施例と同じ燃焼式除害装置において、支燃用ガスとし
て、高純度酸素ガスと圧縮空気とを混合して酸素濃度を
30%に調節したガスを使用した。その結果、支燃用ガ
ス中に含まれている水分の影響で火炎温度が1100℃
程度となり、CFの分解率は70%程度に低下した。
また、一酸化炭素濃度は100ppm程度に上昇した。
なお、この場合は、圧縮空気を供給するための空気圧縮
機や、高純度酸素ガスを供給するため酸素供給設備を設
置する必要がある。
Comparative Example In the same combustion type abatement system as in the example, a gas in which high-purity oxygen gas and compressed air were mixed to adjust the oxygen concentration to 30% was used as the combustion-supporting gas. As a result, the flame temperature was 1100 ° C due to the effect of moisture contained in the combustion-supporting gas.
The decomposition rate of CF 4 decreased to about 70%.
Moreover, the carbon monoxide concentration increased to about 100 ppm.
In this case, it is necessary to install an air compressor for supplying compressed air and an oxygen supply facility for supplying high-purity oxygen gas.

【0043】[0043]

【発明の効果】以上説明したように、本発明の半導体製
造設備によれば、高純度窒素を使用する半導体製造装置
や液晶製造装置を備えるとともに、これらの装置から排
出される排ガスの除害処理を行う燃焼式除害装置を備え
た半導体製造設備において、該半導体製造設備に併設さ
れている深冷分離式窒素製造装置から得られる酸素富化
空気を有効に活用することができ、燃焼式除害装置に供
給する支燃用ガスのコストを大幅に削減することができ
る。また、窒素製造装置から得られる酸素富化空気は、
二酸化炭素や水分といった不純物を含有していないた
め、燃焼式除害装置の火炎温度を上昇させることがで
き、より効果的な燃焼除害処理を行うことができるとと
もに、燃焼によって発生する一酸化炭素濃度も低下させ
ることができる。
As described above, according to the semiconductor manufacturing equipment of the present invention, the semiconductor manufacturing equipment using high-purity nitrogen and the liquid crystal manufacturing equipment are provided, and the exhaust gas discharged from these equipment is removed. In a semiconductor manufacturing facility equipped with a combustion-type detoxification device that performs the above, the oxygen-enriched air obtained from the deep-separation-type nitrogen manufacturing device attached to the semiconductor manufacturing facility can be effectively used, and the combustion-type decontamination device can be used. It is possible to significantly reduce the cost of the combustion-supporting gas supplied to the harmful device. In addition, the oxygen-enriched air obtained from the nitrogen production device is
Since it does not contain impurities such as carbon dioxide and water, it can raise the flame temperature of the combustion type detoxification device, and can perform more effective combustion detoxification process, and carbon monoxide generated by combustion. The concentration can also be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体製造設備の一形態例を示す概
略系統図である。
FIG. 1 is a schematic system diagram showing one example of a semiconductor manufacturing facility of the present invention.

【図2】 深冷分離式窒素製造装置の第1形態例を示す
系統図である。
FIG. 2 is a system diagram showing an example of a first embodiment of a deep-chill separation type nitrogen production device.

【図3】 深冷分離式窒素製造装置の第2形態例を示す
系統図である。
FIG. 3 is a system diagram showing a second form example of a deep-chill separation type nitrogen production apparatus.

【図4】 深冷分離式窒素製造装置の第3形態例を示す
系統図である。
FIG. 4 is a system diagram showing a third example of a deep-separation-type nitrogen production device.

【図5】 酸素濃度調節手段の第1形態例を示す系統図
である。
FIG. 5 is a system diagram showing a first embodiment of the oxygen concentration adjusting means.

【図6】 酸素濃度調節手段の第2形態例を示す系統図
である。
FIG. 6 is a system diagram showing a second embodiment of the oxygen concentration adjusting means.

【図7】 酸素濃度調節手段の第3形態例を示す図であ
る。
FIG. 7 is a diagram showing a third example of the oxygen concentration adjusting means.

【符号の説明】[Explanation of symbols]

10…半導体製造装置、11…燃焼式除害装置、12…
深冷分離式窒素製造装置、16…酸素濃度調節手段、1
8…流量調節器、19…分析計、21…スクラバー、3
1…単精留塔、33…原料空気圧縮機、36…精製器、
38…熱交換器、44…凝縮器、47…液化窒素貯槽、
49…減圧弁、53…膨張タービン、104,107,
113…流量指示調節計、105,109…酸素濃度
計、106,108,110,114…流量調節弁、1
11…濃度調節器
10 ... Semiconductor manufacturing equipment, 11 ... Combustion type abatement equipment, 12 ...
Cryogenic separation type nitrogen production device, 16 ... Oxygen concentration adjusting means, 1
8 ... Flow controller, 19 ... Analyzer, 21 ... Scrubber, 3
1 ... Single rectification tower, 33 ... Raw material air compressor, 36 ... Purifier,
38 ... Heat exchanger, 44 ... Condenser, 47 ... Liquefied nitrogen storage tank,
49 ... Pressure reducing valve, 53 ... Expansion turbine, 104, 107,
113 ... Flow rate indicating controller, 105, 109 ... Oxygen concentration meter, 106, 108, 110, 114 ... Flow rate controlling valve, 1
11 ... Concentration controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25J 3/04 101 F25J 3/04 101 (72)発明者 柴田 巌 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 山本 伸一郎 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 富田 修康 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 小関 修一 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 万行 大貴 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 小野 宏之 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 3K062 AB01 AC19 BA02 CB08 DA07 DB05 3K078 AA04 BA20 BA26 BA27 BA28 BA29 CA21 4D047 AA08 AB01 AB02 CA09 DA03 DA14 DA17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25J 3/04 101 F25J 3/04 101 (72) Inventor Gan Shibata 1-16- Nishishinbashi, Minato-ku, Tokyo 7 Japan Oxygen Stock Company (72) Inventor Shinichiro Yamamoto 1-16-7 Nishishinbashi, Minato-ku, Tokyo Japan Oxygen Stock Company (72) Inventor Shuyasu Tomita 1-16-7 Nishishinbashi, Minato-ku, Tokyo Japan Oxygen Stock Company (72) Inventor Shuichi Koseki 1-16-7 Nishishinbashi, Minato-ku, Tokyo Nippon Oxygen Stock Company (72) Inventor Mangaku Daiki 1-16-7 Nishishinbashi, Minato-ku, Tokyo Nippon Oxygen Stock company (72) Inventor Hiroyuki Ono 1-16-7 Nishishimbashi, Minato-ku, Tokyo Japan Oxygen Company F-term (reference) 3K062 AB01 AC19 BA02 CB08 DA07 DB05 3K078 AA04 BA20 BA26 BA27 BA28 BA29 CA21 4D047 AA08 AB01 AB 02 CA09 DA03 DA14 DA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高純度窒素ガスを使用する半導体製造装
置と、半導体製造装置から排出された排ガスを支燃用ガ
スとして酸素富化空気を使用した燃焼火炎で燃焼除害す
る燃焼式除害装置と、前記半導体製造装置で使用する高
純度窒素ガスを製造するとともに、前記燃焼式除害装置
で使用する酸素富化空気を製造する深冷分離式窒素製造
装置とを備えていることを特徴とする半導体製造設備。
1. A semiconductor manufacturing apparatus that uses high-purity nitrogen gas, and a combustion-type abatement apparatus that burns and removes exhaust gas discharged from the semiconductor manufacturing apparatus with a combustion flame that uses oxygen-enriched air as a combustion-supporting gas. And a deep-separation-type nitrogen production device for producing high-purity nitrogen gas for use in the semiconductor production device and for producing oxygen-enriched air for use in the combustion-type detoxification device. Semiconductor manufacturing equipment.
【請求項2】 前記深冷分離式窒素製造装置と前記燃焼
式除害装置との間に、深冷分離式窒素製造装置から燃焼
式除害装置に供給する酸素富化空気の酸素濃度を調節す
る手段を備えていることを特徴とする請求項1記載の半
導体製造設備。
2. The oxygen concentration of oxygen-enriched air supplied from the deep-separation-type nitrogen producing device to the combustion-type abatement device is adjusted between the deep-separation-type nitrogen producing device and the combustion-type abatement device. The semiconductor manufacturing facility according to claim 1, further comprising:
【請求項3】 前記酸素富化空気の酸素濃度を調節する
手段の下流側に、酸素濃度調節後の酸素富化空気の一部
をボイラーの支燃用ガスとして供給する経路が分岐して
いることを特徴とする請求項1記載の半導体製造設備。
3. A path for supplying a part of the oxygen-enriched air after the oxygen concentration adjustment as a combustion supporting gas for the boiler is branched downstream of the means for adjusting the oxygen concentration of the oxygen-enriched air. The semiconductor manufacturing facility according to claim 1, wherein:
【請求項4】 前記深冷分離式窒素製造装置は、原料空
気を圧縮する原料空気圧縮機と、該圧縮された原料空気
を精製する精製器と、該精製後の原料空気を製品ガス等
の戻りガスと熱交換させて冷却する熱交換器と、該冷却
された原料空気を液化精留によって窒素ガスと酸素富化
液化空気とに分離する精留塔と、該窒素ガスと該酸素富
化液化空気とを熱交換させて窒素ガスを凝縮させるとと
もに酸素富化液化空気を気化させる凝縮器と、寒冷を発
生する膨張タービンとを備えるとともに、原料空気が前
記原料空気圧縮機、前記精製器及び前記熱交換器を経て
前記精留塔に導入される経路と、前記窒素ガスが前記精
留塔から導出されて前記熱交換器を経て常温となり製品
窒素として取り出される経路と、前記酸素富化液化空気
が前記精留塔から導出されて凝縮器で気化して酸素富化
空気となった後、前記熱交換器を経て常温となり製品酸
素富化ガスとして取り出される経路と、該製品酸素富化
ガスの経路にあって、前記熱交換器の中部から分岐して
前記膨張タービンに酸素富化空気の一部を導入する経路
と、前記膨張タービンを出た酸素富化空気が再度前記熱
交換を経て常温となり排ガスとして取り出される経路と
を備えていることを特徴とする請求項1記載の半導体製
造設備。
4. The cryogenic separation type nitrogen producing apparatus comprises a raw material air compressor for compressing the raw material air, a purifier for purifying the compressed raw material air, and a raw material air after the purification such as a product gas. A heat exchanger for cooling by exchanging heat with the return gas, a rectification tower for separating the cooled raw material air into nitrogen gas and oxygen-enriched liquefied air by liquefaction rectification, the nitrogen gas and the oxygen enrichment A condenser that heat-exchanges with liquefied air to condense nitrogen gas and vaporizes oxygen-enriched liquefied air, and an expansion turbine that generates cold are provided, and the raw material air is the raw material air compressor, the purifier, and A route through which the nitrogen gas is introduced into the rectification column through the heat exchanger, a route through which the nitrogen gas is discharged from the rectification column and reaches the normal temperature through the heat exchanger, and is taken out as product nitrogen, and the oxygen-enriched liquefaction. Air is introduced from the rectification tower In the path of the product oxygen-enriched gas and the path taken out as a product oxygen-enriched gas after being discharged and vaporized in the condenser to become oxygen-enriched air, passing through the heat exchanger and reaching room temperature, A path branched from the middle part of the heat exchanger to introduce a part of the oxygen-enriched air into the expansion turbine, and a path through which the oxygen-enriched air exiting the expansion turbine becomes the room temperature through the heat exchange again and is taken out as exhaust gas. The semiconductor manufacturing equipment according to claim 1, further comprising:
【請求項5】 前記製品酸素富化ガスの経路が、前記原
料空気の経路にあって精製器の後流側から分岐した精製
空気の経路と連結され、かつ、前記両経路に混合後の製
品酸素富化ガスの酸素濃度を調節する手段を備えている
ことを特徴とする請求項4記載の半導体製造設備。
5. The product oxygen-enriched gas path is connected to a path of purified air in the path of the raw material air and branched from the downstream side of the purifier, and the product after being mixed in both paths. The semiconductor manufacturing facility according to claim 4, further comprising means for adjusting the oxygen concentration of the oxygen-enriched gas.
【請求項6】 前記製品酸素富化ガスの経路における前
記熱交換器から導出する経路を、前記熱交換器を経て常
温となり製品酸素富化ガスとして取り出される経路に代
えて、前記熱交換器の中部から前記膨張タービンへの経
路と共に導出して膨張タービン導入前に分岐した低温酸
素富化ガスを製品酸素富化ガスとして導出する経路と
し、該経路に、酸素ガス及び/又は圧縮空気を混合する
経路を連結するとともに、前記各経路に混合後の製品酸
素富化ガスの酸素濃度を調節する手段を備えていること
を特徴とする請求項4記載の半導体製造設備。
6. The path of the product oxygen-enriched gas, which is led out from the heat exchanger, is replaced with a path of passing through the heat exchanger to reach room temperature and taken out as a product oxygen-enriched gas. The low-temperature oxygen-enriched gas branched from the middle part to the expansion turbine and branched before the expansion turbine is introduced is used as a product oxygen-enriched gas, and oxygen gas and / or compressed air is mixed in the path. 5. The semiconductor manufacturing facility according to claim 4, further comprising means for connecting the passages and adjusting the oxygen concentration of the product oxygen-enriched gas after mixing in each of the passages.
【請求項7】 前記膨張タービン及び膨張タービンに導
入する経路及び排ガスの経路に代えて、液化窒素を前記
精留塔の上部に導入する経路を備えるとともに、前記製
品酸素富化ガスの経路の出口部から分岐して製品酸素富
化ガスを取出す経路と、圧縮空気及び/又は酸素ガスを
供給する経路と、該経路と前記分岐した経路とを連結す
る経路と、前記各経路に混合後製品の酸素富化ガスの酸
素濃度を調節する手段とを備えていることを特徴とする
請求項4記載の半導体製造設備。
7. An outlet for introducing the liquefied nitrogen into the upper part of the rectification column in place of the expansion turbine and the path for introducing the expansion turbine and the path for the exhaust gas, and the outlet for the path for the product oxygen-enriched gas. Of the product oxygen-enriched gas branched from the section, a route for supplying compressed air and / or oxygen gas, a route connecting the route with the branched route, and a route of the product after mixing to each route. 5. The semiconductor manufacturing facility according to claim 4, further comprising means for adjusting the oxygen concentration of the oxygen-enriched gas.
JP2001252779A 2001-08-23 2001-08-23 Semiconductor production facility Pending JP2003068595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252779A JP2003068595A (en) 2001-08-23 2001-08-23 Semiconductor production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252779A JP2003068595A (en) 2001-08-23 2001-08-23 Semiconductor production facility

Publications (1)

Publication Number Publication Date
JP2003068595A true JP2003068595A (en) 2003-03-07

Family

ID=19081200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252779A Pending JP2003068595A (en) 2001-08-23 2001-08-23 Semiconductor production facility

Country Status (1)

Country Link
JP (1) JP2003068595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663203B1 (en) 2004-11-30 2007-01-02 한국타이어 주식회사 Interior exhaust system using an incinerator
JP2008235642A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus
WO2010087236A1 (en) * 2009-01-30 2010-08-05 セントラル硝子株式会社 Semiconductor production equipment including fluorine gas generator
CN105333444A (en) * 2015-10-28 2016-02-17 苏州仕净环保科技股份有限公司 Silane tail gas combusting dust removing and purifying system
CN114686270A (en) * 2022-03-16 2022-07-01 沈阳铝镁设计研究院有限公司 Method for increasing oxygen concentration of gasifying agent of normal-pressure circulating fluidized bed gasification furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663203B1 (en) 2004-11-30 2007-01-02 한국타이어 주식회사 Interior exhaust system using an incinerator
JP2008235642A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus
WO2010087236A1 (en) * 2009-01-30 2010-08-05 セントラル硝子株式会社 Semiconductor production equipment including fluorine gas generator
JP2011026694A (en) * 2009-01-30 2011-02-10 Central Glass Co Ltd Semiconductor production equipment including fluorine gas generator
CN102257181A (en) * 2009-01-30 2011-11-23 中央硝子株式会社 Semiconductor production equipment including fluorine gas generator
KR101318849B1 (en) * 2009-01-30 2013-10-17 샌트랄 글래스 컴퍼니 리미티드 Semiconductor production equipment including fluorine gas generator
CN105333444A (en) * 2015-10-28 2016-02-17 苏州仕净环保科技股份有限公司 Silane tail gas combusting dust removing and purifying system
CN114686270A (en) * 2022-03-16 2022-07-01 沈阳铝镁设计研究院有限公司 Method for increasing oxygen concentration of gasifying agent of normal-pressure circulating fluidized bed gasification furnace

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
US20080245101A1 (en) Integrated Method and Installation for Cryogenic Adsorption and Separation for Producing Co2
US9890044B2 (en) Method for recovering and purifying argon gas from silicon single crystal manufacturing apparatus and apparatus for recovering and purifying argon gas
US20120180657A1 (en) Method for producing at least one gas having a low co2 content and at least one fluid having a high co2 content
WO2008004278A1 (en) Apparatus for concentrating/diluting specific gas and method of concentrating/diluting specific gas
CN105241262B (en) A kind of heating furnace pure oxygen burning and carbon dioxide capture systems and technique
CN102695935A (en) Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
US20230175686A1 (en) Systems and Methods for Isolating Substantially Pure Carbon Dioxide from Flue Gas
JP7198676B2 (en) Rare gas recovery system and rare gas recovery method
WO2010103846A1 (en) Apparatus for processing exhaust gas and method for processing exhaust gas
CN105120984A (en) Alkalinity control agent supply method and apparatus for compressor impurity separation mechanism
CN105263604A (en) Device for removing impurities from water-containing gas and impurities removal system
JP2003068595A (en) Semiconductor production facility
JPH08333106A (en) Method and apparatus for generating nitrogen for heat treatment
AU2010297102B2 (en) Method for purifying a gas stream including mercury
US20130305750A1 (en) Method and arrangement for expanding a gas stream comprising carbon dioxide
CA3200451A1 (en) Co2 separation systems and methods
US20230407470A1 (en) Gas recovery systems and methods
TWI500888B (en) Gasification method, gasification system and integrated coal gasification combined cycle
JP2022029786A (en) Air separation device and production method of oxygen and/or nitrogen
US20230256388A1 (en) CO2 Separation Systems and Methods
US20120090463A1 (en) Process and apparatus for the treatment of flue gases
JP2002286361A (en) Method and device for manufacturing oxygen enrichment gas utilizing nitrogen manufacturing device
EP4265322A1 (en) Helium recovery process
KR20210038351A (en) High-purity oxygen production apparatus