JP2011183353A - Wastewater treatment apparatus and oxygen feed rate control method therefor - Google Patents

Wastewater treatment apparatus and oxygen feed rate control method therefor Download PDF

Info

Publication number
JP2011183353A
JP2011183353A JP2010053946A JP2010053946A JP2011183353A JP 2011183353 A JP2011183353 A JP 2011183353A JP 2010053946 A JP2010053946 A JP 2010053946A JP 2010053946 A JP2010053946 A JP 2010053946A JP 2011183353 A JP2011183353 A JP 2011183353A
Authority
JP
Japan
Prior art keywords
oxygen
amount
enriched gas
air
gas generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010053946A
Other languages
Japanese (ja)
Other versions
JP5331735B2 (en
Inventor
Nobuyuki Nakamura
信幸 中村
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010053946A priority Critical patent/JP5331735B2/en
Publication of JP2011183353A publication Critical patent/JP2011183353A/en
Application granted granted Critical
Publication of JP5331735B2 publication Critical patent/JP5331735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus which attains reduction in the electric power consumption thereof necessary for oxygen feed when an organic matter load of a bioreactor is increased, and to procide an oxygen feed rate control method therefore. <P>SOLUTION: The wastewater treatment apparatus includes an air diffuser pipe 13 introducing gas containing oxygen into the bioreactor 11 to dissolve oxygen into wastewater, an air blowing means 20 blowing gas taken in from the exterior into the air diffuser pipe 13, a control means 17 controlling air volume sent by the air blowing means 20, an oxygen-enriched gas generation device 31 increasing the oxygen concentration in the gas, and an oxygen feed rate control means 1 controlling the oxygen amount in the gas. The oxygen feed rate control means 1 controls the operation of the air blowing means 20 and oxygen-enriched gas generation device 31 to feed oxygen with further less power, based on the relationship between the total used electric energy of the air blowing means 20 and oxygen-enriched gas generation device 31 and the oxygen amount corresponding to the air amount to be blown. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機性汚濁物質を含む廃水を好気性微生物により処理する生物反応槽に、比較的低動力での酸素供給を可能とする廃水処理装置及びその酸素供給量制御方法に関する。   The present invention relates to a wastewater treatment apparatus and a method for controlling the amount of oxygen supplied to a biological reaction tank that treats wastewater containing organic pollutants with aerobic microorganisms with relatively low power.

有機性汚濁物質を含む廃水を生物反応槽に導入し、好気性微生物によって生物学的に処理することが行われている。好気性微生物による処理を促すためには、生物反応槽内にブロワーにより空気などの気体を散気し、酸素を供給することが必要となる。   Waste water containing organic pollutants is introduced into a biological reaction tank and biologically treated with aerobic microorganisms. In order to promote the treatment with aerobic microorganisms, it is necessary to supply oxygen by blowing a gas such as air into the biological reaction tank with a blower.

生物学的処理を大規模に行う下水処理場などでは、ブロワーの動力コストが施設維持費に対して大きな割合を占めており、省エネルギーの観点からブロワーの消費電力の低減化が望まれている。ブロワーが消費する電力は、ブロワーが送風した風量の3乗に比例することが知られており、生物反応槽への有機物負荷量増大などにより送風すべき空気量を増加させる場合は、ブロワーの消費電力量が飛躍的に増大してしまう。   In sewage treatment plants that perform biological treatment on a large scale, the power cost of the blower accounts for a large proportion of the facility maintenance cost, and it is desired to reduce the power consumption of the blower from the viewpoint of energy saving. It is known that the power consumed by the blower is proportional to the cube of the air volume blown by the blower. When the amount of air to be blown is increased by increasing the amount of organic matter loaded into the biological reaction tank, the blower consumption The amount of power will increase dramatically.

有機性汚濁物質を含んだ廃水は、導入管を通して、生物反応槽に導入される。生物反応槽には、散気管により空気が導入され、生物反応槽内の廃水に空気中の酸素が溶解する。このような生物反応槽における生物学的処理の制御方法の1つとして、生物反応槽内の廃水中の溶存酸素を計測し、これを一定とするような制御方法が知られている。   Waste water containing organic pollutants is introduced into the biological reaction tank through the introduction pipe. Air is introduced into the biological reaction tank through an air diffuser, and oxygen in the air is dissolved in waste water in the biological reaction tank. As one method for controlling biological treatment in such a biological reaction tank, a control method is known in which dissolved oxygen in wastewater in the biological reaction tank is measured and made constant.

廃水中に設けられた溶存酸素濃度計により測定された溶存酸素濃度を制御手段へ入力し、制御手段はこの入力された溶存酸素濃度と、設定値入力手段により予め制御手段に設定された溶存酸素濃度設定値を比較する。入力された溶存酸素濃度が設定値よりも低い場合は、送風手段へ送風量を増大させるべく制御指令を出力し、溶存酸素濃度が設定値よりも高い場合は、送風手段へ送風量を減少させるべく制御指令を出力する制御方法である。このような例として例えば、〔特許文献1〕に記載のものがある。   The dissolved oxygen concentration measured by the dissolved oxygen concentration meter provided in the wastewater is input to the control means, and the control means inputs the dissolved oxygen concentration and the dissolved oxygen preset in the control means by the set value input means. Compare density settings. When the input dissolved oxygen concentration is lower than the set value, a control command is output to the blowing means to increase the blowing amount, and when the dissolved oxygen concentration is higher than the set value, the blowing amount is reduced to the blowing means. Therefore, this is a control method for outputting a control command. For example, there is one described in [Patent Document 1].

又、〔特許文献2〕に記載のように、BOD量の計測値と目標処理水BOD値との差を汚水の汚れの指標値として算出し、この指標値と流量の積に依存した曝気風量の目標値を算出し、この目標値にしたがって送風機の送風量を制御するものがある。   Further, as described in [Patent Document 2], the difference between the measured value of the BOD amount and the target treated water BOD value is calculated as an index value of dirt of sewage, and the aeration air volume depending on the product of the index value and the flow rate There is one that calculates a target value of the fan and controls the blower amount of the blower according to the target value.

〔特許文献1〕や〔特許文献2〕に記載の従来の技術では、生物反応槽へ導入される廃水中の有機物量が増大した場合、有機物除去のために好気性微生物が溶存酸素を消費し、廃水中の溶存酸素濃度が低下するので、送風手段により送風すべき送風量が増大し、ブロワーの消費する電力は送風量の3乗に比例して増大してしまう。   In the conventional techniques described in [Patent Document 1] and [Patent Document 2], when the amount of organic matter in the wastewater introduced into the biological reaction tank increases, aerobic microorganisms consume dissolved oxygen to remove the organic matter. Since the concentration of dissolved oxygen in the wastewater decreases, the amount of air to be blown by the blowing means increases, and the power consumed by the blower increases in proportion to the cube of the amount of blown air.

一方、PSA(圧力変動吸着方式)酸素発生装置や深冷空気分離装置,酸素富化膜といった装置(以下、酸素富化ガス発生装置という)は、空気中の酸素を分離して酸素富化ガスを生成する装置であり、この装置により空気よりも酸素濃度を高めた気体を散気すれば廃水への酸素溶解度が増すため、この装置により生成された酸素富化ガスを送風すれば、送風手段が送風すべき風量を減少させても同じ働きを得ることができるので、送風手段による消費電力を削減することが期待できる。   On the other hand, devices such as PSA (pressure fluctuation adsorption type) oxygen generators, chilled air separators, and oxygen-enriched membranes (hereinafter referred to as oxygen-enriched gas generators) separate oxygen in the air to produce oxygen-enriched gases. If the gas having a higher oxygen concentration than air is diffused by this device, the oxygen solubility in the wastewater is increased. Therefore, if the oxygen-enriched gas generated by this device is blown, the blowing means Since the same function can be obtained even if the amount of air to be blown is reduced, it can be expected to reduce the power consumption by the blowing means.

〔特許文献3〕には、半導体製造設備に備える窒素製造装置の副生成ガスである酸素富化空気を、好気性処理槽内に貯留する被処理水に供給して曝気し、被処理水の浄化処理を行うことが記載されている。   In [Patent Document 3], oxygen-enriched air, which is a by-product gas of a nitrogen production apparatus provided in a semiconductor production facility, is supplied to a treated water stored in an aerobic treatment tank, aerated, and treated water is obtained. It describes that a purification process is performed.

特開2007−144277号公報JP 2007-144277 A 特開2000−325980号公報JP 2000-325980 A 特開2008−229436号公報JP 2008-229436 A

〔特許文献3〕に記載の従来の技術は、酸素富化空気を利用しているが、半導体製造設備に備える窒素製造装置が必要不可欠であり、窒素製造装置が設置されていない生物学的処理を大規模に行う下水処理場などでは酸素富化空気を得られないという問題がある。又、酸素富化ガス発生装置の使用電力量は比較的大きく、単純に使用したのではかえって廃水処理装置全体の消費電力量の増大を招く可能性があり、廃水処理装置全体の消費電力量の低減については配慮されていないものであった。   Although the conventional technology described in [Patent Document 3] uses oxygen-enriched air, a nitrogen production apparatus provided in a semiconductor production facility is indispensable, and a biological treatment in which no nitrogen production apparatus is installed However, there is a problem that oxygen-enriched air cannot be obtained at sewage treatment plants that perform large-scale operations. In addition, the power consumption of the oxygen-enriched gas generator is relatively large, and simply using it may cause an increase in the power consumption of the entire wastewater treatment device. The reduction was not considered.

本発明の目的は、送風手段および酸素富化ガス発生装置の消費する電力と、生物反応槽へ供給すべき酸素量を把握し、供給すべき酸素量に応じて適切な運転方法をとることによって、生物反応槽の有機物負荷量増大時に、酸素供給のために使用する消費電力を低減化できる廃水処理装置及びその酸素供給量制御方法を提供することにある。   The object of the present invention is to grasp the power consumed by the blowing means and the oxygen-enriched gas generator and the amount of oxygen to be supplied to the biological reaction tank, and take an appropriate operation method according to the amount of oxygen to be supplied. An object of the present invention is to provide a wastewater treatment apparatus and an oxygen supply amount control method thereof that can reduce power consumption used for supplying oxygen when an organic substance load in a biological reaction tank increases.

上記目的を達成するために、本発明は、有機性汚濁物質を含む廃水を好気性微生物によって生物学的に処理を行う生物反応槽と、生物反応槽に酸素を含む気体を導入して廃水に酸素を溶解させるための散気管と、散気管に気体を送風するための送風手段と、気体中の酸素濃度を高めるための酸素富化ガス発生装置と、気体の酸素量を制御するための酸素供給量制御装置とを備え、酸素供給量制御装置は、送風手段と酸素富化ガス発生装置の合計使用電力量と送風酸素量の関係から、より少ない電力量で設定された酸素供給となる条件で、送風手段と酸素富化ガス発生装置の運転を制御するものである。   In order to achieve the above object, the present invention provides a biological reaction tank that biologically treats wastewater containing organic pollutants with an aerobic microorganism, and introduces a gas containing oxygen into the biological reaction tank. A diffuser tube for dissolving oxygen, a blowing means for blowing gas to the diffuser tube, an oxygen-enriched gas generator for increasing the oxygen concentration in the gas, and oxygen for controlling the amount of oxygen in the gas A supply amount control device, the oxygen supply amount control device is a condition for oxygen supply set with a smaller amount of electric power from the relationship between the total power consumption of the blowing means and the oxygen-enriched gas generator and the amount of blown oxygen Thus, the operation of the blowing means and the oxygen-enriched gas generator is controlled.

又、酸素を含む気体を導入して前記廃水に酸素を溶解させるための散気管を具備する生物反応槽で、有機性汚濁物質を含む廃水を好気性微生物によって生物学的に処理を行い、酸素供給量制御装置により、散気管に気体を送風するための送風手段と気体中の酸素濃度を高めるための酸素富化ガス発生装置の合計使用電力量と送風酸素量の関係から、より少ない電力量で設定された酸素供給となる条件で、送風手段と酸素富化ガス発生装置の運転を制御するものである。   In addition, in a biological reaction tank having an air diffuser for introducing oxygen-containing gas to dissolve oxygen in the wastewater, the wastewater containing organic pollutants is biologically treated with aerobic microorganisms, From the relationship between the total amount of power used and the amount of blown oxygen, the blowing means for blowing gas to the diffuser and the oxygen-enriched gas generator for increasing the oxygen concentration in the gas by the supply amount control device The operation of the blowing means and the oxygen-enriched gas generator is controlled under the conditions for the oxygen supply set in (1).

本発明によれば、生物反応槽の有機物負荷量増大時に、送風手段と酸素富化ガス発生装置の運転を制御することにより、生物反応槽への酸素供給のために使用する動力を低減することができる。   According to the present invention, the power used for supplying oxygen to the bioreactor can be reduced by controlling the operation of the blowing means and the oxygen-enriched gas generator when the organic load of the bioreactor is increased. Can do.

本発明の一実施例である酸素供給量制御機構を具備した廃水処理装置の構成図である。1 is a configuration diagram of a wastewater treatment apparatus including an oxygen supply amount control mechanism according to an embodiment of the present invention.

本発明の一実施例を、図1を用いて説明する。図1は、本実施例の酸素供給量制御機構を具備した廃水処理装置の構成図である。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a wastewater treatment apparatus equipped with an oxygen supply amount control mechanism of the present embodiment.

図1に示すように、本実施例の廃水処理装置は、生物反応槽11、生物反応槽11に有機性汚濁物質を含んだ廃水を導入するための廃水導入管12、生物反応槽11の底部に設置された散気管13、生物反応槽11の溶存酸素濃度を計測するための溶存酸素濃度計16、散気管13に接続される通気管23、通気管23に設置された酸素量検出手段24及びブロワー21、ブロワー21を駆動するインバーター22、酸素量検出手段24と散気管13との間の通気管23から分岐された酸素通気管33に設けられた制御弁32、制御弁32より上流側で酸素通気管33に接続される酸素量検出手段34及び酸素富化ガス発生装置31、溶存酸素濃度計16に接続された送風量制御手段17、送風量制御手段17と接続された酸素供給量制御装置1で構成される。   As shown in FIG. 1, the wastewater treatment apparatus of this embodiment includes a biological reaction tank 11, a wastewater introduction pipe 12 for introducing wastewater containing organic pollutants into the biological reaction tank 11, and the bottom of the biological reaction tank 11. A diffuser tube 13 installed in the gas generator, a dissolved oxygen concentration meter 16 for measuring the dissolved oxygen concentration in the biological reaction tank 11, a vent tube 23 connected to the diffuser tube 13, and an oxygen amount detecting means 24 installed in the vent tube 23 And the blower 21, the inverter 22 for driving the blower 21, the control valve 32 provided in the oxygen vent pipe 33 branched from the vent pipe 23 between the oxygen amount detection means 24 and the diffuser pipe 13, upstream from the control valve 32. The oxygen amount detecting means 34 and the oxygen-enriched gas generator 31 connected to the oxygen vent pipe 33, the blowing amount control means 17 connected to the dissolved oxygen concentration meter 16, and the oxygen supply amount connected to the blowing amount control means 17. Control equipment Composed of one.

ブロワー21とインバーター22は、送風手段20を構成しており、送風手段20には送風手段の消費電力検出手段25が設けられ、酸素富化ガス発生装置31には酸素富化ガス発生装置の消費電力検出手段35が設けられる。消費電力検出手段25,35、送風手段20、酸素量検出手段24,34、制御弁32、酸素富化ガス発生装置31は、それぞれ信号線により酸素供給量制御手段1と接続されている。   The blower 21 and the inverter 22 constitute a blowing means 20, the blowing means 20 is provided with a power consumption detecting means 25 of the blowing means, and the oxygen-enriched gas generator 31 is consumed with the oxygen-enriched gas generator. A power detection means 35 is provided. The power consumption detection means 25 and 35, the air blowing means 20, the oxygen amount detection means 24 and 34, the control valve 32, and the oxygen-enriched gas generator 31 are connected to the oxygen supply amount control means 1 through signal lines.

有機性汚濁物質を含んだ廃水は、廃水導入管12を通して生物反応槽11に導入される。生物反応槽11では、散気管13により酸素を含む気体15が導入されており、生物反応槽内の廃水14に気体15中の酸素が溶解する。   Waste water containing organic pollutants is introduced into the biological reaction tank 11 through the waste water introduction pipe 12. In the biological reaction tank 11, the gas 15 containing oxygen is introduced through the air diffuser 13, and the oxygen in the gas 15 is dissolved in the waste water 14 in the biological reaction tank.

気体15中に溶解する酸素の必要な酸素量は、送風量制御手段17が決定し、送風量制御手段17及び酸素供給量制御手段1により必要な酸素量となるように制御される。送風量制御手段17は、生物反応槽11内に設置された酸素量検出手段24で計測されフィードバックされた溶存酸素濃度により廃水中の溶存酸素が設定値となるような運転方法を行う。   The necessary oxygen amount of the oxygen dissolved in the gas 15 is determined by the blowing amount control means 17 and is controlled by the blowing amount control means 17 and the oxygen supply amount control means 1 so as to be a necessary oxygen amount. The air flow control means 17 performs an operation method in which the dissolved oxygen concentration in the wastewater becomes a set value by the dissolved oxygen concentration measured and fed back by the oxygen amount detection means 24 installed in the biological reaction tank 11.

すなわち、送風量制御手段17は、溶存酸素濃度計16により測定された溶存酸素濃度を溶存酸素濃度計16から受信し、受信した溶存酸素濃度と、図示しない設定値入力手段により送風量制御手段17に予め設定された溶存酸素濃度設定値を比較し、受信した溶存酸素濃度が設定値よりも低い場合は、酸素供給量制御手段1へ酸素供給量を増大させるべく制御指令を出力し、受信した溶存酸素濃度が設定値よりも高い場合は、酸素供給量制御手段1へ酸素供給量を減少させるべく制御指令を出力する。   That is, the blast amount control means 17 receives the dissolved oxygen concentration measured by the dissolved oxygen concentration meter 16 from the dissolved oxygen concentration meter 16, and the blast amount control means 17 by the received dissolved oxygen concentration and the set value input means (not shown). When the received dissolved oxygen concentration is lower than the set value, a control command is output to the oxygen supply amount control means 1 to increase the oxygen supply amount and received. When the dissolved oxygen concentration is higher than the set value, a control command is output to the oxygen supply amount control means 1 to reduce the oxygen supply amount.

酸素供給量制御手段1は、送風量制御手段17より送信された制御指令をもとに、例えばブロワー21とインバーター22により構成された送風手段20と、酸素富化ガス発生装置31の運転状態を制御する。   The oxygen supply amount control means 1 determines the operating states of the blower means 20 constituted by, for example, the blower 21 and the inverter 22 and the oxygen-enriched gas generator 31 based on the control command transmitted from the blower quantity control means 17. Control.

この制御では、まず、送風手段20と酸素富化ガス発生装置31の両方を使用して送風する場合と、酸素富化ガス発生装置31を停止して送風手段20を使用して送風する場合とのそれぞれについて、酸素供給量を、送風量制御手段17で予め設定されている酸素供給量に合わせた場合の送風量を計算する。   In this control, first, when both the blowing means 20 and the oxygen-enriched gas generator 31 are used to blow air, and when the oxygen-enriched gas generator 31 is stopped and the blower means 20 is used to blow air, For each of the above, the air supply amount when the oxygen supply amount is matched with the oxygen supply amount preset by the air supply amount control means 17 is calculated.

前者の酸素供給量は、送風手段送風量×空気中の酸素濃度+酸素富化ガス発生装置送風量×酸素富化ガス酸素濃度によって表され、後者の酸素供給量は、送風手段送風量×空気中の酸素濃度によって表される。   The former oxygen supply amount is represented by the blower air flow rate × oxygen concentration in the air + oxygen-enriched gas generator blower air amount × oxygen-enriched gas oxygen concentration, and the latter oxygen supply amount is the blower air flow rate × air. It is represented by the oxygen concentration in it.

次に、送風手段20と酸素富化ガス発生装置31の両方を使用した場合の単位酸素量あたりの消費電力量を数1により計算し、酸素富化ガス発生装置31を停止して送風手段20を使用して送風する場合の単位酸素量あたりの消費電力量を数2により計算する。この両者の消費電力量を比較し、前者の方が単位酸素量あたりの消費電力量が少ないと判定された場合には、制御弁32を開放し、酸素富化ガス発生装置31を運転するように制御する。   Next, the power consumption per unit oxygen amount when both the blower 20 and the oxygen-enriched gas generator 31 are used is calculated by Equation 1, the oxygen-enriched gas generator 31 is stopped, and the blower 20 The amount of power consumption per unit oxygen amount when the air is blown using is calculated by Equation 2. Comparing the power consumption amounts of the two, when it is determined that the former has less power consumption per unit oxygen amount, the control valve 32 is opened and the oxygen-enriched gas generator 31 is operated. To control.

Figure 2011183353
Figure 2011183353

Figure 2011183353
Figure 2011183353

酸素供給量制御手段1によって制御される送風手段20と酸素富化ガス発生装置31の両方から供給される気体が通気管23に導入され、散気管13から生物反応槽11内に散気される。   The gas supplied from both the blowing means 20 and the oxygen-enriched gas generator 31 controlled by the oxygen supply amount control means 1 is introduced into the vent pipe 23 and diffused into the biological reaction tank 11 from the aeration pipe 13. .

後者の方が単位酸素量あたりの消費電力量が少ないと判定された場合には、制御弁32を閉じ、酸素富化ガス発生装置31を停止するように制御する。この場合は、酸素供給量制御手段1によって制御される送風手段20から供給される気体が通気管23に導入され、散気管13から生物反応槽11内に散気される。   When it is determined that the latter has less power consumption per unit oxygen amount, the control valve 32 is closed and the oxygen-enriched gas generator 31 is controlled to stop. In this case, the gas supplied from the blowing means 20 controlled by the oxygen supply amount control means 1 is introduced into the vent pipe 23 and is diffused into the biological reaction tank 11 from the aeration pipe 13.

ここで、数1または数2の算出のために必要な各諸量が既知ではない場合、次の計測方法により計測可能である。   Here, when the various quantities necessary for the calculation of Equation 1 or Equation 2 are not known, they can be measured by the following measurement method.

送風手段20により供給される酸素量は、送風手段送風量×空気中の酸素濃度となり、これは酸素量検出手段24によって測定される。   The amount of oxygen supplied by the blower 20 is the blower blower amount × the oxygen concentration in the air, and this is measured by the oxygen amount detector 24.

酸素量検出手段24は、特に限定されないが、酸素富化ガス発生装置31が発生する酸素富化ガスを通気するための酸素通気管33に設けられ、酸素濃度計,圧力計,流量計,温度計等の組み合わせにより、酸素の標準状態体積が把握できれば良い。また、大気の酸素濃度(約21%)を既知として、濃度の検出を省略しても良い。   The oxygen amount detection means 24 is not particularly limited, but is provided in an oxygen vent pipe 33 for ventilating the oxygen-enriched gas generated by the oxygen-enriched gas generator 31, and includes an oxygen concentration meter, a pressure gauge, a flow meter, and a temperature. It is sufficient that the standard state volume of oxygen can be grasped by a combination of meters and the like. Further, the oxygen concentration (about 21%) in the atmosphere may be known and the concentration detection may be omitted.

酸素富化ガス発生装置31により供給される酸素量は、酸素富化ガス発生装置送風量×酸素富化ガス酸素濃度となり、酸素量検出手段34によって測定される。   The amount of oxygen supplied by the oxygen-enriched gas generating device 31 is the oxygen-enriched gas generating device blowing amount × oxygen-enriched gas oxygen concentration, and is measured by the oxygen amount detecting means 34.

酸素量検出手段34は、特に限定されないが、送風手段20が送風する空気を通気するための通気管23に設けられ、酸素濃度計,圧力計,流量計,温度計等の組み合わせにより、酸素の標準状態体積が把握できれば良い。また、酸素富化ガス発生装置31の生成する酸素富化ガスの中の酸素標準状態が酸素富化ガス発生装置により既知であれば、これを省略しても良い。   The oxygen amount detection means 34 is not particularly limited, but is provided in the vent pipe 23 for ventilating the air blown by the blower means 20. It is sufficient if the standard state volume can be grasped. Further, if the oxygen standard state in the oxygen-enriched gas generated by the oxygen-enriched gas generator 31 is known by the oxygen-enriched gas generator, this may be omitted.

送風手段20が消費する電力は、送風手段の消費電力検出手段25によって測定される。送風手段20により使用される電力が送風手段20によって示される場合は、この値を使用し、送風手段消費電力検出手段25を省略しても良い。   The power consumed by the blower 20 is measured by the power consumption detector 25 of the blower. When the power used by the blower 20 is indicated by the blower 20, this value may be used and the blower power consumption detector 25 may be omitted.

酸素富化ガス発生装置31が消費する電力は、酸素富化ガス発生装置の消費電力検出手段35によって測定される。酸素富化ガス発生装置31により使用される電力が酸素富化ガス発生装置31によって示される場合は、この値を使用し、酸素富化ガス発生装置消費電力検出手段35を省略しても良い。   The power consumed by the oxygen-enriched gas generator 31 is measured by the power consumption detector 35 of the oxygen-enriched gas generator. When the power used by the oxygen-enriched gas generator 31 is indicated by the oxygen-enriched gas generator 31, this value may be used and the oxygen-enriched gas generator power consumption detection means 35 may be omitted.

1 酸素供給量制御手段
11 生物反応槽
12 廃水導入管
13 散気管
16 溶存酸素濃度計
17 送風量制御手段
20 送風手段
21 ブロワー
22 インバーター
23 通気管
24,34 酸素量検出手段
25,35 消費電力検出手段
31 酸素富化ガス発生装置
32 制御弁
33 酸素通気管
DESCRIPTION OF SYMBOLS 1 Oxygen supply control means 11 Biological reaction tank 12 Waste water introduction pipe 13 Aeration pipe 16 Dissolved oxygen concentration meter 17 Blowing volume control means 20 Blower means 21 Blower 22 Inverter 23 Ventilation pipes 24, 34 Oxygen amount detection means 25, 35 Power consumption detection Means 31 Oxygen-enriched gas generator 32 Control valve 33 Oxygen vent pipe

Claims (4)

有機性汚濁物質を含む廃水を好気性微生物によって生物学的に処理を行う生物反応槽と、前記生物反応槽に酸素を含む気体を導入して前記廃水に酸素を溶解させるための散気管と、前記散気管に気体を送風するための送風手段と、前記気体中の酸素濃度を高めるための酸素富化ガス発生装置と、前記気体の酸素量を制御するための酸素供給量制御装置とを備え、前記酸素供給量制御装置は、送風手段と酸素富化ガス発生装置の合計使用電力量と送風酸素量の関係から、より少ない電力量で設定された酸素供給となる条件で、前記送風手段と酸素富化ガス発生装置の運転を制御することを特徴とする廃水処理装置。   A biological reaction tank that biologically treats wastewater containing organic pollutants with aerobic microorganisms, and a diffuser tube for introducing oxygen-containing gas into the biological reaction tank to dissolve oxygen in the wastewater, Blower means for blowing gas to the air diffuser, an oxygen-enriched gas generator for increasing the oxygen concentration in the gas, and an oxygen supply amount controller for controlling the oxygen amount of the gas The oxygen supply amount control device has the condition that the oxygen supply is set with a smaller amount of power, based on the relationship between the total power consumption and the amount of blown oxygen in the blowing unit and the oxygen-enriched gas generator, and the blowing unit and A wastewater treatment apparatus characterized by controlling operation of an oxygen-enriched gas generator. 前記生物反応槽に設けられた溶存酸素濃度計の計測値をフィードバックし、フィードバックされた溶存酸素濃度が予め設定された溶存酸素濃度の設定値より低い場合は、前記送風手段と酸素富化ガス発生装置の両方を使用して送風する場合と、酸素富化ガス発生装置を停止して送風手段を使用して送風する場合とのそれぞれについて、酸素供給量を、予め設定されている酸素供給量に合わせた場合の送風量を計算し、前記それぞれの場合の単位酸素量あたりの消費電力量を計算して両者の消費電力量を比較し、前記送風手段と酸素富化ガス発生装置の両方を使用して送風する場合の方が単位酸素量あたりの消費電力量が少ないと判定された場合には、酸素富化ガス発生装置を運転するように制御する請求項1に記載の廃水処理装置。   The measured value of the dissolved oxygen concentration meter provided in the biological reaction tank is fed back, and when the fed back dissolved oxygen concentration is lower than the preset value of the dissolved oxygen concentration, the blowing means and oxygen-enriched gas generation The oxygen supply amount is set to a preset oxygen supply amount for each of the case where the air is blown using both of the devices and the case where the oxygen-enriched gas generator is stopped and the air is blown using the blowing means. Calculate the amount of blast when combined, calculate the amount of power consumption per unit oxygen amount in each case, compare the amount of power consumption of both, and use both the blowing means and oxygen-enriched gas generator The wastewater treatment apparatus according to claim 1, wherein when it is determined that the amount of power consumption per unit oxygen amount is smaller in the case of blowing air, the oxygen-enriched gas generator is controlled to operate. 酸素を含む気体を導入して前記廃水に酸素を溶解させるための散気管を具備する生物反応槽で、有機性汚濁物質を含む廃水を好気性微生物によって生物学的に処理を行い、前記酸素供給量制御装置により、前記散気管に気体を送風するための送風手段と前記気体中の酸素濃度を高めるための酸素富化ガス発生装置の合計使用電力量と送風酸素量の関係から、より少ない電力量で設定された酸素供給となる条件で、前記送風手段と酸素富化ガス発生装置の運転を制御することを特徴とする廃水処理装置の酸素供給量制御方法。   A biological reaction tank equipped with an air diffuser for introducing oxygen-containing gas to dissolve oxygen in the wastewater, biologically treating the wastewater containing organic pollutants with aerobic microorganisms, and supplying the oxygen From the relationship between the total amount of power used and the amount of blown oxygen from the blowing means for blowing gas to the air diffuser and the oxygen-enriched gas generator for increasing the oxygen concentration in the gas by the quantity control device, less power An oxygen supply amount control method for a wastewater treatment apparatus, characterized in that the operation of the blowing means and the oxygen-enriched gas generator is controlled under the condition of oxygen supply set by the amount. 前記生物反応槽に設けられた溶存酸素濃度計の計測値をフィードバックし、フィードバックされた溶存酸素濃度が予め設定された溶存酸素濃度の設定値より低い場合は、前記送風手段と酸素富化ガス発生装置の両方を使用して送風する場合と、酸素富化ガス発生装置を停止して送風手段を使用して送風する場合とのそれぞれについて、酸素供給量を、予め設定されている酸素供給量に合わせた場合の送風量を計算し、前記それぞれの場合の単位酸素量あたりの消費電力量を計算して両者の消費電力量を比較し、前記送風手段と酸素富化ガス発生装置の両方を使用して送風する場合の方が単位酸素量あたりの消費電力量が少ないと判定された場合には、酸素富化ガス発生装置を運転するように制御する請求項3に記載の廃水処理装置の酸素供給量制御方法。   The measured value of the dissolved oxygen concentration meter provided in the biological reaction tank is fed back, and when the fed back dissolved oxygen concentration is lower than the preset value of the dissolved oxygen concentration, the blowing means and oxygen-enriched gas generation The oxygen supply amount is set to a preset oxygen supply amount for each of the case where the air is blown using both of the devices and the case where the oxygen-enriched gas generator is stopped and the air is blown using the blowing means. Calculate the amount of blast when combined, calculate the amount of power consumption per unit oxygen amount in each case, compare the amount of power consumption of both, and use both the blowing means and oxygen-enriched gas generator The oxygen of the wastewater treatment apparatus according to claim 3, wherein the oxygen-enriched gas generator is controlled to operate when it is determined that the amount of power consumption per unit oxygen amount is smaller in the case of blowing air. Supply Control method.
JP2010053946A 2010-03-11 2010-03-11 Waste water treatment apparatus and oxygen supply amount control method thereof Active JP5331735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053946A JP5331735B2 (en) 2010-03-11 2010-03-11 Waste water treatment apparatus and oxygen supply amount control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053946A JP5331735B2 (en) 2010-03-11 2010-03-11 Waste water treatment apparatus and oxygen supply amount control method thereof

Publications (2)

Publication Number Publication Date
JP2011183353A true JP2011183353A (en) 2011-09-22
JP5331735B2 JP5331735B2 (en) 2013-10-30

Family

ID=44790277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053946A Active JP5331735B2 (en) 2010-03-11 2010-03-11 Waste water treatment apparatus and oxygen supply amount control method thereof

Country Status (1)

Country Link
JP (1) JP5331735B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035110A1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for reducing the amount of energy used in blower
KR101370595B1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for saving air blower energy
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471053B1 (en) * 2014-09-29 2014-12-09 주식회사 에코바이론 Organic oxidation tank having a manure treatment device
KR102334676B1 (en) * 2020-11-26 2021-12-06 한국산업기술시험원 Method for evaluating energy performance efficiency of aerator used in sewage and wastewater treatment process

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482351U (en) * 1971-06-02 1973-01-12
JPS58112091A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Highly-efficient activated sludge processing method
JPS58174299U (en) * 1982-05-18 1983-11-21 神鋼電機株式会社 Air flow control device
JPH07182301A (en) * 1993-12-21 1995-07-21 Hitachi Ltd Method and device for process control
JP2000157993A (en) * 1998-11-26 2000-06-13 Nippon Sanso Corp Aerobic water treating device
JP2000312896A (en) * 1999-04-27 2000-11-14 Nippon Sanso Corp Waste water treatment apparatus
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2006075804A (en) * 2004-09-13 2006-03-23 Toshiba Corp Apparatus for assisting operation of sewage disposal plant
JP2006281159A (en) * 2005-04-04 2006-10-19 Hitachi Ltd Water treatment method of water treatment plant and water treatment plant
JP2008168185A (en) * 2007-01-09 2008-07-24 Toshiba Corp Equipment renewal plan support system
JP2008235642A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus
JP2009297606A (en) * 2008-06-11 2009-12-24 Hitachi Ltd Monitoring control system for service water and sewage treatment plant
JP2010003284A (en) * 2008-05-21 2010-01-07 Hitachi Ltd Plant operation system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482351U (en) * 1971-06-02 1973-01-12
JPS58112091A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Highly-efficient activated sludge processing method
JPS58174299U (en) * 1982-05-18 1983-11-21 神鋼電機株式会社 Air flow control device
JPH07182301A (en) * 1993-12-21 1995-07-21 Hitachi Ltd Method and device for process control
JP2000157993A (en) * 1998-11-26 2000-06-13 Nippon Sanso Corp Aerobic water treating device
JP2000312896A (en) * 1999-04-27 2000-11-14 Nippon Sanso Corp Waste water treatment apparatus
JP2004298674A (en) * 2003-03-28 2004-10-28 Sumitomo Heavy Ind Ltd Waste water treatment apparatus and waste water treatment method
JP2006075804A (en) * 2004-09-13 2006-03-23 Toshiba Corp Apparatus for assisting operation of sewage disposal plant
JP2006281159A (en) * 2005-04-04 2006-10-19 Hitachi Ltd Water treatment method of water treatment plant and water treatment plant
JP2008168185A (en) * 2007-01-09 2008-07-24 Toshiba Corp Equipment renewal plan support system
JP2008235642A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Gas ventilation method, gas ventilation apparatus and waste water treatment apparatus, and combustion apparatus
JP2010003284A (en) * 2008-05-21 2010-01-07 Hitachi Ltd Plant operation system
JP2009297606A (en) * 2008-06-11 2009-12-24 Hitachi Ltd Monitoring control system for service water and sewage treatment plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035110A1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for reducing the amount of energy used in blower
KR101370595B1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for saving air blower energy
JP2014087720A (en) * 2012-10-29 2014-05-15 Swing Corp Recovery device of heat of gas, and water treatment apparatus equipped with recovery device of heat of gas

Also Published As

Publication number Publication date
JP5331735B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5331735B2 (en) Waste water treatment apparatus and oxygen supply amount control method thereof
US20130140232A1 (en) Method and system for ozone vent gas reuse in wastewater treatment
JP5433683B2 (en) Biofilm reactor with helical structure and water treatment apparatus using the same
JP6877255B2 (en) Wastewater treatment system and wastewater treatment method
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP2011147858A (en) Apparatus and method for treating sewage
JP2008229436A (en) Wastewater treatment method and apparatus
JP2012066186A (en) Water treatment apparatus
JP2008207122A (en) Apparatus and method for treating organic matter-containing water
Zambrano et al. Benchmarking of control strategies for ATAD technology: a first approach to the automatic control of sludge treatment systems
CN113342070A (en) Air volume control system, method, controller and computer readable storage medium
CN113651413A (en) Ozone adding control method and system based on antibiotic on-line monitoring
CN105800777A (en) Energy-saving sewage treatment system based on SBR process
CN207877368U (en) A kind of aeration in sewage treatment air blower tele-control system
JP2000325980A (en) Sewage treatment method and apparatus
JP6621968B1 (en) Water treatment system and water treatment method
CN107814465A (en) A kind of high ammonia nitrogen heavy metal ion industrial wastewater processing unit
JP3087572B2 (en) Ozone generation and supply device
WO2021070552A1 (en) Water treatment system, water treatment method, and program
KR101565329B1 (en) Oxygen supplying device controlling oxygen concentration for wastewater treatment system
JP6677502B2 (en) Wastewater treatment system, air supply control device and air supply control method
CN202519086U (en) Aeration system for treating ferric oxide pigment wastewater
JP5925661B2 (en) Water treatment device with gas heat recovery device
JP2007222809A (en) Liquid treatment method and apparatus
JP2023115286A (en) Aeration system, method for operating aeration system, and method for replacing blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R151 Written notification of patent or utility model registration

Ref document number: 5331735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151