JP2008233047A - Stalk liquid flow measuring sensor, stalk liquid flow measuring device, and stalk liquid flow measurement method - Google Patents

Stalk liquid flow measuring sensor, stalk liquid flow measuring device, and stalk liquid flow measurement method Download PDF

Info

Publication number
JP2008233047A
JP2008233047A JP2007077254A JP2007077254A JP2008233047A JP 2008233047 A JP2008233047 A JP 2008233047A JP 2007077254 A JP2007077254 A JP 2007077254A JP 2007077254 A JP2007077254 A JP 2007077254A JP 2008233047 A JP2008233047 A JP 2008233047A
Authority
JP
Japan
Prior art keywords
film metal
thin
thin film
pair
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077254A
Other languages
Japanese (ja)
Other versions
JP4910152B2 (en
Inventor
Masashi Nagasawa
正氏 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2007077254A priority Critical patent/JP4910152B2/en
Publication of JP2008233047A publication Critical patent/JP2008233047A/en
Application granted granted Critical
Publication of JP4910152B2 publication Critical patent/JP4910152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stalk liquid flow measuring sensor, a stalk liquid flow measuring device, and a stalk liquid flow measurement method capable of measuring stalk liquid flow of plants with stalks of small diameter, with high sensitivity and at low cost. <P>SOLUTION: The stalk liquid flow measuring sensor 1 comprises a substrate 2 comprising insulating synthetic-resin films or sheets, or insulating sheets or thin plates of inorganic material, such as insulating ceramic wafers, a pair of thin-film metal temperature sensing resistors 3 and 5 prepared on its surface, a thin-film metal heater 4 formed in parallel between a pair of temperature sensing resistors 3 and 5, also a pair of conductive materials 6 extracting electrical signal from the thin-film metal temperature sensing resistors 3 and 5, respectively, and a conductive material 7 supplying current to the thin-film metal heater 4. Surface of the substrate 2 is coated by insulating material 8, after arranging the thin-film metal temperature sensing resistors 3 and 5 as well as the thin-film metal heater 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートパルス法により植物の茎液の流速を測定する茎液流測定用センサ、茎液流測定装置及び茎液流測定方法に関する。   The present invention relates to a sensor for measuring stem fluid flow, a stem fluid flow measuring device, and a stem fluid flow measuring method for measuring the flow rate of plant stem fluid by a heat pulse method.

植物の導管内を流れる茎液流を測定する方法として、例えば、特許文献1に示される方法がある。この例では、取付座から所定間隔を開けて突出させた2本の温度センサと、その間に配置されたヒータとからなるセンサ装置を用いている。このヒータにパルス状の電流を流し、温度センサにより温度変化を検出し、ヒートパルスの移動速度を計測することにより、間接的に茎液流を測定する。
特開平5−188070号公報
As a method for measuring the sap flow flowing in a plant conduit, for example, there is a method disclosed in Patent Document 1. In this example, a sensor device is used that includes two temperature sensors that protrude from the mounting seat at a predetermined interval and a heater disposed between the two temperature sensors. A pulsatile current is passed through the heater, a temperature change is detected by a temperature sensor, and the flow rate of the heat pulse is measured to indirectly measure the stem fluid flow.
Japanese Patent Laid-Open No. 5-188070

しかしながら、従来のセンサ装置においては、装置が大きいため、茎の直径の小さな植物に適用することが困難であった。また、温度センサとして熱電対を用いており、温度変化に対する感度が悪かった。さらに、温度センサとヒータとは別のものであり、2種類の装置が必要でコストアップにつながっていた。   However, since the conventional sensor device is large, it has been difficult to apply to a plant having a small stem diameter. Moreover, the thermocouple was used as a temperature sensor, and the sensitivity with respect to a temperature change was bad. Furthermore, the temperature sensor and the heater are different, and two types of devices are required, leading to an increase in cost.

本発明は、このような事情に鑑みてなされたもので、茎の直径が小さな植物の茎液流を測定することができる安価で感度がよく取扱いが容易な茎液流測定用センサ、茎液流測定装置及び茎液流測定方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and is a low-cost, sensitive and easy-to-handle sensor for measuring stem fluid flow of a plant having a small stem diameter, and stem fluid. An object of the present invention is to provide a flow measuring device and a stem fluid flow measuring method.

係る目的を達成すべく、本発明の茎液流測定用センサは、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えた構成を採用した。   In order to achieve the object, the stem fluid flow measurement sensor of the present invention is formed in parallel between a pair of thin film metal resistance thermometers formed on an insulating base material and the pair of resistors. A configuration including a thin film metal heater, a pair of conductive materials that respectively extract electric signals of the pair of thin film metal resistance thermometers, and a conductive material that supplies current to the thin film metal heater was adopted.

温度センサを薄膜金属測温抵抗体とすることができるので、熱電対に比べ感度が大きく、精度が高い。また、熱電対のような基準接点は必要ない。また、量産に適した構造なので、安価にできる。さらに、センサを小型化できるので、茎の直径が小さな植物の茎液流を測定することができる。   Since the temperature sensor can be a thin film metal resistance thermometer, the sensitivity is higher than the thermocouple and the accuracy is high. Also, a reference junction such as a thermocouple is not necessary. In addition, the structure is suitable for mass production and can be made inexpensive. Furthermore, since the sensor can be miniaturized, the stem fluid flow of a plant having a small stem diameter can be measured.

また、本発明の茎液流測定用センサは、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状で同一金属の抵抗体であるので、量産に適しており、安価にできる。   The sensor for measuring stem fluid flow according to the present invention is suitable for mass production and can be inexpensive because the thin film metal temperature measuring resistor and the thin film metal heater are the same shape and the same metal resistor.

また、本発明の茎液流測定用センサは、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状をした白金抵抗体であることが好ましく、この場合には、感度がよく、量産に適しており、安価にできる。   Moreover, the stem fluid flow measurement sensor of the present invention is preferably a platinum resistor having the same shape as the thin-film metal resistance thermometer and the thin-film metal heater. Suitable and inexpensive.

前記基材が絶縁性の合成樹脂フィルム又はシート、例えば、プラスチックフィルム又はシート、或いは、セラミックウェハなどの絶縁性の無機材料からなるシート又は薄い板であるので、薄い基材の表面に薄膜の抵抗体を設けることによりセンサを作製でき、センサを薄型化できる。   Since the base material is an insulating synthetic resin film or sheet, for example, a plastic film or sheet, or a sheet or thin plate made of an insulating inorganic material such as a ceramic wafer, a thin film resistor is formed on the surface of the thin base material. A sensor can be manufactured by providing a body, and the sensor can be thinned.

また、本発明の茎液流測定用センサは、前記一方の薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離と、前記他方の薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離が等間隔ではないものとすることができ、この場合には、ヒートパルス法により茎液の流速を計測することができる。   Further, the stem fluid flow measuring sensor of the present invention includes a distance between the centers of the one thin film metal resistance thermometer and the thin film metal heater, and a distance between the other thin film metal resistance thermometer and the center of the thin film metal heater. The distance can be not equal, and in this case, the flow rate of the stem fluid can be measured by the heat pulse method.

また、本発明の茎液流測定用センサは、前記基材、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが湾曲可能であるので、小さな植物の茎に巻いて使用することができる。   In addition, the stem fluid flow measuring sensor of the present invention can be used by winding the stem, the thin film metal resistance temperature detector, and the thin film metal heater around the stem of a small plant.

また、本発明の茎液流測定用センサは、前記基材が絶縁性の合成樹脂フィルム、例えば、絶縁性のプラスチックフィルムからなり、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータを挟み込むようにして形成されている場合には、市販の薄膜金属測温抵抗体及び薄膜金属ヒータと、絶縁性の合成樹脂フィルム、例えば、絶縁性のプラスチックフィルムを用いて形成でき、安価にできる。   In the stem fluid flow measurement sensor according to the present invention, the base material is made of an insulating synthetic resin film, for example, an insulating plastic film, and the thin film metal resistance thermometer and the thin film metal heater are sandwiched between the thin film metal temperature measuring resistor and the thin film metal heater. In this case, it can be formed using a commercially available thin film metal resistance temperature detector and thin film metal heater and an insulating synthetic resin film, for example, an insulating plastic film, and can be made inexpensive.

また、本発明の茎液流測定装置は、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ、前記薄膜金属ヒータにパルス電流を印加する印加手段、前記一対の薄膜金属測温抵抗体の抵抗値を測定する測定手段、該測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出する温度算出手段、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測する計測手段、該計測手段で計測された計測時間から茎液の流速を算出する流速算出手段、及び前記茎液の流速に応じた信号を出力する出力手段、からなる。   Further, the stem fluid flow measuring device of the present invention is a pair of thin film metal resistance thermometers formed on an insulating base material and a thin film metal heater formed in parallel between the pair of resistors, A pair of conductive materials for taking out electrical signals of the pair of thin film metal resistance thermometers, a stem liquid flow measurement sensor comprising a conductive material for supplying current to the thin film metal heater, and the thin film metal heater. Application means for applying a pulse current, measurement means for measuring the resistance value of the pair of thin film metal resistance thermometers, and the temperature of the pair of thin film metal resistance thermometers from the resistance values measured by the measurement means, respectively After the pulse current is applied to the thin film metal heater by the temperature calculation means to be calculated and the application means, the time until the temperatures of the pair of thin film metal resistance thermometers calculated by the temperature calculation means become equal measurement That the measuring means, said flow rate calculation means from the measurement time measured by the measuring means for calculating the flow rate of the stem solution, and output means for outputting a signal corresponding to the flow velocity of the stem solution consists.

近年、例えば、トマト栽培を行うビニールハウス内では、農家の負担を軽減するためにコンピュータ制御が取り入れられている。このシステムは、気温や湿度、照度などの栽培環境を計測して、ビニールハウス内の状態を把握している。しかし、植物の状態は人間が目視で行っていたので、結局、水や肥料の量は人間が決定して供給する他なかった。本発明によれば、トマトの茎液の流速を自動検出できるので、それに応じた量の水や肥料を投入すればよく、栽培を自動化できる。   In recent years, for example, in a greenhouse for tomato cultivation, computer control has been introduced to reduce the burden on farmers. This system measures the cultivation environment such as temperature, humidity, and illuminance, and grasps the state in the greenhouse. However, since the state of the plant was visually observed by humans, the amount of water and fertilizer was ultimately determined and supplied by humans. According to the present invention, since the flow rate of tomato stem liquid can be automatically detected, it is only necessary to add water or fertilizer in an amount corresponding thereto, and cultivation can be automated.

また、本発明の茎液流測定装置は、一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出する算出手段を有するので、簡単な計算式で茎液の流速を求めることができ、計測時間を短縮できる。   Further, the stem fluid flow measuring device of the present invention is a pair of the thin film metal thermometers, wherein the distance between the centers of the thin film metal thermometer and the thin film metal heater disposed above the plant stem is Xa, Xb (Xa> Xb) is the distance between the thin film metal resistance thermometer and the thin film metal heater arranged below the plant stem, and the pulse current is applied to the thin film metal heater by the applying means. When the time until each temperature of the pair of thin film metal resistance thermometers calculated by the temperature calculation means becomes equal to t0 and the calibration constant determined in advance as b, the flow rate F of the plant stem fluid is Since the calculation means for calculating F = b (Xa + Xb) / (2 × t0) is provided, the flow rate of the stem fluid can be obtained with a simple calculation formula, and the measurement time can be shortened.

また、本発明の茎液流測定装置は、前記薄膜金属ヒータの抵抗値を測定するヒータ測定手段と、前記抵抗値から前記薄膜金属ヒータの温度を算出するヒータ温度算出手段と、を具備し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定するので、薄膜金属ヒータの温度に応じて、薄膜金属ヒータの温度設定や加熱時間を制御できるので、より精度の高い計測を行うことができる。   The stem fluid flow measuring device of the present invention comprises a heater measuring means for measuring the resistance value of the thin film metal heater, and a heater temperature calculating means for calculating the temperature of the thin film metal heater from the resistance value, Since the applying means determines the pulse current to be applied to the thin film metal heater based on the temperature of the thin film metal heater, the temperature setting and heating time of the thin film metal heater are set according to the temperature of the thin film metal heater. Since it can be controlled, more accurate measurement can be performed.

また、本発明の茎液流測定装置は、前記印加手段が所定の周期で前記薄膜金属ヒータにパルス電流を印加し、前記出力手段が前記速度算出手段が算出した前記茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力するので、茎液の流速に応じて水及び/又は肥料の量を調整することができ、栽培を自動化できる。   Further, in the stem fluid flow measuring apparatus of the present invention, the applying means applies a pulse current to the thin film metal heater at a predetermined cycle, and the output means responds to the flow rate of the stem fluid calculated by the speed calculating means. Since a signal for adjusting the amount of water and / or fertilizer is output, the amount of water and / or fertilizer can be adjusted according to the flow rate of the stem liquid, and cultivation can be automated.

また、本発明の茎液流測定方法は、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ及びコンピュータを用いて構築された茎液流測定システムにおいて、コンピュータが備える印加手段が前記薄膜金属ヒータにパルス電流を印加するステップと、コンピュータが備える測定手段が前記一対の薄膜金属測温抵抗体の抵抗値を測定するステップと、コンピュータが備える温度算出手段が前記測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出するステップと、コンピュータが備える計測手段が、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測するステップと、コンピュータが備える流速算出手段が前記計測手段で計測された計測時間から茎液の流速を算出するステップと、コンピュータが備える出力手段が前記茎液の流速に応じた信号を出力するステップを実行する構成を採用した。   Further, the stem fluid flow measuring method of the present invention includes a pair of thin film metal resistance thermometers formed on an insulating substrate and a thin film metal heater formed in parallel between the pair of resistors, Constructed using a pair of conductive materials for taking out electrical signals of the pair of thin-film metal resistance thermometers, and a stem fluid flow measuring sensor and a computer comprising a conductive material for supplying current to the thin-film metal heater In the stem fluid flow measurement system, the step of applying the pulse current to the thin film metal heater by the application means provided in the computer and the step of measuring the resistance value of the pair of thin film metal resistance thermometers by the measurement means provided in the computer And a step of calculating a temperature of the pair of thin-film metal resistance thermometers from the resistance value measured by the measuring unit by a temperature calculating unit included in the computer, After the pulse current is applied to the thin film metal heater by the applying means, the measuring means provided in the computer takes time until the temperatures of the pair of thin film metal resistance thermometers calculated by the temperature calculating means become equal. The flow rate calculating means provided in the computer calculates the flow rate of the stem fluid from the measurement time measured by the measuring means, and the output means provided in the computer outputs a signal corresponding to the flow rate of the stem fluid A configuration for executing the steps is adopted.

また、本発明の茎液流測定方法は、一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出するステップを備える。   Further, the stem fluid flow measuring method of the present invention is a pair of the thin film metal thermometers, wherein the distance between the centers of the thin film metal thermometer and the thin film metal heater arranged above the plant stem is Xa, Xb (Xa> Xb) is the distance between the thin film metal resistance thermometer and the thin film metal heater arranged below the plant stem, and the pulse current is applied to the thin film metal heater by the applying means. When the time until each temperature of the pair of thin film metal resistance thermometers calculated by the temperature calculation means becomes equal to t0 and the calibration constant determined in advance as b, the flow rate F of the plant stem fluid is And F = b (Xa + Xb) / (2 × t0).

また、本発明の茎液流測定方法は、ヒータ測定手段が前記薄膜金属ヒータの抵抗値を測定し、ヒータ温度算出手段が前記抵抗値から前記薄膜金属ヒータの温度を算出し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定するので、薄膜金属ヒータの温度に応じて、薄膜金属ヒータの温度設定や加熱時間を制御できるので、より精度の高い計測を行うことができる。   In the stem fluid flow measuring method of the present invention, the heater measuring means measures the resistance value of the thin film metal heater, the heater temperature calculating means calculates the temperature of the thin film metal heater from the resistance value, and the applying means is Since the pulse current applied to the thin film metal heater is determined based on the temperature of the thin film metal heater, the temperature setting and heating time of the thin film metal heater can be controlled according to the temperature of the thin film metal heater. More accurate measurement can be performed.

また、本発明の茎液流測定方法は、前記印加手段が所定の周期で前記薄膜金属ヒータにパルス電流を印加し、前記出力手段が前記速度算出手段が算出した前記茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力するので、茎液の流速に応じて水及び/又は肥料の量を調整することができ、栽培を自動化できる。   In the stem fluid flow measuring method of the present invention, the applying means applies a pulse current to the thin film metal heater at a predetermined cycle, and the output means responds to the flow rate of the stem fluid calculated by the speed calculating means. Since a signal for adjusting the amount of water and / or fertilizer is output, the amount of water and / or fertilizer can be adjusted according to the flow rate of the stem liquid, and cultivation can be automated.

本発明に係る茎液流測定用センサは、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えたので、感度が良く、安価で、茎の直径が小さな植物の茎液流を測定することができる。   A sensor for measuring stem fluid flow according to the present invention includes a pair of thin film metal resistance thermometers formed on an insulating base material, and a thin film metal heater formed in parallel between the pair of resistors, Since it has a pair of conductive materials for taking out electrical signals of the pair of thin film metal resistance thermometers, and a conductive material for supplying current to the thin film metal heater, the sensitivity is low, the stem diameter is high. Small plant stem fluid flow can be measured.

絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えた。   A pair of thin-film metal resistance thermometers formed on an insulating substrate, a thin-film metal heater formed in parallel between the pair of resistors, and an electric signal of the pair of thin-film metal resistance thermometers And a pair of conductive materials that respectively take out and a conductive material that supplies current to the thin film metal heater.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る茎液流測定用センサの第1の実施形態を示す斜視図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a first embodiment of a sensor for measuring stem fluid flow according to the present invention.

図1に示すように、茎液流測定用センサ1は、絶縁性の合成樹脂フィルム又はシート、或いは、絶縁性のセラミックウェハなどの無機材料のシート又薄い板からなる基材2と、その表面に配置された一対の薄膜金属測温抵抗体3、5と、その一対の抵抗体3、5の間に並列に形成された薄膜金属ヒータ4、さらに、薄膜金属測温抵抗体3、5の電気信号をそれぞれ取り出す一対の導電性材料6、及び薄膜金属ヒータ4へ電流を供給する導電性材料7からなる。基材2の表面は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を配置した後、絶縁材料8でコーティングされている。   As shown in FIG. 1, a sensor 1 for measuring stem fluid flow includes a base material 2 made of an insulating synthetic resin film or sheet, or a sheet or thin plate of an inorganic material such as an insulating ceramic wafer, and its surface. Of the pair of thin film metal resistance thermometers 3 and 5, the thin film metal heater 4 formed in parallel between the pair of resistor bodies 3 and 5, and the thin film metal resistance thermometer resistors 3 and 5 It consists of a pair of conductive materials 6 for extracting electrical signals, and a conductive material 7 for supplying current to the thin film metal heater 4. The surface of the substrate 2 is coated with an insulating material 8 after the thin film metal resistance thermometers 3 and 5 and the thin film metal heater 4 are arranged.

基材2は、例えば、厚さ1μm〜300μm、特に好ましくは厚さ10μm〜250μm、更に好ましくは厚さ50μm〜200μmである絶縁性の合成樹脂フィルム(特に、絶縁性のプラスチックフィルム)、又は、厚さ200μm〜1000μm、特に好ましくは厚さ250μm〜800μmである絶縁性の合成樹脂製シート(特に、絶縁性のプラスチックシート)などの絶縁性のフィルム又はシートで構成することができ、又、厚さ200μm〜1000μm、特に好ましくは厚さ250μm〜800μmである絶縁性無機材料シート又は薄い板(特に、セラミックウェハなどの絶縁性の無機材料シート又は薄い板)を好適に挙げることができる。基材2をセラミックウェハで構成すれば、茎液流測定用センサ1を頑丈にできるので、茎に挿して用いる場合に有効である。また、基材2を薄いプラスチックフィルムで構成すれば、茎液流測定用センサ1を湾曲させることができ、茎液流測定用センサ1を茎に巻きつけて用いる場合に有効である。   The substrate 2 is, for example, an insulating synthetic resin film (particularly an insulating plastic film) having a thickness of 1 μm to 300 μm, particularly preferably a thickness of 10 μm to 250 μm, and more preferably a thickness of 50 μm to 200 μm, or It can be composed of an insulating film or sheet such as an insulating synthetic resin sheet (particularly an insulating plastic sheet) having a thickness of 200 μm to 1000 μm, particularly preferably a thickness of 250 μm to 800 μm. An insulating inorganic material sheet or a thin plate having a thickness of 200 μm to 1000 μm, particularly preferably a thickness of 250 μm to 800 μm (particularly, an insulating inorganic material sheet or thin plate such as a ceramic wafer) can be preferably exemplified. If the substrate 2 is composed of a ceramic wafer, the stem liquid flow measurement sensor 1 can be made robust, and therefore effective when inserted into a stem. Further, if the substrate 2 is made of a thin plastic film, the stem fluid flow measuring sensor 1 can be curved, which is effective when the stem fluid flow measuring sensor 1 is wound around the stem.

絶縁性の基材としては、例えば、ポリエステル、ポリアミド、ポリエーテルイミド、テフロン(登録商標)などのフッ素樹脂などのプラスチックフィルム又はシート、或いは、芳香族ポリエステル、芳香族ポリアミド、芳香族ポリエーテルイミド、ポリイミド、フッ素樹脂などの耐熱性を有する絶縁性の合成樹脂フィルム又はシートを好適に挙げることができる。   As an insulating base material, for example, a plastic film or sheet such as polyester, polyamide, polyetherimide, Teflon (registered trademark) or other fluororesin, or aromatic polyester, aromatic polyamide, aromatic polyetherimide, An insulating synthetic resin film or sheet having heat resistance such as polyimide and fluororesin can be preferably exemplified.

薄膜金属測温抵抗体3、5の電気信号をそれぞれ取り出す一対の導電性材料6、及び薄膜金属ヒータ4へ電流を供給する導電性材料7は、同一の材質・形状のものを用いることもできるし、導電性材料6と導電性材料7とで異なるものとすることもできる。また、その材質は、銅線であることが好ましいが、本発明はこれに限定されるものではなく、種々の材質のものを用いることができる。   The pair of conductive materials 6 for taking out the electrical signals of the thin film metal resistance thermometers 3 and 5 and the conductive material 7 for supplying a current to the thin film metal heater 4 can be of the same material and shape. However, the conductive material 6 and the conductive material 7 may be different. The material is preferably copper wire, but the present invention is not limited to this, and various materials can be used.

薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、同一金属の抵抗体とすることができる。金属の抵抗体の抵抗値Rと温度Tの関係は、温度0℃の時の抵抗値をA、温度係数をαとすると、R=A(1+αT)と規定される。したがって、抵抗体の抵抗値Rを測定することにより、その温度を算出できる。また、本発明においては、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を同一形状とすることもできる。これにより、量産に適しており、安価にできる。   The thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 can be the same metal resistors. The relationship between the resistance value R and the temperature T of the metal resistor is defined as R = A (1 + αT) where A is the resistance value at a temperature of 0 ° C. and α is the temperature coefficient. Therefore, the temperature can be calculated by measuring the resistance value R of the resistor. In the present invention, the thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 can also have the same shape. Thereby, it is suitable for mass production and can be made inexpensive.

本発明においては、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を同一形状をした白金薄膜抵抗体で構成することができる。薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、温度が0℃の時に抵抗が100Ωとなる様に厚さと面積が規定されたパターンが形成されている。薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、Pt100相等のものを使用できる。この抵抗値Rは、温度をT度とすれば、R=100(1+0.3851T)と設定できる。なお、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の材質として、白金抵抗体を例に挙げたが、本発明はこれに限定されるものではなく、銅やニッケルなどの種々の材質を用いることができる。   In the present invention, the thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 can be composed of platinum thin-film resistors having the same shape. The thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 are formed with a pattern whose thickness and area are defined so that the resistance becomes 100Ω when the temperature is 0 ° C. As the thin-film metal resistance temperature detectors 3 and 5 and the thin-film metal heater 4, those of Pt100 phase or the like can be used. The resistance value R can be set to R = 100 (1 + 0.3851T) when the temperature is T degrees. In addition, although the platinum resistor was mentioned as an example as a material of the thin film metal resistance temperature detectors 3 and 5 and the thin film metal heater 4, this invention is not limited to this, Various materials, such as copper and nickel Can be used.

この例では、一方の薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離Xaを10mm、他方の薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離Xbを5mmとした。なお、中心間距離とは、例えば、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4のパターンの面積の中心点の距離とする。このようにXa、Xbが等間隔ではないので、詳しくは後述するが、ヒートパルス法により、植物の茎液の流速を算出することができる。なお、茎に取り付ける際には、中心間距離の大きい薄膜金属測温抵抗体3を茎の上方に、中心間距離の小さい薄膜金属測温抵抗体5を茎の下方になるように配置する。   In this example, the center-to-center distance Xa between one thin-film metal resistance thermometer 3 and the thin-film metal heater 4 is 10 mm, and the center-to-center distance Xb between the other thin-film metal thermometer 5 and the thin-film metal heater 4 is 5 mm. The center-to-center distance is, for example, the distance between the center points of the pattern areas of the thin film metal resistance thermometers 3 and 5 and the thin film metal heater 4. Since Xa and Xb are not equally spaced in this manner, the flow rate of plant stem fluid can be calculated by the heat pulse method, as will be described in detail later. In addition, when attaching to a stem, the thin film metal resistance thermometer 3 with a large center distance is arranged above the stem, and the thin film metal resistance thermometer 5 with a small center distance is arranged below the stem.

薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、基材2の表面にスパッタ法や蒸着法により形成することもできるし、予め所定のパターンに形成された市販の白金薄膜抵抗体を基材上に載置することもできる。   The thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 can be formed on the surface of the substrate 2 by sputtering or vapor deposition, or a commercially available platinum thin-film resistor previously formed in a predetermined pattern. It can also be placed on a substrate.

スパッタ法においては、まず、基材2の表面近くに膜の原料となる白金(ターゲット)を配置する。そして、基材2とターゲットの全体を真空状態にして、基材2とターゲットの間に電圧をかけると、真空中で電子やイオンが高速移動し、電子やイオンがターゲットに衝突する。ターゲットに衝突したイオンは、ターゲットの粒子をはじき飛ばし、はじき飛ばされたターゲットの粒子が基材2に衝突、付着し、膜が形成される。   In the sputtering method, first, platinum (target) as a film raw material is disposed near the surface of the substrate 2. When the substrate 2 and the entire target are brought into a vacuum state and a voltage is applied between the substrate 2 and the target, electrons and ions move at high speed in the vacuum, and the electrons and ions collide with the target. The ions that collide with the target repel the target particles, and the repelled target particles collide and adhere to the substrate 2 to form a film.

蒸着法においては、まず、基材2の表面から所定の間隔を開けて膜の原料である白金を配置する。そして、全体を真空状態にして、原料を熱で溶かすことにより、原料が蒸発し、気体分子となり、基材2に衝突、付着し、膜が形成される。加熱溶解の方法によって、抵抗加熱式、電子ビーム式、高周波誘導式、レーザー式などがある。   In the vapor deposition method, first, platinum, which is a raw material of the film, is arranged at a predetermined interval from the surface of the substrate 2. Then, by vacuuming the whole and melting the raw material with heat, the raw material evaporates and becomes gas molecules which collide with and adhere to the base material 2 to form a film. Depending on the heating and melting method, there are a resistance heating type, an electron beam type, a high frequency induction type, and a laser type.

次に、本発明に係る茎液流測定用センサの植物の茎への取付方法を説明する。
図2は、茎液流測定用センサの植物の茎への第1の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。図3は、茎液流測定用センサの植物の茎への第2の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。
Next, a method for attaching the stem fluid flow measuring sensor according to the present invention to the plant stem will be described.
2A and 2B are diagrams showing a first method of attaching the stem fluid flow measuring sensor to the plant stem, wherein FIG. 2A is a front view thereof and FIG. 2B is a cross-sectional view thereof. FIG. 3 is a diagram showing a second method of attaching the stem fluid flow measurement sensor to the plant stem, wherein (a) is a front view thereof and (b) is a sectional view thereof.

図2(a)、(b)に示すように、トマトなどの茎11の側方に茎の繊維に沿って小さな切り込みを入れて、その切り込みの中に茎液流測定用センサ1の先端から3分の2ほどを挿入する。この方法によれば、茎11の繊維に沿って小さな切り込みを入れるだけなので、植物への悪影響が少ない。また、茎液流測定用センサ1の先端を直接茎11の内部の導管内に直接配置することができるので、正確な測定が可能となる。   As shown in FIGS. 2 (a) and 2 (b), a small cut is made along the stem fiber on the side of the stalk 11 such as tomato, and the stalk fluid flow measurement sensor 1 is inserted into the cut. Insert about two thirds. According to this method, since only a small cut is made along the fiber of the stem 11, there is little adverse effect on the plant. Moreover, since the front-end | tip of the sensor 1 for stem fluid flow measurement can be directly arrange | positioned in the conduit | pipe inside the stem 11, accurate measurement is attained.

また、図3(a)、(b)に示すように、トマトなどの茎11の表面に沿って茎液流測定用センサ1を湾曲させて配置し、その周りに断熱材12を巻きつけることもできる。この方法によれば、茎11に切り込みを入れないので、植物への悪影響を最小限に抑えられる。また、断熱材12を巻きつけてあるので、外的環境に影響されることなく、正確な測定を行うことができる。   Further, as shown in FIGS. 3 (a) and 3 (b), the stem fluid flow measuring sensor 1 is curvedly arranged along the surface of the stem 11 such as a tomato and the heat insulating material 12 is wound around the sensor. You can also. According to this method, since no cut is made in the stem 11, adverse effects on the plant can be minimized. Moreover, since the heat insulating material 12 is wound, an accurate measurement can be performed without being influenced by the external environment.

次に、本発明に係る茎液流測定装置について説明する。
図4は、本発明に係る茎液流測定装置を示す構成図である。図5は、本発明に係る茎液流測定装置を構成するコンピュータのブロック図である。
Next, the stem liquid flow measuring device according to the present invention will be described.
FIG. 4 is a block diagram showing a stem fluid flow measuring device according to the present invention. FIG. 5 is a block diagram of a computer constituting the stem fluid flow measurement device according to the present invention.

図4に示す茎液流測定装置20は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4と、それらに電流を供給する電源と、薄膜金属測温抵抗体3に流れる電流を制御する定電流ダイオード21と、薄膜金属ヒータ4に流れる電流を制御する定電流ダイオード22と、薄膜金属測温抵抗体5に流れる電流を制御する定電流ダイオード23と、薄膜金属ヒータ4にパルス状の電流を供給するためのスイッチング回路24と、スイッチング回路24に電気信号を出力すると共に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の電圧値を入力するデータロガー25と、データロガー25にLAN(Local Area Network)などを介して接続されたコンピュータ26からなる。   The stem fluid flow measuring device 20 shown in FIG. 4 controls the thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4, a power source for supplying current to them, and the current flowing through the thin-film metal resistance thermometer 3. A constant current diode 21, a constant current diode 22 for controlling a current flowing through the thin film metal heater 4, a constant current diode 23 for controlling a current flowing through the thin film metal resistance temperature detector 5, and a pulsed current in the thin film metal heater 4 A switching circuit 24 for supplying electric current, a data logger 25 for outputting electric signals to the switching circuit 24 and inputting voltage values of the thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4, and a data logger 25 The computer 26 is connected via a LAN (Local Area Network) or the like.

薄膜金属測温抵抗体3、5には、定電流ダイオード21、23により、1mAの電流が供給されている。一方、薄膜金属ヒータ4には、定電流ダイオード22により、20mAの電流が供給され、スイッチング回路24により、矩形パルス状の電流が印加される。そして、パルス状の電流を流した後に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4のそれぞれの抵抗値を測定し、それらの各温度を算出する。なお、抵抗値の測定に関し、実測データにはノイズが含まれるので、ローパスフィルタによりノイズを除去することが好ましい。また、この例では、データロガー25とコンピュータ26を用いているが、簡易的な利用に関しては、AD変換機能を備えた1チップマイクロプロセッサなどでそれらの代替が可能である。   A current of 1 mA is supplied to the thin film metal temperature measuring resistors 3 and 5 by the constant current diodes 21 and 23. On the other hand, a current of 20 mA is supplied to the thin film metal heater 4 by the constant current diode 22, and a rectangular pulse current is applied by the switching circuit 24. And after flowing a pulse-shaped electric current, each resistance value of the thin-film metal resistance thermometers 3 and 5 and the thin-film metal heater 4 is measured, and those each temperature is calculated. Regarding the measurement of the resistance value, since the actual measurement data includes noise, it is preferable to remove the noise with a low-pass filter. In this example, the data logger 25 and the computer 26 are used. However, for simple use, a 1-chip microprocessor having an AD conversion function can be used instead.

図5に示すように、コンピュータ26は、タイマ28が内蔵されたCPU27と、RAM29、ROM30、ハードディスク31(HD)等の記憶部と、入力インターフェース32(入力I/F)及び出力インターフェース33(出力I/F)等を有し、これらがバスライン34を介して接続されている。また、入力I/F32には、LANの通信回線が接続されると共に、入力装置としてのキーボード35やマウス36が接続され、出力I/F33にはスピーカ37が接続され、これらは、例えばパソコンがデスクトップの場合に、パソコン本体38によって構成されている。また、出力I/F33には、ディスプレイ39やビニールハウス内の水や肥料の量を調整するバルブ(図6参照)等が接続される。   As shown in FIG. 5, the computer 26 includes a CPU 27 with a built-in timer 28, a storage unit such as a RAM 29, a ROM 30, a hard disk 31 (HD), an input interface 32 (input I / F), and an output interface 33 (output). I / F) and the like, which are connected via a bus line 34. In addition, a LAN communication line is connected to the input I / F 32, and a keyboard 35 and a mouse 36 are connected as input devices, and a speaker 37 is connected to the output I / F 33. In the case of a desktop, the personal computer main body 38 is used. The output I / F 33 is connected to a display 39 and a valve (see FIG. 6) for adjusting the amount of water and fertilizer in the greenhouse.

このような茎液流測定装置20を用いれば、植物の茎液の流速を計測して、水や肥料の調整をするバルブに電気信号を出力することができるので、水や肥料の供給を自動化できる。また、茎液の流速を計測して、植物の状態を把握できるので、別途、音声、LED(Light Emitting Diode)、文字などを表示するメッセージ表示装置などを使ってその状態を知らせる手段を備えることにより、植物とのコミュニケーション玩具又は癒し玩具として利用できる。   If such a stem fluid flow measuring device 20 is used, the flow rate of plant stem fluid can be measured and an electric signal can be output to a valve for adjusting water and fertilizer, so that the supply of water and fertilizer can be automated. it can. In addition, since the state of the plant can be grasped by measuring the flow rate of the stem fluid, a means for notifying the state using a message display device that displays voice, LED (Light Emitting Diode), characters, etc. is provided separately. By this, it can be used as a communication toy with plants or a healing toy.

次に、本発明に係る茎液流測定用センサを用いた茎液流測定システムについて説明する。
図6は、本発明に係る茎液流測定用センサを用いた茎液流測定システムを示す構成図である。
Next, a stem fluid flow measurement system using the sensor for measuring stem fluid flow according to the present invention will be described.
FIG. 6 is a configuration diagram showing a stem fluid flow measurement system using the stem fluid flow measurement sensor according to the present invention.

図6に示すように、茎液流測定用センサ1を用いた茎液流測定システム50は、ビニールハウス51と、ビニールハウス51の屋根に設けられた天窓52と、ビニールハウス51内の地面に配置されたポット53と、ポット53の土壌に植えられたトマトの苗54と、苗54に水や肥料を供給するパイプ55と、パイプ55に接続されて水や肥料の量を調節するバルブ56と、ビニールハウス51の外部の風量を測定する風力センサ57と、ビニールハウス51の外部の照度を測定する照度センサ58と、ビニールハウス51内の温度を測定する温度センサ59と、ビニールハウス51内の二酸化炭素量を測定する炭素センサ60と、ビニールハウス51内の湿度を測定する湿度センサ61と、バルブ56と各種センサ1、57乃至61に接続され、各種センサ1、57乃至61の各種測定値に基づき、バルブ56に信号を出力する制御盤62からなる。なお、上記のセンサ57乃至61については、本発明ではこれらに限定されるものではなく、これらの内から適宜選択配置することもできるし、さらに他のセンサを付加することもできる。   As shown in FIG. 6, the stem fluid flow measurement system 50 using the stem fluid flow measurement sensor 1 includes a greenhouse 51, a skylight 52 provided on the roof of the greenhouse 51, and the ground in the greenhouse 51. The arranged pot 53, a tomato seedling 54 planted in the soil of the pot 53, a pipe 55 for supplying water and fertilizer to the seedling 54, and a valve 56 connected to the pipe 55 for adjusting the amount of water and fertilizer A wind sensor 57 that measures the air volume outside the greenhouse 51, an illuminance sensor 58 that measures the illuminance outside the greenhouse 51, a temperature sensor 59 that measures the temperature inside the greenhouse 51, and the inside of the greenhouse 51 A carbon sensor 60 for measuring the amount of carbon dioxide, a humidity sensor 61 for measuring the humidity in the greenhouse 51, a valve 56 and various sensors 1, 57 to 61. It is, based on various measured values of the various sensors 1, 57 to 61, and a control panel 62 for outputting a signal to the valve 56. The above-described sensors 57 to 61 are not limited to these in the present invention, and can be appropriately selected and arranged from these, and other sensors can be added.

茎液流測定用センサ1は、図2、図3に示すように、茎11に挿入したり、茎11に巻きつけて使用される。制御盤62は、図4に示したように、データロガー25やコンピュータ26等を備えている。これらの装置を用いて、各種センサ1、57乃至61の各種測定値に基づき、バルブ56に信号を出力し、自動で水や肥料の供給を行うことができる。なお、茎液流測定用センサ1での測定は、薄膜金属ヒータ4に例えば、30分おきにパルス電流を印加し、薄膜金属測温抵抗体3、5の抵抗値を測定し、その温度を算出することにより、30分毎の茎液の流速を求める。そして、例えば、前日からの茎液の流速の変化と、前日からの各種センサの測定値から当日の水や肥料の供給量を決定する。また、30分おきに計測するのは、パルス電流が印加されて温まった茎の温度が十分下がるまでの時間の一例であり、この時間は適宜設定できる。   As shown in FIGS. 2 and 3, the stem fluid flow measuring sensor 1 is used by being inserted into the stem 11 or wound around the stem 11. As shown in FIG. 4, the control panel 62 includes the data logger 25, the computer 26, and the like. By using these devices, it is possible to automatically supply water and fertilizer by outputting a signal to the valve 56 based on the various measured values of the various sensors 1 and 57 to 61. The measurement with the stem fluid flow measuring sensor 1 is performed by applying a pulse current to the thin film metal heater 4 every 30 minutes, measuring the resistance values of the thin film metal resistance thermometers 3 and 5, and measuring the temperature. By calculating, the flow rate of the stem liquid every 30 minutes is obtained. Then, for example, the supply amount of water and fertilizer on the day is determined from the change in the flow rate of the stem liquid from the previous day and the measured values of various sensors from the previous day. The measurement every 30 minutes is an example of the time until the temperature of the stem that has been warmed by applying the pulse current is sufficiently lowered, and this time can be set as appropriate.

次に、本発明に係る茎液流測定方法について説明する。
図7は、本発明に係る茎液流測定用方法を示すフローチャートである。
本発明においては、ヒートパルス法により茎液流を測定している。
Next, the stem fluid flow measuring method according to the present invention will be described.
FIG. 7 is a flowchart showing a method for measuring stem fluid flow according to the present invention.
In the present invention, the stem fluid flow is measured by the heat pulse method.

本発明に係る茎液流測定用方法においては、まず、コンピュータ26が備える印加手段により薄膜金属ヒータ4にパルス電流を印加する(S101)。ここで、電流を矩形パルス状の電流とするのは、薄膜金属ヒータ4に矩形パルス電流を印加した際に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、茎液が流れることによって、再び温度が一致するので、その所要時間t0を測定することにより茎液の流速を求めるというヒートパルス法を用いるためである。なお、パルス電流によって上昇させる薄膜金属ヒータ4の温度は、茎の温度より5〜10℃ほど高い温度である。   In the method for measuring stem fluid flow according to the present invention, first, a pulse current is applied to the thin film metal heater 4 by the application means provided in the computer 26 (S101). Here, the reason why the current is a rectangular pulse current is that when a rectangular pulse current is applied to the thin film metal heater 4, a temperature difference is once generated in the thin film metal resistance thermometers 3 and 5, and the stem fluid flows. This is because the temperature coincides again so that the heat pulse method is used in which the flow rate of the stem liquid is determined by measuring the required time t0. The temperature of the thin film metal heater 4 raised by the pulse current is about 5 to 10 ° C. higher than the stem temperature.

薄膜金属ヒータ4の温度が上昇することにより、その熱が茎11内を伝達し、一対の薄膜金属測温抵抗体3、5に達する。そうすると、薄膜金属測温抵抗体3、5の抵抗値が変化するので、その抵抗値をそれぞれ測定する(S102)。抵抗値Rと温度Tは、R=100(1+0.3851T)という関係式で示される関係にあるので、測定された抵抗値から一対の薄膜金属測温抵抗体3、5の温度をそれぞれ算出する(S103)。   As the temperature of the thin film metal heater 4 rises, the heat is transmitted through the stem 11 and reaches the pair of thin film metal resistance thermometers 3 and 5. Then, since the resistance value of the thin-film metal resistance thermometers 3 and 5 changes, the resistance value is measured (S102). Since the resistance value R and the temperature T are in a relation represented by the relational expression R = 100 (1 + 0.3851T), the temperatures of the pair of thin-film metal resistance thermometers 3 and 5 are calculated from the measured resistance values, respectively. (S103).

次に、パルス電流を印加した後、薄膜金属測温抵抗体3、5の各温度が等しくなるまでその測定を繰返し(S104)、両者の温度が等しくなるまでの時間t0を計測する(S105)。   Next, after applying the pulse current, the measurement is repeated until the temperatures of the thin-film metal resistance thermometers 3 and 5 become equal (S104), and the time t0 until both temperatures become equal is measured (S105). .

ここで、薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離をXa、薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離をXb(Xa>Xb)とし、薄膜金属測温抵抗体3を茎11の上方に、薄膜金属測温抵抗体5を茎11の下方に配置したとすると、薄膜金属ヒータ4にパルス電流を印加した際に、まず、熱が茎11を伝わり、薄膜金属ヒータ4との中心間距離が小さい茎11の下方に配置された薄膜金属測温抵抗体5の温度が上昇する。そして、茎11の中を茎液が流れ、薄膜金属ヒータ4の熱が茎11の上方に運ばれる。そうすると、茎11の上方に配置された薄膜金属測温抵抗体3の温度が次第に上昇する。一方、茎11の下方に配置された薄膜金属測温抵抗体5の温度は、茎液に熱を奪われ、次第に下降する。このようにして、薄膜金属ヒータ4にパルス電流を印加した後に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、再び温度が一致するので、その所要時間t0を測定する。   Here, the distance between the centers of the thin film metal resistance thermometer 3 and the thin film metal heater 4 is Xa, and the center distance between the thin film metal resistance thermometer 5 and the thin film metal heater 4 is Xb (Xa> Xb). Assuming that the temperature resistor 3 is disposed above the stem 11 and the thin-film metal resistance thermometer 5 is disposed below the stem 11, when a pulse current is applied to the thin-film metal heater 4, first, heat is transmitted through the stem 11. The temperature of the thin film metal resistance temperature detector 5 arranged below the stem 11 with a small distance from the center to the thin film metal heater 4 rises. Then, the stem liquid flows through the stem 11, and the heat of the thin film metal heater 4 is carried above the stem 11. If it does so, the temperature of the thin-film metal resistance thermometer 3 arrange | positioned above the stem 11 will rise gradually. On the other hand, the temperature of the thin-film metal resistance thermometer 5 arranged below the stem 11 is gradually lowered by the heat from the stem liquid. In this way, after applying a pulse current to the thin film metal heater 4, a temperature difference once occurs in the thin film metal resistance thermometers 3 and 5, and the temperatures again coincide with each other. Therefore, the required time t0 is measured.

続いて、計測手段で計測された計測時間から茎液の流速を算出する(S106)。ここで、ヒートパルス速度vは、v=(Xa+Xb)/(2×t0)で算出される。また、茎液の流速Fは、予め求められるキャリブレーション定数をbとすると、F=bvで算出される。このようにして、茎液の流速を算出したら、それに応じた信号を出力する(S107)。例えば、茎液の流速が遅くなっていれば、各種センサの測定値を考慮しつつ、バルブ56に信号を出力し、水や肥料を多めに供給することができる。   Subsequently, the flow rate of the stem fluid is calculated from the measurement time measured by the measuring means (S106). Here, the heat pulse velocity v is calculated by v = (Xa + Xb) / (2 × t0). Further, the flow rate F of the stem fluid is calculated as F = bv, where b is a previously obtained calibration constant. When the flow rate of the stem fluid is calculated in this way, a signal corresponding to that is output (S107). For example, if the flow rate of the stem fluid is slow, a signal can be output to the valve 56 while taking into account the measurement values of various sensors, and a large amount of water and fertilizer can be supplied.

また、本発明においては、薄膜金属測温抵抗体3、5の抵抗値の測定手段と同様の構成を有する測定手段を用いて、薄膜金属ヒータ4の抵抗値を測定し、温度算出手段が薄膜金属ヒータ4の温度を算出し、印加手段が、その温度をもとにして、薄膜金属ヒータ4に印加する電流を断続することにより、ヒータ4の温度、加熱時間をフィードバック制御することもできる。なお、薄膜金属ヒータ4を白金抵抗体で構成すれば、その抵抗値Rは、温度をT度とすれば、R=100(1+0.3851T)で算出される。   In the present invention, the resistance value of the thin film metal heater 4 is measured using a measuring means having the same configuration as the resistance value measuring means of the thin film metal resistance thermometers 3 and 5, and the temperature calculating means is a thin film. The temperature of the heater 4 and the heating time can be feedback-controlled by calculating the temperature of the metal heater 4 and intermittently applying the current applied to the thin film metal heater 4 based on the temperature of the application means. If the thin film metal heater 4 is made of a platinum resistor, the resistance value R is calculated as R = 100 (1 + 0.3851T) if the temperature is T degrees.

さらに、印加手段が所定の周期で薄膜金属ヒータ4にパルス電流を印加し、出力手段が流速算出手段が算出した茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力することもできる。これにより、茎液の流速を自動で測定し、それに応じた量の水及び/又は肥料を供給することができる。   Further, the applying means applies a pulse current to the thin film metal heater 4 at a predetermined cycle, and the output means outputs a signal for adjusting the amount of water and / or fertilizer according to the flow rate of the stem liquid calculated by the flow rate calculating means. You can also. Thereby, the flow rate of stem liquid can be measured automatically, and the quantity of water and / or fertilizer according to it can be supplied.

次に、本発明に係る茎液流測定の実験結果について説明する。
図8は、本発明に係る茎液流測定の実験結果を示すグラフである。
Next, experimental results of stem fluid flow measurement according to the present invention will be described.
FIG. 8 is a graph showing experimental results of stem fluid flow measurement according to the present invention.

図8には、薄膜金属ヒータ4に印加されるパルス電流71、薄膜金属測温抵抗体3の温度72、薄膜金属測温抵抗体5の温度73が示されている。この例では、薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離Xaを10mm、薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離Xbを5mmとし、薄膜金属測温抵抗体3を茎11の上方に、薄膜金属測温抵抗体5を茎11の下方に配置した。パルス電流71は、20mAで40秒間通電した。なお、パルス電流は、一定電流に印加した後、しばらくその電流値で流し続け、やがて止める矩形のパルス電流でもいいし、徐々に温度を上げていって所定値に達した後、徐々に温度を下げるような三角形状のパルス電流などでも良い。また、この実施例では、パルス電流を40秒間印加したが、より正確に計測するためには、例えば、10秒以内、より好ましくは5秒以内というように短時間印加することが好ましい。   FIG. 8 shows a pulse current 71 applied to the thin film metal heater 4, a temperature 72 of the thin film metal resistance temperature detector 3, and a temperature 73 of the thin film metal resistance temperature detector 5. In this example, the center-to-center distance Xa between the thin-film metal resistance thermometer 3 and the thin-film metal heater 4 is 10 mm, and the center-to-center distance Xb between the thin-film metal resistance thermometer 5 and the thin-film metal heater 4 is 5 mm. The body 3 was placed above the stem 11, and the thin-film metal resistance thermometer 5 was placed below the stem 11. The pulse current 71 was energized at 20 mA for 40 seconds. Note that the pulse current may be a rectangular pulse current that continues to flow for a while after being applied to a constant current, and then eventually stops.The temperature gradually increases, reaches a predetermined value, and then gradually increases the temperature. A triangular pulse current that is lowered may be used. In this embodiment, the pulse current is applied for 40 seconds. However, in order to measure more accurately, it is preferable to apply for a short time, for example, within 10 seconds, more preferably within 5 seconds.

薄膜金属ヒータ4にパルス電流71が印加されると、まず、薄膜金属測温抵抗体5の温度73の温度が上昇する。そして、茎11の中を茎液が流れ、薄膜金属ヒータ4の熱が茎11の上方に運ばれる。そうすると、茎11の上方に配置された薄膜金属測温抵抗体3の温度72が次第に上昇する。一方、茎11の下方に配置された薄膜金属測温抵抗体5の温度73は、茎液に熱を奪われ、次第に下降する。このようにして、薄膜金属ヒータ4にパルス電流を印加した後に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、再び温度が一致する時が来るので、その時間t0を測定する。   When the pulse current 71 is applied to the thin film metal heater 4, first, the temperature 73 of the thin film metal resistance thermometer 5 rises. Then, the stem liquid flows through the stem 11, and the heat of the thin film metal heater 4 is carried above the stem 11. As a result, the temperature 72 of the thin film metal resistance thermometer 3 disposed above the stem 11 gradually increases. On the other hand, the temperature 73 of the thin-film metal resistance thermometer 5 arranged below the stem 11 is gradually deprived of heat by the stem liquid. Thus, after applying the pulse current to the thin film metal heater 4, the temperature difference once occurs in the thin film metal resistance thermometers 3 and 5, and the time when the temperatures again coincide with each other, the time t0 is measured. .

この例では、時間t0は、20秒であった。そこで、v=(Xa+Xb)/(2×t0)で算出されるヒートパルス速度vは、0.375mm/secとなった。この図では、測定値に雑音が含まれているが、ローパスフィルタなどで雑音を除去することが望ましく、それにより温度が等しくなる点をより正確に計測することができる。   In this example, the time t0 was 20 seconds. Therefore, the heat pulse velocity v calculated by v = (Xa + Xb) / (2 × t0) was 0.375 mm / sec. In this figure, noise is included in the measured value, but it is desirable to remove the noise with a low-pass filter or the like, so that the point at which the temperatures are equal can be measured more accurately.

図9は、本発明に係る茎液流測定用センサの第2の実施形態を示す図であり、(a)はその正面図、(b)はその側面図である。
なお、前述した実施形態と同一部品同一部位には同じ符号を付してその詳細な説明を省略する。
FIG. 9 is a view showing a second embodiment of the sensor for measuring stem fluid flow according to the present invention, wherein (a) is a front view thereof and (b) is a side view thereof.
Note that the same components and parts as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図9に示すように、茎液流測定用センサ101は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を絶縁性フィルム(例えば、厚さ10μm〜200μmの絶縁性の合成樹脂フィルム、特に、耐熱性及び絶縁性を有するプラスチックフィルムなど)102で挟み込むようにして形成されている。具体的には、茎液流測定用センサ101の表面積の略2倍の大きさをした表面積を持つ絶縁性フィルム102を用意し、この絶縁性フィルム102の略半分の範囲に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を配置し、絶縁性フィルムの他の半分の範囲の部分を薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の表面を覆うように折り返して薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の両面を挟み込むようにする。このような構成をとることにより、市販されている薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4と、市販されている絶縁性フィルム102を用いて茎液流測定用センサ101を形成できるので、装置を安価にできる。また、この茎液流測定用センサ101は、湾曲可能であるので、茎に巻きつけて使用することができる。   As shown in FIG. 9, the stem liquid flow measurement sensor 101 includes thin film metal resistance thermometers 3 and 5 and a thin film metal heater 4 that are made of an insulating film (for example, an insulating synthetic resin film having a thickness of 10 μm to 200 μm, In particular, a plastic film having heat resistance and insulating properties) 102) is formed. Specifically, an insulating film 102 having a surface area approximately twice as large as the surface area of the stem fluid flow measurement sensor 101 is prepared, and a thin-film metal temperature measuring device is provided in a range approximately half of the insulating film 102. The resistors 3 and 5 and the thin film metal heater 4 are arranged, and the other half of the insulating film is folded back so as to cover the surfaces of the thin film metal resistance thermometers 3 and 5 and the thin film metal heater 4. Both sides of the resistance temperature detectors 3 and 5 and the thin film metal heater 4 are sandwiched. By adopting such a configuration, the stem fluid flow measurement sensor 101 can be formed using the commercially available thin film metal resistance thermometers 3 and 5 and the thin film metal heater 4 and the commercially available insulating film 102. Therefore, the apparatus can be made inexpensive. Further, the stem fluid flow measuring sensor 101 can be bent, and therefore can be used by being wound around the stem.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る茎液流測定用センサ、茎液流測定装置及び茎液流測定方法は、ヒートパルス法により植物の茎液の流速を測定する茎液流測定用センサ、茎液流測定装置及び茎液流測定方法に適用できる。   A sensor for measuring stem fluid flow, a device for measuring stem fluid flow, and a method for measuring stem fluid flow according to the present invention include a sensor for measuring stem fluid flow, a stem fluid flow measuring device, and a stem fluid flow measuring device for measuring a flow rate of plant stem fluid by a heat pulse method. Applicable to stem fluid flow measurement method.

本発明に係る茎液流測定用センサの第1の実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the sensor for stem fluid flow measurement which concerns on this invention. 茎液流測定用センサの植物の茎への第1の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。It is a figure which shows the 1st attachment method to the stem of a plant of the sensor for stem fluid flow measurement, (a) is the front view, (b) is the sectional drawing. 茎液流測定用センサの植物の茎への第2の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。It is a figure which shows the 2nd attachment method to the stem of a plant of the sensor for stem fluid flow measurement, (a) is the front view, (b) is the sectional drawing. 本発明に係る茎液流測定装置を示す構成図である。It is a block diagram which shows the stem liquid flow measuring apparatus which concerns on this invention. 本発明に係る茎液流測定装置を構成するコンピュータのブロック図である。It is a block diagram of the computer which comprises the stem fluid flow measuring apparatus which concerns on this invention. 本発明に係る茎液流測定用センサを用いた茎液流測定システムを示す構成図である。It is a block diagram which shows the stem liquid flow measurement system using the sensor for stem liquid flow measurement which concerns on this invention. 本発明に係る茎液流測定用方法を示すフローチャートである。It is a flowchart which shows the method for stem fluid flow measurement which concerns on this invention. 本発明に係る茎液流測定の実験結果を示すグラフである。It is a graph which shows the experimental result of stem liquid flow measurement concerning the present invention. 本発明に係る茎液流測定用センサの第2の実施形態を示す図であり、(a)はその正面図、(b)はその側面図である。It is a figure which shows 2nd Embodiment of the sensor for stem fluid flow measurement which concerns on this invention, (a) is the front view, (b) is the side view.

符号の説明Explanation of symbols

1、101・・・・・・・茎液流測定用センサ
2・・・・・・・・・・・基材
3、5・・・・・・・・・薄膜金属測温抵抗体
4・・・・・・・・・・・薄膜金属ヒータ
6、7・・・・・・・・・導電性材料
8・・・・・・・・・・・絶縁材料
11・・・・・・・・・・茎
12・・・・・・・・・・断熱材
20・・・・・・・・・・茎液流測定装置
21、22、23・・・・定電流ダイオード
24・・・・・・・・・・スイッチング回路
25・・・・・・・・・・データロガー
26・・・・・・・・・・コンピュータ
27・・・・・・・・・・CPU
28・・・・・・・・・・タイマ
29・・・・・・・・・・RAM
30・・・・・・・・・・ROM
31・・・・・・・・・・ハードディスク
32・・・・・・・・・・入力インターフェース
33・・・・・・・・・・出力インターフェース
34・・・・・・・・・・バスライン
35・・・・・・・・・・キーボード
36・・・・・・・・・・マウス
37・・・・・・・・・・スピーカ
38・・・・・・・・・・パソコン本体
39・・・・・・・・・・ディスプレイ
50・・・・・・・・・・茎液流測定システム
51・・・・・・・・・・ビニールハウス
52・・・・・・・・・・天窓
53・・・・・・・・・・ポット
54・・・・・・・・・・苗
55・・・・・・・・・・パイプ
56・・・・・・・・・・バルブ
57・・・・・・・・・・風力センサ
58・・・・・・・・・・照度センサ
59・・・・・・・・・・温度センサ
60・・・・・・・・・・炭素センサ
61・・・・・・・・・・湿度センサ
62・・・・・・・・・・制御盤
71・・・・・・・・・・パルス電流
72、73・・・・・・・薄膜金属測温抵抗体の温度
102・・・・・・・・・絶縁性フィルム
1, 101 .... Sensor for measuring stem fluid flow 2 ... Base material 3, 5, ... Thin film metal resistance thermometer 4・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Thin metal heaters 6, 7 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Conductive material 8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Insulating material 11 ・ ・ ・ ・ ・ ・... Stem 12 ... Thermal insulation 20 ... Stem liquid flow measuring device 21, 22, 23 ... Constant current diode 24 ...・ ・ ・ ・ Switching circuit 25 ・ ・ ・ ・ ・ ・ Data logger 26 ・ ・ ・ ・ ・ ・ Computer 27 ・ ・ ・ ・ ・ ・ CPU
28 ... Timer 29 ... RAM
30 ... ROM
31 ... Hard disk 32 ... Input interface 33 ... Output interface 34 ... Bus Line 35 ... Keyboard 36 ... Mouse 37 ... Speaker 38 ... PC 39 ... Display 50 ... Stem fluid flow measurement system 51 ... Vinyl greenhouse 52 ... .. Skylight 53 ... Pot 54 ... Seedling 55 ... Pipe 56 ... Valve 57 ... Wind sensor 58 ... Illuminance sensor 59 ... Temperature sensor 60 ... Carbon sensor 61 Humidity sensor 62 Control panel 71 Pulse current 72, 73 .... Temperature 102 of thin-film metal resistance thermometer ..... Insulating film

Claims (8)

絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えたことを特徴とする茎液流測定用センサ。   A pair of thin-film metal resistance thermometers formed on an insulating substrate, a thin-film metal heater formed in parallel between the pair of resistors, and an electric signal of the pair of thin-film metal resistance thermometers A sensor for measuring stem fluid flow, comprising: a pair of conductive materials for taking out each of the first and second conductive materials for supplying a current to the thin film metal heater. 前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状で同一金属の抵抗体である請求項1記載の茎液流測定用センサ。   The sensor for measuring stem fluid flow according to claim 1, wherein the thin film metal temperature measuring resistor and the thin film metal heater are resistors of the same shape and the same metal. 前記基材がプラスチックフィルムである請求項1又は2に記載の茎液流測定用センサ。   The stem fluid flow measuring sensor according to claim 1 or 2, wherein the substrate is a plastic film. 絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ、
前記薄膜金属ヒータにパルス電流を印加する印加手段、
前記一対の薄膜金属測温抵抗体の抵抗値を測定する測定手段、
該測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出する温度算出手段、
前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測する計測手段、
該計測手段で計測された計測時間から茎液の流速を算出する流速算出手段、及び
前記茎液の流速に応じた信号を出力する出力手段、
からなる茎液流測定装置。
A pair of thin-film metal resistance thermometers formed on an insulating substrate, a thin-film metal heater formed in parallel between the pair of resistors, and an electric signal of the pair of thin-film metal resistance thermometers A pair of conductive materials for taking out each of them, and a stem liquid flow measurement sensor comprising a conductive material for supplying current to the thin film metal heater,
Applying means for applying a pulse current to the thin film metal heater;
Measuring means for measuring the resistance value of the pair of thin film metal resistance thermometers,
Temperature calculating means for calculating the temperatures of the pair of thin-film metal resistance thermometers from the resistance values measured by the measuring means;
A measuring means for measuring a time until each temperature of the pair of thin film metal resistance thermometers calculated by the temperature calculating means becomes equal after a pulse current is applied to the thin film metal heater by the applying means;
A flow rate calculating means for calculating a flow rate of the stem fluid from the measurement time measured by the measuring means, and an output means for outputting a signal corresponding to the flow rate of the stem fluid;
Stem fluid flow measuring device.
一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出する算出手段を有する請求項4に記載の茎液流測定装置。   In the pair of thin-film metal resistance thermometers, the distance between the centers of the thin-film metal resistance thermometer and the thin-film metal heater disposed above the plant stem is Xa, and the thin-film metal disposed below the plant stem The distance between centers of the resistance temperature detector and the thin film metal heater is Xb (Xa> Xb), and a pulse current is applied to the thin film metal heater by the applying means, and then the pair of thin films calculated by the temperature calculating means Assuming that the time until each temperature of the metal resistance thermometer is equal is t0 and the calibration constant determined in advance is b, the flow rate F of the plant stem fluid is F = b (Xa + Xb) / (2 × t0) The stem fluid flow measuring device according to claim 4, further comprising a calculating means for calculating in step (5). 前記薄膜金属ヒータの抵抗値を測定するヒータ測定手段と、前記抵抗値から前記薄膜金属ヒータの温度を算出するヒータ温度算出手段と、を具備し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定する請求項4又は5に記載の茎液流測定装置。   A heater measuring means for measuring a resistance value of the thin film metal heater; and a heater temperature calculating means for calculating a temperature of the thin film metal heater from the resistance value, wherein the applying means is a temperature of the thin film metal heater. The stem fluid flow measuring device according to claim 4 or 5, wherein a pulse current applied to the thin film metal heater is determined based on the above. 絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ及びコンピュータを用いて構築された茎液流測定システムにおいて、
コンピュータが備える印加手段が前記薄膜金属ヒータにパルス電流を印加するステップと、
コンピュータが備える測定手段が前記一対の薄膜金属測温抵抗体の抵抗値を測定するステップと、
コンピュータが備える温度算出手段が前記測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出するステップと、
コンピュータが備える計測手段が、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測するステップと、
コンピュータが備える流速算出手段が前記計測手段で計測された計測時間から茎液の流速を算出するステップと、
コンピュータが備える出力手段が前記茎液の流速に応じた信号を出力するステップを実行する茎液流測定方法。
A pair of thin-film metal resistance thermometers formed on an insulating substrate, a thin-film metal heater formed in parallel between the pair of resistors, and an electric signal of the pair of thin-film metal resistance thermometers In a stem fluid flow measurement system constructed using a pair of conductive materials for taking out each, and a stem fluid flow measurement sensor and a computer comprising a conductive material for supplying current to the thin film metal heater,
An application means provided in a computer applies a pulse current to the thin film metal heater;
Measuring means provided in the computer measures the resistance value of the pair of thin-film metal resistance thermometers;
A step of calculating a temperature of the pair of thin-film metal resistance thermometers from the resistance value measured by the measuring unit by a temperature calculating unit included in the computer;
After the pulse current is applied to the thin film metal heater by the applying means, the measuring means provided in the computer takes time until the temperatures of the pair of thin film metal resistance thermometers calculated by the temperature calculating means become equal. Measuring steps,
A step of calculating a flow rate of the stem fluid from a measurement time measured by the measurement unit by a flow rate calculation unit included in the computer;
A stem fluid flow measuring method in which an output means included in a computer executes a step of outputting a signal corresponding to the flow rate of the stem fluid.
一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出するステップを有する請求項7に記載の茎液流測定方法。   In the pair of thin-film metal resistance thermometers, the distance between the centers of the thin-film metal resistance thermometer and the thin-film metal heater disposed above the plant stem is Xa, and the thin-film metal disposed below the plant stem The distance between centers of the resistance temperature detector and the thin film metal heater is Xb (Xa> Xb), and a pulse current is applied to the thin film metal heater by the applying means, and then the pair of thin films calculated by the temperature calculating means Assuming that the time until each temperature of the metal resistance thermometer is equal is t0 and the calibration constant determined in advance is b, the flow rate F of the plant stem fluid is F = b (Xa + Xb) / (2 × t0) The stem fluid flow measuring method according to claim 7, further comprising the step of calculating:
JP2007077254A 2007-03-23 2007-03-23 Stem liquid flow measuring device and stem liquid flow measuring method Active JP4910152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077254A JP4910152B2 (en) 2007-03-23 2007-03-23 Stem liquid flow measuring device and stem liquid flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077254A JP4910152B2 (en) 2007-03-23 2007-03-23 Stem liquid flow measuring device and stem liquid flow measuring method

Publications (2)

Publication Number Publication Date
JP2008233047A true JP2008233047A (en) 2008-10-02
JP4910152B2 JP4910152B2 (en) 2012-04-04

Family

ID=39905993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077254A Active JP4910152B2 (en) 2007-03-23 2007-03-23 Stem liquid flow measuring device and stem liquid flow measuring method

Country Status (1)

Country Link
JP (1) JP4910152B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083298A1 (en) * 2013-12-03 2015-06-11 株式会社岡崎製作所 Water level sensor
WO2015115084A1 (en) 2014-02-03 2015-08-06 国立大学法人香川大学 Plant moisture movement state sensor
KR101711785B1 (en) * 2016-01-12 2017-03-02 서울대학교산학협력단 Micro needle probe for measuring electrical conductivity of plant and measuring device with the same
WO2017123000A1 (en) * 2016-01-12 2017-07-20 서울대학교 산학협력단 Microneedle probe for measuring sap flow of plant, and sap flow measuring device having same
KR101765079B1 (en) 2016-01-12 2017-08-04 서울대학교산학협력단 Micro needle probe for measuring sap flow of plant and measuring device with the same
WO2017217773A1 (en) * 2016-06-14 2017-12-21 서울대학교 산학협력단 Microneedle probe device for measuring sap flow rate of plant, and method for measuring sap flow rate of plant by using same
KR101920994B1 (en) * 2016-06-14 2018-11-21 서울대학교산학협력단 Micro needle probe device for measuring sap flow rate and sap flow rate measuring method using the same
KR20190007324A (en) * 2017-07-12 2019-01-22 (주) 텔로팜 Micro niddle probe device for measuring state of sap flow
KR20190072269A (en) * 2017-12-15 2019-06-25 (주) 텔로팜 Niddle Type Probe Apparatus having MEMS Sensor Unit for Measuring Sap Flow and Manufacturing Method thereof
KR20190072268A (en) * 2017-12-15 2019-06-25 (주) 텔로팜 Micro Niddle Probe using Minimally Invasive Technologyfor Measuring Sap Flow
US10921303B1 (en) * 2017-05-31 2021-02-16 Iowa State University Research Foundation, Inc. Miniature sensors with probe insertable into and for obtaining measurements from plants and a variety of other mediums
CN114631024A (en) * 2019-11-01 2022-06-14 欧姆龙株式会社 Plant biological body sensor
CN115684504A (en) * 2022-12-29 2023-02-03 浙江大学 Miniature stem flow sensor for plant fine stems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007042B2 (en) * 2012-09-26 2016-10-12 Kisvin Science株式会社 Calorie imparting device, plant liquid flow rate calculating method, plant liquid flow rate calculating device, plant liquid flow rate calculating program, and recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100315A (en) * 1980-01-16 1981-08-12 Norin Suisansyo Nogyo Gijutsu Kenkyusho Measuring method and measuring meter of evaporation flow rate in stem of plant
JPH03185358A (en) * 1989-12-15 1991-08-13 Tokin Corp Heat ray type flow velocity sensor
JPH05188070A (en) * 1992-01-10 1993-07-27 Matsumura Seiki:Kk Flow speed measuring device
JPH06273434A (en) * 1993-03-23 1994-09-30 Kazuhiro Sugata Flow-velocity measuring apparatus
JP2003240618A (en) * 2002-02-20 2003-08-27 Yamatake Corp Flow sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100315A (en) * 1980-01-16 1981-08-12 Norin Suisansyo Nogyo Gijutsu Kenkyusho Measuring method and measuring meter of evaporation flow rate in stem of plant
JPH03185358A (en) * 1989-12-15 1991-08-13 Tokin Corp Heat ray type flow velocity sensor
JPH05188070A (en) * 1992-01-10 1993-07-27 Matsumura Seiki:Kk Flow speed measuring device
JPH06273434A (en) * 1993-03-23 1994-09-30 Kazuhiro Sugata Flow-velocity measuring apparatus
JP2003240618A (en) * 2002-02-20 2003-08-27 Yamatake Corp Flow sensor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083298A1 (en) * 2013-12-03 2015-06-11 株式会社岡崎製作所 Water level sensor
JPWO2015083298A1 (en) * 2013-12-03 2017-03-16 株式会社岡崎製作所 Water level sensor
EP3104135A4 (en) * 2014-02-03 2017-10-18 National University Corporation Kagawa University Plant moisture movement state sensor
WO2015115084A1 (en) 2014-02-03 2015-08-06 国立大学法人香川大学 Plant moisture movement state sensor
US9857391B2 (en) 2014-02-03 2018-01-02 National University Corporation Kagawa University Plant water dynamics sensor
US11015965B2 (en) 2016-01-12 2021-05-25 TELOFARM, Inc. Microneedle probe for measuring sap flow of plant, and sap flow measuring device having same
KR101711785B1 (en) * 2016-01-12 2017-03-02 서울대학교산학협력단 Micro needle probe for measuring electrical conductivity of plant and measuring device with the same
WO2017123000A1 (en) * 2016-01-12 2017-07-20 서울대학교 산학협력단 Microneedle probe for measuring sap flow of plant, and sap flow measuring device having same
US11740113B2 (en) 2016-01-12 2023-08-29 TELOFARM, Inc. Microneedle probe for measuring sap flow of plant, and sap flow measuring device having same
WO2017123010A1 (en) * 2016-01-12 2017-07-20 서울대학교 산학협력단 Microneedle probe for measuring electrical conductivity of plant, and electrical conductivity measuring device having same
KR101765079B1 (en) 2016-01-12 2017-08-04 서울대학교산학협력단 Micro needle probe for measuring sap flow of plant and measuring device with the same
KR101920994B1 (en) * 2016-06-14 2018-11-21 서울대학교산학협력단 Micro needle probe device for measuring sap flow rate and sap flow rate measuring method using the same
US11143534B2 (en) 2016-06-14 2021-10-12 Seoul National University R&Db Foundation Microneedle probe device for measuring sap flow rate of plant, and method for measuring sap flow rate of plant by using same
WO2017217773A1 (en) * 2016-06-14 2017-12-21 서울대학교 산학협력단 Microneedle probe device for measuring sap flow rate of plant, and method for measuring sap flow rate of plant by using same
US10921303B1 (en) * 2017-05-31 2021-02-16 Iowa State University Research Foundation, Inc. Miniature sensors with probe insertable into and for obtaining measurements from plants and a variety of other mediums
US11913933B1 (en) 2017-05-31 2024-02-27 Iowa State University Research Foundation, Inc. Miniature sensors with probe insertable into and for obtaining measurements from plants and a variety of other mediums
KR102168187B1 (en) 2017-07-12 2020-10-20 (주)텔로팜 Micro niddle probe device for measuring state of sap flow
KR20190007324A (en) * 2017-07-12 2019-01-22 (주) 텔로팜 Micro niddle probe device for measuring state of sap flow
KR20190072269A (en) * 2017-12-15 2019-06-25 (주) 텔로팜 Niddle Type Probe Apparatus having MEMS Sensor Unit for Measuring Sap Flow and Manufacturing Method thereof
KR20190072268A (en) * 2017-12-15 2019-06-25 (주) 텔로팜 Micro Niddle Probe using Minimally Invasive Technologyfor Measuring Sap Flow
KR102073720B1 (en) * 2017-12-15 2020-02-05 (주) 텔로팜 Micro Niddle Probe using Minimally Invasive Technologyfor Measuring Sap Flow
KR102073721B1 (en) 2017-12-15 2020-02-05 (주) 텔로팜 Niddle Type Probe Apparatus having MEMS Sensor Unit for Measuring Sap Flow and Manufacturing Method thereof
CN114631024A (en) * 2019-11-01 2022-06-14 欧姆龙株式会社 Plant biological body sensor
CN115684504A (en) * 2022-12-29 2023-02-03 浙江大学 Miniature stem flow sensor for plant fine stems

Also Published As

Publication number Publication date
JP4910152B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4910152B2 (en) Stem liquid flow measuring device and stem liquid flow measuring method
JP6083745B2 (en) Plant moisture dynamics sensor
Yin et al. A field‐deployable, wearable leaf sensor for continuous monitoring of vapor‐pressure deficit
KR101489104B1 (en) Electric element
US8546766B2 (en) Sensing UV dosage of a fluid stream
JP2006527356A (en) Environmental sensor
JP6639708B2 (en) Microneedle probe device for measuring plant sap flow rate and method for measuring plant sap flow rate using the same
WO2010108101A3 (en) Method and system for controlling a heating element with temperature sensitive conductive layer
WO2022039007A1 (en) Plant water content sensor and plant water content measurement method
Phatthanakun et al. Design and fabrication of thin-film aluminum microheater and nickel temperature sensor
JPH08184576A (en) Humidity sensor
KR101299909B1 (en) Device for thermal mass flow measurement, particularly for measuring an air mass being supplied to an internal combustion engine
JP3310430B2 (en) Measuring device and measuring method
Samaeifar et al. Simple fabrication and characterization of a platinum microhotplate based on suspended membrane structure
US20080025366A1 (en) Probe for Measuring Thermal and Hydraulic Properties
JP6677311B2 (en) Wind speed measurement device and air volume measurement device
Xu et al. Flexible Temperature Microsensor for Application of High-Intensity Focused Ultrasound.
Scorzoni et al. Accurate analog temperature control of a thin film microheater on glass substrate for lab-on-chip applications
US10935563B2 (en) Vascular sap flow speed sensor and method of manufacturing vascular sap flow speed sensor
JP3115850B2 (en) Sensor circuit with resistor sensor as element
Alveringh et al. A miniature microclimate thermal flow sensor for horticultural applications
RU177514U1 (en) THERMOANEMOMETRIC FLOW AND GAS FLOW SENSOR
JP6007042B2 (en) Calorie imparting device, plant liquid flow rate calculating method, plant liquid flow rate calculating device, plant liquid flow rate calculating program, and recording medium
ATHERTON Development of a thermal sensor for probing small volumes
WO2023074362A1 (en) Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150