WO2023074362A1 - Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method - Google Patents

Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method Download PDF

Info

Publication number
WO2023074362A1
WO2023074362A1 PCT/JP2022/037981 JP2022037981W WO2023074362A1 WO 2023074362 A1 WO2023074362 A1 WO 2023074362A1 JP 2022037981 W JP2022037981 W JP 2022037981W WO 2023074362 A1 WO2023074362 A1 WO 2023074362A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
flow rate
heater
probe
vascular
Prior art date
Application number
PCT/JP2022/037981
Other languages
French (fr)
Japanese (ja)
Inventor
房男 下川
郁也 飯尾
Original Assignee
国立大学法人香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人香川大学 filed Critical 国立大学法人香川大学
Publication of WO2023074362A1 publication Critical patent/WO2023074362A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Definitions

  • the present invention relates to a vascular bundle liquid flow velocity sensor, a vascular bundle liquid flow velocity measuring device, and a vascular bundle liquid flow velocity measuring method. More particularly, the present invention relates to sensors, devices and methods for measuring the flow rate of vascular fluid through plant details such as plant shoot ends, fruit stalks, and the like.
  • vascular flux flow rate In particular, in order to improve the productivity and quality of crops and fruit trees, it is important to measure the vascular fluid flow velocity in details of plants such as shoot ends and fruit stalks.
  • a sensor for measuring vascular fluid flow velocity in plant details has already been proposed (US Pat.
  • Patent Document 1 measures the vascular fluid flow rate by the Granier method.
  • the Granier method it is necessary to pierce the plant with two probes and constantly heat the vascular fluid with a heater. Therefore, mechanical and thermal damage to plants is great.
  • the heat pulse method is also known as a method for measuring the vascular flux flow velocity. Since the heat pulse method applies heat intermittently, the heat damage given to plants is small. However, the heat pulse method requires three probes to be pierced into the plant to measure the vascular fluid flow rate, which causes greater mechanical damage to the plant than the Granier method.
  • vascular bundle liquid flow velocity sensor a vascular bundle liquid flow velocity measuring device, and a vascular bundle liquid flow velocity measuring method that cause less damage to plants mechanically or thermally.
  • the vascular bundle liquid flow rate sensor of the first aspect is characterized in that it has only a heater-equipped temperature probe provided with a first temperature sensor and a heater as a probe to be pierced into the plant.
  • the vascular bundle liquid flow rate sensor of the second aspect is characterized in that, in the first aspect, it has a second temperature sensor that measures the ambient temperature.
  • a vascular bundle liquid flow rate measuring device comprises a vascular bundle liquid flow rate sensor having a heater-equipped temperature probe provided with a first temperature sensor and a heater, a support portion supporting the heater-equipped temperature probe, and characterized by comprising a power source that intermittently supplies power to a heater, and a computing unit that obtains a vascular bundle fluid flow rate based on the temperature rise of the vascular bundle fluid due to heating of the heater measured by the first temperature sensor.
  • the vascular bundle liquid flow rate measuring device of the fourth aspect is characterized in that, in the third aspect, it is equipped with a second temperature sensor that measures the outside air temperature.
  • a fifth aspect of the vascular bundle fluid flow velocity measuring device is the third or fourth aspect, wherein the vascular bundle fluid flow velocity sensor comprises a pair of readout electrodes arranged at a predetermined interval; a moisture content probe provided with a water-sensitive membrane that spans electrodes, and the moisture content probe is supported by the support part in a state of being aligned in parallel with the temperature probe with heater.
  • Characterized by A sixth aspect of the vascular bundle liquid flow rate measuring device is the fifth aspect, wherein the vascular bundle liquid flow rate sensor is provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval. a conductivity probe, and the electrical conductivity probe is supported by the supporting portion in a state of being aligned in parallel with the moisture content probe.
  • the vascular bundle liquid flow rate measuring device of the seventh aspect is the vascular bundle liquid flow rate measuring device according to any one of the third to sixth aspects, wherein the vascular bundle liquid flow rate sensor has a temperature probe provided with a third temperature sensor, and the temperature probe is the It is characterized in that it is supported by the support portion while being aligned in parallel with the temperature probe with heater.
  • the vascular bundle liquid flow velocity measuring method of the eighth aspect includes piercing a plant with a heater-equipped temperature probe provided with a first temperature sensor and a heater, intermittently supplying power to the heater, and heating the vascular bundle by heating the heater. The method is characterized in that the temperature rise of the liquid is measured by the first temperature sensor, and the vascular bundle liquid flow velocity is obtained based on the temperature rise.
  • a vascular bundle liquid flow velocity measuring method of a ninth aspect is the eighth aspect, wherein a reading electrode pair consisting of a pair of electrodes arranged at a predetermined interval and a water-sensitive membrane bridged over the pair of electrodes are The water content probe provided is pierced into the plant, the impedance or capacitance between the pair of electrodes constituting the readout electrode pair is measured, and the water content of the plant is determined from the impedance measurement value or the capacitance measurement value. and determining a vascular fluid flow rate based on said elevated temperature and said moisture content.
  • the vascular bundle liquid flow velocity measuring method of the tenth aspect is characterized by piercing the plant with an electrical conductivity probe provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval, The electrical conductivity is obtained from the electrical resistance between the pair of electrodes constituting the electrical conductivity electrode pair, and the electrical conductivity measurement is used to compensate the moisture content measurement.
  • the vascular bundle liquid flow velocity measuring method of the eleventh aspect is, in any one of the eighth to tenth aspects, obtaining a natural temperature gradient from the temperature of the plant or the ambient temperature, and correcting the elevated temperature using the natural temperature gradient. It is characterized by
  • the only probe that pierces the plant is the heater-equipped temperature probe, so that mechanical damage to the plant can be reduced.
  • the second aspect it is possible to improve the robustness against the external environment by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient obtained from the outside air temperature.
  • the heating by a heater is intermittent, the thermal damage inflicted on a plant can be made small. Further, by piercing a plant with a temperature probe with a heater and acquiring a measurement value of the first temperature sensor, the vascular bundle liquid flow velocity can be measured.
  • the robustness against the external environment can be enhanced.
  • the vascular bundle liquid flow velocity can be measured with high accuracy by considering the water content measured by the water content probe.
  • the water content of the plant can be measured with high accuracy by compensating the water content measurement value based on the electrical conductivity of the water in the plant measured by the electrical conductivity probe.
  • the vascular bundle liquid flow rate can be determined.
  • the vascular bundle liquid flow rate can be obtained with high accuracy by considering the plant water content.
  • the water content of the plant can be accurately measured by compensating the water content measurement value based on the electrical conductivity of the water in the plant measured by the electrical conductivity probe.
  • the eleventh aspect by determining the vascular bundle liquid flow rate in consideration of the natural temperature gradient determined from the temperature of the plant or the ambient temperature, the robustness to the external environment can be enhanced.
  • FIG. 1 is a plan view of a vascular bundle liquid flow rate sensor according to a first embodiment
  • FIG. FIG. 2 is a side view of the vascular bundle liquid flow rate sensor according to the first embodiment
  • FIG. 2 is an explanatory diagram of a usage state of the vascular bundle liquid flow rate sensor according to the first embodiment
  • 4 is a graph showing temperature changes of vascular fluid.
  • 1 is an explanatory diagram of a vascular bundle liquid flow rate measuring device according to a first embodiment
  • FIG. FIG. 11 is a plan view of a vascular bundle liquid flow rate sensor according to a second embodiment
  • FIG. 11 is a plan view of a vascular bundle liquid flow rate sensor according to a third embodiment
  • 1 is a vertical cross-sectional view of a moisture content probe;
  • FIG. (A) is a diagram showing an analysis model.
  • FIG. (B) is a temperature distribution map.
  • 4 is a graph showing the relationship between heat pulse velocity and flow velocity obtained by thermal analysis. It is a graph which shows the relationship between the heat pulse velocity calculated
  • the vascular bundle liquid flow rate sensor 1 according to the first embodiment of the present invention can be attached to details of a plant such as the terminal of a new shoot or fruit stalk.
  • the vascular fluid flow sensor 1 has the function of measuring the flow velocity and volume of vascular fluid (vascular fluid or phloem fluid) in plant details.
  • the vascular bundle liquid flow rate sensor 1 has a support portion 10 .
  • a temperature probe 20 with a heater is provided on the supporting portion 10 .
  • the vascular bundle liquid flow velocity sensor 1 is attached to the plant by piercing the plant with the heater-equipped temperature probe 20 .
  • the supporting portion 10 and the temperature probe 20 with heater are formed by processing a semiconductor substrate.
  • Semiconductor substrates include silicon substrates and SOI (Silicon on Insulator) substrates.
  • SOI Silicon on Insulator
  • MEMS techniques using thin film formation such as sputtering and vapor deposition are used for processing semiconductor substrates.
  • the vascular bundle liquid flow rate sensor 1 may be formed by a method other than the MEMS technology, and the material is not limited to a semiconductor substrate.
  • the supporting portion 10 is a member that supports the temperature probe 20 with heater.
  • the supporting portion 10 is a rectangular plate in plan view, and the heater-equipped temperature probe 20 is supported on one side of the supporting portion 10 .
  • the temperature probe with heater 20 is a bar-shaped member and is provided in a cantilever shape on the edge of the support section 10 .
  • the shape of the tip of the temperature probe 20 with heater is preferably a pointed shape such as a triangle. If the tip of the heater-equipped temperature probe 20 has a sharp shape, it is possible to reduce the penetration resistance when sticking into the details of the plant.
  • the heater-equipped temperature probe 20 is sized so that it can be placed by piercing into details of a plant, such as the end of a plant's new shoots and fruit stalks, which have a stem diameter or shaft diameter of several millimeters.
  • the length of the heater-equipped temperature probe 20 (the length from the proximal end to the distal end in the axial direction) is such that when the probe is pierced into the details of the plant and installed, the tip is placed in the vessel or phloem of the details of the plant. sized to obtain.
  • the length of the temperature probe 20 with heater is, for example, 0.5 to 5 mm.
  • the width of the heater-equipped temperature probe 20 is not particularly limited, but is, for example, 50 to 500 ⁇ m. The narrower the width of the heater-equipped temperature probe 20, the smaller the mechanical damage to the plant.
  • the vascular bundle liquid flow rate sensor 1 is a thin plate as a whole.
  • the thickness of the heater-equipped temperature probe 20 is set thinner than the width of the vessel and phloem of the plant.
  • the thickness of the heater-equipped temperature probe 20 is, for example, 50 to 300 ⁇ m, depending on the type of plant to be measured and the thickness of the stem. If the thickness is 50 ⁇ m or more, the strength is sufficient, and there is no risk of breakage when the heater-equipped temperature probe 20 is inserted into or removed from the stem of a plant or the like.
  • the diameter of the vessel and the sieve canal is about 100 to 400 ⁇ m. blockage can be suppressed.
  • the thickness of the supporting portion 10 is not particularly limited, and may be the same thickness as the temperature probe 20 with heater, or may be thicker than the temperature probe 20 with heater.
  • a first temperature sensor 21 is provided at the tip of the temperature probe 20 with heater.
  • the first temperature sensor 21 has a function of sensing temperature, and is not particularly limited as long as it has a size that can be arranged at the tip of the temperature probe 20 with heater.
  • a resistance temperature detector, a pn junction diode, a thermocouple, or the like can be used. Since the vascular bundle liquid flow rate sensor 1 is assumed to be used outdoors, it is preferable to use a resistance temperature detector that does not depend on light as the first temperature sensor 21 .
  • Two electrode pads 21e, 21e connected to the first temperature sensor 21 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG.
  • the resistance temperature detector is formed by depositing a thin film of a metal such as Au, which is suitable as a resistance temperature detector, on a semiconductor substrate by, for example, a sputtering method, a vapor deposition method, or the like. A resistance temperature detector increases its electrical resistance as the temperature rises.
  • a constant current source is connected between the two electrode pads 21e, 21e. A constant current source is used to supply a constant current to the RTD, and a voltmeter is used to measure the voltage. The temperature can be calculated from the voltage measured by the voltmeter.
  • a heater 22 is provided in the heater-equipped temperature probe 20 .
  • the position of the heater 22 is not limited to the tip as long as it can supply heat to the temperature probe 20 with heater.
  • the heater 22 is not particularly limited as long as it has a size that can be arranged in the temperature probe 20 with heater.
  • thin films of Au (gold), Pt (platinum), Ti (titanium), Cr (chromium), etc. are formed by sputtering, vapor deposition, etc., and processed into thin thread micro heaters (herein referred to as "filament heaters").
  • filament heaters a pn junction diode formed using an oxidation diffusion furnace may be employed as the heater 22 .
  • Two electrode pads 22e, 22e connected to the heater 22 via wiring are provided on the upper surface of the support portion 10.
  • a DC constant power supply is connected between the two electrode pads 22e, 22e. Heat can be generated by applying an electric current to the heater 22 .
  • Vascular bundle liquid flow rate measurement method Next, a method for measuring the vascular bundle liquid flow rate by the vascular bundle liquid flow rate sensor 1 will be described.
  • the vascular bundle liquid flow rate sensor 1 is attached to the end of a shoot, fruit stalk, or the like of a plant to be measured. Specifically, as shown in FIG. 3, the temperature probe 20 with heater of the vascular bundle liquid flow velocity sensor 1 is attached by piercing the plant.
  • the tip of the heater-equipped temperature probe 20 passes through the cortical layer CO of the plant and reaches the phloem PH. Further, when the tip of the heater-equipped temperature probe 20 is pierced deeply, it reaches the vessel XY and then the pith PI.
  • the tip of the heater-equipped temperature probe 20 is placed on the phloem PH.
  • the tip of heater-equipped temperature probe 20 is placed in vessel XY. An example of measuring the flow velocity of a vessel fluid will be described below.
  • Electric power is intermittently supplied to the heater 22 while the temperature probe 20 with heater is pierced into the plant. That is, a pulsed current is supplied to the heater 22 .
  • a time width (pulse width) for supplying power to the heater 22 is predetermined.
  • the vessel fluid is heated only while the heater 22 is driven. At this time, the temperature of the vessel fluid changes with time as shown in FIG. That is, the temperature of the vascular fluid increases while being heated by the heater 22, and the temperature of the vascular fluid decreases when the heating ends.
  • T 1 be the temperature of the vessel fluid at the time t 1 when heating by the heater 22 is started.
  • T2 the temperature of the vessel fluid at the time t2 when heating by the heater 22 ends.
  • the temperature rise ⁇ T of the vascular fluid due to heating by the heater 22 is obtained by subtracting T 1 from T 2 .
  • T3 be the temperature of the vessel fluid at time t3 when a predetermined time has passed since the end of heating by the heater 22.
  • the temperature rise ⁇ T of the vascular fluid due to heating by the heater 22 may be obtained by subtracting T3 from T2 .
  • the time from t2 to t3 is set to a time during which the temperature of the vessel fluid is sufficiently lowered. In any case, since the temperature of the vessel fluid can be measured by the first temperature sensor 21, the temperature rise .DELTA.T can be obtained from the measured value of the first temperature sensor 21.
  • the heat pulse velocity V h is expressed by the following equation (1).
  • D is the thermal diffusivity of the vessel [m 2 /s]
  • ⁇ T u is the temperature rise of the vessel fluid [°C]
  • ⁇ T 0 is the temperature rise of the vessel fluid when the flow velocity is 0 [ °C]
  • t is the heating time [s].
  • the increased temperature ⁇ T u is a measured value obtained by the first temperature sensor 21 .
  • the thermal diffusivity D and the temperature rise ⁇ T 0 of the vascular fluid when the flow velocity is 0 are constants depending on the plant to be measured, and are determined in advance by experiments or the like.
  • the heating time t is set to the optimum time for measuring the vascular fluid flow rate depending on the plant. Heating time t is, for example, 20 to 40 seconds.
  • the heat pulse velocity V c after correction may be obtained based on the following equation (2).
  • a, b, and c are correction coefficients, which are determined in advance by experiments or the like.
  • the vessel fluid flow velocity u is proportional to the heat pulse velocity. That is, the vascular fluid flow velocity u is obtained by Equation (3).
  • Equation (3) ⁇ is a coefficient, which is determined in advance by experiments or the like.
  • V is the heat pulse velocity V h before correction or the heat pulse velocity V c after correction.
  • the flow rate can be determined from the velocity of the vascular fluid. As shown in Equation (4), the flow rate Q of the vessel fluid is obtained by multiplying the flow velocity u [m/s] by the cross-sectional area A [m 2 ] of the vessel.
  • the flow velocity u and the flow rate Q of the vascular fluid can be obtained based on the temperature rise ⁇ T u of the vascular fluid measured by the first temperature sensor 21 . If the tip of the heater-equipped temperature probe 20 is placed on the phloem PH of the plant, the velocity and flow rate of the phloem sap can be obtained.
  • the heater 22 is driven at predetermined intervals, and the vascular bundle liquid flow rate is obtained each time.
  • the interval at which the heater 22 is driven is not particularly limited. If the interval is shortened, the time resolution of the flow velocity can be increased.
  • the temperature probe 20 with heater is the only probe that pierces the plant. Since there is no need to pierce the plant with multiple probes, mechanical damage to the plant can be reduced. Moreover, since the heating by the heater 22 is intermittent, it is possible to reduce the thermal damage to the plants as compared with constant heating. Furthermore, since the heater 22 is driven intermittently, the power consumption of the vascular bundle liquid flow velocity sensor 1 can be reduced. For example, the vascular bundle liquid flow rate sensor 1 can be continuously driven by a battery for several months to half a year, which is the plant cultivation period.
  • the vascular fluid flow velocity measuring device AA has a vascular fluid flow velocity sensor 1 .
  • a plurality of vascular bundle liquid flow velocity sensors 1 are attached to a plurality of plants in an agricultural field.
  • the vascular bundle fluid flow velocity sensor 1 may be attached to a plurality of locations on one plant, or may be attached to all or a portion of specimens of a plurality of plants. Alternatively, only one vascular bundle liquid flow velocity sensor 1 may be provided.
  • a data logger DR is connected to the vascular bundle fluid flow rate sensor 1 to supply power and collect measured values.
  • a data logger DR supplies power to the heater 22 intermittently. Therefore, the data logger DR corresponds to the "power source" described in the claims. Also, the data logger DR has a built-in wireless communication device.
  • a server device SV is installed in a building, etc., adjacent to an agricultural site.
  • a wireless communication device is connected to the server device SV, and is configured to be able to wirelessly communicate with the data logger DR.
  • the data logger DR transmits the measurement data of the vascular bundle fluid flow rate sensor 1 to the server device SV via the wireless communication device.
  • the server device SV analyzes the received measurement data and determines the vascular fluid flow rate. The details are as described above. Therefore, the server device SV corresponds to the "computing section" described in the claims.
  • the connection between the data logger DR and the server device SV is not limited to wireless, and may be wired. Data accumulated in the data logger DR may be stored in a storage medium, and the storage medium may be read by the server device SV.
  • the power source is not limited to the data logger DR as long as it can supply power to the heater 22 .
  • the calculation unit is not limited to the server device SV as long as it can obtain the vascular bundle liquid flow velocity.
  • the vascular bundle liquid flow rate sensor 2 has a temperature probe 20 with a heater and a support portion 10 as in the first embodiment.
  • the same reference numerals are given to the same members as in the first embodiment, and the description thereof is omitted.
  • a second temperature sensor 11 is provided on the support portion 10 .
  • a sensor similar to the first temperature sensor 21 can be employed as the second temperature sensor 11 .
  • Two electrode pads 11e, 11e connected to the second temperature sensor 11 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG. The temperature can be measured by the second temperature sensor 11 in the same manner as the first temperature sensor 21 .
  • the second temperature sensor 11 is for measuring the outside air temperature around the plant. Heat insulation is provided between the heater-equipped temperature probe 20 and the second temperature sensor 11 so that the heat of the heater 22 is less likely to be transmitted to the second temperature sensor 11 .
  • the vascular flux sensor 2 is formed by processing an SOI substrate consisting of a support substrate (Si), an oxide film layer (SiO 2 ) and an active layer (Si).
  • a first temperature sensor 21, a heater 22 and a second temperature sensor 11 are formed on the surface of the active layer. Then, the active layer between the heater-equipped temperature probe 20 and the second temperature sensor 11 is removed so that an oxide film layer is interposed therebetween. Thereby, heat insulation can be provided between the temperature probe 20 with heater and the second temperature sensor 11 .
  • a natural temperature gradient occurs when a heater is activated in a greenhouse where plants are grown, or when sunlight or wind changes around the plants.
  • a natural temperature gradient affects the measurement value of the first temperature sensor 21, degrading the measurement accuracy of the vascular fluid flow rate. Therefore, in this embodiment, the outside air temperature measured by the second temperature sensor 11 is used to correct the influence of the natural temperature gradient.
  • the heater 22 is intermittently driven when measuring the vascular fluid flow rate. Then, the temperature rise ⁇ T 1 of the vascular bundle fluid due to heating by the heater 22 is measured by the first temperature sensor 21 . At the same time, the second temperature sensor 11 measures the natural temperature gradient ⁇ T 2 . If the temperature rise ⁇ T 1 is the difference in the measured values of the first temperature sensor 21 between t 1 and t 2 , then the natural temperature gradient ⁇ T 2 is the difference in the measured values of the second temperature sensor 11 between t 1 and t 2 .
  • the temperature rise ⁇ T 1 is the difference in the measured values of the first temperature sensor 21 between t 2 and t 3
  • the natural temperature gradient ⁇ T 2 is the difference in the measured values of the second temperature sensor 11 between t 2 and t 3 . is required as
  • the vascular bundle liquid flow velocity can be obtained by removing the influence of the natural temperature gradient.
  • the robustness against the external environment can be enhanced by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient obtained from the outside air temperature.
  • the second temperature sensor 11 may not be provided on the support portion 10. That is, a temperature sensor physically independent of the temperature probe 20 with heater may be used as the second temperature sensor 11 . Therefore, the second temperature sensor may be a separate member from the vascular bundle liquid flow velocity sensor.
  • vascular bundle liquid flow rate sensor 3 according to a third embodiment of the present invention will be described.
  • the vascular bundle liquid flow rate sensor 3 is obtained by adding a moisture content probe 30, an electrical conductivity probe 40 and a temperature probe 50 to the vascular bundle liquid flow rate sensor 1 of the first embodiment. Since the rest of the configuration is the same as that of the first embodiment, the same reference numerals are assigned to the same members and the description thereof is omitted.
  • the water content probe 30 is used to measure the water content of plants. The measured water content is used to compensate for the vascular flux measurements. If no moisture content compensation is required, the vascular fluid flow rate sensor 3 may not be provided with the moisture content probe 30 .
  • Electrical conductivity probe 40 is used to measure the electrical conductivity of water in plants. The measured electrical conductivity is used to compensate for moisture content measurements. If compensation by electrical conductivity is not required, the electrical conductivity probe 40 may not be provided in the vascular bundle liquid flow rate sensor 3 .
  • the temperature probe 50 is used for temperature measurement of plants. The measured temperature is used to compensate for some or all of the vascular flux measurements, moisture content measurements and electrical conductivity measurements. The temperature probe 50 may not be provided in the vascular bundle liquid flow rate sensor 3 when there is no need for temperature compensation.
  • the base ends of the probes 20, 30, 40, and 50 are supported on one side of the support portion 10 while being arranged in parallel on the same plane.
  • the order in which the probes 20, 30, 40, and 50 are arranged is not particularly limited.
  • the temperature probe 50 is preferably arranged at a position distant from the temperature probe 20 with heater. This makes it difficult for the heat of the heater 22 to be conducted to the temperature probe 50, so that the natural temperature gradient can be accurately measured.
  • a reading electrode pair 31 is provided at the tip of the moisture content probe 30 .
  • the readout electrode pair 31 consists of a pair of electrodes 32, 32 arranged at a predetermined interval. Two electrode pads 32e, 32e connected to the two electrodes 32, 32 via wiring are arranged on the upper surface of the support portion 10. As shown in FIG. Also, the water content probe 30 is provided with a water sensitive film 33 .
  • the water content probe 30 When the water content probe 30 is pierced into the plant, the water inside the plant is absorbed by the water-sensitive membrane 33 .
  • the amount of water absorbed by the water-sensitive film 33 is read out as impedance or capacitance between the electrodes 32,32. This allows the water content of the plant to be measured.
  • a pair of electrodes 32, 32 are formed on the surface of the semiconductor substrate SS that constitutes the moisture content probe 30.
  • the size of the electrode 32 is not particularly limited as long as it has a size that can be arranged at the tip of the moisture content probe 30 .
  • the electrode 32 is formed, for example, by depositing a metal thin film such as Au or Al on the semiconductor substrate SS by sputtering, vapor deposition, or the like.
  • the water-sensitive film 33 is formed on the pair of electrodes 32, 32 so as to span them.
  • the water-sensitive film 33 has a function of absorbing water and is made of a material having a dielectric constant lower than that of water.
  • the term "water-sensitive film” means a film having a function of absorbing moisture and formed of a material having a lower relative dielectric constant than water. Since the dielectric constant of water at a temperature of 20.degree.
  • the relative permittivity of the water-sensitive film 33 is preferably 1 to 3, because the larger the difference between the relative permittivity of the water-sensitive film 33 and the relative permittivity of water, the higher the accuracy of measurement of the water content.
  • the material of the water-sensitive film 33 is preferably insoluble in water and thermally and chemically stable.
  • Lithium chloride, metal oxides, ceramics, polymer materials, and the like can be used as materials for the water sensitive film 33 .
  • Metal oxides and ceramics include aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2 ).
  • Metal oxides and ceramics are insoluble in water.
  • metal oxides and ceramics are hard materials and require high-temperature heat treatment during the manufacturing process.
  • polymer materials have excellent applicability to plants and are soft. Examples of polymer materials include polyimide and polyvinyl alcohol.
  • polyimide is preferable from the viewpoint of ease of mounting on a semiconductor Si substrate.
  • polyimide since polyimide does not easily dissolve in water, it is suitable for long-term measurement of water content in plants. Therefore, if the water-sensitive film 33 is made of polyimide, the water-sensitive film 33 is difficult to dissolve in the water in the plant, and long-term measurement is possible.
  • the surface of the water-sensitive film 33 may be hydrophilized. This makes it easier for the water-sensitive film 33 to absorb the water in the plant, thereby increasing the response speed of the water content measurement.
  • the surface of the water-sensitive film 33 may be treated with oxygen plasma.
  • oxygen plasma When the surface of polyimide is treated with oxygen plasma, carbonyl groups are introduced to make the surface of polyimide hydrophilic.
  • carbonyl groups are introduced to make the surface of polyimide hydrophilic.
  • the surface area of polyimide Since the surface area of the water-sensitive membrane 33 increases as the water-sensitive membrane 33 becomes hydrophilic, the moisture in the plant is easily absorbed by the water-sensitive membrane 33, and the response speed of water content measurement increases.
  • an electrical conductivity electrode pair 41 is provided at the tip of the electrical conductivity probe 40 .
  • the electrical conductivity electrode pair 41 consists of a pair of electrodes 42, 42 arranged at a predetermined interval.
  • the electrical conductivity electrode pair 41 is for measuring the electrical conductivity of moisture (such as vascular fluid) present between the electrodes 42,42.
  • the size of the electrode 42 is not particularly limited as long as it has a size that can be arranged at the tip of the electrical conductivity probe 40 .
  • the electrode 42 is formed, for example, by depositing a metal thin film such as Au or Al on the semiconductor substrate SS by sputtering, vapor deposition, or the like.
  • Two electrode pads 42e, 42e connected to the two electrodes 42, 42 via wiring are provided on the upper surface of the support portion 10. Electrical conductivity can be measured by the AC two-electrode method. That is, between a pair of electrode pads 42e, 42e corresponding to the pair of electrodes 42, 42, an AC power supply and an ammeter are connected in series. A current is supplied between the electrodes 42, 42 with an AC power source, and the current flowing between the electrodes 42, 42 is measured with an ammeter. Based on Ohm's law, the electrical resistance between the electrodes 42, 42 is calculated from the current measured by the ammeter, and the electrical conductivity is obtained from the electrical resistance.
  • the electrical conductivity measurement range is at least 0 to 10 mS/cm.
  • the measurement range of electrical conductivity by the AC two-electrode method depends on the cell constant K of the electrode pair.
  • the cell constant K is obtained by dividing the distance L between the electrodes by the surface area S of the electrodes. That is, the electrical conductivity measurement range depends on the shape of the electrode 42 .
  • the shape of the electrode 42 can be selected from various shapes such as a three-dimensional electrode, a comb-teeth electrode, and a planar electrode.
  • a third temperature sensor 51 is provided at the tip of the temperature probe 50 .
  • a sensor similar to the first temperature sensor 21 can be employed as the third temperature sensor 51 .
  • Two electrode pads 51e, 51e connected to the third temperature sensor 51 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG. The temperature can be measured by the third temperature sensor 51 in the same manner as the first temperature sensor 21 .
  • the moisture content probe 30, electrical conductivity probe 40, and temperature probe 50 may be configured as separate probes, or a part or all of them may be configured as a single probe.
  • the electrical conductivity electrode pair 41 and the third temperature sensor 51 may be mounted on one probe, and the electrical conductivity probe 40 and the temperature probe 50 may be integrated.
  • Vascular bundle liquid flow rate measurement method Next, a method for measuring the vascular bundle liquid flow rate by the vascular bundle liquid flow rate sensor 3 will be described.
  • the vascular bundle liquid flow rate sensor 3 is attached to the shoot end, fruit stalk, or the like of the plant to be measured. Specifically, as shown in FIG. 7, all the probes 20, 30, 40, 50 of the vascular bundle liquid flow velocity sensor 3 are attached by piercing the plant. At this time, probes 20, 30, 40, 50 are placed along vessel XY and phloem PH of the plant. When measuring the flow velocity of the sieve canal, the tips of the probes 20, 30, 40, 50 are placed on the sieve canal PH. When measuring the flow rate of vessel fluid, the tips of probes 20, 30, 40, 50 are placed in vessel XY. An example of measuring the flow velocity of a vessel fluid will be described below.
  • the water-sensitive film 33 only needs to be formed in a region covering at least the readout electrode pair 31 .
  • the water-sensitive film 33 is provided from the arrangement portion of the readout electrode pair 31 to the proximal end portion of the moisture content probe 30 .
  • the water-sensitive film 33 is provided so as to cover a part of the upper surface of the support portion 10 from the base end portion of the moisture content probe 30 . In this way, part of the water-sensitive membrane 33 is arranged outside the plant.
  • the water-sensitive film 33 absorbs water according to the amount of water in the plant. In order to capture the decrease in water in the plant, it is necessary to dehydrate the water absorbed by the water-sensitive membrane 33 . If part of the water-sensitive membrane 33 is arranged outside the plant, dehydration is promoted from this part exposed to the outside air. Since dehydration from the water-sensitive film 33 is smoothly performed, the response speed when the water content decreases is increased.
  • Equation (6) The relationship between the impedance Z [k ⁇ ] between the electrodes 32, 32 and the water content WC [%] of the plant is represented by Equation (6).
  • Z 0 is the impedance [k ⁇ ] when the water-sensitive film 33 does not absorb moisture
  • B is a coefficient representing the sensitivity of the sensor.
  • Z 0 and B are determined in advance by testing.
  • the impedance Z between the electrodes 32, 32 is measured when measuring the water content of the plant. Then, the water content WC of the plant is obtained from the impedance measurement value Z based on Equation (6).
  • the water content of the plant can be measured by piercing the water content probe 30 into the plant and reading the impedance or capacitance from the readout electrode pair 31 .
  • the water content measurements obtained by the water content probe 30 are dependent on the electrical conductivity of water within the plant. Therefore, it is preferable to compensate the moisture content measurements with electrical conductivity.
  • the electrical conductivity of the water (mainly vascular fluid) in the plant can be measured by the electrical conductivity electrode pair 41 of the electrical conductivity probe 40 .
  • the moisture content measurements are compensated based on the conductivity measured by the conductivity probe 40 . Thereby, the water content of the plant can be measured with high accuracy.
  • the sensor sensitivity coefficient B in the formula (6) is determined in advance using solutions with various electric conductivities.
  • the electric conductivity of the water inside the plant is measured at the same time.
  • the water content WC of the plant is determined from the impedance Z based on equation (6) applying the sensor sensitivity coefficient B corresponding to the measured electrical conductivity.
  • the sensor sensitivity coefficient B linearly depends on the electrical conductivity ⁇ . Therefore, the impedance Z is measured in advance by the moisture content probe 30 using solutions with various electric conductivities ⁇ , and the sensor sensitivity coefficient B in the equation (6) is obtained, and the electric conductivity ⁇ and the sensor sensitivity coefficient B is fitted with a linear function. That is, the coefficients a and b of the relational expression between the electric conductivity ⁇ and the sensor sensitivity coefficient B expressed by the following equation (7) are obtained.
  • the water content probe 30 measures the impedance Z and the electrical conductivity probe 40 measures the electrical conductivity ⁇ . Based on equation (7), the sensor sensitivity coefficient B is obtained from the electrical conductivity measurement value ⁇ . The water content WC of the plant is obtained from the impedance Z based on Equation (6) to which the obtained sensor sensitivity coefficient B is applied.
  • the electrical conductivity measurements obtained by the electrical conductivity probe 40 are temperature dependent. In general, conductivity measurements vary by 1-3% per degree Celsius. Therefore, it is preferable to temperature compensate the electrical conductivity measurements.
  • the temperature of water (mainly vascular fluid) in the plant can be measured by the third temperature sensor 51 of the temperature probe 50 .
  • the conductivity measurements are compensated based on the temperature measured by the temperature probe 50 .
  • the electrical conductivity of water in the plant can be obtained with high accuracy.
  • the water content can be determined with high accuracy.
  • Temperature compensation of the electrical conductivity measurement value is performed, for example, by the following procedure. That is, based on equation (8), the electrical conductivity measurement value is converted into electrical conductivity ⁇ 25 [S/m] at a reference temperature of 25°C.
  • is the temperature coefficient
  • T is the temperature of the liquid to be measured [°C]
  • is the electrical conductivity measurement value [S/m].
  • the temperature coefficient ⁇ is obtained from equation (9).
  • T 1 is the temperature other than 25° C. and T 2 [° C.]
  • T 2 is the temperature other than 25° C. and T 1 [° C.]
  • ⁇ 1 is the electrical conductivity measurement value at T 1 [S/m].
  • ⁇ 2 is the conductivity measurement [S/m] at T 2 .
  • the moisture content measured by the moisture content probe 30 does not depend on the temperature.
  • the measured moisture content may be temperature dependent.
  • the moisture content measurements may be temperature compensated. That is, the moisture content measurements are directly compensated based on the temperature measured by the temperature probe 50 . Thereby, the water content can be measured with high accuracy.
  • the vessel fluid velocity measurement is basically the same as in the first embodiment. That is, power is intermittently supplied to the heater 22 of the temperature probe 20 with heater, and the first temperature sensor 21 measures the temperature rise ⁇ T u of the vascular fluid due to the heating of the heater 22 . Then, the vascular liquid flow velocity u is obtained from the temperature rise ⁇ T u according to equations (1), (2) and (3).
  • Equation (10) there is a relationship represented by Equation (10) between the vessel liquid flow velocity u and the heat pulse velocity Vh .
  • ⁇ b is the dry density of the vessel [g/cm 3 ]
  • ⁇ s is the density of the vessel liquid [g/cm 3 ]
  • WC is the water content [%]
  • c s is The dry specific heat capacity of the vessel [J/gK]
  • cdw is the specific heat capacity of the vessel liquid [J/gK].
  • ⁇ b , ⁇ s , c s , and cdw are constants that depend on the plant to be measured, and are determined in advance by experiments or the like.
  • the coefficient ⁇ in formula (3) depends on the water content WC as shown in formula (11).
  • the coefficient ⁇ is obtained from the measured water content WC.
  • the vascular fluid flow velocity u is determined based on the equation (3). That is, the vascular bundle liquid flow velocity u is determined based on the water content WC measured by the water content probe 30 in addition to the temperature rise ⁇ T u measured by the temperature probe 20 with heater.
  • the vascular bundle liquid flow velocity u can be measured with high accuracy.
  • a natural temperature gradient can be measured by the third temperature sensor 51 of the temperature probe 50 . That is, the natural temperature gradient ⁇ T 2 is obtained from the measured value (plant temperature) of the third temperature sensor 51 .
  • the natural temperature gradient ⁇ T 2 is used to correct the elevated temperature ⁇ T 1 .
  • the details are the same as in the second embodiment. Robustness to the external environment can be enhanced by determining the vascular flux flow rate by considering the natural temperature gradient obtained from the plant temperature.
  • FIG. 9A shows an analysis model.
  • the probe of the vascular flux sensor is only a temperature probe with a heater.
  • a filament heater with a resistance value of 130 ⁇ was mounted on the temperature probe with heater.
  • the tip of the heater-equipped temperature probe was pierced into a 3 mm diameter tube that simulated a plant. Water was run through the tube.
  • FIG. 9B shows the temperature distribution when power is supplied to the filament heater.
  • the temperature rise ⁇ T u was obtained from the difference between the water temperature at the start of heating by the heater and the water temperature at the end of heating, and the heat pulse velocity V h was obtained according to Equation (1).
  • the thermal diffusivity D was set to 1.47 ⁇ 10 ⁇ 7 m 2 /s, which is the value of water.
  • the heat pulse velocity V h was determined by the above procedure while changing the flow rate of water flowing through the tube in the range of 0 to 4 mm/s.
  • the obtained heat pulse velocity Vh was analyzed to determine the correction coefficient of equation (2).
  • FIG. 10 shows the relationship between the corrected heat pulse velocity V c and the flow velocity. From FIG. 10, it was confirmed that the vascular bundle liquid flow velocity sensor can measure changes in flow velocity in the range of 0 to 4 mm/s.
  • a vascular bundle liquid flow velocity sensor having the configuration shown in FIG. 1 was manufactured.
  • a wet oxidation treatment was performed for 2 hours to form an oxide film on the surface of the silicon wafer to form an insulating layer.
  • a Cr layer having a thickness of 0.04 ⁇ m was provided as an adhesive layer on the insulating layer, and a corrosion-resistant Au layer having a thickness of 0.2 ⁇ m was formed on the adhesive layer by sputtering.
  • a temperature-measuring resistor and a filament heater with a resistance value of 130 ⁇ were patterned, and a photoresist (SU-8 3005) was patterned as a wiring protective film.
  • PMER resist
  • a needle-like probe was produced by dry etching.
  • the dimensions of the supporting part of the vascular bundle liquid flow rate sensor are 5 mm x 4 mm.
  • the heated temperature probe is 3 mm long and 480 ⁇ m wide.
  • the angle of the tip of the temperature probe with heater is 60°.
  • the support was packaged with an insulating material to reduce the effects of external temperature changes during use.
  • the heat pulse velocity V h was determined by the above procedure while changing the flow rate of water flowing through the tube in the range of 0 to 4 mm/s.
  • the obtained heat pulse velocity Vh was analyzed to determine the correction coefficient of equation (2).
  • FIG. 11 shows the relationship between the corrected heat pulse velocity V c and the flow velocity. From FIG. 11, it was confirmed that the vascular bundle liquid flow velocity sensor can measure changes in flow velocity in the range of 0 to 4 mm/s.
  • the water content was measured using tomatoes (Solanum lycopersicum L.) under growing conditions. Tomatoes were seeded in potting soil (420036, DCM Holdings Co., Ltd.) and grown in an artificial climate chamber (NC-410HC, Nihon Ika Kikai Seisakusho Co., Ltd.).
  • the attachment position of the vascular bundle liquid flow velocity sensor was set at a position 150 mm from the soil surface.
  • the environment inside the artificial climate chamber was set at a temperature of 25° C., a humidity of 50%, and a carbon dioxide concentration of 500 ppm. The amount of light in the artificial weather device was changed according to the actual time.
  • Fig. 12 shows the change over time in the vascular fluid flow rate measured by the vascular bundle liquid flow rate sensor. From FIG. 12, it was confirmed that the vessel fluid flow rate changed depending on the amount of light. This is thought to be due to changes in the amount of light (promotion/suppression of transpiration) in the state of absorbing water from the potting soil, and thus changes in vessel liquid flow velocity. From this, it was confirmed that the vascular bundle fluid flow rate sensor can measure the plant vascular bundle liquid flow rate in real time in a non-destructive manner.
  • Reference Signs List 1 2, 3 vascular fluid flow rate sensor 10 support 11 second temperature sensor 20 temperature probe with heater 21 first temperature sensor 22 heater 30 moisture content probe 31 readout electrode pair 33 water sensitive membrane 40 electrical conductivity probe 41 electricity conductivity electrode pair 50 temperature probe 51 third temperature sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Provided are a vascular sap flow rate sensor, a vascular sap flow rate measuring device, and a vascular sap flow rate measuring method that cause little mechanical or thermal damage to a plant. A vascular sap flow rate sensor (1) includes, as a probe that pierces the plant, only a heater-attached temperature probe (20) provided with a first temperature sensor (21) and a heater (22). The vascular sap flow rate measuring device includes: the vascular sap flow rate sensor (1); a power source for supplying power intermittently to the heater (22); and a calculating unit for obtaining a vascular sap flow rate on the basis of a rising temperature of vascular sap resulting from heating by the heater (22), said rising temperature being measured by the first temperature sensor (21). Since the only probe that pierces the plant is the heater-attached temperature probe (20), mechanical damage to the plant can be reduced. Since the heating by the heater (22) is intermittent, thermal damage to the plant can be reduced.

Description

維管束液流速センサ、維管束液流速測定装置および維管束液流速測定方法Vascular Fluid Flow Velocity Sensor, Vascular Fluid Flow Velocity Measuring Device, and Vascular Fluid Flow Velocity Measuring Method
 本発明は、維管束液流速センサ、維管束液流速測定装置および維管束液流速測定方法に関する。さらに詳しくは、本発明は、植物の新梢末端、果柄など、植物の細部を流れる維管束液の流速を測定するセンサ、装置および方法に関する。 The present invention relates to a vascular bundle liquid flow velocity sensor, a vascular bundle liquid flow velocity measuring device, and a vascular bundle liquid flow velocity measuring method. More particularly, the present invention relates to sensors, devices and methods for measuring the flow rate of vascular fluid through plant details such as plant shoot ends, fruit stalks, and the like.
 作物、果樹の生産においては、生産性の観点から植物の生育状態に合わせて適切な時期に灌水と養分補給を行なうことが望まれる。しかし、多くの農業現場では、無降雨日数などに基づき、経験と勘によって灌水と養分補給を行なっているのが現状である。このような経験に依存した方法は、熟練が必要であり手間と時間がかかる。また、基準となる指標が個人的な経験であるため、誰もが簡便に実施することは難しい。 In the production of crops and fruit trees, from the perspective of productivity, it is desirable to irrigate and supply nutrients at the appropriate time according to the growth conditions of the plants. However, in many agricultural fields, the current situation is that irrigation and nutrient supply are carried out based on experience and intuition based on the number of days without rain. Such empirical methods require skill and are laborious and time consuming. In addition, since the standard index is based on personal experience, it is difficult for everyone to easily implement it.
 近年、スマートアグリなど、情報技術を農業に導入する動きが活発になっている。情報技術により、人に依存することなく、植物の生理的情報に基づいて、最適な生産が行なわれることが期待されている。 In recent years, there has been an active movement to introduce information technology into agriculture, such as smart agriculture. It is expected that information technology will enable optimal production based on the physiological information of plants without relying on humans.
 灌水管理に必要となる植物の生理的情報として維管束液流速がある。特に、作物、果樹の生産性および品質を向上させる上では、植物の新梢末端、果柄など、植物の細部における維管束液流速を測定することが重要である。植物の細部における維管束液流速を測定するセンサは既に提案されている(特許文献1)。 Physiological information of plants required for irrigation management is vascular flux flow rate. In particular, in order to improve the productivity and quality of crops and fruit trees, it is important to measure the vascular fluid flow velocity in details of plants such as shoot ends and fruit stalks. A sensor for measuring vascular fluid flow velocity in plant details has already been proposed (US Pat.
特開2015-145810号公報JP 2015-145810 A
 特許文献1に開示されたセンサはグラニエ法により維管束液流速を測定するものである。グラニエ法では植物に2本のプローブを突き刺し、ヒータで常時維管束液を加熱する必要がある。そのため、機械的、熱的に植物に与える損傷が大きい。 The sensor disclosed in Patent Document 1 measures the vascular fluid flow rate by the Granier method. In the Granier method, it is necessary to pierce the plant with two probes and constantly heat the vascular fluid with a heater. Therefore, mechanical and thermal damage to plants is great.
 維管束液流速を測定する方法としてグラニエ法のほかヒートパルス法も知られている。ヒートパルス法は熱を間欠的に与えるため、植物に与える熱的損傷が小さい。しかし、ヒートパルス法により維管束液流速を測定するには3本のプローブを植物に突き刺す必要があり、植物に与える機械的損傷がグラニエ法よりも大きくなる。 In addition to the Granier method, the heat pulse method is also known as a method for measuring the vascular flux flow velocity. Since the heat pulse method applies heat intermittently, the heat damage given to plants is small. However, the heat pulse method requires three probes to be pierced into the plant to measure the vascular fluid flow rate, which causes greater mechanical damage to the plant than the Granier method.
 本発明は上記事情に鑑み、機械的または熱的に植物に与える損傷が小さい維管束液流速センサ、維管束液流速測定装置および維管束液流速測定方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a vascular bundle liquid flow velocity sensor, a vascular bundle liquid flow velocity measuring device, and a vascular bundle liquid flow velocity measuring method that cause less damage to plants mechanically or thermally.
 第1態様の維管束液流速センサは、植物に突き刺すプローブとして、第1温度センサとヒータとが設けられたヒータ付温度プローブのみを有することを特徴とする。
 第2態様の維管束液流速センサは、第1態様において、外気温を測定する第2温度センサを有することを特徴とする。
 第3態様の維管束液流速測定装置は、第1温度センサとヒータとが設けられたヒータ付温度プローブと、前記ヒータ付温度プローブを支持する支持部とを有する維管束液流速センサと、前記ヒータに間欠的に電力を供給する電源と、前記第1温度センサで測定された前記ヒータの加熱による維管束液の上昇温度に基づき維管束液流速を求める演算部と、を備えることを特徴とする。
 第4態様の維管束液流速測定装置は、第3態様において、外気温を測定する第2温度センサを備えることを特徴とする。
 第5態様の維管束液流速測定装置は、第3または第4態様において、前記維管束液流速センサは、所定の間隔を空けて配置された一対の電極からなる読出電極対と、前記一対の電極に架け渡された感水膜とが設けられた水分含有量プローブを有し、前記水分含有量プローブは前記ヒータ付温度プローブと平行に並んだ状態で前記支持部に支持されていることを特徴とする。
 第6態様の維管束液流速測定装置は、第5態様において、前記維管束液流速センサは、所定の間隔を空けて配置された一対の電極からなる電気伝導率電極対が設けられた電気伝導率プローブを有し、前記電気伝導率プローブは前記水分含有量プローブと平行に並んだ状態で前記支持部に支持されていることを特徴とする。
 第7態様の維管束液流速測定装置は、第3~第6態様のいずれかにおいて、前記維管束液流速センサは、第3温度センサが設けられた温度プローブを有し、前記温度プローブは前記ヒータ付温度プローブと平行に並んだ状態で前記支持部に支持されていることを特徴とする。
 第8態様の維管束液流速測定方法は、第1温度センサとヒータとが設けられたヒータ付温度プローブを植物に突き刺し、前記ヒータに間欠的に電力を供給し、前記ヒータの加熱による維管束液の上昇温度を前記第1温度センサで測定し、前記上昇温度に基づき維管束液流速を求めることを特徴とする。
 第9態様の維管束液流速測定方法は、第8態様において、所定の間隔を空けて配置された一対の電極からなる読出電極対と、前記一対の電極に架け渡された感水膜とが設けられた水分含有量プローブを前記植物に突き刺し、前記読出電極対を構成する前記一対の電極間のインピーダンスまたは静電容量を測定し、インピーダンス測定値または静電容量測定値から前記植物の水分含有量を求め、前記上昇温度および前記水分含有量に基づき維管束液流速を求めることを特徴とする。
 第10態様の維管束液流速測定方法は、第9態様において、所定の間隔を空けて配置された一対の電極からなる電気伝導率電極対が設けられた電気伝導率プローブを前記植物に突き刺し、前記電気伝導率電極対を構成する前記一対の電極間の電気抵抗から電気伝導率を求め、電気伝導率測定値を用いて水分含有量測定値を補償することを特徴とする。
 第11態様の維管束液流速測定方法は、第8~第10態様のいずれかにおいて、前記植物の温度または外気温から自然温度勾配を求め、前記自然温度勾配を用いて前記上昇温度を補正することを特徴とする。
The vascular bundle liquid flow rate sensor of the first aspect is characterized in that it has only a heater-equipped temperature probe provided with a first temperature sensor and a heater as a probe to be pierced into the plant.
The vascular bundle liquid flow rate sensor of the second aspect is characterized in that, in the first aspect, it has a second temperature sensor that measures the ambient temperature.
A vascular bundle liquid flow rate measuring device according to a third aspect comprises a vascular bundle liquid flow rate sensor having a heater-equipped temperature probe provided with a first temperature sensor and a heater, a support portion supporting the heater-equipped temperature probe, and characterized by comprising a power source that intermittently supplies power to a heater, and a computing unit that obtains a vascular bundle fluid flow rate based on the temperature rise of the vascular bundle fluid due to heating of the heater measured by the first temperature sensor. do.
The vascular bundle liquid flow rate measuring device of the fourth aspect is characterized in that, in the third aspect, it is equipped with a second temperature sensor that measures the outside air temperature.
A fifth aspect of the vascular bundle fluid flow velocity measuring device is the third or fourth aspect, wherein the vascular bundle fluid flow velocity sensor comprises a pair of readout electrodes arranged at a predetermined interval; a moisture content probe provided with a water-sensitive membrane that spans electrodes, and the moisture content probe is supported by the support part in a state of being aligned in parallel with the temperature probe with heater. Characterized by
A sixth aspect of the vascular bundle liquid flow rate measuring device is the fifth aspect, wherein the vascular bundle liquid flow rate sensor is provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval. a conductivity probe, and the electrical conductivity probe is supported by the supporting portion in a state of being aligned in parallel with the moisture content probe.
The vascular bundle liquid flow rate measuring device of the seventh aspect is the vascular bundle liquid flow rate measuring device according to any one of the third to sixth aspects, wherein the vascular bundle liquid flow rate sensor has a temperature probe provided with a third temperature sensor, and the temperature probe is the It is characterized in that it is supported by the support portion while being aligned in parallel with the temperature probe with heater.
The vascular bundle liquid flow velocity measuring method of the eighth aspect includes piercing a plant with a heater-equipped temperature probe provided with a first temperature sensor and a heater, intermittently supplying power to the heater, and heating the vascular bundle by heating the heater. The method is characterized in that the temperature rise of the liquid is measured by the first temperature sensor, and the vascular bundle liquid flow velocity is obtained based on the temperature rise.
A vascular bundle liquid flow velocity measuring method of a ninth aspect is the eighth aspect, wherein a reading electrode pair consisting of a pair of electrodes arranged at a predetermined interval and a water-sensitive membrane bridged over the pair of electrodes are The water content probe provided is pierced into the plant, the impedance or capacitance between the pair of electrodes constituting the readout electrode pair is measured, and the water content of the plant is determined from the impedance measurement value or the capacitance measurement value. and determining a vascular fluid flow rate based on said elevated temperature and said moisture content.
In the ninth aspect, the vascular bundle liquid flow velocity measuring method of the tenth aspect is characterized by piercing the plant with an electrical conductivity probe provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval, The electrical conductivity is obtained from the electrical resistance between the pair of electrodes constituting the electrical conductivity electrode pair, and the electrical conductivity measurement is used to compensate the moisture content measurement.
The vascular bundle liquid flow velocity measuring method of the eleventh aspect is, in any one of the eighth to tenth aspects, obtaining a natural temperature gradient from the temperature of the plant or the ambient temperature, and correcting the elevated temperature using the natural temperature gradient. It is characterized by
 第1態様によれば、植物に突き刺すプローブがヒータ付温度プローブのみであるので、植物に与える機械的損傷を小さくできる。
 第2態様によれば、外気温から求めた自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。
 第3態様によれば、ヒータによる加熱が間欠的であるので、植物に与える熱的損傷を小さくできる。また、ヒータ付温度プローブを植物に突き刺し、第1温度センサの測定値を取得することで、維管束液流速を測定できる。
 第4態様によれば、外気温から求めた自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。
 第5態様によれば、水分含有量プローブにより測定した水分含有量を考慮することで、維管束液流速を精度良く測定できる。
 第6態様によれば、電気伝導率プローブにより測定した植物内の水分の電気伝導率に基づき水分含有量測定値を補償することで、植物の水分含有量を精度良く測定できる。
 第7態様によれば、第3温度センサで測定した自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。
 第8態様によれば、維管束液流速を求めることができる。
 第9態様によれば、植物水分含有量を考慮することで、維管束液流速を精度良く求めることができる。
 第10態様によれば、電気伝導率プローブで測定した植物内の水分の電気伝導率に基づき水分含有量測定値を補償することで、植物の水分含有量を精度良く測定できる。
 第11態様によれば、植物の温度または外気温から求めた自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。
According to the first aspect, the only probe that pierces the plant is the heater-equipped temperature probe, so that mechanical damage to the plant can be reduced.
According to the second aspect, it is possible to improve the robustness against the external environment by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient obtained from the outside air temperature.
According to the 3rd aspect, since the heating by a heater is intermittent, the thermal damage inflicted on a plant can be made small. Further, by piercing a plant with a temperature probe with a heater and acquiring a measurement value of the first temperature sensor, the vascular bundle liquid flow velocity can be measured.
According to the fourth aspect, by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient obtained from the outside air temperature, the robustness against the external environment can be enhanced.
According to the fifth aspect, the vascular bundle liquid flow velocity can be measured with high accuracy by considering the water content measured by the water content probe.
According to the sixth aspect, the water content of the plant can be measured with high accuracy by compensating the water content measurement value based on the electrical conductivity of the water in the plant measured by the electrical conductivity probe.
According to the seventh aspect, by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient measured by the third temperature sensor, it is possible to enhance the robustness against the external environment.
According to the eighth aspect, the vascular bundle liquid flow rate can be determined.
According to the ninth aspect, the vascular bundle liquid flow rate can be obtained with high accuracy by considering the plant water content.
According to the tenth aspect, the water content of the plant can be accurately measured by compensating the water content measurement value based on the electrical conductivity of the water in the plant measured by the electrical conductivity probe.
According to the eleventh aspect, by determining the vascular bundle liquid flow rate in consideration of the natural temperature gradient determined from the temperature of the plant or the ambient temperature, the robustness to the external environment can be enhanced.
第1実施形態に係る維管束液流速センサの平面図である。1 is a plan view of a vascular bundle liquid flow rate sensor according to a first embodiment; FIG. 第1実施形態に係る維管束液流速センサの側面図である。FIG. 2 is a side view of the vascular bundle liquid flow rate sensor according to the first embodiment; 第1実施形態に係る維管束液流速センサの使用状態説明図である。FIG. 2 is an explanatory diagram of a usage state of the vascular bundle liquid flow rate sensor according to the first embodiment; 維管束液の温度変化を示すグラフである。4 is a graph showing temperature changes of vascular fluid. 第1実施形態に係る維管束液流速測定装置の説明図である。1 is an explanatory diagram of a vascular bundle liquid flow rate measuring device according to a first embodiment; FIG. 第2実施形態に係る維管束液流速センサの平面図である。FIG. 11 is a plan view of a vascular bundle liquid flow rate sensor according to a second embodiment; 第3実施形態に係る維管束液流速センサの平面図である。FIG. 11 is a plan view of a vascular bundle liquid flow rate sensor according to a third embodiment; 水分含有量プローブの縦断面図である。1 is a vertical cross-sectional view of a moisture content probe; FIG. 図(A)は解析モデルを示す図である。図(B)は温度分布図である。FIG. (A) is a diagram showing an analysis model. FIG. (B) is a temperature distribution map. 熱解析により求められたヒートパルス速度と流速との関係を示すグラフである。4 is a graph showing the relationship between heat pulse velocity and flow velocity obtained by thermal analysis. 疑似植物試験により求められたヒートパルス速度と流速との関係を示すグラフである。It is a graph which shows the relationship between the heat pulse velocity calculated|required by the simulated plant test, and the flow velocity. 生育環境下のトマトの道管液流速の時間変化を示すグラフである。It is a graph which shows the time change of the vessel liquid flow velocity of the tomato under a growing environment.
 つぎに、本発明の実施形態を図面に基づき説明する。
〔第1実施形態〕
 本発明の第1実施形態に係る維管束液流速センサ1は、植物の新梢末端、果柄など、植物の細部に取り付けることができる。維管束液流速センサ1は植物の細部における維管束液(道管液または師管液)の流速および流量を測定する機能を有する。
Next, embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
The vascular bundle liquid flow rate sensor 1 according to the first embodiment of the present invention can be attached to details of a plant such as the terminal of a new shoot or fruit stalk. The vascular fluid flow sensor 1 has the function of measuring the flow velocity and volume of vascular fluid (vascular fluid or phloem fluid) in plant details.
(維管束液流速センサ)
 まず、維管束液流速センサ1の構成を説明する。
 図1に示すように、維管束液流速センサ1は支持部10を有する。支持部10にはヒータ付温度プローブ20が設けられている。ヒータ付温度プローブ20を植物に突き刺すことで、植物に維管束液流速センサ1が取り付けられる。
(vascular flux sensor)
First, the configuration of the vascular bundle liquid flow rate sensor 1 will be described.
As shown in FIG. 1 , the vascular bundle liquid flow rate sensor 1 has a support portion 10 . A temperature probe 20 with a heater is provided on the supporting portion 10 . The vascular bundle liquid flow velocity sensor 1 is attached to the plant by piercing the plant with the heater-equipped temperature probe 20 .
 支持部10およびヒータ付温度プローブ20は半導体基板を加工することで形成されている。半導体基板として、シリコン基板、SOI(Silicon on Insulator)基板などが挙げられる。半導体基板の加工には、フォトリソグラフィ、エッチングのほか、スパッタ法、蒸着法などの薄膜形成を用いたMEMS技術が用いられる。なお、維管束液流速センサ1はMEMS技術以外の方法で形成してもよいし、素材も半導体基板に限定されない。 The supporting portion 10 and the temperature probe 20 with heater are formed by processing a semiconductor substrate. Semiconductor substrates include silicon substrates and SOI (Silicon on Insulator) substrates. In addition to photolithography and etching, MEMS techniques using thin film formation such as sputtering and vapor deposition are used for processing semiconductor substrates. Note that the vascular bundle liquid flow rate sensor 1 may be formed by a method other than the MEMS technology, and the material is not limited to a semiconductor substrate.
・支持部
 支持部10はヒータ付温度プローブ20を支持する部材である。支持部10は、平面視矩形の板材であり、その一辺にヒータ付温度プローブ20が支持されている。
Supporting Portion The supporting portion 10 is a member that supports the temperature probe 20 with heater. The supporting portion 10 is a rectangular plate in plan view, and the heater-equipped temperature probe 20 is supported on one side of the supporting portion 10 .
・ヒータ付温度プローブ
 ヒータ付温度プローブ20は、棒状の部材であり、支持部10の縁に片持ち梁状に設けられている。ヒータ付温度プローブ20の先端部の形状は三角形など尖った形が好ましい。ヒータ付温度プローブ20の先端部が尖った形であれば、植物の細部に突き刺すときの刺入抵抗を小さくできる。
·Temperature Probe with Heater The temperature probe with heater 20 is a bar-shaped member and is provided in a cantilever shape on the edge of the support section 10 . The shape of the tip of the temperature probe 20 with heater is preferably a pointed shape such as a triangle. If the tip of the heater-equipped temperature probe 20 has a sharp shape, it is possible to reduce the penetration resistance when sticking into the details of the plant.
 ヒータ付温度プローブ20は、植物の新梢末端、果柄など、茎径または軸径が数mm程度の植物の細部に突き刺して配置できる寸法に形成されている。ヒータ付温度プローブ20の長さ(軸方向に基端から先端までの長さ)は、植物の細部に突き刺して設置した状態において、その先端部が植物の細部の道管または師管に配置され得る寸法に形成されている。ヒータ付温度プローブ20の長さは、例えば、0.5~5mmである。 The heater-equipped temperature probe 20 is sized so that it can be placed by piercing into details of a plant, such as the end of a plant's new shoots and fruit stalks, which have a stem diameter or shaft diameter of several millimeters. The length of the heater-equipped temperature probe 20 (the length from the proximal end to the distal end in the axial direction) is such that when the probe is pierced into the details of the plant and installed, the tip is placed in the vessel or phloem of the details of the plant. sized to obtain. The length of the temperature probe 20 with heater is, for example, 0.5 to 5 mm.
 ヒータ付温度プローブ20の幅は、特に限定されないが、例えば、50~500μmである。ヒータ付温度プローブ20の幅が狭いほど、植物に与える機械的損傷を小さくできる。 The width of the heater-equipped temperature probe 20 is not particularly limited, but is, for example, 50 to 500 μm. The narrower the width of the heater-equipped temperature probe 20, the smaller the mechanical damage to the plant.
 図2に示すように、維管束液流速センサ1は全体的に薄い板状である。ヒータ付温度プローブ20の厚さは植物の道管および師管の幅よりも薄く設定されている。ヒータ付温度プローブ20の厚さは測定対象となる植物の種類および茎の太さによるが、例えば50~300μmである。厚さが50μm以上であれば強度が十分であり、ヒータ付温度プローブ20を植物の茎などに挿抜する際に折れる恐れがない。また、植物の種類にもよるが道管および師管の太さは100~400μm程度であるため、厚さが300μm以下であればヒータ付温度プローブ20を道管または師管に刺してもそれらを塞ぐことを抑制できる。ヒータ付温度プローブ20が薄いほど植物に与える機械的損傷を小さくできる。そのため、ヒータ付温度プローブ20の厚さは100μm以下とすることがより好ましい。なお、支持部10の厚さは特に限定されず、ヒータ付温度プローブ20と同じ厚さでもよいし、ヒータ付温度プローブ20より厚くてもよい。 As shown in FIG. 2, the vascular bundle liquid flow rate sensor 1 is a thin plate as a whole. The thickness of the heater-equipped temperature probe 20 is set thinner than the width of the vessel and phloem of the plant. The thickness of the heater-equipped temperature probe 20 is, for example, 50 to 300 μm, depending on the type of plant to be measured and the thickness of the stem. If the thickness is 50 μm or more, the strength is sufficient, and there is no risk of breakage when the heater-equipped temperature probe 20 is inserted into or removed from the stem of a plant or the like. In addition, although it depends on the type of plant, the diameter of the vessel and the sieve canal is about 100 to 400 μm. blockage can be suppressed. The thinner the heater-equipped temperature probe 20 is, the less mechanical damage is given to the plant. Therefore, it is more preferable to set the thickness of the temperature probe 20 with heater to 100 μm or less. The thickness of the supporting portion 10 is not particularly limited, and may be the same thickness as the temperature probe 20 with heater, or may be thicker than the temperature probe 20 with heater.
 図1に示すように、ヒータ付温度プローブ20の先端部には第1温度センサ21が設けられている。第1温度センサ21は、温度を感知する機能を有しており、ヒータ付温度プローブ20の先端部に配設できる大きさのものであれば、特に限定されない。第1温度センサ21として、測温抵抗体、pn接合ダイオード、熱電対などを採用できる。維管束液流速センサ1は屋外で使用されることが想定されるため、第1温度センサ21として光依存性のない測温抵抗体を用いることが好ましい。また、支持部10の上面には第1温度センサ21に配線を介して接続された2つの電極パッド21e、21eが配設されている。 As shown in FIG. 1, a first temperature sensor 21 is provided at the tip of the temperature probe 20 with heater. The first temperature sensor 21 has a function of sensing temperature, and is not particularly limited as long as it has a size that can be arranged at the tip of the temperature probe 20 with heater. As the first temperature sensor 21, a resistance temperature detector, a pn junction diode, a thermocouple, or the like can be used. Since the vascular bundle liquid flow rate sensor 1 is assumed to be used outdoors, it is preferable to use a resistance temperature detector that does not depend on light as the first temperature sensor 21 . Two electrode pads 21e, 21e connected to the first temperature sensor 21 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG.
 測温抵抗体は、例えば、スパッタ法、蒸着法などにより半導体基板上にAuなどの測温抵抗体として適した金属の薄膜を堆積させることにより形成される。測温抵抗体は温度の上昇とともに電気抵抗が増加する。2つの電極パッド21e、21eの間には定電流源が接続される。定電流源で測温抵抗体に定電流を供給し、電圧計で電圧を測定する。電圧計で測定した電圧から、温度を算出できる。 The resistance temperature detector is formed by depositing a thin film of a metal such as Au, which is suitable as a resistance temperature detector, on a semiconductor substrate by, for example, a sputtering method, a vapor deposition method, or the like. A resistance temperature detector increases its electrical resistance as the temperature rises. A constant current source is connected between the two electrode pads 21e, 21e. A constant current source is used to supply a constant current to the RTD, and a voltmeter is used to measure the voltage. The temperature can be calculated from the voltage measured by the voltmeter.
 また、ヒータ付温度プローブ20にはヒータ22が設けられている。ヒータ22はヒータ付温度プローブ20に熱を供給できればよく、その位置は先端部に限定されない。ヒータ22は、ヒータ付温度プローブ20に配設できる大きさのものであれば、特に限定されない。例えば、Au(金)、Pt(白金)、Ti(チタン)、Cr(クロム)などの薄膜をスパッタ法、蒸着法などにより形成し、細い糸状に加工したマイクロヒータ(本明細書では「フィラメントヒータ」という)をヒータ22として採用できる。また、酸化拡散炉を用いて形成したpn接合ダイオードをヒータ22として採用してもよい。 A heater 22 is provided in the heater-equipped temperature probe 20 . The position of the heater 22 is not limited to the tip as long as it can supply heat to the temperature probe 20 with heater. The heater 22 is not particularly limited as long as it has a size that can be arranged in the temperature probe 20 with heater. For example, thin films of Au (gold), Pt (platinum), Ti (titanium), Cr (chromium), etc. are formed by sputtering, vapor deposition, etc., and processed into thin thread micro heaters (herein referred to as "filament heaters"). ) can be employed as the heater 22 . Alternatively, a pn junction diode formed using an oxidation diffusion furnace may be employed as the heater 22 .
 支持部10の上面にはヒータ22に配線を介して接続された2つの電極パッド22e、22eが配設されている。2つの電極パッド22e、22eの間には、直流定電源が接続される。ヒータ22に電流を流すことで、熱を発することができる。 Two electrode pads 22e, 22e connected to the heater 22 via wiring are provided on the upper surface of the support portion 10. A DC constant power supply is connected between the two electrode pads 22e, 22e. Heat can be generated by applying an electric current to the heater 22 .
(維管束液流速測定方法)
 つぎに、維管束液流速センサ1による維管束液流速の測定方法を説明する。
(Vascular bundle liquid flow rate measurement method)
Next, a method for measuring the vascular bundle liquid flow rate by the vascular bundle liquid flow rate sensor 1 will be described.
・取り付け
 まず、測定対象となる植物の新梢末端、果柄などに、維管束液流速センサ1を取り付ける。具体的には、図3に示すように、維管束液流速センサ1のヒータ付温度プローブ20を植物に突き刺して取り付ける。
- Attachment First, the vascular bundle liquid flow rate sensor 1 is attached to the end of a shoot, fruit stalk, or the like of a plant to be measured. Specifically, as shown in FIG. 3, the temperature probe 20 with heater of the vascular bundle liquid flow velocity sensor 1 is attached by piercing the plant.
 ヒータ付温度プローブ20を植物に突き刺していくと、ヒータ付温度プローブ20の先端部は植物の皮層COを通り、師管PHに達する。さらに、深く突き刺していくと、ヒータ付温度プローブ20の先端部は、道管XYに達し、つぎに髄PIに達する。師管液の流速を測定する場合には、ヒータ付温度プローブ20の先端部を師管PHに配置する。道管液の流速を測定する場合には、ヒータ付温度プローブ20の先端部を道管XYに配置する。以下、道管液の流速を測定する場合を例に説明する。 When the heater-equipped temperature probe 20 is pierced into the plant, the tip of the heater-equipped temperature probe 20 passes through the cortical layer CO of the plant and reaches the phloem PH. Further, when the tip of the heater-equipped temperature probe 20 is pierced deeply, it reaches the vessel XY and then the pith PI. When measuring the flow velocity of the phloem liquid, the tip of the heater-equipped temperature probe 20 is placed on the phloem PH. When measuring the flow velocity of vessel fluid, the tip of heater-equipped temperature probe 20 is placed in vessel XY. An example of measuring the flow velocity of a vessel fluid will be described below.
 ヒータ付温度プローブ20を植物に突き刺した状態で、ヒータ22に間欠的に電力を供給する。すなわち、ヒータ22にパルス状の電流を流す。ヒータ22に電力を供給する時間幅(パルス幅)は予め定められている。 Electric power is intermittently supplied to the heater 22 while the temperature probe 20 with heater is pierced into the plant. That is, a pulsed current is supplied to the heater 22 . A time width (pulse width) for supplying power to the heater 22 is predetermined.
 ヒータ22を間欠駆動させると、ヒータ22が駆動している間だけ道管液が加熱される。この際、道管液の温度は図4に示すように時間変化する。すなわち、ヒータ22により加熱されている間は道管液の温度が上昇し、加熱が終了すると道管液の温度が下がる。 When the heater 22 is driven intermittently, the vessel fluid is heated only while the heater 22 is driven. At this time, the temperature of the vessel fluid changes with time as shown in FIG. That is, the temperature of the vascular fluid increases while being heated by the heater 22, and the temperature of the vascular fluid decreases when the heating ends.
 ヒータ22による加熱開始時t1における道管液の温度をT1とする。また、ヒータ22による加熱終了時t2における道管液の温度をT2とする。ヒータ22の加熱による道管液の上昇温度ΔTは、T2からT1を減じることで求められる。ヒータ22による加熱終了時から所定時間経過した時点t3における道管液の温度をT3とする。ヒータ22の加熱による道管液の上昇温度ΔTは、T2からT3を減じて求めてもよい。なお、t2からt3までの時間は道管液の温度が充分に下がる時間に設定される。いずれにせよ、道管液の温度は第1温度センサ21で測定できるから、第1温度センサ21の測定値から上昇温度ΔTを求めることができる。 Let T 1 be the temperature of the vessel fluid at the time t 1 when heating by the heater 22 is started. In addition, the temperature of the vessel fluid at the time t2 when heating by the heater 22 ends is defined as T2 . The temperature rise ΔT of the vascular fluid due to heating by the heater 22 is obtained by subtracting T 1 from T 2 . Let T3 be the temperature of the vessel fluid at time t3 when a predetermined time has passed since the end of heating by the heater 22. The temperature rise ΔT of the vascular fluid due to heating by the heater 22 may be obtained by subtracting T3 from T2 . Note that the time from t2 to t3 is set to a time during which the temperature of the vessel fluid is sufficiently lowered. In any case, since the temperature of the vessel fluid can be measured by the first temperature sensor 21, the temperature rise .DELTA.T can be obtained from the measured value of the first temperature sensor 21. FIG.
 熱伝達滞留方程式を解くと、ヒートパルス速度Vhは以下の式(1)で表される。式(1)中、Dは道管の熱拡散率[m2/s]、ΔTuは道管液の上昇温度[℃]、ΔT0は流速が0のときの道管液の上昇温度[℃]、tは加熱時間[s]である。上昇温度ΔTuは測定値であり、第1温度センサ21により得られる。熱拡散率Dおよび流速が0のときの道管液の上昇温度ΔT0は、測定対象の植物に依存する定数であり、予め実験などにより定められる。加熱時間tは植物によって道管液流速の測定に最適な時間に設定される。加熱時間tは、例えば、20~40秒である。
Figure JPOXMLDOC01-appb-M000001
Solving the heat transfer retention equation, the heat pulse velocity V h is expressed by the following equation (1). In equation (1), D is the thermal diffusivity of the vessel [m 2 /s], ΔT u is the temperature rise of the vessel fluid [°C], and ΔT 0 is the temperature rise of the vessel fluid when the flow velocity is 0 [ °C], and t is the heating time [s]. The increased temperature ΔT u is a measured value obtained by the first temperature sensor 21 . The thermal diffusivity D and the temperature rise ΔT 0 of the vascular fluid when the flow velocity is 0 are constants depending on the plant to be measured, and are determined in advance by experiments or the like. The heating time t is set to the optimum time for measuring the vascular fluid flow rate depending on the plant. Heating time t is, for example, 20 to 40 seconds.
Figure JPOXMLDOC01-appb-M000001
 ヒータ付温度プローブ20を道管に挿入すると道管液の流れが乱れるため、この影響を補正してもよい。例えば、以下の式(2)に基づき、補正後のヒートパルス速度Vcを求めれば良い。式(2)中、a、b、cは補正係数であり、予め実験などにより定められる。
Figure JPOXMLDOC01-appb-M000002
Since the insertion of the heated temperature probe 20 into the vessel disrupts the flow of vessel fluid, this effect may be corrected. For example, the heat pulse velocity V c after correction may be obtained based on the following equation (2). In formula (2), a, b, and c are correction coefficients, which are determined in advance by experiments or the like.
Figure JPOXMLDOC01-appb-M000002
 道管液流速uはヒートパルス速度に比例する。すなわち、道管液流速uは式(3)で得られる。式(3)中、αは係数であり、予め実験などにより定められる。なお、Vは補正前のヒートパルス速度Vhまたは補正後のヒートパルス速度Vcである。
Figure JPOXMLDOC01-appb-M000003
The vessel fluid flow velocity u is proportional to the heat pulse velocity. That is, the vascular fluid flow velocity u is obtained by Equation (3). In Equation (3), α is a coefficient, which is determined in advance by experiments or the like. V is the heat pulse velocity V h before correction or the heat pulse velocity V c after correction.
Figure JPOXMLDOC01-appb-M000003
 道管液の流速から流量を求めることができる。式(4)に示すように、道管液の流量Qは流速u[m/s]に道管の断面積A[m2]を掛けることで得られる。
Figure JPOXMLDOC01-appb-M000004
The flow rate can be determined from the velocity of the vascular fluid. As shown in Equation (4), the flow rate Q of the vessel fluid is obtained by multiplying the flow velocity u [m/s] by the cross-sectional area A [m 2 ] of the vessel.
Figure JPOXMLDOC01-appb-M000004
 以上の原理に従い、第1温度センサ21で測定された道管液の上昇温度ΔTuに基づき道管液の流速uおよび流量Qを求めることができる。なお、ヒータ付温度プローブ20の先端部を植物の師管PHに配置すれば、師管液の流速および流量を求めることができる。また、維管束液流速を長期間モニタリングする場合には、所定間隔でヒータ22を駆動させ、その都度維管束液流速を求める。ヒータ22を駆動させる間隔は特に限定されない。間隔を短くすれば流速の時間分解能を高くできる。 According to the above principle, the flow velocity u and the flow rate Q of the vascular fluid can be obtained based on the temperature rise ΔT u of the vascular fluid measured by the first temperature sensor 21 . If the tip of the heater-equipped temperature probe 20 is placed on the phloem PH of the plant, the velocity and flow rate of the phloem sap can be obtained. When monitoring the vascular bundle fluid flow rate for a long period of time, the heater 22 is driven at predetermined intervals, and the vascular bundle liquid flow rate is obtained each time. The interval at which the heater 22 is driven is not particularly limited. If the interval is shortened, the time resolution of the flow velocity can be increased.
 本実施形態の維管束液流速センサ1は植物に突き刺すプローブがヒータ付温度プローブ20のみである。複数本のプローブを植物に突き刺す必要がないため、植物に与える機械的損傷を小さくできる。また、ヒータ22による加熱が間欠的であるため、常時加熱に比べて植物に与える熱的損傷を小さくできる。さらに、ヒータ22が間欠駆動であるため維管束液流速センサ1の消費電力を低くできる。例えば、植物の栽培期間である数ヶ月から半年の間、維管束液流速センサ1を電池で連続駆動できる。 In the vascular bundle liquid flow rate sensor 1 of this embodiment, the temperature probe 20 with heater is the only probe that pierces the plant. Since there is no need to pierce the plant with multiple probes, mechanical damage to the plant can be reduced. Moreover, since the heating by the heater 22 is intermittent, it is possible to reduce the thermal damage to the plants as compared with constant heating. Furthermore, since the heater 22 is driven intermittently, the power consumption of the vascular bundle liquid flow velocity sensor 1 can be reduced. For example, the vascular bundle liquid flow rate sensor 1 can be continuously driven by a battery for several months to half a year, which is the plant cultivation period.
(維管束液流速測定装置)
 つぎに、維管束液流速測定装置AAを説明する。
 図5に示すように、維管束液流速測定装置AAは維管束液流速センサ1を有する。例えば、農業現場の複数の植物に対して、複数の維管束液流速センサ1が取り付けられる。維管束液流速センサ1は、一の植物の複数箇所に取り付けてもよいし、複数の植物の全てに、または一部の標本に取り付けてもよい。また、維管束液流速センサ1を1つのみとしてもよい。
(Vascular bundle fluid velocity measuring device)
Next, the vascular bundle liquid flow rate measuring device AA will be described.
As shown in FIG. 5 , the vascular fluid flow velocity measuring device AA has a vascular fluid flow velocity sensor 1 . For example, a plurality of vascular bundle liquid flow velocity sensors 1 are attached to a plurality of plants in an agricultural field. The vascular bundle fluid flow velocity sensor 1 may be attached to a plurality of locations on one plant, or may be attached to all or a portion of specimens of a plurality of plants. Alternatively, only one vascular bundle liquid flow velocity sensor 1 may be provided.
 維管束液流速センサ1には、データロガーDRが接続されており、電力の供給および測定値の収集が行なわれる。データロガーDRがヒータ22に間欠的に電力を供給する。したがって、データロガーDRは特許請求の範囲に記載の「電源」に相当する。また、データロガーDRには無線通信機が内蔵されている。 A data logger DR is connected to the vascular bundle fluid flow rate sensor 1 to supply power and collect measured values. A data logger DR supplies power to the heater 22 intermittently. Therefore, the data logger DR corresponds to the "power source" described in the claims. Also, the data logger DR has a built-in wireless communication device.
 農業現場に隣接した建屋内などにサーバ装置SVが設けられる。サーバ装置SVには無線通信機が接続されており、データロガーDRと無線通信できるよう構成されている。 A server device SV is installed in a building, etc., adjacent to an agricultural site. A wireless communication device is connected to the server device SV, and is configured to be able to wirelessly communicate with the data logger DR.
 データロガーDRは、維管束液流速センサ1の測定データを、無線通信機を介してサーバ装置SVに送信する。サーバ装置SVは受信した測定データを分析し、維管束液流速を求める。その詳細は前述のとおりである。したがって、サーバ装置SVは特許請求の範囲に記載の「演算部」に相当する。 The data logger DR transmits the measurement data of the vascular bundle fluid flow rate sensor 1 to the server device SV via the wireless communication device. The server device SV analyzes the received measurement data and determines the vascular fluid flow rate. The details are as described above. Therefore, the server device SV corresponds to the "computing section" described in the claims.
 なお、データロガーDRとサーバ装置SVとの接続は無線に限られず有線でもよい。データロガーDRに蓄積されたデータを記憶媒体に保存し、その記憶媒体をサーバ装置SVに読み込ませてもよい。電源はヒータ22に電力を供給できればよくデータロガーDRに限定されない。演算部も維管束液流速を求めることができればよくサーバ装置SVに限定されない。 The connection between the data logger DR and the server device SV is not limited to wireless, and may be wired. Data accumulated in the data logger DR may be stored in a storage medium, and the storage medium may be read by the server device SV. The power source is not limited to the data logger DR as long as it can supply power to the heater 22 . The calculation unit is not limited to the server device SV as long as it can obtain the vascular bundle liquid flow velocity.
〔第2実施形態〕
 つぎに、本発明の第2実施形態に係る維管束液流速センサ2を説明する。
 図6に示すように、維管束液流速センサ2は第1実施形態と同様にヒータ付温度プローブ20と支持部10とを有する。第1実施形態と同様の部材には同一符号を付して説明を省略する。
[Second embodiment]
Next, a vascular bundle liquid flow rate sensor 2 according to a second embodiment of the present invention will be described.
As shown in FIG. 6, the vascular bundle liquid flow rate sensor 2 has a temperature probe 20 with a heater and a support portion 10 as in the first embodiment. The same reference numerals are given to the same members as in the first embodiment, and the description thereof is omitted.
 支持部10には第2温度センサ11が設けられている。第2温度センサ11として第1温度センサ21と同様のものを採用できる。支持部10の上面には第2温度センサ11に配線を介して接続された2つの電極パッド11e、11eが配設されている。第1温度センサ21と同様の方法で、第2温度センサ11により温度を測定できる。 A second temperature sensor 11 is provided on the support portion 10 . A sensor similar to the first temperature sensor 21 can be employed as the second temperature sensor 11 . Two electrode pads 11e, 11e connected to the second temperature sensor 11 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG. The temperature can be measured by the second temperature sensor 11 in the same manner as the first temperature sensor 21 .
 第2温度センサ11は植物の周囲の外気温を測定するためのものである。ヒータ22の熱が第2温度センサ11に伝わりにくくするため、ヒータ付温度プローブ20と第2温度センサ11との間は断熱されている。 The second temperature sensor 11 is for measuring the outside air temperature around the plant. Heat insulation is provided between the heater-equipped temperature probe 20 and the second temperature sensor 11 so that the heat of the heater 22 is less likely to be transmitted to the second temperature sensor 11 .
 例えば、維管束液流速センサ2を支持基板(Si)、酸化膜層(SiO2)および活性層(Si)からなるSOI基板を加工して形成する。第1温度センサ21、ヒータ22および第2温度センサ11を活性層の表面に形成する。そして、ヒータ付温度プローブ20と第2温度センサ11との間の活性層を除去し、それらの間に酸化膜層が介在した状態とする。これにより、ヒータ付温度プローブ20と第2温度センサ11との間を断熱できる。 For example, the vascular flux sensor 2 is formed by processing an SOI substrate consisting of a support substrate (Si), an oxide film layer (SiO 2 ) and an active layer (Si). A first temperature sensor 21, a heater 22 and a second temperature sensor 11 are formed on the surface of the active layer. Then, the active layer between the heater-equipped temperature probe 20 and the second temperature sensor 11 is removed so that an oxide film layer is interposed therebetween. Thereby, heat insulation can be provided between the temperature probe 20 with heater and the second temperature sensor 11 .
(自然温度勾配補正)
 植物を栽培するハウス内で暖房機が作動したり、植物の周囲の日射、風などが変化したりすると自然温度勾配が生じる。自然温度勾配が第1温度センサ21の測定値に影響を及ぼし維管束液流速の測定精度が悪くなる。そこで、本実施形態では第2温度センサ11で測定した外気温を用いて自然温度勾配の影響を補正する。
(natural temperature gradient correction)
A natural temperature gradient occurs when a heater is activated in a greenhouse where plants are grown, or when sunlight or wind changes around the plants. A natural temperature gradient affects the measurement value of the first temperature sensor 21, degrading the measurement accuracy of the vascular fluid flow rate. Therefore, in this embodiment, the outside air temperature measured by the second temperature sensor 11 is used to correct the influence of the natural temperature gradient.
 前述のごとく、維管束液流速を測定する際にはヒータ22を間欠的に駆動する。そして、第1温度センサ21によりヒータ22の加熱による維管束液の上昇温度ΔT1を測定する。これと同時に、第2温度センサ11により自然温度勾配ΔT2を測定する。上昇温度ΔT1をt1-t2間の第1温度センサ21の測定値の差分とするならば、自然温度勾配ΔT2はt1-t2間の第2温度センサ11の測定値の差分として求められる。上昇温度ΔT1をt2-t3間の第1温度センサ21の測定値の差分とするならば、自然温度勾配ΔT2はt2-t3間の第2温度センサ11の測定値の差分として求められる。 As described above, the heater 22 is intermittently driven when measuring the vascular fluid flow rate. Then, the temperature rise ΔT 1 of the vascular bundle fluid due to heating by the heater 22 is measured by the first temperature sensor 21 . At the same time, the second temperature sensor 11 measures the natural temperature gradient ΔT 2 . If the temperature rise ΔT 1 is the difference in the measured values of the first temperature sensor 21 between t 1 and t 2 , then the natural temperature gradient ΔT 2 is the difference in the measured values of the second temperature sensor 11 between t 1 and t 2 . is required as If the temperature rise ΔT 1 is the difference in the measured values of the first temperature sensor 21 between t 2 and t 3 , then the natural temperature gradient ΔT 2 is the difference in the measured values of the second temperature sensor 11 between t 2 and t 3 . is required as
 そして、式(5)に示すように、自然温度勾配ΔT2を用いて上昇温度ΔT1を補正する。
Figure JPOXMLDOC01-appb-M000005
Then, as shown in equation (5), the temperature rise ΔT 1 is corrected using the natural temperature gradient ΔT 2 .
Figure JPOXMLDOC01-appb-M000005
 補正後の上昇温度ΔTuを用いて、式(1)に従いヒートパルス速度Vhを求めれば、自然温度勾配の影響を除去して維管束液流速を求めることができる。このように、外気温から求めた自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。 If the heat pulse velocity V h is obtained according to the equation (1) using the corrected temperature rise ΔT u , the vascular bundle liquid flow velocity can be obtained by removing the influence of the natural temperature gradient. Thus, the robustness against the external environment can be enhanced by obtaining the vascular bundle liquid flow velocity in consideration of the natural temperature gradient obtained from the outside air temperature.
 なお、第2温度センサ11を支持部10に設けなくてもよい。すなわち、ヒータ付温度プローブ20とは物理的に独立した温度センサを第2温度センサ11として用いてもよい。したがって、第2温度センサは維管束液流速センサとは別の部材としてもよい。 Note that the second temperature sensor 11 may not be provided on the support portion 10. That is, a temperature sensor physically independent of the temperature probe 20 with heater may be used as the second temperature sensor 11 . Therefore, the second temperature sensor may be a separate member from the vascular bundle liquid flow velocity sensor.
〔第3実施形態〕
 つぎに、本発明の第3実施形態に係る維管束液流速センサ3を説明する。
 図7に示すように、維管束液流速センサ3は第1実施形態の維管束液流速センサ1に水分含有量プローブ30、電気伝導率プローブ40および温度プローブ50を追加したものである。その余の構成は第1実施形態と同様であるので、同一部材に同一符号を付して説明を省略する。
[Third embodiment]
Next, a vascular bundle liquid flow rate sensor 3 according to a third embodiment of the present invention will be described.
As shown in FIG. 7, the vascular bundle liquid flow rate sensor 3 is obtained by adding a moisture content probe 30, an electrical conductivity probe 40 and a temperature probe 50 to the vascular bundle liquid flow rate sensor 1 of the first embodiment. Since the rest of the configuration is the same as that of the first embodiment, the same reference numerals are assigned to the same members and the description thereof is omitted.
 水分含有量プローブ30は植物の水分含有量測定に用いられる。測定された水分含有量は維管束液流速測定値の補償に用いられる。水分含有量による補償の必要がない場合には、維管束液流速センサ3に水分含有量プローブ30を設けなくてもよい。電気伝導率プローブ40は植物内の水分の電気伝導率測定に用いられる。測定された電気伝導率は水分含有量測定値の補償に用いられる。電気伝導率による補償の必要がない場合には、維管束液流速センサ3に電気伝導率プローブ40を設けなくてもよい。温度プローブ50は植物の温度測定に用いられる。測定された温度は維管束液流速測定値、水分含有量測定値および電気伝導率測定値のうちの一部または全部の補償に用いられる。温度による補償の必要がない場合には、維管束液流速センサ3に温度プローブ50を設けなくてもよい。 The water content probe 30 is used to measure the water content of plants. The measured water content is used to compensate for the vascular flux measurements. If no moisture content compensation is required, the vascular fluid flow rate sensor 3 may not be provided with the moisture content probe 30 . Electrical conductivity probe 40 is used to measure the electrical conductivity of water in plants. The measured electrical conductivity is used to compensate for moisture content measurements. If compensation by electrical conductivity is not required, the electrical conductivity probe 40 may not be provided in the vascular bundle liquid flow rate sensor 3 . The temperature probe 50 is used for temperature measurement of plants. The measured temperature is used to compensate for some or all of the vascular flux measurements, moisture content measurements and electrical conductivity measurements. The temperature probe 50 may not be provided in the vascular bundle liquid flow rate sensor 3 when there is no need for temperature compensation.
 プローブ20、30、40、50は、それらを同一平面内で平行に並べた状態で、その基端が支持部10の一辺に支持されている。プローブ20、30、40、50の並び順は特に限定されない。ただし、温度プローブ50はヒータ付温度プローブ20と離れた位置に配置することが好ましい。そうすれは、温度プローブ50にヒータ22の熱が伝わりにくくなり、自然温度勾配を正確に測定できる。例えば、ヒータ付温度プローブ20、水分含有量プローブ30、電気伝導率プローブ40、温度プローブ50の順に配置することが好ましい。 The base ends of the probes 20, 30, 40, and 50 are supported on one side of the support portion 10 while being arranged in parallel on the same plane. The order in which the probes 20, 30, 40, and 50 are arranged is not particularly limited. However, the temperature probe 50 is preferably arranged at a position distant from the temperature probe 20 with heater. This makes it difficult for the heat of the heater 22 to be conducted to the temperature probe 50, so that the natural temperature gradient can be accurately measured. For example, it is preferable to arrange the temperature probe 20 with heater, the moisture content probe 30, the electrical conductivity probe 40, and the temperature probe 50 in this order.
・水分含有量プローブ
 水分含有量プローブ30の先端部には読出電極対31が設けられている。読出電極対31は所定の間隔を空けて配置された一対の電極32、32からなる。支持部10の上面には2つの電極32、32に配線を介して接続された2つの電極パッド32e、32eが配設されている。また、水分含有量プローブ30には感水膜33が設けられている。
Moisture Content Probe A reading electrode pair 31 is provided at the tip of the moisture content probe 30 . The readout electrode pair 31 consists of a pair of electrodes 32, 32 arranged at a predetermined interval. Two electrode pads 32e, 32e connected to the two electrodes 32, 32 via wiring are arranged on the upper surface of the support portion 10. As shown in FIG. Also, the water content probe 30 is provided with a water sensitive film 33 .
 水分含有量プローブ30を植物に突き刺すと、植物内の水分が感水膜33に吸収される。感水膜33に吸収された水分の量を電極32、32間のインピーダンスまたは静電容量として読み出す。これにより、植物の水分含有量を測定できる。 When the water content probe 30 is pierced into the plant, the water inside the plant is absorbed by the water-sensitive membrane 33 . The amount of water absorbed by the water-sensitive film 33 is read out as impedance or capacitance between the electrodes 32,32. This allows the water content of the plant to be measured.
 図8に示すように、水分含有量プローブ30を構成する半導体基板SSの表面に一対の電極32、32が形成されている。電極32は水分含有量プローブ30の先端部に配設できる大きさのものであれば、特に限定されない。電極32は、例えば、スパッタ法、蒸着法などにより半導体基板SS上にAu、Alなどの金属薄膜を堆積させることにより形成される。 As shown in FIG. 8, a pair of electrodes 32, 32 are formed on the surface of the semiconductor substrate SS that constitutes the moisture content probe 30. As shown in FIG. The size of the electrode 32 is not particularly limited as long as it has a size that can be arranged at the tip of the moisture content probe 30 . The electrode 32 is formed, for example, by depositing a metal thin film such as Au or Al on the semiconductor substrate SS by sputtering, vapor deposition, or the like.
 感水膜33は一対の電極32、32の上に、それらに架け渡されるよう形成されている。感水膜33は水分を吸収する機能を有し、水よりも比誘電率が低い素材で形成されている。本明細書において「感水膜」とは、水分を吸収する機能を有し、水よりも比誘電率が低い素材で形成された膜を意味する。温度20℃における水の比誘電率は約80であるから、感水膜33の比誘電率は80よりも小さければよい。ただし、感水膜33の比誘電率と水の比誘電率との差が大きいほど水分含有量の測定精度が高くなることから、感水膜33の比誘電率は1~3が好ましい。 The water-sensitive film 33 is formed on the pair of electrodes 32, 32 so as to span them. The water-sensitive film 33 has a function of absorbing water and is made of a material having a dielectric constant lower than that of water. As used herein, the term "water-sensitive film" means a film having a function of absorbing moisture and formed of a material having a lower relative dielectric constant than water. Since the dielectric constant of water at a temperature of 20.degree. However, the relative permittivity of the water-sensitive film 33 is preferably 1 to 3, because the larger the difference between the relative permittivity of the water-sensitive film 33 and the relative permittivity of water, the higher the accuracy of measurement of the water content.
 感水膜33の素材は、水に不溶であり、熱的・化学的に安定であることが好ましい。感水膜33の素材として、塩化リチウム、金属酸化物、セラミックス、高分子材料などを用いることができる。ただし、塩化リチウムは植物に対する毒性があることから、植物への適用性に優れているとはいえない。金属酸化物、セラミックスとして酸化アルミニウム(Al23)、二酸化ケイ素(SiO2)が挙げられる。金属酸化物およびセラミックスは水に不溶である。ただし、金属酸化物およびセラミックスは材質が硬く、製作工程時に高温の熱処理が必要である。これに対して、高分子材料は植物への適用性に優れ、また材質が柔らかい。高分子材料としてポリイミド、ポリビニルアルコールなどが挙げられる。これらの中でも、半導体Si基板上への搭載のしやすさの観点から、ポリイミドが好ましい。また、ポリイミドは水に溶けにくいため、植物内の水分の長期測定に適している。そのため、感水膜33をポリイミドで形成すれば、感水膜33が植物内の水分に溶解しにくく、長期間の測定が可能である。 The material of the water-sensitive film 33 is preferably insoluble in water and thermally and chemically stable. Lithium chloride, metal oxides, ceramics, polymer materials, and the like can be used as materials for the water sensitive film 33 . However, since lithium chloride is toxic to plants, it cannot be said to have excellent applicability to plants. Metal oxides and ceramics include aluminum oxide (Al 2 O 3 ) and silicon dioxide (SiO 2 ). Metal oxides and ceramics are insoluble in water. However, metal oxides and ceramics are hard materials and require high-temperature heat treatment during the manufacturing process. On the other hand, polymer materials have excellent applicability to plants and are soft. Examples of polymer materials include polyimide and polyvinyl alcohol. Among these, polyimide is preferable from the viewpoint of ease of mounting on a semiconductor Si substrate. In addition, since polyimide does not easily dissolve in water, it is suitable for long-term measurement of water content in plants. Therefore, if the water-sensitive film 33 is made of polyimide, the water-sensitive film 33 is difficult to dissolve in the water in the plant, and long-term measurement is possible.
 高分子材料で感水膜33を形成する場合、感水膜33の表面を親水化処理してもよい。そうすれば、感水膜33に植物内の水分が吸収されやすくなり、水分含有量測定の応答速度が速くなる。例えば、ポリイミドで感水膜33を形成する場合、感水膜33の表面を酸素プラズマ処理すればよい。ポリイミドの表面を酸素プラズマ処理すると、カルボニル基が導入されポリイミドの表面が親水化される。また、ポリイミドの表面積が増加するという効果もある。感水膜33が親水化されるとともに表面積が増加するので、感水膜33に植物内の水分が吸収されやすくなり、水分含有量測定の応答速度が速くなる。 When forming the water-sensitive film 33 with a polymer material, the surface of the water-sensitive film 33 may be hydrophilized. This makes it easier for the water-sensitive film 33 to absorb the water in the plant, thereby increasing the response speed of the water content measurement. For example, when the water-sensitive film 33 is made of polyimide, the surface of the water-sensitive film 33 may be treated with oxygen plasma. When the surface of polyimide is treated with oxygen plasma, carbonyl groups are introduced to make the surface of polyimide hydrophilic. There is also the effect of increasing the surface area of polyimide. Since the surface area of the water-sensitive membrane 33 increases as the water-sensitive membrane 33 becomes hydrophilic, the moisture in the plant is easily absorbed by the water-sensitive membrane 33, and the response speed of water content measurement increases.
・電気伝導率プローブ
 図7に示すように、電気伝導率プローブ40の先端部には電気伝導率電極対41が設けられている。電気伝導率電極対41は所定の間隔を空けて配置された一対の電極42、42からなる。電気伝導率電極対41は電極42、42間に存在する水分(維管束液など)の電気伝導率を測定するためのものである。電極42は電気伝導率プローブ40の先端部に配設できる大きさのものであれば、特に限定されない。電極42は、例えば、スパッタ法、蒸着法などにより半導体基板SS上にAu、Alなどの金属薄膜を堆積させることにより形成される。
Electrical Conductivity Probe As shown in FIG. 7, an electrical conductivity electrode pair 41 is provided at the tip of the electrical conductivity probe 40 . The electrical conductivity electrode pair 41 consists of a pair of electrodes 42, 42 arranged at a predetermined interval. The electrical conductivity electrode pair 41 is for measuring the electrical conductivity of moisture (such as vascular fluid) present between the electrodes 42,42. The size of the electrode 42 is not particularly limited as long as it has a size that can be arranged at the tip of the electrical conductivity probe 40 . The electrode 42 is formed, for example, by depositing a metal thin film such as Au or Al on the semiconductor substrate SS by sputtering, vapor deposition, or the like.
 支持部10の上面には2つの電極42、42に配線を介して接続された2つの電極パッド42e、42eが配設されている。電気伝導率は交流二電極法により測定できる。すなわち、一対の電極42、42に対応する一対の電極パッド42e、42eの間には、交流電源と電流計とが直列に接続される。交流電源で電極42、42間に電流を供給し、電流計で電極42、42間に流れる電流を測定する。オームの法則の基づき、電流計で測定した電流から、電極42、42間の電気抵抗を算出し、電気抵抗から電気伝導率を求める。 Two electrode pads 42e, 42e connected to the two electrodes 42, 42 via wiring are provided on the upper surface of the support portion 10. Electrical conductivity can be measured by the AC two-electrode method. That is, between a pair of electrode pads 42e, 42e corresponding to the pair of electrodes 42, 42, an AC power supply and an ammeter are connected in series. A current is supplied between the electrodes 42, 42 with an AC power source, and the current flowing between the electrodes 42, 42 is measured with an ammeter. Based on Ohm's law, the electrical resistance between the electrodes 42, 42 is calculated from the current measured by the ammeter, and the electrical conductivity is obtained from the electrical resistance.
 植物内の水分の電気伝導率を測定するには、電気伝導率の測定レンジが少なくとも0~10mS/cmであることが好ましい。交流二電極法による電気伝導率の測定レンジは、電極対のセル定数Kに依存する。ここで、セル定数Kは電極間距離Lを電極表面積Sで除して求められる。すなわち、電気伝導率の測定レンジは電極42の形状に依存する。電極42の形状は、立体電極、櫛歯電極、平面電極など、種々の形状から選択できる。  In order to measure the electrical conductivity of water in plants, it is preferable that the electrical conductivity measurement range is at least 0 to 10 mS/cm. The measurement range of electrical conductivity by the AC two-electrode method depends on the cell constant K of the electrode pair. Here, the cell constant K is obtained by dividing the distance L between the electrodes by the surface area S of the electrodes. That is, the electrical conductivity measurement range depends on the shape of the electrode 42 . The shape of the electrode 42 can be selected from various shapes such as a three-dimensional electrode, a comb-teeth electrode, and a planar electrode.
・温度プローブ
 温度プローブ50の先端部には第3温度センサ51が設けられている。第3温度センサ51として第1温度センサ21と同様のものを採用できる。支持部10の上面には第3温度センサ51に配線を介して接続された2つの電極パッド51e、51eが配設されている。第1温度センサ21と同様の方法で、第3温度センサ51により温度を測定できる。
- Temperature probe A third temperature sensor 51 is provided at the tip of the temperature probe 50 . A sensor similar to the first temperature sensor 21 can be employed as the third temperature sensor 51 . Two electrode pads 51e, 51e connected to the third temperature sensor 51 via wiring are arranged on the upper surface of the supporting portion 10. As shown in FIG. The temperature can be measured by the third temperature sensor 51 in the same manner as the first temperature sensor 21 .
 なお、水分含有量プローブ30、電気伝導率プローブ40、温度プローブ50をそれぞれ別のプローブとして構成してもよいし、それらの一部または全部を単一のプローブとして構成してもよい。例えば、一本のプローブに電気伝導率電極対41と第3温度センサ51とを搭載して、電気伝導率プローブ40と温度プローブ50とを一体化してもよい。 The moisture content probe 30, electrical conductivity probe 40, and temperature probe 50 may be configured as separate probes, or a part or all of them may be configured as a single probe. For example, the electrical conductivity electrode pair 41 and the third temperature sensor 51 may be mounted on one probe, and the electrical conductivity probe 40 and the temperature probe 50 may be integrated.
(維管束液流速測定方法)
 つぎに、維管束液流速センサ3による維管束液流速の測定方法を説明する。
(Vascular bundle liquid flow rate measurement method)
Next, a method for measuring the vascular bundle liquid flow rate by the vascular bundle liquid flow rate sensor 3 will be described.
・取り付け
 まず、測定対象となる植物の新梢末端、果柄などに、維管束液流速センサ3を取り付ける。具体的には、図7に示すように、維管束液流速センサ3の全てのプローブ20、30、40、50を植物に突き刺して取り付ける。このとき、植物の道管XYおよび師管PHに沿って、プローブ20、30、40、50を配置する。師管液の流速を測定する場合には、プローブ20、30、40、50の先端部を師管PHに配置する。道管液の流速を測定する場合には、プローブ20、30、40、50の先端部を道管XYに配置する。以下、道管液の流速を測定する場合を例に説明する。
- Attachment First, the vascular bundle liquid flow rate sensor 3 is attached to the shoot end, fruit stalk, or the like of the plant to be measured. Specifically, as shown in FIG. 7, all the probes 20, 30, 40, 50 of the vascular bundle liquid flow velocity sensor 3 are attached by piercing the plant. At this time, probes 20, 30, 40, 50 are placed along vessel XY and phloem PH of the plant. When measuring the flow velocity of the sieve canal, the tips of the probes 20, 30, 40, 50 are placed on the sieve canal PH. When measuring the flow rate of vessel fluid, the tips of probes 20, 30, 40, 50 are placed in vessel XY. An example of measuring the flow velocity of a vessel fluid will be described below.
 ところで、感水膜33は少なくとも読出電極対31を覆う領域に形成されていればよい。ただし、感水膜33は読出電極対31の配置部から水分含有量プローブ30の基端部にわたって設けることが好ましい。また、感水膜33は水分含有量プローブ30の基端部からさらに支持部10上面の一部領域を覆うように設けることがより好ましい。このようにすれば、感水膜33の一部が植物の外側に配置される。 By the way, the water-sensitive film 33 only needs to be formed in a region covering at least the readout electrode pair 31 . However, it is preferable that the water-sensitive film 33 is provided from the arrangement portion of the readout electrode pair 31 to the proximal end portion of the moisture content probe 30 . Moreover, it is more preferable that the water-sensitive film 33 is provided so as to cover a part of the upper surface of the support portion 10 from the base end portion of the moisture content probe 30 . In this way, part of the water-sensitive membrane 33 is arranged outside the plant.
 感水膜33は植物内の水分量に応じて水分を吸収する。植物内の水分の減少を捉えるには、感水膜33が吸収していた水分を脱水する必要がある。感水膜33の一部が植物の外側に配置されていれば、この外気に触れる部分から脱水が促進される。感水膜33からの脱水がスムーズに行なわれるため、水分含有量が減少する際の応答速度が速くなる。 The water-sensitive film 33 absorbs water according to the amount of water in the plant. In order to capture the decrease in water in the plant, it is necessary to dehydrate the water absorbed by the water-sensitive membrane 33 . If part of the water-sensitive membrane 33 is arranged outside the plant, dehydration is promoted from this part exposed to the outside air. Since dehydration from the water-sensitive film 33 is smoothly performed, the response speed when the water content decreases is increased.
・水分含有量測定(インピーダンスによる方法)
 水分含有量プローブ30を植物に突き刺すと、植物内の水分が感水膜33に吸収される。植物内の水分量に応じて感水膜33に吸収される水分量が変化する。また、感水膜33に吸収される水分量に応じて読出電極対31を構成する電極32、32間のインピーダンスが変化する。
・Measurement of moisture content (impedance method)
When the water content probe 30 is pierced into the plant, water in the plant is absorbed by the water sensitive membrane 33 . The amount of water absorbed by the water-sensitive film 33 changes according to the amount of water in the plant. Also, the impedance between the electrodes 32 , 32 forming the readout electrode pair 31 changes according to the amount of water absorbed by the water-sensitive film 33 .
 電極32、32間のインピーダンスZ[kΩ]と植物の水分含有量WC[%]との関係は式(6)で表される。式(6)中、Z0は感水膜33が水分を吸収していない場合のインピーダンス[kΩ]、Bはセンサの感度を表す係数である。
Figure JPOXMLDOC01-appb-M000006
The relationship between the impedance Z [kΩ] between the electrodes 32, 32 and the water content WC [%] of the plant is represented by Equation (6). In equation (6), Z 0 is the impedance [kΩ] when the water-sensitive film 33 does not absorb moisture, and B is a coefficient representing the sensitivity of the sensor.
Figure JPOXMLDOC01-appb-M000006
 Z0およびBは予め試験により求められる。植物の水分含有量の測定時には電極32、32間のインピーダンスZを測定する。そして、式(6)に基づいて、インピーダンス測定値Zから植物の水分含有量WCを求める。 Z 0 and B are determined in advance by testing. The impedance Z between the electrodes 32, 32 is measured when measuring the water content of the plant. Then, the water content WC of the plant is obtained from the impedance measurement value Z based on Equation (6).
・水分含有量測定(静電容量による方法)
 感水膜33に吸収される水分量が増加すると、読出電極対31を構成する電極32、32間の静電容量が増加するという関係がある。特に、感水膜33の素材を適切に選択すれば、感水膜33に吸収される水分量と電極32、32間の静電容量とは線形関係となる。この関係を予め試験により求めておく。植物の水分含有量の測定時には電極32、32間の静電容量Cを測定する。そして、静電容量と水分含有量との関係に基づいて、静電容量測定値Cから植物の水分含有量WCを求める。
・Measurement of moisture content (method using capacitance)
There is a relationship that when the amount of water absorbed by the water-sensitive film 33 increases, the capacitance between the electrodes 32 constituting the readout electrode pair 31 increases. In particular, if the material of the water-sensitive film 33 is appropriately selected, the amount of water absorbed by the water-sensitive film 33 and the capacitance between the electrodes 32, 32 have a linear relationship. This relationship is obtained in advance by testing. The capacitance C between the electrodes 32, 32 is measured when measuring the water content of the plant. Then, the water content WC of the plant is obtained from the capacitance measurement value C based on the relationship between the capacitance and the water content.
 以上のように、水分含有量プローブ30を植物に突き刺し、読出電極対31からインピーダンスまたは静電容量を読み出すことで、植物の水分含有量を測定できる。 As described above, the water content of the plant can be measured by piercing the water content probe 30 into the plant and reading the impedance or capacitance from the readout electrode pair 31 .
・電気伝導率補償
 水分含有量プローブ30により得られた水分含有量測定値は、植物内の水分の電気伝導率に依存する。そのため、水分含有量測定値を電気伝導率で補償することが好ましい。植物内の水分(主に道管液)の電気伝導率は電気伝導率プローブ40の電気伝導率電極対41により測定できる。電気伝導率プローブ40により測定した電気伝導率に基づき水分含有量測定値を補償する。これにより、植物の水分含有量を精度良く測定できる。
• Electrical Conductivity Compensation The water content measurements obtained by the water content probe 30 are dependent on the electrical conductivity of water within the plant. Therefore, it is preferable to compensate the moisture content measurements with electrical conductivity. The electrical conductivity of the water (mainly vascular fluid) in the plant can be measured by the electrical conductivity electrode pair 41 of the electrical conductivity probe 40 . The moisture content measurements are compensated based on the conductivity measured by the conductivity probe 40 . Thereby, the water content of the plant can be measured with high accuracy.
 例えば、水分含有量を電極32、32間のインピーダンスから求める場合、予め種々の電気伝導率の溶液を用いて式(6)中のセンサ感度係数Bを求めておく。植物の水分含有量の測定時には、これと同時に植物内の水分の電気伝導率を測定する。測定された電気伝導率に対応するセンサ感度係数Bを適用した式(6)に基づき、インピーダンスZから植物の水分含有量WCを求める。このように、電気伝導率測定値からセンサ感度係数Bを求めることで、水分含有量測定値を補償できる。 For example, when determining the water content from the impedance between the electrodes 32, 32, the sensor sensitivity coefficient B in the formula (6) is determined in advance using solutions with various electric conductivities. When measuring the water content of the plant, the electric conductivity of the water inside the plant is measured at the same time. The water content WC of the plant is determined from the impedance Z based on equation (6) applying the sensor sensitivity coefficient B corresponding to the measured electrical conductivity. Thus, by determining the sensor sensitivity coefficient B from the electrical conductivity measurement, the moisture content measurement can be compensated.
 また、センサ感度係数Bは電気伝導率σに線形依存する。したがって、予め種々の電気伝導率σの溶液を用いて水分含有量プローブ30によりインピーダンスZを測定し、式(6)中のセンサ感度係数Bを求めておき、電気伝導率σとセンサ感度係数Bとの関係を一次関数でフィッティングする。つまり、以下の式(7)で表される電気伝導率σとセンサ感度係数Bとの関係式のうち係数aおよびbを求めておく。
Figure JPOXMLDOC01-appb-M000007
Also, the sensor sensitivity coefficient B linearly depends on the electrical conductivity σ. Therefore, the impedance Z is measured in advance by the moisture content probe 30 using solutions with various electric conductivities σ, and the sensor sensitivity coefficient B in the equation (6) is obtained, and the electric conductivity σ and the sensor sensitivity coefficient B is fitted with a linear function. That is, the coefficients a and b of the relational expression between the electric conductivity σ and the sensor sensitivity coefficient B expressed by the following equation (7) are obtained.
Figure JPOXMLDOC01-appb-M000007
 植物の水分含有量の測定時には、水分含有量プローブ30によりインピーダンスZを測定するとともに、電気伝導率プローブ40で電気伝導率σを測定する。式(7)に基づいて、電気伝導率測定値σからセンサ感度係数Bを求める。求めたセンサ感度係数Bを適用した式(6)に基づき、インピーダンスZから植物の水分含有量WCを求める。 When measuring the water content of the plant, the water content probe 30 measures the impedance Z and the electrical conductivity probe 40 measures the electrical conductivity σ. Based on equation (7), the sensor sensitivity coefficient B is obtained from the electrical conductivity measurement value σ. The water content WC of the plant is obtained from the impedance Z based on Equation (6) to which the obtained sensor sensitivity coefficient B is applied.
 水分含有量を電極32、32間の静電容量から求める場合も同様に、予め種々の電気伝導率の溶液を用いて、感水膜33に吸収される水分量と電極32、32間の静電容量との関係を求めておく。植物の水分含有量の測定時には、これと同時に植物の水分の電気伝導率を測定する。測定された電気伝導率に対応する水分量-静電容量の関係に基づき、静電容量Cから植物の水分含有量WCを求める。 Similarly, when the water content is determined from the capacitance between the electrodes 32, 32, solutions with various electric conductivities are used in advance to determine the amount of water absorbed by the water-sensitive film 33 and the static electricity between the electrodes 32, 32. Find the relationship with capacitance. When measuring the water content of the plant, the electrical conductivity of the water of the plant is measured at the same time. Based on the water content-capacitance relationship corresponding to the measured electrical conductivity, the water content WC of the plant is obtained from the capacitance C.
・温度補償
 電気伝導率プローブ40により得られた電気伝導率測定値は温度に依存する。一般に、電気伝導率測定値は1℃ごとに1~3%変化する。そのため、電気伝導率測定値を温度補償することが好ましい。植物内の水分(主に道管液)の温度は温度プローブ50の第3温度センサ51により測定できる。温度プローブ50により測定した温度に基づき電気伝導率測定値を補償する。これにより、植物内の水分の電気伝導率を精度良く求めることができる。温度補償後の電気伝導率を用いて水分含有量測定をさらに補償することで、水分含有量を精度良く求めることができる。
• Temperature Compensation The electrical conductivity measurements obtained by the electrical conductivity probe 40 are temperature dependent. In general, conductivity measurements vary by 1-3% per degree Celsius. Therefore, it is preferable to temperature compensate the electrical conductivity measurements. The temperature of water (mainly vascular fluid) in the plant can be measured by the third temperature sensor 51 of the temperature probe 50 . The conductivity measurements are compensated based on the temperature measured by the temperature probe 50 . As a result, the electrical conductivity of water in the plant can be obtained with high accuracy. By further compensating the water content measurement using the temperature-compensated electrical conductivity, the water content can be determined with high accuracy.
 電気伝導率測定値の温度補償は、例えば、以下の手順で行なう。すなわち、式(8)に基づき、電気伝導率測定値を基準温度25℃での電気伝導率σ25[S/m]に変換する。ここで、βは温度係数、Tは測定対象液の温度[℃]、σは電気伝導率測定値[S/m]である。
Figure JPOXMLDOC01-appb-M000008
Temperature compensation of the electrical conductivity measurement value is performed, for example, by the following procedure. That is, based on equation (8), the electrical conductivity measurement value is converted into electrical conductivity σ 25 [S/m] at a reference temperature of 25°C. Here, β is the temperature coefficient, T is the temperature of the liquid to be measured [°C], and σ is the electrical conductivity measurement value [S/m].
Figure JPOXMLDOC01-appb-M000008
 温度係数βは式(9)から求められる。ここで、T1は25℃およびT2以外の温度[℃]、T2は25℃およびT1以外の温度[℃]、σ1はT1での電気伝導率測定値[S/m]、σ2はT2での電気伝導率測定値[S/m]である。
Figure JPOXMLDOC01-appb-M000009
The temperature coefficient β is obtained from equation (9). Here, T 1 is the temperature other than 25° C. and T 2 [° C.], T 2 is the temperature other than 25° C. and T 1 [° C.], and σ 1 is the electrical conductivity measurement value at T 1 [S/m]. , σ 2 is the conductivity measurement [S/m] at T 2 .
Figure JPOXMLDOC01-appb-M000009
 感水膜33をポリイミドで形成した場合、水分含有量プローブ30で測定される水分含有量測定値は温度に依存しない。しかし、感水膜33を他の素材で形成した場合、水分含有量測定値が温度に依存することがある。このような場合には、水分含有量測定値を温度補償してもよい。すなわち、温度プローブ50により測定した温度に基づき水分含有量測定値を直接補償する。これにより、水分含有量を精度良く測定できる。 When the water-sensitive film 33 is made of polyimide, the moisture content measured by the moisture content probe 30 does not depend on the temperature. However, if the water-sensitive membrane 33 is made of other materials, the measured moisture content may be temperature dependent. In such cases, the moisture content measurements may be temperature compensated. That is, the moisture content measurements are directly compensated based on the temperature measured by the temperature probe 50 . Thereby, the water content can be measured with high accuracy.
・道管液流速測定
 道管液流速の測定は、基本的には、第1実施形態と同様である。すなわち、ヒータ付温度プローブ20のヒータ22に間欠的に電力を供給し、ヒータ22の加熱による道管液の上昇温度ΔTuを第1温度センサ21で測定する。そして、式(1)、(2)、(3)に従い、上昇温度ΔTuから道管液流速uを求める。
- Vascular fluid flow velocity measurement The vessel fluid velocity measurement is basically the same as in the first embodiment. That is, power is intermittently supplied to the heater 22 of the temperature probe 20 with heater, and the first temperature sensor 21 measures the temperature rise ΔT u of the vascular fluid due to the heating of the heater 22 . Then, the vascular liquid flow velocity u is obtained from the temperature rise ΔT u according to equations (1), (2) and (3).
 ここで、道管液流速uとヒートパルス速度Vhとの間には、式(10)で示される関係がある。式(10)中、ρbは道管の乾燥時の密度[g/cm3]、ρsは道管液の密度[g/cm3]、WCは水分含有量[%]、csは道管の乾燥時の比熱容量[J/gK]、cdwは道管液の比熱容量[J/gK]である。ρb、ρs、cs、cdwは、測定対象の植物に依存する定数であり、予め実験などにより定められる。
Figure JPOXMLDOC01-appb-M000010
Here, there is a relationship represented by Equation (10) between the vessel liquid flow velocity u and the heat pulse velocity Vh . In equation (10), ρ b is the dry density of the vessel [g/cm 3 ], ρ s is the density of the vessel liquid [g/cm 3 ], WC is the water content [%], and c s is The dry specific heat capacity of the vessel [J/gK], cdw is the specific heat capacity of the vessel liquid [J/gK]. ρ b , ρ s , c s , and cdw are constants that depend on the plant to be measured, and are determined in advance by experiments or the like.
Figure JPOXMLDOC01-appb-M000010
 すなわち、式(3)中の係数αは式(11)で示されるように、水分含有量WCに異存する。
Figure JPOXMLDOC01-appb-M000011
That is, the coefficient α in formula (3) depends on the water content WC as shown in formula (11).
Figure JPOXMLDOC01-appb-M000011
 そこで、式(11)に基づき、測定により得られた水分含有量WCから係数αを求める。このαの値を用いて、式(3)に基づき、道管液流速uを求める。すなわち、ヒータ付温度プローブ20で測定された上昇温度ΔTuに加えて、水分含有量プローブ30で測定された水分含有量WCに基づき、維管束液流速uを求める。このように、水分含有量を考慮することで、維管束液流速uを精度良く測定できる。 Therefore, based on the equation (11), the coefficient α is obtained from the measured water content WC. Using this value of α, the vascular fluid flow velocity u is determined based on the equation (3). That is, the vascular bundle liquid flow velocity u is determined based on the water content WC measured by the water content probe 30 in addition to the temperature rise ΔT u measured by the temperature probe 20 with heater. Thus, by considering the water content, the vascular bundle liquid flow velocity u can be measured with high accuracy.
・自然温度勾配補正
 温度プローブ50の第3温度センサ51により自然温度勾配を測定することができる。すなわち、第3温度センサ51の測定値(植物の温度)から自然温度勾配ΔT2を求める。自然温度勾配ΔT2を用いて上昇温度ΔT1を補正する。この詳細は第2実施形態と同様である。植物の温度から求めた自然温度勾配を考慮して維管束液流速を求めることで、外部環境に対するロバスト性を高めることができる。
- Natural temperature gradient correction A natural temperature gradient can be measured by the third temperature sensor 51 of the temperature probe 50 . That is, the natural temperature gradient ΔT 2 is obtained from the measured value (plant temperature) of the third temperature sensor 51 . The natural temperature gradient ΔT 2 is used to correct the elevated temperature ΔT 1 . The details are the same as in the second embodiment. Robustness to the external environment can be enhanced by determining the vascular flux flow rate by considering the natural temperature gradient obtained from the plant temperature.
(熱解析)
 モデリングソフトウエアANSYSを用いて、維管束液流速センサの熱解析を行なった。図9(A)に解析モデルを示す。維管束液流速センサのプローブはヒータ付温度プローブのみである。ヒータ付温度プローブには抵抗値130Ωのフィラメントヒータを搭載した。ヒータ付温度プローブの先端部を、植物を模した直径3mmのチューブに突き刺した。チューブには水を流した。
(thermal analysis)
Thermal analysis of the vascular flux sensor was performed using the modeling software ANSYS. FIG. 9A shows an analysis model. The probe of the vascular flux sensor is only a temperature probe with a heater. A filament heater with a resistance value of 130Ω was mounted on the temperature probe with heater. The tip of the heater-equipped temperature probe was pierced into a 3 mm diameter tube that simulated a plant. Water was run through the tube.
 フィラメントヒータに45.2mWの電力を30秒間供給した後、150秒間電力供給を停止した。図9(B)にフィラメントヒータに電力を供給した際の温度分布を示す。ヒータによる加熱開始時の水温と加熱終了時の水温との差分から上昇温度ΔTuを求め、式(1)に従いヒートパルス速度Vhを求めた。ここで、熱拡散率Dは水の値である1.47×10-72/sとした。 A power of 45.2 mW was supplied to the filament heater for 30 seconds and then turned off for 150 seconds. FIG. 9B shows the temperature distribution when power is supplied to the filament heater. The temperature rise ΔT u was obtained from the difference between the water temperature at the start of heating by the heater and the water temperature at the end of heating, and the heat pulse velocity V h was obtained according to Equation (1). Here, the thermal diffusivity D was set to 1.47×10 −7 m 2 /s, which is the value of water.
 チューブに流れる水の流速を0~4mm/sの範囲で変化させつつ、上記の手順でヒートパルス速度Vhを求めた。求められたヒートパルス速度Vhを解析し、式(2)の補正係数を定めた。その結果、式(2)の補正係数は、a=0.78×102、b=-1.47×103、c=7.84×103とした。 The heat pulse velocity V h was determined by the above procedure while changing the flow rate of water flowing through the tube in the range of 0 to 4 mm/s. The obtained heat pulse velocity Vh was analyzed to determine the correction coefficient of equation (2). As a result, the correction coefficients of equation (2) are a=0.78×10 2 , b=−1.47×10 3 , and c=7.84×10 3 .
 図10に補正後のヒートパルス速度Vcと流速との関係を示す。図10より、維管束液流速センサは0~4mm/sの範囲で流速の変化を測定できることが確認できた。 FIG. 10 shows the relationship between the corrected heat pulse velocity V c and the flow velocity. From FIG. 10, it was confirmed that the vascular bundle liquid flow velocity sensor can measure changes in flow velocity in the range of 0 to 4 mm/s.
(センサの製作)
 つぎに、図1に示す構成の維管束液流速センサを製作した。まず、湿式酸化処理を2時間行ない、シリコンウエハの表面に酸化膜を形成して絶縁層とした。つぎに、絶縁層の上に接着層として厚さ0.04μmのCr層を設け、接着層の上に厚さ0.2μmの耐腐食性Au層をスパッタリングで形成した。つぎに、測温抵抗体と抵抗値130Ωのフィラメントヒータをパターニングし、配線の保護膜としてフォトレジスト(SU-8 3005)をパターニングした。最後に、レジスト(PMER)をマスクにして、ドライエッチングで針状のプローブを作製した。
(Sensor production)
Next, a vascular bundle liquid flow velocity sensor having the configuration shown in FIG. 1 was manufactured. First, a wet oxidation treatment was performed for 2 hours to form an oxide film on the surface of the silicon wafer to form an insulating layer. Next, a Cr layer having a thickness of 0.04 μm was provided as an adhesive layer on the insulating layer, and a corrosion-resistant Au layer having a thickness of 0.2 μm was formed on the adhesive layer by sputtering. Next, a temperature-measuring resistor and a filament heater with a resistance value of 130Ω were patterned, and a photoresist (SU-8 3005) was patterned as a wiring protective film. Finally, using a resist (PMER) as a mask, a needle-like probe was produced by dry etching.
 維管束液流速センサの支持部の寸法は5mm×4mmである。ヒータ付温度プローブは長さが3mm、幅が480μmである。ヒータ付温度プローブの先端の角度は60°である。また、使用時の外部温度変化の影響を軽減するために、支持部を絶縁材料でパッケージした。 The dimensions of the supporting part of the vascular bundle liquid flow rate sensor are 5 mm x 4 mm. The heated temperature probe is 3 mm long and 480 μm wide. The angle of the tip of the temperature probe with heater is 60°. In addition, the support was packaged with an insulating material to reduce the effects of external temperature changes during use.
(センサの校正)
 つぎに、製作した維管束液流速センサの校正を行なった。直径3mmのチューブにヒータ付温度プローブの先端部を突き刺し、シリンジポンプを用いて水を注入した。フィラメントヒータに45.2mWの電力を30秒間供給した後、150秒間電力供給を停止した。加熱開始時における測温抵抗体の測定値と加熱終了時における測温抵抗体の測定値との差分から上昇温度ΔTuを求め、式(1)に従いヒートパルス速度Vhを求めた。ここで、熱拡散率Dは水の値である1.47×10-72/sとした。
(sensor calibration)
Next, we calibrated the manufactured vascular bundle liquid flow velocity sensor. The tip of the heater-equipped temperature probe was pierced into a tube with a diameter of 3 mm, and water was injected using a syringe pump. A power of 45.2 mW was supplied to the filament heater for 30 seconds and then turned off for 150 seconds. The temperature rise ΔT u was obtained from the difference between the measured value of the temperature sensor at the start of heating and the measured value of the temperature sensor at the end of heating, and the heat pulse velocity V h was determined according to equation (1). Here, the thermal diffusivity D was set to 1.47×10 −7 m 2 /s, which is the value of water.
 チューブに流れる水の流速を0~4mm/sの範囲で変化させつつ、上記の手順でヒートパルス速度Vhを求めた。求められたヒートパルス速度Vhを解析し、式(2)の補正係数を定めた。その結果、式(2)の補正係数は、a=1.10×102、b=-3.10×103、c=2.35×104とした。 The heat pulse velocity V h was determined by the above procedure while changing the flow rate of water flowing through the tube in the range of 0 to 4 mm/s. The obtained heat pulse velocity Vh was analyzed to determine the correction coefficient of equation (2). As a result, the correction coefficients of equation (2) are a=1.10×10 2 , b=−3.10×10 3 , and c=2.35×10 4 .
 図11に補正後のヒートパルス速度Vcと流速との関係を示す。図11より、維管束液流速センサは0~4mm/sの範囲で流速の変化を測定できることが確認できた。 FIG. 11 shows the relationship between the corrected heat pulse velocity V c and the flow velocity. From FIG. 11, it was confirmed that the vascular bundle liquid flow velocity sensor can measure changes in flow velocity in the range of 0 to 4 mm/s.
(生育環境下での測定)
 つぎに、生育環境下のトマト(Solanum lycopersicum L.)を用いて水分含有量の測定を行なった。培養土(420036、DCMホールディングス株式会社)に播種し、人工気象器(NC-410HC、株式会社日本医化器械製作所)で生育したトマトの茎に維管束液流速センサを取り付けた。ここで、維管束液流速センサの取り付け位置を土壌表面から150mmの位置とした。人工気象器内の環境を温度25℃、湿度50%、二酸化炭素濃度500ppmに設定した。実時刻に合わせて人工気象器内の光量を変化させた。
(Measurement under growing environment)
Next, the water content was measured using tomatoes (Solanum lycopersicum L.) under growing conditions. Tomatoes were seeded in potting soil (420036, DCM Holdings Co., Ltd.) and grown in an artificial climate chamber (NC-410HC, Nihon Ika Kikai Seisakusho Co., Ltd.). Here, the attachment position of the vascular bundle liquid flow velocity sensor was set at a position 150 mm from the soil surface. The environment inside the artificial climate chamber was set at a temperature of 25° C., a humidity of 50%, and a carbon dioxide concentration of 500 ppm. The amount of light in the artificial weather device was changed according to the actual time.
 維管束液流速センサで測定した道管液流速の時間変化を図12に示す。図12より、光量に依存して道管液流速が変化することが確認された。これは、光量の増減(蒸散の促進/抑制)により培養土から水分を吸い上げる状態が変わり、道管液流速が変化したものと考えられる。これより、維管束液流速センサは非破壊で植物の維管束液流速をリアルタイムで測定できることが確認された。 Fig. 12 shows the change over time in the vascular fluid flow rate measured by the vascular bundle liquid flow rate sensor. From FIG. 12, it was confirmed that the vessel fluid flow rate changed depending on the amount of light. This is thought to be due to changes in the amount of light (promotion/suppression of transpiration) in the state of absorbing water from the potting soil, and thus changes in vessel liquid flow velocity. From this, it was confirmed that the vascular bundle fluid flow rate sensor can measure the plant vascular bundle liquid flow rate in real time in a non-destructive manner.
 1、2、3 維管束液流速センサ
 10 支持部
 11 第2温度センサ
 20 ヒータ付温度プローブ
 21 第1温度センサ
 22 ヒータ
 30 水分含有量プローブ
 31 読出電極対
 33 感水膜
 40 電気伝導率プローブ
 41 電気伝導率電極対
 50 温度プローブ
 51 第3温度センサ
Reference Signs List 1, 2, 3 vascular fluid flow rate sensor 10 support 11 second temperature sensor 20 temperature probe with heater 21 first temperature sensor 22 heater 30 moisture content probe 31 readout electrode pair 33 water sensitive membrane 40 electrical conductivity probe 41 electricity conductivity electrode pair 50 temperature probe 51 third temperature sensor

Claims (11)

  1.  植物に突き刺すプローブとして、第1温度センサとヒータとが設けられたヒータ付温度プローブのみを有する
    ことを特徴とする維管束液流速センサ。
    A vascular bundle liquid flow rate sensor, characterized in that it has only a heater-equipped temperature probe provided with a first temperature sensor and a heater as a probe to be pierced into a plant.
  2.  外気温を測定する第2温度センサを有する
    ことを特徴とする請求項1記載の維管束液流速センサ。
    2. The vascular fluid flow rate sensor of claim 1, further comprising a second temperature sensor for measuring ambient temperature.
  3.  第1温度センサとヒータとが設けられたヒータ付温度プローブと、前記ヒータ付温度プローブを支持する支持部とを有する維管束液流速センサと、
    前記ヒータに間欠的に電力を供給する電源と、
    前記第1温度センサで測定された前記ヒータの加熱による維管束液の上昇温度に基づき維管束液流速を求める演算部と、を備える
    ことを特徴とする維管束液流速測定装置。
    a vascular bundle liquid flow rate sensor having a heater-equipped temperature probe provided with a first temperature sensor and a heater, and a support for supporting the heater-equipped temperature probe;
    a power source that intermittently supplies power to the heater;
    A vascular bundle liquid flow rate measuring device, comprising: a computing unit that calculates a vascular bundle liquid flow rate based on the temperature rise of the vascular bundle liquid due to heating of the heater measured by the first temperature sensor.
  4.  外気温を測定する第2温度センサを備える
    ことを特徴とする請求項3記載の維管束液流速測定装置。
    4. The vascular bundle liquid flow rate measuring device according to claim 3, further comprising a second temperature sensor for measuring the ambient temperature.
  5.  前記維管束液流速センサは、所定の間隔を空けて配置された一対の電極からなる読出電極対と、前記一対の電極に架け渡された感水膜とが設けられた水分含有量プローブを有し、
    前記水分含有量プローブは前記ヒータ付温度プローブと平行に並んだ状態で前記支持部に支持されている
    ことを特徴とする請求項3または4記載の維管束液流速測定装置。
    The vascular fluid flow rate sensor has a moisture content probe provided with a readout electrode pair consisting of a pair of electrodes arranged at a predetermined interval, and a water-sensitive membrane bridging the pair of electrodes. death,
    5. The vascular bundle liquid flow rate measuring device according to claim 3, wherein said water content probe is supported by said support portion in a state of being aligned in parallel with said temperature probe with heater.
  6.  前記維管束液流速センサは、所定の間隔を空けて配置された一対の電極からなる電気伝導率電極対が設けられた電気伝導率プローブを有し、
    前記電気伝導率プローブは前記水分含有量プローブと平行に並んだ状態で前記支持部に支持されている
    ことを特徴とする請求項5記載の維管束液流速測定装置。
    The vascular fluid flow velocity sensor has an electrical conductivity probe provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval,
    6. The vascular bundle liquid flow rate measuring device according to claim 5, wherein said electrical conductivity probe is supported by said support portion in a state of being aligned in parallel with said water content probe.
  7.  前記維管束液流速センサは、第3温度センサが設けられた温度プローブを有し、
    前記温度プローブは前記ヒータ付温度プローブと平行に並んだ状態で前記支持部に支持されている
    ことを特徴とする請求項3~6のいずれかに記載の維管束液流速測定装置。
    The vascular fluid flow rate sensor has a temperature probe provided with a third temperature sensor,
    7. The vascular bundle liquid flow rate measuring device according to claim 3, wherein said temperature probe is supported by said support portion in a state of being aligned in parallel with said temperature probe with heater.
  8.  第1温度センサとヒータとが設けられたヒータ付温度プローブを植物に突き刺し、
    前記ヒータに間欠的に電力を供給し、
    前記ヒータの加熱による維管束液の上昇温度を前記第1温度センサで測定し、
    前記上昇温度に基づき維管束液流速を求める
    ことを特徴とする維管束液流速測定方法。
    piercing a plant with a heater-equipped temperature probe provided with a first temperature sensor and a heater;
    intermittently supplying power to the heater;
    measuring the temperature rise of the vascular bundle liquid due to heating by the heater with the first temperature sensor;
    A vascular bundle liquid flow rate measuring method, wherein the vascular bundle liquid flow rate is determined based on the elevated temperature.
  9.  所定の間隔を空けて配置された一対の電極からなる読出電極対と、前記一対の電極に架け渡された感水膜とが設けられた水分含有量プローブを前記植物に突き刺し、
    前記読出電極対を構成する前記一対の電極間のインピーダンスまたは静電容量を測定し、
    インピーダンス測定値または静電容量測定値から前記植物の水分含有量を求め、
    前記上昇温度および前記水分含有量に基づき維管束液流速を求める
    ことを特徴とする請求項8記載の維管束液流速測定方法。
    piercing the plant with a water content probe provided with a readout electrode pair consisting of a pair of electrodes arranged at a predetermined interval and a water-sensitive membrane spanning the pair of electrodes;
    measuring the impedance or capacitance between the pair of electrodes constituting the readout electrode pair;
    determining the water content of the plant from impedance measurements or capacitance measurements;
    9. The vascular bundle liquid flow rate measuring method according to claim 8, wherein the vascular bundle liquid flow rate is determined based on the elevated temperature and the water content.
  10.  所定の間隔を空けて配置された一対の電極からなる電気伝導率電極対が設けられた電気伝導率プローブを前記植物に突き刺し、
    前記電気伝導率電極対を構成する前記一対の電極間の電気抵抗から電気伝導率を求め、
    電気伝導率測定値を用いて水分含有量測定値を補償する
    ことを特徴とする請求項9記載の維管束液流速測定方法。
    piercing the plant with an electrical conductivity probe provided with an electrical conductivity electrode pair consisting of a pair of electrodes arranged at a predetermined interval;
    Obtaining the electrical conductivity from the electrical resistance between the pair of electrodes constituting the electrical conductivity electrode pair,
    10. The method of claim 9, wherein electrical conductivity measurements are used to compensate for water content measurements.
  11.  前記植物の温度または外気温から自然温度勾配を求め、
    前記自然温度勾配を用いて前記上昇温度を補正する
    ことを特徴とする請求項8~10のいずれかに記載の維管束液流速測定方法。
    Obtaining a natural temperature gradient from the temperature of the plant or the ambient temperature,
    11. The vascular bundle liquid flow rate measuring method according to claim 8, wherein the temperature rise is corrected using the natural temperature gradient.
PCT/JP2022/037981 2021-10-25 2022-10-12 Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method WO2023074362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174009 2021-10-25
JP2021174009A JP2023063920A (en) 2021-10-25 2021-10-25 Vascular bundle liquid flow rate sensor, vascular bundle liquid flow rate measurement device, and vascular bundle liquid flow rate measurement method

Publications (1)

Publication Number Publication Date
WO2023074362A1 true WO2023074362A1 (en) 2023-05-04

Family

ID=86157932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037981 WO2023074362A1 (en) 2021-10-25 2022-10-12 Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method

Country Status (2)

Country Link
JP (1) JP2023063920A (en)
WO (1) WO2023074362A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266324A (en) * 2009-05-14 2010-11-25 Keio Gijuku Moisture quantity measuring sensor, moisture quantity measuring device, and water supply quantity control device
KR20190102722A (en) * 2018-02-27 2019-09-04 (주) 텔로팜 Method and apparatus for measuring sap flow rate using single probe
KR20190110685A (en) * 2018-03-21 2019-10-01 (주) 텔로팜 Method and apparatus for measuring sap flow rate with temperature compensation
WO2021070913A1 (en) * 2019-10-10 2021-04-15 国立大学法人香川大学 Vascular bundle liquid measurement sensor
WO2022039007A1 (en) * 2020-08-18 2022-02-24 国立大学法人香川大学 Plant water content sensor and plant water content measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266324A (en) * 2009-05-14 2010-11-25 Keio Gijuku Moisture quantity measuring sensor, moisture quantity measuring device, and water supply quantity control device
KR20190102722A (en) * 2018-02-27 2019-09-04 (주) 텔로팜 Method and apparatus for measuring sap flow rate using single probe
KR20190110685A (en) * 2018-03-21 2019-10-01 (주) 텔로팜 Method and apparatus for measuring sap flow rate with temperature compensation
WO2021070913A1 (en) * 2019-10-10 2021-04-15 国立大学法人香川大学 Vascular bundle liquid measurement sensor
WO2022039007A1 (en) * 2020-08-18 2022-02-24 国立大学法人香川大学 Plant water content sensor and plant water content measurement method

Also Published As

Publication number Publication date
JP2023063920A (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2022039007A1 (en) Plant water content sensor and plant water content measurement method
EP3104135B1 (en) Plant moisture movement state sensor
Jacobs et al. Changes of the displacement height and roughness length of maize during a growing season
JP6083745B2 (en) Plant moisture dynamics sensor
Baek et al. Monitoring of water transportation in plant stem with microneedle sap flow sensor
WO2010121176A2 (en) Microtensiometer
EP4048058B1 (en) Method for determining a relative change in a sap flow density in a vascular plant, software program, and measurement arrangement
US10809240B2 (en) Sensors for measuring water/solute content and thickness of plant tissue
JP6854016B2 (en) Manufacturing method of vascular fluid measurement sensor and vascular fluid measurement sensor
JP2010266324A (en) Moisture quantity measuring sensor, moisture quantity measuring device, and water supply quantity control device
Izumi et al. Biological information (pH/EC) sensor device for quantitatively monitoring plant health conditions
Quan et al. Review of sensors for greenhouse climate monitoring
WO2023074362A1 (en) Vascular sap flow rate sensor, vascular sap flow rate measuring device, and vascular sap flow rate measuring method
Sharma et al. MEMS devices used in agriculture—a review
JP6784459B2 (en) Non-destructive, continuous, automatic measurement Peltier thermocouple cyclometer
CN113267643A (en) Trunk liquid flow non-invasive measurement device and method suitable for plant thin stems
JP7539165B2 (en) Vascular fluid measurement sensor
Sutton et al. Electronic monitoring and use of microprocessors in the field
Liu et al. Transpiration estimation of banana (Musa sp.) plants with the thermal dissipation method
Ishida et al. Microsensor device for simultaneously measuring moisture & nutrient substance dynamics in plants
Ino et al. Microsensor device for minimally invasive measurement of moisture storage in plants shoots
Kandwal et al. Development and Analysis of Novel IoT Based Resistive Soil Moisture Sensor using Arduino UNO
Ino et al. Single-Probe Heat-Pulse Microsensor for Water Transportation Measurement in Plant Shoots
Iwashita et al. Needle-type in situ water content sensor with polyethersulfone polymer membrane
McBurney et al. Continuous measurement of plant water stress

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886691

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE