JP2008233028A - 波長多重掃引レーザ装置および光断層画像化装置 - Google Patents

波長多重掃引レーザ装置および光断層画像化装置 Download PDF

Info

Publication number
JP2008233028A
JP2008233028A JP2007076865A JP2007076865A JP2008233028A JP 2008233028 A JP2008233028 A JP 2008233028A JP 2007076865 A JP2007076865 A JP 2007076865A JP 2007076865 A JP2007076865 A JP 2007076865A JP 2008233028 A JP2008233028 A JP 2008233028A
Authority
JP
Japan
Prior art keywords
light
wavelength
sweep
interference
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007076865A
Other languages
English (en)
Inventor
Kazunobu Ookubo
和展 大久保
Karin Kuroiwa
果林 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Fujifilm Corp
Original Assignee
Fujinon Corp
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fujifilm Corp filed Critical Fujinon Corp
Priority to JP2007076865A priority Critical patent/JP2008233028A/ja
Publication of JP2008233028A publication Critical patent/JP2008233028A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】波長多重掃引レーザ装置において、小型化を実現する。
【解決手段】半導体レーザ媒質101aのおよび101bの端面102aおよび102bから射出された光は、格子ピッチの異なる回折格子105aおよび105bにより波長分散され、ポリゴンミラー108の反射面109へ入射する。ポリゴンミラー108が回転すると、反射面109と入射光のなす角度が変化し、反射面109に、より垂直に入射する光が戻り光として選択的に反射され、逆光路を経由して、半導体レーザ媒質101aおよび101bに帰還する。回折格子105aと105bの格子ピッチが異なるため、戻り光の波長が異なり、端面103aおよび103bからは、異なる波長の光が射出される。ポリゴンミラー108の回転に伴い、1つの反射面109について1周期分の波長掃引が行われる。反射面109が複数あるため、波長掃引が一定の周期で繰り返される。
【選択図】図1

Description

本発明は、複数の発振波長において同意に掃引が可能な波長多重掃引レーザ装置および該波長多重掃引レーザ装置を用いて測定対象の光断層画像を取得する光断層画像化装置に関する。
従来、発振波長が掃引可能な波長掃引レーザ装置としては、例えば特許文献1に記載の図33に示す外部共振器型の装置が知られている。図33に示す装置では、半導体レーザ媒質111の低反射面からの射出光をコリメートレンズ112で平行光に変換した後、回折格子113の回折面へ入射させ、回折格子113により波長分散された回折光をリレー用の2つのレンズ124a、124bを経て、ポリゴンミラー125に入射させる。波長分散された光のうち、ポリゴンミラー125の反射面に直交する特定波長とその近傍の波長成分の光のみが戻り光となり、半導体レーザ媒質111に帰還する。半導体レーザ媒質111は、この特定波長の光に誘導されて定在波をつくり、その特定波長(以下、発振波長という)の光を射出する。ポリゴンミラー125を回転させることにより、戻り光の波長を連続的に変化させることができ、発振波長を掃引することができる。
また、特許文献1には、図33に示す装置のレンズ124a、124bおよびポリゴンミラー125を、レンズ134および回転円盤135に置換した構成の図34に示す波長可変レーザ装置が記載されている。この装置では、回転円盤135の盤面に配設された径方向に直線的に伸びるスリット状のミラー135aにより、特定波長の光のみが半導体レーザ媒質111に帰還する。回転円盤135を回転させることにより、帰還する光の波長を連続的に変化させることができ、発振波長を掃引することができる。
ところで、上記のような発振波長が掃引可能な波長掃引レーザ装置の重要な用途として、SS−OCT(Swept source OCT)計測を利用した光断層画像化装置が知られている。光断層画像化装置は、光源から射出されたコヒーレンス光を測定光と参照光とに分割した後、測定光が測定対象に照射されたときの反射光と参照光とを合波し、反射光と参照光との干渉光の強度に基づいて光断層画像を取得するものである。SS−OCT計測の光断層画像化装置では、光源から射出される光の周波数を時間的に変化させながら干渉光の検出を行うものであり、これにより得られたスペクトル干渉強度信号を計算機でフーリエ変換することにより光断層画像を構成するようにしたものである。
OCT装置は、医療分野における利用が実現化されつつあり、空間分解能の高い光断層画像を短時間で取得することが望まれている。このためには広帯域なスペクトル幅を有する測定光を用いて光断層画像を取得することが必要である。このため、例えば上述した特許文献1に記載されている波長掃引レーザ装置を複数台用意し、各波長掃引レーザ装置から射出された光を合波して、波長多重掃引レーザ装置として用いることを本発明人等は検討した。
米国特許第2005/0035295号明細書
しかしながら、上記のように、特許文献1に記載されている波長掃引レーザ装置を複数台用意し、各波長掃引レーザ装置から射出された光を合波して、波長多重掃引レーザ装置として用いる場合、装置が大型化し、かつ製造コストも当然複数倍になるという問題がある。
そこで、本発明は上記事情を鑑みなされたものであり、小型でかつ製造コストも抑制可能な波長多重掃引レーザ装置を提供することを目的とする。また、該波長多重掃引レーザ装置を用いた光断層画像化装置を提供することを目的とする。
本発明の波長多重掃引レーザ装置は、複数のレーザ媒質と、
前記複数のレーザ媒質からの射出光を空間的に波長分散する複数の波長分散手段と、
前記複数の波長分散手段によりそれぞれ波長分散された光の一部を、反射面を回転させながら戻り光として反射することにより、前記複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引する単一の回転式反射手段と、
前記波長分散手段と前記回転式反射手段との間に配置されたリレー光学系とを備え、
前記単一の回転反射手段が回転することにより、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出することを特徴とするものである。
なお、ここで波長分散手段とは波長を分散できるものであればいかなるものであってもよく、具体的には回折格子、プリズムあるいはグリズムなどである。
前記リレー光学系は、単一のリレー光学系であってもよい。
前記波長分散手段は、複数個の回折格子からなるものであってもよい。
前記波長分散手段が、複数個の回折格子からなるものであれば、少なくとも一枚の回折格子の格子ピッチが他の一枚の回折格子の格子ピッチとは異なるものであってもよいし、あるいは少なくとも一枚の回折格子の配置角度が他の一枚の回折格子の配置角度とは異なるものであってもよい。
本発明の光断層画像化装置は、波長多重掃引レーザ装置と、該波長多重掃引レーザ装置から射出された第1の光および第2の光をそれぞれ第1および第2の測定光と第1および第2の参照光とに分割する光分割手段と、
該分割手段により分割された前記第1および第2の測定光が測定対象に照射されたときの該測定対象からの反射光である第1および第2の反射光と前記第1および第2の参照光とをそれぞれ合波する合波手段と、
該合波手段により前記第1の反射光と前記第1の参照光とが重ね合わされたときに生ずる第1の干渉光と前記合波手段により前記第2の反射光と前記第2の参照光とが重ね合わされたときに生ずる第2の干渉光とを、それぞれ第1の干渉信号および第2の干渉信号として検出する干渉光検出手段と、
前記干渉光検出手段により検出された前記第1および第2の干渉信号を用いて前記測定対象の断層画像を生成する断層画像処理手段とを備えるものであって、
前記波長多重掃引レーザ装置が、
複数のレーザ媒質と、
前記複数のレーザ媒質からの射出光を空間的に波長分散する複数の波長分散手段と、
前記複数の波長分散手段によりそれぞれ波長分散された光の一部を、反射面を回転させながら戻り光として反射することにより、前記複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引する単一の回転式反射手段と、
前記波長分散手段と前記回転式反射手段との間に配置されたリレー光学系とを備え、
前記単一の回転反射手段が回転することにより、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出するものであることを特徴とするものである。
本発明の波長多重掃引レーザ装置によれば、単一の回転式反射手段を回転することにより、複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引し、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出することができるため、従来の波長多重掃引レーザ装置のように、複数の回転式反射手段を備える必要がなく、装置の小型化および製造コストの抑制が可能となる。
前記リレー光学系が、単一のリレー光学系であれば、装置をより小型化することができる。
本発明の光断層画像化装置によれば、複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引する単一の回転式反射手段を回転することにより、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出することができる波長多重掃引レーザ装置を用いて光断層画像を取得することができるため、光断層画像化装置を小型化することができる。
以下、図面を参照して本発明の波長多重掃引レーザの実施形態について詳細に説明する。
波長多重掃引レーザ装置100は、レーザ光Laとレーザ光Lbとを、同時に掃引しながら射出する外部共振器型の波長多重掃引レーザ装置である。図1に波長多重掃引レーザ装置100の上面図(模式図)を示す。また、図2Aおよび図2Bに、異なる方向から見た側面図(模式図)を示す。波長多重掃引レーザ装置100は、半導体レーザ媒質101aおよび101bと、回折格子105aおよび105bと、レンズ106と、レンズ107と、ポリゴンミラー108と、光ファイバFB1aおよび光ファイバFB1bと、光合波手段111と、光ファイバFB2とを備えている。
半導体レーザ媒質101aおよび101bと回折格子105aおよび105bとの間には、それぞれコリメートレンズ104aおよび104bが配置されている。また半導体レーザ媒質101aおよび101bと光ファイバFB1aおよび光ファイバFB1bとの間には、それぞれ集光レンズ110aおよび110bが配置されている。半導体レーザ媒質101aおよび101bのコリメートレンズ104aおよび104b側には、端面102aおよび102bが形成され、集光レンズ110aおよび110b側には、端面103aおよび103bが形成されている。端面102aおよび102bには反射防止膜(ARコート)が施されている。また、光ファイバFB1aと光ファイバFB1bとは、光合波手段111に接続され、光合波手段111には、さらに光ファイバFB2が接続されている。
図2Aおよび2Bに示すように、光ファイバFB1aとFB1bと、集光レンズ110aおよび110bと、半導体レーザ媒質101aおよび101bと、コリメートレンズ104aおよび104bと、回折格子105aおよび105bとは、図2Aおよび図2Bにおける上下方向に重なるように配置されている。なお、図2Aは、回折格子105aおよび105bと、リレーレンズ106および107と、ポリゴンミラー108とを、図1における下方向から見た側面図である。また図2Bは、回折格子105aおよび105bと、コリメートレンズ104aおよび104bと、リレーレンズ106および107と、ポリゴンミラー108と、半導体レーザ媒質101aおよび101bと、集光レンズ110aおよび110bと、光ファイバFB1aと光ファイバFB1bと、光合波手段111と、光ファイバFB2とを、図1における左下方向から見た側面図である。
回折格子105aおよび105bは、反射型の回折格子であり、半導体レーザ媒質101aおよび101bからの射出光を空間的に波長分散する波長分散手段として機能する。回折格子105aおよび105bにおいて生じた回折光は、波長ごとに異なる方向に進行する。なお、図3に示すように、回折格子105aの格子ピッチと、回折格子105bの格子ピッチとは異なっている。
ポリゴンミラー108は、レンズ107に対向する反射面109が順次光を反射するように、複数の反射面109が配設され、不図示の駆動手段により等角速度で回転する。
上述したように、波長多重掃引レーザ装置100からは、レーザ光Laとレーザ光Lbとが、それぞれ波長掃引されながら、同時に射出される。まず、レーザ光Laが射出される動作について説明する。半導体レーザ媒質101aの端面102aからコリメートレンズ104aへ向かって射出した光は、コリメートレンズ104aにより平行光に変換された後、回折格子105aにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光は、レンズ106および107によりリレーされ、ポリゴンミラー108の反射面109へ入射する。
ポリゴンミラー108の回転に伴い、反射面109と入射光のなす角度が変化するため、反射面109により垂直に入射する光(波長1.09μm〜1.2μm)が、戻り光として選択的に反射される。戻り光は、逆光路を経由して、すなわち、レンズ107およびレンズ106を通り、回折格子105aを経て、コリメートレンズ104aを通り、半導体レーザ媒質101aに帰還する。半導体レーザ媒質101aの端面103aとポリゴンミラー108の反射面109とを両端部として、共振器が構成されて、半導体レーザ媒質101aの端面103aから、光Laが射出される。なお、この光Laの発振波長は戻り光の波長である。
戻り光の波長は、ポリゴンミラー108の回転に伴い変化し、1つの反射面109について波長1.09μmから波長1.2μmまでの1周期分の波長掃引が行われる。複数の反射面109がポリゴンミラー108に設けられているため、この波長帯域Δλa(1.09μm〜1.2μm)での波長掃引が一定の周期で繰り返される。半導体レーザ媒質101aの端面103aから射出された光Laは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
レーザ光Lbは、ほぼレーザ光Laの射出動作と同様の動作により射出される。半導体レーザ媒質101bの端面102bからコリメートレンズ104bへ向かって射出した光は、コリメートレンズ104bにより平行光に変換された後、回折格子105bにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光は、レンズ106および107によりリレーされ、ポリゴンミラー108の反射面109へ入射する。
ポリゴンミラー108の回転に伴い、反射面109と入射光のなす角度が変化するため、反射面109により垂直に入射する光(波長1.0μm〜1.11μm)が、戻り光として選択的に反射される。戻り光は、レンズ107およびレンズ106を通り、回折格子105bを経て、コリメートレンズ104bを通り、半導体レーザ媒質101bに帰還する。半導体レーザ媒質101bの端面103bとポリゴンミラー108の反射面109とを両端部として、共振器が構成されて、半導体レーザ媒質101bの端面103bから、光Lbが射出される。なお、この光Lbの発振波長は戻り光の波長である。
戻り光の波長は、ポリゴンミラー108の回転に伴い変化し、1つの反射面109について波長1.0μmから波長1.11μmまでの1周期分の波長掃引が行われる。複数の反射面109がポリゴンミラー108に設けられているため、この波長帯域Δλb(1.0μm〜1.11μm)での波長掃引が一定の周期で繰り返される。光Lbは集光レンズ110bにより集光され、光ファイバFB1bへ入射する。
光ファイバFB1aを伝播した光Laと、光ファイバFB1bを伝播した光Lbとは、光合波手段111により合波され、光ファイバFB2へ導光される。なお、図4に光Laおよび光Lbの時間対波長特性を示す。
以上の説明で明らかなように、波長多重掃引レーザ装置100は、単一のポリゴンミラー108を回転することにより、半導体レーザ媒質101aおよび101bによりそれぞれ増幅される光の波長を掃引し、波長帯域Δλa(1.09μm〜1.2μm)において掃引されるレーザ光Laと波長帯域Δλb(1.0μm〜1.11μm)において掃引されるレーザ光Lbとを同時に射出することができる。このため、従来の波長多重掃引レーザ装置で必要であった複数の回転式反射手段を備える必要がなく、波長多重掃引レーザ装置の小型化および製造コストの抑制が可能となる。また、単一のリレー光学系であるレンズ106および107を用いたため、装置をより小型化することができる。
なお、図3に示した格子ピッチの異なる回折格子105aと回折格子105bとを用いる代わりに、図5に示すような格子ピッチは等しく、配置角度が異なる回折格子112aと112bとを用いることもできる。この場合、格子ピッチの異なる回折格子を用意する必要がないため、製造コストをより抑制することができる。
次に、本発明の第2の実施形態にかかる波長多重掃引レーザ装置200について図6、図7Aおよび図7Bを参照して説明する。図6は波長多重掃引レーザ装置200の上面図(模式図)である。図7Aは図6における下方向から見た、波長多重掃引レーザ装置200の一部の側面図(模式図)であり、図7Bは図6における左下方向から見た、波長多重掃引レーザ装置200の一部の側面図(模式図)である。波長多重掃引レーザ装置200は、回折格子201aおよび201bとポリゴンミラー202の配置が、波長多重掃引レーザ装置100における回折格子105aおよび105bとポリゴンミラー108の配置と逆配置となる点が、波長多重掃引レーザ装置100とは異なるものであるが、他の構成および動作は波長多重掃引レーザ装置100とほぼ同様である。なお、回折格子105aおよび105bと同様に、回折格子201aの格子ピッチと、回折格子201bの格子ピッチとは異なっている。
波長多重掃引レーザ装置200において、前述の実施形態の波長多重掃引レーザ装置100と同様の構成については同じ符号を付して重複説明を省略する。
半導体レーザ媒質101aの端面102aからコリメートレンズ104aへ向かって射出した光は、コリメートレンズ104aにより平行光に変換された後、ポリゴンミラー202の反射面203により反射され、レンズ106および107によりリレーされ、回折格子201aへ入射して、波長ごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光のうち、入射方向へ戻る戻り光は、逆光路を経由して、すなわち、レンズ107およびレンズ106を通り、ポリゴンミラー202の反射面203で反射して、半導体レーザ媒質101aへ帰還する。
ポリゴンミラー202の回転に伴い、回折格子201aと該回折格子201aへ入射する光とのなす角度が変化するため、入射方向へ戻る戻り光の波長が変化する。半導体レーザ媒質101aの端面103aと回折格子201aとを両端部として、共振器が構成されて、半導体レーザ媒質101aの端面103aから、光Laが射出される。なお、この光Laの発振波長は戻り光の波長である。
戻り光の波長は、ポリゴンミラー202の回転に伴い変化し、1つの反射面203について波1.09μmから波長1.2μmまでの1周期分の波長掃引が行われる。複数の反射面203がポリゴンミラー202に設けられているため、この波長帯域Δλa(1.09μm〜1.2μm)での波長掃引が一定の周期で繰り返される。半導体レーザ媒質101aの端面103aから射出された光Laは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
また、レーザ光Lbは、ほぼレーザ光Laの射出動作と同様の動作により射出され、波長帯域Δλb(1.0μm〜1.11μm)での波長掃引が一定の周期で繰り返される。
以上の説明で明らかなように、波長多重掃引レーザ装置200においても、第1の実施形態である波長多重掃引レーザ装置100と同様の効果を得ることができる。
また、本実施の形態においても、格子ピッチの異なる回折格子201aと回折格子201bの代わりに、図5に示すような、格子ピッチは等しく、配置角度が異なる回折格子112aと112bとを用いることもできる。
次に、本発明の第3の実施形態にかかる波長多重掃引レーザ装置300について図8および図9を参照して説明する。図8は波長多重掃引レーザ装置300の上面図(模式図)であり、図9は図8における下方向から見た、波長多重掃引レーザ装置300の一部の側面図(模式図)である。波長多重掃引レーザ装置300は、半導体レーザ媒質301aおよび301bから射出された光が3dBカプラー305により結合されて、光ファイバFB5を伝播して、回折格子307aおよび307bへ入射し、また回折格子307aおよび307bにより回折された戻り光が、光ファイバFB5を伝播し、その後3dBカプラー305により分枝されて、半導体レーザ媒質301aおよび301bへ帰還するものである。波長多重掃引レーザ装置300において前述の実施形態の波長多重掃引レーザ装置100と同様の構成については同じ符号を付して重複説明を省略する。
半導体レーザ媒質301aおよび半導体レーザ媒質301bは、半導体レーザ媒質301aにおいて光増幅される波長帯域と、半導体レーザ媒質301bにおいて増幅される波長帯域とが重複することがないように、例えば、半導体レーザ媒質301aにおいて波長1.1μm以上の光が増幅され、半導体レーザ媒質301bにおいては波長が1.1μmより短い光が増幅されるように、媒質材料が選択されている。
回折格子307aおよび307bは、反射型の回折格子であり、半導体レーザ媒質301aおよび301bからの射出光を空間的に波長分散する波長分散手段として機能する。回折格子307aおよび307bにおいて生じた回折光は、波長ごとに異なる方向に進行する。なお、図10Aに示すように、回折格子307aの格子ピッチと、回折格子307bの格子ピッチとは異なっている。なお、図10Aに示す格子ピッチの異なる回折格子307aと回折格子307bの代わりに、図10Bに示すような、格子ピッチは等しく、配置角度が異なる回折格子310aと310bとを用いることもできる。
3dBカプラー305には、光ファイバFB5と、光ファイバFB4aおよびFB4bとが接続されている。光ファイバFB5から3dBカプラー305に入った信号は光ファイバFB4aおよびFB4bへ-3dB減衰して現れる、すなわち略50:50に分枝される。また逆に、光ファイバFB4aおよびFB4bから3dBカプラー305へ入った信号は、結合して光ファイバFB5へ現れる。光ファイバFB5の端部と、回折格子307aおよび307bとの間には、コリメートレンズ306が配置されている。また、光ファイバFB4aおよびFB4bの端部と、半導体レーザ媒質301aおよび301bとの間には、それぞれ集光レンズ304aおよび303bが配置されている。
半導体レーザ媒質301aの端面302aから集光レンズ304aへ向かって射出した光は、集光レンズ304aにより集光されて光ファイバFB4aへ入射する。同様に半導体レーザ媒質301bの端面302bから集光レンズ304bへ向かって射出した光は、集光レンズ304bにより集光されて光ファイバFB4bへ入射する。
光ファイバFB4aを伝播した光と光ファイバFB4bを伝播した光は、3dBカプラー305で結合され、光ファイバFB5を伝播して射出され、コリメートレンズ306により平行光に変換される。光の一部は回折格子307aにより、波長分散されて、波長ごとに異なる方向に進行し、他の光の一部は回折格子307bにより、波長分散されて、波長ごとに異なる方向に進行する。これらの波長分散された光は、それぞれレンズ106および107によりリレーされ、ポリゴンミラー308の反射面309へ入射する。
ポリゴンミラー308の回転に伴い、反射面309と入射光のなす角度が変化するため、反射面309により垂直に入射する光、例えば波長1.0μmおよび波長1.11μmの光が戻り光のとして選択的に反射される。戻り光は、逆光路を経由して、すなわち、レンズ107およびレンズ106を通り、回折格子307aおよび回折格子307bを経て、コリメートレンズ306を通り、半導体レーザ媒質301aおよび301bに帰還する。半導体レーザ媒質301aにおいては、波長1.1μm以上の光が増幅されるため、波長1.11μmの光が増幅される。また、半導体レーザ媒質301bにおいては、波長が1.1μmより短い光が増幅されるため、波長1.0μmの光が増幅される。
半導体レーザ媒質301aの端面303aとポリゴンミラー308の反射面309とを両端部として、共振器が構成されて、半導体レーザ媒質301aの端面303aから、光Lcが射出される。なお、この光Lcの発振波長は、1.1μm以上の戻り光の波長である。
戻り光の波長は、ポリゴンミラー308の回転に伴い変化し、1つの反射面309について波長1.11μmから波長1.2μmまでの1周期分の波長掃引が行われる。複数の反射面309がポリゴンミラー308に設けられているため、この波長帯域Δλc(1.11μm〜1.2μm)での波長掃引が一定の周期で繰り返される。半導体レーザ媒質301aの端面303aから射出された光Lcは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
同様に、半導体レーザ媒質301bの端面303bとポリゴンミラー308の反射面309とを両端部として、共振器が構成されて、半導体レーザ媒質301bの端面303bから、光Ldが射出される。なお、この光Ldの発振波長は、1.1μmより短波長の戻り光の波長である。
戻り光の波長は、ポリゴンミラー308の回転に伴い変化し、1つの反射面309について波長1.0μmから波長1.09μmまでの1周期分の波長掃引が行われる。複数の反射面309がポリゴンミラー308に設けられているため、この波長帯域Δλd(1.0μm〜1.09μm)での波長掃引が一定の周期で繰り返される。半導体レーザ媒質301bの端面303bから射出された光Ldは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。なお、図11に光Lcおよび光Ldの時間対波長特性を示す。
光ファイバFB1aを伝播した光Lcと、光ファイバFB1bを伝播した光Ldとは、光合波手段111により合波され、光ファイバFB2へ導光される。
以上の説明で明らかなように、波長多重掃引レーザ装置300においても、第1の実施形態である波長多重掃引レーザ装置100と同様の効果を得ることができる。また、3dBカプラー305とポリゴンミラー308との間の光路が、一本であるため、回折格子307a、307b、レンズ106,107およびポリゴンミラー308として、小型の部材を用いることができ、より装置を小型化することができる。
次に、本発明の第4の実施形態にかかる波長多重掃引レーザ装置400について図12および図13を参照して説明する。図13は波長多重掃引レーザ装置400の上面図(模式図)であり、図13は、図12における下方向から見た、波長多重掃引レーザ装置400の一部の側面図(模式図)である。波長多重掃引レーザ装置400は、回折格子401aおよび401bとポリゴンミラー402との配置が、波長多重掃引レーザ装置300における回折格子307aおよび307bとポリゴンミラー308の配置と逆配置となる点が、波長多重掃引レーザ装置300とは異なるものであるが、他の構成および動作は波長多重掃引レーザ装置300とほぼ同様である。なお、回折格子307aおよび307bと同様に、回折格子401aの格子ピッチと、回折格子401bの格子ピッチとは異なっている。
波長多重掃引レーザ装置400においても、ポリゴンミラー402の回転に伴って、半導体レーザ媒質301aの端面303aから、波長帯域Δλc(1.11μm〜1.2μm)で波長掃引される光Lcが射出され、半導体レーザ媒質301bの端面303bから、波長帯域Δλd(1.0μm〜1.09μm)で波長掃引される光Ldが射出される。
波長多重掃引レーザ装置400においても、第3の実施形態である波長多重掃引レーザ装置300と同様の効果を得ることができる。
なお、本実施の形態においても、格子ピッチの異なる回折格子401aと回折格子401bの代わりに、格子ピッチは等しく、配置角度が異なる回折格子を用いることもできる。
次に、本発明の第5の実施形態にかかる波長多重掃引レーザ装置500について図14Aおよび14Bを参照して説明する。波長多重掃引レーザ装置500は、半導体レーザ媒質501aおよび501bから射出される光が、ポリゴンミラー505の反射面506の同一部位へ互いに角度を有して入射する点と、波長多重掃引レーザ装置200における回折格子201aおよび201bの代わりに、回折格子507aおよび507b が用いられている点が、波長多重掃引レーザ装置200とは異なるものであるが、他の構成および動作は波長多重掃引レーザ装置200とほぼ同様である。なお、図14Aおよび図14Bは、図7Aおよび図7Bと同様に、波長多重掃引レーザ装置500の一部の側面図(模式図)である。また、半導体レーザ媒質501aおよび501bは、半導体レーザ媒質501aから射出される光と半導体レーザ媒質501bから射出される光とが角度を有するように配置されている点が、半導体レーザ媒質101aおよび101bと異なるものであるが、他の構成は半導体レーザ媒質101aおよび101bと同様である。また、波長多重掃引レーザ装置500において、前述の実施形態の波長多重掃引レーザ装置200と同様の構成については同じ符号を付して重複説明を省略する。
図14Aに示すように、回折格子507aおよび回折格子507bは、それぞれ、ポリゴンミラー505の回転によって回折格子に入射する光の光軸が移動する平面に対して、格子が垂直になるように配置され、屋根型に接続されている。また、図15は、回折格子505aおよび回折格子507bを格子が形成されている方向から見た模式図である。図15に示すように、回折格子507aの格子ピッチと回折格子507bの格子ピッチは異なっている。
半導体レーザ媒質501aの端面502aからコリメートレンズ504aへ向かって射出した光は、コリメートレンズ504aにより平行光に変換された後、ポリゴンミラー505の反射面506により反射され、レンズ106および107によりリレーされ、回折格子507aへ入射して、波長分散されて、波長ごとに異なる方向に進行する。この波長分散された光のうち、入射方向へ戻る戻り光は、逆光路を経由して、すなわち、レンズ107およびレンズ106を通り、ポリゴンミラー505の反射面506で反射して、半導体レーザ媒質501aへ帰還する。
ポリゴンミラー505の回転に伴い、回折格子507aと回折格子507aへ入射する光とのなす角度が変化するため、入射方向へ戻る戻り光の波長が変化する。半導体レーザ媒質501aの端面503aと回折格子507aとを両端部として、共振器が構成されて、半導体レーザ媒質501aの端面503aから、光Laが射出される。なお、この光Laの発振波長は戻り光の波長である。
戻り光の波長は、ポリゴンミラー505の回転に伴い変化し、1つの反射面506について波長1.09μmから波長1.2μmまでの1周期分の波長掃引が行われる。複数の反射面506がポリゴンミラー505に設けられているため、この波長帯域Δλa(1.09μm〜1.2μm)での波長掃引が一定の周期で繰り返される。半導体レーザ媒質501aの端面503aから射出された光Laは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
また、レーザ光Lbは、ほぼレーザ光Laの射出動作と同様の動作により、半導体レーザ媒質501bの端面503bから射出され、波長帯域Δλb(1.0μm〜1.11μm)での波長掃引が一定の周期で繰り返される。
波長多重掃引レーザ装置500においても、第2の実施形態である波長多重掃引レーザ装置200と同様の効果を得ることができる。さらに、ポリゴンミラー505の同一部位を用いて、光Laおよび光Lbの波長掃引が行われるため、小型のポリゴンミラー505を用いることができる。
なお、本実施の形態においても、格子ピッチの異なる回折格子507aと回折格子507bの代わりに、格子ピッチは等しく、波長分散方向における配置角度が異なる回折格子を用いることもできる。
次に、本発明の第6の実施形態にかかる波長多重掃引レーザ装置600について図16Aおよび16Bを参照して説明する。波長多重掃引レーザ装置600は、半導体レーザ媒質601aおよび601bから射出される光が、ポリゴンミラー608の反射面609の同一部位へ互いに角度を有して入射する点と、波長多重掃引レーザ装置100における回折格子105aおよび105bの代わりに、屋根型に配置された回折格子605a、605bおよび605cとミラー607とが用いられている点が、波長多重掃引レーザ装置100とは異なるものであるが、他の構成および基本的な動作は波長多重掃引レーザ装置100とほぼ同様である。なお、図16Aおよび図16Bは、図2Aおよび図2Bと同様に、波長多重掃引レーザ装置600の一部の側面図(模式図)である。また、半導体レーザ媒質601aおよび601bは、半導体レーザ媒質601aから射出される光と半導体レーザ媒質601bから射出される光とが平行ではなく、角度を有するように配置されている点が、半導体レーザ媒質101aおよび101bと異なるものであるが、他の構成は半導体レーザ媒質101aおよび101bと同様である。また、波長多重掃引レーザ装置600において、前述の実施形態の波長多重掃引レーザ装置100と同様の構成については同じ符号を付して重複説明を省略する。
図17は、回折格子605a、605bおよび605cを、格子が形成されている方向から見た模式図である。回折格子605aの格子ピッチと回折格子605cの格子ピッチは同一であり、回折格子605aの格子ピッチと回折格子605bの格子ピッチは異なっている。また、回折格子605aおよび605cは、回折格子607bを中心として対象位置に配置されている。
また、図16Aおよび図16Bに示すように、回折格子605a、605bおよび605cは、ポリゴンミラー608の回転によって各回折格子に入射する光の光軸が移動する平面に対して、格子が垂直になるように配置されている。また、また、ミラー608は、半導体レーザ媒質601bと、ポリゴンミラー608の反射面609を基準として、光学的に対称となるように、すなわち半導体レーザ媒質601bから射出された光がミラー608により反射された場合には、半導体レーザ媒質601へ帰還するように、配置されている。図16Aおよび図16Bにおいて、半導体レーザ媒質601aから射出された光の光路(往復)は点線の矢印で、半導体レーザ媒質601bから射出された光の光路は実線の矢印で示されている。
波長多重掃引レーザ装置600からは、半導体レーザ媒質601aにより増幅されたレーザ光Laと半導体レーザ媒質601bにより増幅されたレーザ光Lbとが、それぞれ波長掃引されながら、同時に射出される。レーザ光Laが射出される動作は、上述した波長多重掃引レーザ装置100と同様であるため、詳細な説明は省略する。以下レーザ光Lbが射出される動作について説明する。
図16Aおよび16Bに示すように、半導体レーザ媒質601bの端面602bからコリメートレンズ604bへ向かって射出した光は、コリメートレンズ604bにより平行光に変換された後、回折格子607aにより、図16Aの紙面と垂直でかつ該光の進行方向を示す矢印を含む平面内(以後垂直平面内と記載)で波長分散されて、垂直平面内で波長ごとに異なる方向に進行する。この垂直平面内で波長分散された光は、レンズ106および107によりリレーされ、図16Aにおける左下方向からポリゴンミラー608の反射面609へ入射し、左上方向へ反射される。レンズ107および106によりリレーされた光は、回折格子607cにより垂直平面内で再度波長分散されて、ミラー606の方向へ進行する。ミラー606で反射された戻り光は、逆の光路を経由して半導体レーザ媒質601bに帰還する。
ミラー606は半導体レーザ媒質601aと光学的に対称な位置に配置されているため、ミラー606で反射された戻り光は半導体レーザ媒質601bへ帰還する。一方、ポリゴンミラー608の回転に伴い、反射面609と該反射面609へ入射する入射光のなす角度が変化するため、ポリゴンミラー608の回転軸に対して垂直な平面内を基準面として、反射面609に垂直に入射する光が、戻り光として選択されることになる。半導体レーザ媒質601bの端面603aとミラー606とを両端部として、共振器が構成されて、半導体レーザ媒質601bの端面603bから、光Lbが射出される。なお、この光Lbの発振波長は戻り光の波長である。
波長多重掃引レーザ装置600においても、第1の実施形態である波長多重掃引レーザ装置100と同様の効果を得ることができる。さらに、ポリゴンミラー608の同一部位を用いて、光Laおよび光Lbの波長掃引が行われるため、小型のポリゴンミラー608を用いることができ、より装置を小型化することができる。
次に、本発明の第7の実施形態にかかる波長多重掃引レーザ装置700について図18、19Aおよび19Bを参照して説明する。波長多重掃引レーザ装置700は、図1に示した波長多重掃引レーザ装置100のレンズ106,107およびポリゴンミラー108の代わりにレンズ部706および回転円盤707を用い、また回折格子105aおよび105bの代わりに屋根型に接続された回折格子705aおよび705bが用いられている。
また、半導体レーザ媒質701aおよび701bは、半導体レーザ媒質701aから射出される光と半導体レーザ媒質701bから射出される光とが平行ではなく、角度を有するように配置されている点が、半導体レーザ媒質101aおよび101bと異なるものであるが、他の構成は半導体レーザ媒質101aおよび101bと同様である。なお、波長多重掃引レーザ装置700において、前述の実施形態の波長多重掃引レーザ装置100と同様の構成については同じ符号を付して重複説明を省略する。
図18は、波長多重掃引レーザ装置700の上面部(模式図)であり、図19Aおよび図19Bは、波長多重掃引レーザ装置700の一部の側面図(模式図)である。また、図20は回転円盤707の正面図であり、回転円盤707上には、径方向に直線的に伸びる線状ミラー708が多数配置されている。また回転円盤707には、該回転円盤707を等各速度で回転させるモータ709が接続されている。レンズ部706は、回折格子705aおよび705bにより分散された光を、分散角度毎に回転円盤707上へ略垂直に、かつ回転円盤707の径方向に直交する一直線上の一点に集光するものである。またレンズ部706は、回折格子705aにより分散された光は、回転円盤707の外周近傍に集光し、回折格子705bにより分散された光は、回転円盤707の中心近傍に集光するように、配置されている。レンズ部706は、一枚のレンズから構成されているものであってもよいし、あるいは複数個のレンズから構成されるものであってもよい。また回折格子705aおよび回折格子507bを格子が形成されている方向から見た模式図を図21に示す。回折格子705aの格子ピッチと回折格子705bの格子ピッチは異なっている。
波長多重掃引レーザ装置700からは、レーザ光Laとレーザ光Lbとが、それぞれ波長掃引されながら、同時に射出される。まず、レーザ光Laが射出される動作について説明する。半導体レーザ媒質701aの端面702aからコリメートレンズ704aへ向かって射出した光は、コリメートレンズ704aにより平行光に変換された後、回折格子705aにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。図20に点線で示すように、この波長分散された光は、レンズ部706により、分散角度毎に回転円盤707の外周近傍に、略垂直にかつ回転円盤707の径方向に直交する一直線上の一点に集光される。
回転円盤707の回転に伴い、ミラー708の位置が変化するため、ミラー708により反射される光が、戻り光として選択的に反射される。戻り光は、逆光路を経由して、すなわち、レンズ部706を通り、回折格子705aを経て、コリメートレンズ704aを通り、半導体レーザ媒質701aに帰還する。半導体レーザ媒質701aの端面703aとミラー708とを両端部として、共振器が構成されて、半導体レーザ媒質701aの端面703aから、光Laが射出される。なお、この光Laの発振波長は戻り光の波長である。
戻り光の波長は、回転円盤707の回転に伴い変化し、1つのミラー708について1周期分の波長掃引が行われる。複数のミラー708が回転円盤707に設けられているため、この波長帯域Δλa例えば1.09μm〜1.2μmでの波長掃引が一定の周期で繰り返される。半導体レーザ媒質701aの端面703aから射出された光Laは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
レーザ光Lbは、ほぼレーザ光Laの射出動作と同様の動作により射出される。半導体レーザ媒質701bの端面702bからコリメートレンズ704bへ向かって射出した光は、コリメートレンズ704bにより平行光に変換された後、回折格子7105bにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。図20に一点破線で示すように、この波長分散された光は、レンズ部706により、分散角度毎に回転円盤707の中心近傍に、略垂直にかつ回転円盤707の径方向に直交する一直線上の一点に集光される。
光λaと同様に、回転円盤707の回転に伴い変化し、1つのミラー708について1周期分の複数のミラー708が回転円盤707に設けられているため、この波長帯域Δλb例えば波長1.0μm〜1.11μmでの波長掃引が一定の周期で繰り返される。半導体レーザ媒質701bの端面703bから射出された光Lbは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
以上の説明で明らかなように、波長多重掃引レーザ装置700は、単一の回転円盤707を回転することにより、半導体レーザ媒質701aおよび701bによりそれぞれ増幅される光の波長を掃引し、波長帯域Δλa(1.09μm〜1.2μm)において掃引されるレーザ光Laと波長帯域Δλb(1.0μm〜1.11μm)において掃引されるレーザ光Lbとを同時に射出することができる。このため、従来の波長多重掃引レーザ装置で必要であった複数の回転式反射手段を備える必要がなく、波長多重掃引レーザ装置の小型化および製造コストの抑制が可能となる。
次に、本発明の第8の実施形態にかかる波長多重掃引レーザ装置800について図22、23Aおよび23Bを参照して説明する。図22は、波長多重掃引レーザ装置800の上面部(模式図)であり、図23Aおよび図23Bは、波長多重掃引レーザ装置800の一部の側面図(模式図)である。波長多重掃引レーザ装800は、図18、19Aおよび19Bに示した波長多重掃引レーザ装置700の回折格子705aおよび705bおよびレンズ部706の代わりに、回折格子805a、805bおよび805cとレンズ部806が用いられている。図24は、回折格子805a、805bおよび805cを、格子が形成されている方向から見た模式図であり、回折格子805aの格子ピッチと回折格子805cの格子ピッチは同一であり、回折格子805aの格子ピッチと回折格子805bの格子ピッチは異なっている。
また、半導体レーザ媒質801aおよび801bは、半導体レーザ媒質801aから射出される光と半導体レーザ媒質801bから射出される光とが平行となるように配置されている点が、半導体レーザ媒質701aおよび701bと異なるものであるが、他の構成は半導体レーザ媒質701aおよび701bと同様である。ミラー807は、回転円盤707を対称点として半導体レーザ媒質801bと光学的に対称となるように、すなわち半導体レーザ媒質801から射出された光がミラー807により反射され、半導体レーザ媒質801へ帰還するように、配置されている。
なお、波長多重掃引レーザ装置800において、前述の実施形態の波長多重掃引レーザ装置700と同様の構成については同じ符号を付して重複説明を省略する。
レンズ部806は、回折格子705aおよび705bにより分散された光を、分散方向と平行な方向においては分散角度毎に回転円盤807上へ略垂直に、かつ回転円盤707の径方向に直交する一直線上の一点に集光するものである。またレンズ部706は、上記分散方向と直交する方向においては、該レンズ部806に入射する平行光を、回転円盤707の径方向に直交する一直線上に集光するものである。また、回折格子805bにより分散された光が、レンズ部806の中心を通り、分散方向と直交する方向において、回転円盤707へ略垂直に入射するように、レンズ部806は配置されている。
波長多重掃引レーザ装置800からは、レーザ光Laとレーザ光Lbとが、それぞれ波長掃引されながら、同時に射出される。まず、レーザ光Laが射出される動作について説明する。半導体レーザ媒質801aの端面802aからコリメートレンズ804aへ向かって射出した光は、コリメートレンズ804aにより平行光に変換された後、回折格子805bにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光は、分散角度毎に、レンズ部806により、回転円盤707の半径の略中央部に、略垂直にかつ回転円盤707の径方向に直交する一直線上の一点に集光される。
回転円盤707の回転に伴い、ミラー708の位置が変化するため、ミラー708により反射される光が、戻り光として選択的に反射される。戻り光は、逆光路を経由して、半導体レーザ媒質801aに帰還する。半導体レーザ媒質801aの端面803aとミラー708とを両端部として、共振器が構成されて、半導体レーザ媒質801aの端面803aから、光Laが射出される。なお、この光Laの発振波長は戻り光の波長である。
戻り光の波長は、回転円盤707の回転に伴い変化し、1つのミラー708について1周期分の波長掃引が行われる。複数のミラー708が回転円盤707に設けられているため、この波長帯域Δλa例えば1.09μm〜1.2μmでの波長掃引が一定の周期で繰り返される。半導体レーザ媒質801aの端面803aから射出された光Laは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
次に、レーザ光Lbが射出される動作について説明する。半導体レーザ媒質801bの端面802bからコリメートレンズ804bへ向かって射出した光は、コリメートレンズ804bにより平行光に変換された後、回折格子805cにより、波長ごとに分散されて、波長ごとに異なる方向に進行する。この波長分散された光は、分散角度毎に、レンズ部806により、回転円盤707の半径の略中央部に、回転円盤707の径方向に直交する一直線上の一点に集光される。この際、図23Aに示すように、波長分散された光は回転円盤707の左下方向から回転円盤707へ入射するため、左上方向へ反射される。レンズ部806を通った光は、回折格子805aにより再度波長分散されて、ミラー807の方向へ進行する。ミラー807で反射された戻り光は、逆の光路を経由して半導体レーザ媒質801bに帰還する。
ミラー807は半導体レーザ媒質801bと光学的に対称な位置に配置されているため、ミラー807で反射された戻り光は、逆光路を経由して、半導体レーザ媒質801bへ帰還する。
光λaと同様に、回転円盤707の回転に伴い変化し、1つのミラー708について1周期分の波長掃引が行われる。複数のミラー708が回転円盤707に設けられているため、この波長帯域Δλb、例えば波長1.0μm〜1.11μmでの波長掃引が一定の周期で繰り返される。半導体レーザ媒質801bの端面803bから射出された光Lbは集光レンズ110aにより集光され、光ファイバFB1aへ入射する。
以上の説明で明らかなように、波長多重掃引レーザ装置800は、単一の回転円盤707を回転することにより、半導体レーザ媒質701aおよび701bによりそれぞれ増幅される光の波長を掃引し、波長帯域Δλa(1.09μm〜1.2μm)において掃引されるレーザ光Laと波長帯域Δλb(1.0μm〜1.11μm)において掃引されるレーザ光Lbとを同時に射出することができる。このため、従来の波長多重掃引レーザ装置で必要であった複数の回転式反射手段を備える必要がなく、波長多重掃引レーザ装置の小型化および製造コストの抑制が可能となる。
波長多重掃引レーザ装置800においても、波長多重掃引レーザ装置700と同様の効果が得られる。
次に、本発明の波長多重掃引レーザ100を備えた光断層画像化装置10について図26を参照して説明する。図26は光断層画像化装置10の概略構成図である。光断層画像化装置10は、マッハツェンダ型干渉計を用いたSS−OCT装置であり、例えば体腔内の生体組織や細胞等の測定対象の断層画像を、マッハツェンダ型干渉計を用いて前述のSS−OCT計測により取得するものである。また、光断層画像化装置10は、波長帯域の異なる2つの光を用いて光断層画像を取得するものである。
光断層画像化装置10は、波長が、波長帯域Δλa(1.09μm〜1.2μm)内で、一定の周期で掃引されるレーザ光Laと、波長帯域Δλb(1.0μm〜1.11μm)内で、一定の周期で掃引されるレーザ光Lbとを、同時に掃引しながら射出する波長多重掃引レーザ装置100と、光Laおよび光Lbをそれぞれ測定光L1aと参照光L2a、測定光L1bと参照光L2bに分割する光分割手段3と、ポートaに入射された測定光L1a、L1bをポートbへ射出し、ポートbへ入射された反射光L3aとL3bとをポートcへ射出するサーキュレータ4と、反射光L3a、L3bと参照光L2a、L2bとをそれぞれ重ね合わせる合波手段5と、合波手段5により反射光L3aと参照光L2aとが重ね合わされたときに生ずる干渉光L4aおよび反射光L3bと参照光L2bとが重ね合わされたときに生ずる干渉光L4bを、3つの波長帯域、1.07μm以下、1.07μm〜1.13μmおよび1.3μm以上へ波長分割する波長分割手段30と、各波長帯域の干渉光を干渉信号として検出する干渉光検出手段40a、40bおよび40cと、干渉光検出手段40a、40b、40cにより検出された干渉信号を用いて測定対象Sの断層画像を取得する断層画像処理手段50とを備えている。
なお、測定光L1a、参照光L2a、反射光L3a、干渉光L4aは光Laに基づくものであり、光Laと同じ波長帯域の光である。また、測定光L1b、参照光L2b、反射光L3b、干渉光L4bは光Lbに基づくものであり、光Lbと同じ波長帯域の光である。
波長多重掃引レーザ装置100は、前述したようにレーザ光Laとレーザ光Lbとを、同時に掃引しながら射出する外部共振器型の波長多重掃引レーザ装置であり、光ファイバFB2を伝播したレーザ光Laとレーザ光Lbとは光分割手段3へ入射する。
光分割手段3は、例えば、分岐比90:10の2×2の光カプラーから構成されている。光分割手段3は、光Laを測定光L1aと参照光L2aとに分割し、光Lbを測定光L1bと参照光L2bとに分割する。このとき、光分割手段3は、測定光:参照光=90:10の割合で分割する。測定光L1aおよびL1bは、ファイバFB32へ射出され、参照光L2aおよびL2bは、ファイバFB33へ射出される。
光分割手段3とプローブ20の間の光路には、サーキュレータ4が設けられ、サーキュレータ4の光分割手段3の側のポートaに入射した測定光L1aおよびL1bは、プローブ20側のポートbからファイバFB34へ射出される。
プローブ20は、光学ロータリコネクタ21を介して入射された測定光L1a、L1bを測定対象Sまで導波し、測定対象Sの同一部位に同時に照射する。また、プローブ20は、測定光L1a、L1bが測定対象Sに照射されたときの測定対象Sからの反射光L3a、L3bを導波する。プローブ20は、図示しないモータにより、光学ロータリコネクタ21から先のファイバ部が回転する構成となっており、それによりサンプル上において円周状に光を走査する様になっており、これにより2次元断層画像が計測可能となっている。さらに、図示しないモータによりプローブ20の先端が光路の走査円が形成する平面に対して垂直な方向に走査する事により、3次元断層画像の計測も可能となっている。また、プローブ20は、図示しない光コネクタにより光ファイバFB34に対して着脱可能に取り付けられている。勿論、プローブ先端形状や走査方向はこれに限る物ではなく、例えば、ファイバ先端に高速走査ミラーを配置して2次元走査を行うような構成でもよい。
プローブ20からファイバFB34を介して射出された反射光L3aおよびL3bは、サーキュレータ4のポートbへ入射し、ポートcから、ファイバFB35へ射出される。合波手段5では、反射光L3a、L3bと参照光L2a、L2bとをそれぞれ合波し、干渉光L4aおよびL4bをファイバFB36へ射出する。なお、光分割手段3から合波手段5までの参照光L2a、L2bの光路には透過型の光路長調整手段6が設けられている。光路長調整手段6は、断層画像の取得を開始する位置を調整するために、それぞれ参照光L2a、L2bの光路長を変更するものである。
波長分割手段30は、設定された波長に応じて光を分割する機能を有し、波長が1.07μm以下の光を反射し、波長が1.07μmより長い光は透過するダイクロイックミラー31と、波長が1.13μm以下の光を反射し、波長が1.13μmより長い波長の光は透過するダイクロイックミラー32と、レンズ33〜36とを備えている。干渉光L4aおよびL4bの内、波長が1.07μm以下の干渉光は、光ファイバFB37へ入射し、波長が1.07μmより長く、1.13μm以下の干渉光は、光ファイバFB38へ入射し、波長が1.13μmより長い干渉光は、光ファイバFB39へ入射する。ダイクロイックミラー31および32の波長反射特性を図27Aの(1)に示す。なお、上記のダイクロイックミラー32の代わりに、図27Aの(2)に示すように、波長が1.13μm以下の光を透過し、波長が1.13μmより長い光は反射するダイクロイックミラーを用いることもできる。この場合には、図27Bに示すように、干渉光L4aおよびL4bの内、波長が1.07μm以下の干渉光は、光ファイバFB37へ入射し、波長が1.07μmより長く、1.13μm以下の干渉光は、光ファイバFB39へ入射し、波長が1.13μmより長い干渉光は、光ファイバFB38へ入射する。なお、図27Bには、干渉光L4aおよび干渉光L4bの時間対波長特性と、各光ファイバFB37、38および39へ入射する光の波長帯域の関係を示している。
光ファイバFB37、FB38およびFB39へは、例えば、分岐比50:50の2×2の光ファイバカプラ41a、41bおよび41cが接続され、それぞれ干渉光を二分して干渉光検出手段40a、40bおよび40cへ射出し、干渉光検出手段40a、40bおよび40cでは二分された干渉光をそれぞれ2つの光検出素子を用いてバランス検波するようにしている。この機構により、光強度ゆらぎの影響を抑え、より鮮明な画像を得ることができる。
干渉光検出手段40a、40bおよび40cは、干渉光をそれぞれ光電変換し、断層画像処理手段50へ出力する。ここで、図28を参照しながら、干渉光検出手段40a、40bおよび40cでの検出結果について説明する。図28(1)、(2)および(3)は、干渉光検出手段40a、40bおよび40cから出力された干渉信号の強度変化を時間軸と対応させて示すものである。理解を助けるために光ごとに分解して示している。すなわち、例えば干渉光L4aは、掃引開始後1msまでの間は、干渉光検出手段40bにより検出され、掃引開始1ms〜2.5msの間は、干渉光検出手段40cにより検出される。また干渉光L4bは、掃引開始後1.5msまでの間は、干渉光検出手段40aにより検出され、掃引開始1.5ms〜2.5msの間は、干渉光検出手段40bにより検出される。なお、各干渉光検出手段40a、40bおよび40cは、それぞれ入射される干渉光の波長帯域よりも広い検出波長帯域を有している。
断層画像処理手段50は、例えばパーソナルコンピュータ等のコンピュータシステムからなり、予め不図示の記憶部へ、光Laおよび光Lbの周波数対時間特性を記憶している。
断層画像処理手段50は、干渉光検出手段40a、40bおよび40cの検出結果を波長掃引光源の発振周波数と対応づけた後、すべて等周波数間隔の干渉信号となる様に信号の接続処理を実施する事により、ひとつの広帯域干渉信号IS0を形成する。この干渉信号IS0を、例えばフーリエ変換を始めとする周波数解析を行うことにより測定対象Sの各深さ位置における光反射強度を求める。
ここで、干渉信号IS0に基づいて断層情報(反射率)r(z)を算出する方法について簡単に説明する。なお、詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol.41、No.7、p426−p432」に記載されている。
測定光が測定対象Sに照射されたとき、測定対象Sの各深さからの反射光と参照光とがいろいろな光路長差(測定対象Sの深さ位置)をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段40において検出される光強度I(k)は、
I(k)=∫ S(l)[1+cos(kl)]dl ・・・(1)
で表され、例えば図29に示すようなグラフで表される。ここで、kは波数、lは参照光と反射光との光路長差である。式(1)は波数kを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。よって、断層画像処理手段50において、干渉光検出手段の検出によるスペクトル干渉縞をフーリエ変換により周波数解析することにより、各波長における干渉信号IS0の光強度S(l)を決定することができ、図30に示すように各深さ位置における反射率を求めることができる。そして、測定対象Sの測定開始位置からの距離情報と断層情報r(z)とを取得する。なお、断層画像処理手段50は、上述したフーリエ変換処理に限らず、たとえば最大エントロピー法(MEM)、Yule−Walker法等の公知のスペクトル解析技術を用いて断層情報r(z)とを取得するものであってもよい。
断層画像処理手段50では、検出された断層情報r(z)を用いて断層画像を生成する。具体的には、各測定光L1a、L1bが測定対象Sの深さ方向zに直交する方向に走査しながら照射されていく。すると、断層画像処理手段50において、複数の測定点での各深さ方向に対する断層情報r(z)が取得されていく。そして、各測定点において取得された複数の断層情報r(z)を用いて2次元もしくは3次元の断層画像を生成する。
次に、光断層画像化装置10の動作例について説明する。まず、波長多重掃引レーザ装置100から、図4に示すような、波長が、波長帯域Δλa(1.09μm〜1.2μm)内で、一定の周期で掃引されるレーザ光Laと、波長が、波長帯域Δλb(1.0μm〜1.11μm)内で、一定の周期で掃引されるレーザ光Lbとが当時に射出される。光Laおよび光Lbは、光ファイバFB2内を伝播し、光分割手段3において、光Laは測定光L1aと参照光L2aに分割され、光Lbは測定光L1bと参照光L2bに分割される。
測定光L1aおよび測定光L1bは、光ファイバFB32を伝播して、サーキュレータ4のポートaへ入射し、ポートbから射出され、光ファイバFB34を伝播して光ロータリコネクタ21を介してプローブ20に入射し、プローブ20から測定対象Sに照射される。そして、測定対象Sの各深さ位置zにおいて反射した反射光L3a、L3bがプローブ20に入射し、測定光と逆の経路を辿ってサーキュレータ4のポートbに入射し、ポートcから射出され、光ファイバFB35を伝播して、合波手段5へ入射する。
光分割手段3で分割された参照光L2aおよび参照光L2bは、光ファイバFB33を伝播して、光路長調整手段6により光路長が調整された後、合波手段5へ入射する。
合波手段5では、反射光L3a、L3bと参照光L2a、L2bとをそれぞれ重ねあわせる。合波手段5により反射光L3aと参照光L2aとが重ね合わされたときに生ずる干渉光L4aおよび反射光L3bと、参照光L2bとが重ね合わされたときに生ずる干渉光L4bとは、波長分割手段30へ入射する。
光ファイバFB36から射出され、レンズ33により平行光化された干渉光L4aおよびL4bの内、波長が1.07μm以下の光はダイクロイックミラー31により反射され、レンズ34により集光されて、ファイバFB37へ入射する。
干渉光L4aおよびL4bの内、波長が1.07μmより長く、1.13μm以下の光は、ダイクロイックミラー31を透過し、ダイクロイックミラー32により反射され、レンズ35により集光されて、ファイバFB38へ入射する。波長が1.13μmより長い光は、ダイクロイックミラー31および32を透過し、レンズ36により集光されて、ファイバFB39へ入射する。
各波長帯域の干渉光は、それぞれ光ファイバカプラ41a、41bおよび41cにより二分され、干渉光検出手段40a、40bおよび40cへ入射する。干渉光検出手段40a、40bおよび40bでは二分された干渉光をそれぞれ2つの光検出素子を用いてバランス検波するとともに光電変換し、干渉信号として、断層画像処理手段50へ出力する。
断層画像処理手段50は、前述したように、干渉光検出手段40a、40bおよび40cの検出結果を波長掃引光源の発振周波数と対応づけた後、すべて等周波数間隔の干渉信号となる様に信号の接続処理を実施する事により、ひとつの広帯域干渉信号IS0を形成し、この干渉信号IS0を、例えばフーリエ変換を始めとする周波数解析を行うことにより測定対象Sの各深さ位置における光反射強度を求める。
プローブ20は、図示しないモータにより、光学ロータリコネクタ21から先のファイバ部が回転する構成となっており、それによりサンプル上において円周状に光を走査する様に構成されている。このため、上述の動作により、測定対象Sの一点における各深さ位置における光反射強度を取得した後、順次光の照射位置を僅かに変更して、同様に各深さ位置における光反射強度を取得し、これらの光反射強度を統合することにより、2次元の光断層画像が生成される。生成された断層画像は、断層画像処理手段50に接続されているCRT(Cathode Ray Tube)や液晶表示装置等からなる表示装置60により表示される。
以上の説明で明らかなように、光断層画像化装置10によれば、単一のポリゴンミラーを用いた小型な波長多重掃引レーザ装置100を用いて光断層画像を取得することができるため、光断層画像化装置10を小型化することができる。
なお、本実施の形態においては、光La、Lbが一部重複した波長帯域を有し、かつ干渉光L4aと干渉光L4bのスペクトルが連続しているとみなせる場合について説明したが、本発明はこれに限定されものではない。干渉光L4aと干渉光L4bのスペクトルが連続していると見なせない場合には、例えば断層画像処理手段50の代わりに図31に示す断層画像処理手段55を用いることにより、断層画像を取得することができる。
断層画像処理手段55は、例えばパーソナルコンピュータ等のコンピュータシステムからなる。干渉光L4aに対応する干渉信号ISaおよび干渉光L4bに対応する干渉信号ISbを生成し、該干渉信号ISaおよびISbを周波数解析することにより測定対象Sの各深さ位置における複数の中間反射強度(反射率)ra(z)、rb(z)を検出し、この複数の中間反射強度ra(z)、rb(z)を用いて測定対象Sの断層画像を取得する機能を有している。具体的には、断層画像処理手段55は、図31に示すように干渉光検出手段40a、40bおよび40cの検出結果から干渉信号ISa、ISbを生成する干渉信号生成手段54、干渉信号ISa、ISbをそれぞれ周波数解析することにより各深さ位置における複数の中間反射強度ra(z)、rb(z)を検出する周波数解析手段51と、周波数解析手段51により検出された複数の中間反射強度ra(z)、rb(z)から断層画像の生成に用いる反射強度r(z)を生成する反射強度処理手段52と、反射強度処理手段52により生成された反射強度r(z)を用いて断層画像を生成する断層画像生成手段53とを有している。
干渉信号生成手段54は、予め不図示の記憶部へ、光Laおよび光Lbの周波数対時間特性を記憶し、該光Laおよび光Lbの周波数対時間特性および各干渉光検出手段40a、40bおよび40cの検出結果に基づいて、干渉信号ISaおよびISbを生成する。本実施の形態では、掃引開始後1msまでの間の干渉光検出手段40bの検出結果および掃引開始1ms〜2.5msの間の干渉光検出手段40cの検出結果を時間軸に沿って合成することにより、干渉信号ISaを生成し、また掃引開始後1.5msまでの間の干渉光検出手段40aの検出結果および掃引開始1.5ms〜2.5msの間の干渉光検出手段40bの検出結果を時間軸に沿って合成することにより、干渉信号ISbを生成する。
周波数解析手段51は、干渉信号ISaを周波数解析することにより光Laに基づく中間反射強度ra(z)を検出する第1周波数解析手段51aと、干渉信号ISbを周波数解析することにより光Lbに基づく中間反射強度rb(z)を検出する第2周波数解析手段51bとを備えている。
つまり、周波数解析手段51において、測定対象Sの同一の照射部位から複数の中間反射強度ra(z)、rb(z)が取得されることになる。なお、周波数解析手段51は上述したフーリエ変換処理に限らず、たとえば最大エントロピー法(MEM)、Yule−Walker法等の公知のスペクトル解析技術を用いてそれぞれ中間反射強度ra(z)、rb(z)を取得するようにしてもよい。
図31の反射強度処理手段52は、図32に示すように、上述のように検出された各深さ位置zからの複数の中間反射強度ra(z)、rb(z)から断層画像の生成に用いる反射強度r(z)を検出するものである。具体的には、反射強度処理手段52は、各深さ位置Zでの中間反射強度ra(z)、rb(z)の平均値r(z)=(ra(z)+rb(z))/2を算出する。
断層画像生成手段53は、反射強度処理手段52により検出された反射強度r(z)を用いて断層画像を生成するものである。具体的には、各測定光L1a、L1bが測定対象Sの深さ方向zに直交する方向に走査しながら照射されていく。すると、断層画像生成手段53において、複数の測定点での各深さ方向に対する反射強度r(z)が取得されていく。そして、断層画像生成手段53は各測定点において取得された複数の反射強度r(z)を用いて2次元もしくは3次元の断層画像を生成する。
このように、断層画像処理手段55の反射強度処理手段52において、複数の中間反射強度ra(z)、rb(z)の平均値を算出することにより、反射率ra(z)、rb(z)に含まれているノイズ成分が相殺され、画質の良い断層画像を得ることができる。
測定対象Sの各深さ位置zの反射強度の絶対値は、測定対象Sの組成に基づく光吸収・光散乱特性等の様々な要因により、照射される測定光L1a、L1bの波長によって異なる。しかし、複数の測定光L1a、L1bは測定対象Sの同一部位に同時に照射されているため、たとえばある深さ位置z1から得られる複数の中間反射強度ra(z1)、rb(z1)の定性的な特性、例えば反射強度が最大となるピーク位置等は、おおよそ同じものとなる。
そこで、複数の中間反射強度ra(z1)、rb(z1)の平均値(=r(z1))を算出することにより、複数の中間反射強度ra(z1)、rb(z1)の値が異なったものであるとしても、それぞれに含まれるノイズ成分を相殺し、深さ位置z1での反射強度を示す成分を際立たせることができる。よって、広帯域な光源を用いず互いに波長帯域が異なる光La、Lbを用いて断層画像を取得した場合であっても画質の良い断層画像を得ることができる。
なお、周波数解析手段51において、フーリエ変換の結果に対するサンプリングピッチは各光La、Lbの波長帯域Δλa、Δλbの幅に依存する。このため、各光La、Lbの波長帯域Δλa、Δλbの幅が異なるものであるときには、干渉信号ISa、ISbのサンプリングピッチが異なる。この場合、波長帯域の狭い光Laから得られた干渉信号ISaに対し、波長帯域の足りない分だけ値として「0」を挿入することにより波長帯域Δλa、Δλbの幅を同一に揃えるようにする。
また、複数の中間反射強度ra(z)、rb(z)の平均値を算出する方法について例示したが、複数の中間反射強度ra(z)、rb(z)の積を用いて反射強度r(z)を生成するようにしてもよい。すると、複数の中間反射強度ra(z)、rb(z)のうち、最も反射強度の強い信号成分が強め合うことになるため、相対的にノイズ成分の信号値が小さくなり画質の良い断層画像を得ることができる。さらに、上記手法に限らず、他の種々の手法により複数の中間反射強度ra(z)、rb(z)を用いて各深さ位置における反射強度r(z)を生成し、断層画像を取得するようにしても良い。上記実施の形態においては、複数の中間反射強度ra(z)、rb(z)の平均もしくは積を用いて反射強度を取得する場合について例示しているが、光源ユニット100から射出される光束La、Lbのスペクトル情報を用いて、それぞれの干渉信号ISa、ISbが得られた波長帯域を考慮してra(z)、rb(z)を組み合わせることにより、反射強度r(z)の高分解能化を図ることができる。つまり、干渉信号ISa、ISbのフーリエ変換で得られるra(z)、rb(z)と、真の反射強度r(z)は、各光束La、Lbのスペクトル形状のフーリエ変換ha(z)、hb(z)と
Figure 2008233028

の関係にある。これを、ra=[ra(0),ra(1×dz),…]T、rb=[rb(0),rb(1×dz),…]T、r=[r(0),r(1×dz),…]Tとして離散表現にすると
Ha・r=ra ・・・(4)
Hb・r=rb ・・・(5)
となる。
ここで、Ha、Hbは、ha=[ha(0),ha(1×dz),…]、hb=[hb(0),hb(1×dz),…]の各ベクトルを、要素をずらしながら並べてできる行列である。反復法等の公知の技術により、この関係式の最適解として反射強度rを得ることができる。
このように、光源ユニット100から射出される各光束La、Lbの波長帯域の違いを考慮した関係式から反射強度r(z)を算出することにより、より精度良く反射強度r(z)を算出することができ、分解能の高い断層画像を生成することができる。なお、光La、光Lbの波長帯域が離散している場合等にも、上述の断層画像処理手段55を用いて断層画像を生成することができる。
なお、ひとつの光の掃引波長帯域は、例示した波長帯域に限る物ではないが、OCT計測が可能な所定の波長帯域以上である必要がある。所定の波長帯域として明確な境界値はないが、おおよそ分解能1mmオーダより小さいシステムを想定しており、光の周波数帯域でおおよそ数10GHz以上のオーダである。
また、上記実施形態では、光ファイバにより光を導波し、光カプラーやWDMカプラーにより合分波する例を示しているが、ミラー、プリズム、ダイクロイックミラー、ダイクロイックプリズム等により空間的に合分波するバルク光学系で構成してもよい。光ファイバプローブの代わりに、空間伝搬した光をガルバノミラーで走査する構成でも良い。
さらに、上記の実施形態では、干渉計としてマッハツェンダ型干渉計を用いたが、これに限定されるものではなく、例えばマイケルソン型干渉計あるいはフィゾー型干渉計などを用いることもできる。
また、上記実施形態では、測定対象から反射、もしくは後方散乱された光を測定する場合を例にとり説明したが、測定対象がガラスブロックや透明フイルムなどの透明媒体の場合、それらの面内屈折率分布、厚み分布、複屈折などを導出するために、反射光の代わりに透過光を測定することがある。そのような場合は、反射光の代わりに透過光を合波手段に導波して、この透過光と参照光を合波するようにすればよく、上記実施形態におけるその他の構成や方法はそのまま適用可能である。
また、光断層画像化装置10においては、波長多重掃引レーザ装置100を光源として用いたが、これに限定されるものではなく、波長多重化掃引レーザ装置200〜800を用いることもできる。
本発明の第1の実施形態にかかる波長多重掃引レーザ装置の上面図 第1の波長多重掃引レーザ装置の側面図 第1の波長多重掃引レーザ装置の側面図 回折格子の構造を示す図 波長多重掃引レーザ装置から射出される光の波長帯域を示す図 回折格子の構造を示す図 本発明の第2の実施形態にかかる波長多重掃引レーザ装置の上面図 第2の波長多重掃引レーザ装置の側面図 第2の波長多重掃引レーザ装置の側面図 本発明の第3の実施形態にかかる波長多重掃引レーザ装置の上面図 第3の波長多重掃引レーザ装置の側面図 回折格子の構造を示す図 他の回折格子の構造を示す図 波長多重掃引レーザ装置から射出される光の波長帯域を示す図 本発明の第4の実施形態にかかる波長多重掃引レーザ装置の上面図 第4の波長多重掃引レーザ装置の側面図 第5の波長多重掃引レーザ装置の側面図 第5の波長多重掃引レーザ装置の側面図 回折格子の構造を示す図 第6の波長多重掃引レーザ装置の側面図 第6の波長多重掃引レーザ装置の側面図 回折格子の構造を示す図 本発明の第7の実施形態にかかる波長多重掃引レーザ装置の上面図 第7の波長多重掃引レーザ装置の側面図 第7の波長多重掃引レーザ装置の側面図 回転円盤の構造を示す図 回折格子の構造を示す図 本発明の第8の実施形態にかかる波長多重掃引レーザ装置の上面図 第8の波長多重掃引レーザ装置の側面図 第8の波長多重掃引レーザ装置の側面図 回折格子の構造を示す図 回転円盤の構造を示す図 本発明の光断層画像化装置の概略構成図 ダイクロイックミラーの波長反射特性を示す図 干渉光L4aおよび干渉光L4bの時間対波長特性と、各光ファイバFB37、38および39へ入射する光の波長帯域の関係を示す図 干渉光検出手段において検出される干渉光の波長帯域を示す図 干渉光検出手段において検出される干渉光の一例を示すグラフ 干渉光検出手段において検出される干渉光を周波数解析したときの各深さ位置の反射強度を示す図 断層画像処理手段の変形例を示す図 反射強度算出方法の説明図 従来の波長可変レーザ装置の概略構成図 従来の波長可変レーザ装置の概略構成図
符号の説明
2、5 合波手段
3 光分割手段
4 光サーキュレータ
6 光路長調整手段
10 光断層画像化装置
20 プローブ
30 波長分割手段
40a、40b、40c 干渉光検出手段
50、55 断層画像処理手段
60 表示装置
100、200、300、400 波長多重掃引レーザ装置
500,600,700,800 波長多重掃引レーザ装置
105a、105b、112a、112b,201a、201b 回折格子
307a、307b、310a、310b、401a、401b 回折格子
507a、507b、605a、605b、605c 回折格子
705a、705b、805a、805b、805c 回折格子
108、202,308、402,505、608 ポリゴンミラー
707 回転円盤
ISa、ISb 干渉信号
La、Lb 光
L1a、L1b 測定光
L2a、L2b 参照光
L3a、L3b 反射光
L4a、L4b 干渉光
S 測定対象
ra、rb 中間反射強度
Δλa、Δλb、Δλc、Δλd 波長帯域

Claims (6)

  1. 複数のレーザ媒質と、
    前記複数のレーザ媒質からの射出光を空間的に波長分散する複数の波長分散手段と、
    前記複数の波長分散手段によりそれぞれ波長分散された光の一部を、反射面を回転させながら戻り光として反射することにより、前記複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引する単一の回転式反射手段と、
    前記波長分散手段と前記回転式反射手段との間に配置されたリレー光学系とを備え、
    前記単一の回転反射手段が回転することにより、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出することを特徴とする波長多重掃引レーザ装置。
  2. 前記リレー光学系が単一のリレー光学系であることを特徴とする請求項1記載の波長多重掃引レーザ装置。
  3. 前記波長分散手段が、複数個の回折格子からなるものであることを特徴とする請求項1または2記載の波長多重掃引レーザ装置。
  4. 少なくとも一枚の回折格子の格子ピッチが他の一枚の回折格子の格子ピッチとは異なるものであることを特徴とする請求項3記載の波長多重掃引レーザ装置。
  5. 少なくとも一枚の回折格子の配置角度が他の一枚の回折格子の配置角度とは異なるものであることを特徴とする請求項3記載の波長多重掃引レーザ装置。
  6. 波長多重掃引レーザ装置と、
    前記波長多重掃引レーザ装置から射出された第1の光および第2の光をそれぞれ第1および第2の測定光と第1および第2の参照光とに分割する光分割手段と、
    該分割手段により分割された前記第1および第2の測定光が測定対象に照射されたときの該測定対象からの反射光である第1および第2の反射光と前記第1および第2の参照光とを重ね合わせる合波手段と、
    該合波手段により前記第1の反射光と前記第1の参照光とが重ね合わされたときに生ずる第1の干渉光と前記合波手段により前記第2の反射光と前記第2の参照光とが重ね合わされたときに生ずる第2の干渉光とを、それぞれ第1の干渉信号および第2の干渉信号として検出する干渉光検出手段と、
    前記干渉光検出手段により検出された前記第1および第2の干渉信号を用いて前記測定対象の断層画像を生成する断層画像処理手段とを備える光断層画像化装置において、
    前記波長多重掃引レーザ装置が、
    複数のレーザ媒質と、
    前記複数のレーザ媒質からの射出光を空間的に波長分散する複数の波長分散手段と、
    前記複数の波長分散手段によりそれぞれ波長分散された光の一部を、反射面を回転させながら戻り光として反射することにより、前記複数のレーザ媒質によりそれぞれ増幅される光の波長を掃引する単一の回転式反射手段と、
    前記波長分散手段と前記回転式反射手段との間に配置されたリレー光学系とを備え、
    前記単一の回転反射手段が回転することにより、異なる波長帯域においてそれぞれ掃引される複数のレーザ光を同時に射出するものであることを特徴とする光断層画像化装置。
JP2007076865A 2007-03-23 2007-03-23 波長多重掃引レーザ装置および光断層画像化装置 Withdrawn JP2008233028A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076865A JP2008233028A (ja) 2007-03-23 2007-03-23 波長多重掃引レーザ装置および光断層画像化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076865A JP2008233028A (ja) 2007-03-23 2007-03-23 波長多重掃引レーザ装置および光断層画像化装置

Publications (1)

Publication Number Publication Date
JP2008233028A true JP2008233028A (ja) 2008-10-02

Family

ID=39905976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076865A Withdrawn JP2008233028A (ja) 2007-03-23 2007-03-23 波長多重掃引レーザ装置および光断層画像化装置

Country Status (1)

Country Link
JP (1) JP2008233028A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732270B1 (ko) * 2015-10-05 2017-05-11 한양대학교 산학협력단 광학 시스템
JP2023531328A (ja) * 2020-07-10 2023-07-21 三菱電機株式会社 ターゲット画像再構成のための方法およびシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732270B1 (ko) * 2015-10-05 2017-05-11 한양대학교 산학협력단 광학 시스템
JP2023531328A (ja) * 2020-07-10 2023-07-21 三菱電機株式会社 ターゲット画像再構成のための方法およびシステム
JP7415081B2 (ja) 2020-07-10 2024-01-16 三菱電機株式会社 ターゲット画像再構成のための方法およびシステム

Similar Documents

Publication Publication Date Title
JP4869877B2 (ja) 光断層画像化装置
JP4869896B2 (ja) 光断層画像化装置
JP4869895B2 (ja) 光断層画像化装置
US7633623B2 (en) Optical tomography system
US7576866B2 (en) Optical tomography system
US10533837B2 (en) Multichannel optical receivers
US6201608B1 (en) Method and apparatus for measuring optical reflectivity and imaging through a scattering medium
JP5541831B2 (ja) 光断層画像化装置およびその作動方法
US7751056B2 (en) Optical coherence tomographic imaging apparatus
US20070077045A1 (en) Optical tomography system
JP2008070350A (ja) 光断層画像化装置
WO2010067813A1 (ja) 光立体構造像装置及びその光信号処理方法
JP2009541770A (ja) 調整システムを有する光周波数領域トモグラフィ用装置、光周波数領域トモグラフィ用装置の調整システム、および光周波数領域トモグラフィ用装置を調整する方法、および物体の画像化方法
US20120105861A1 (en) Device and method for determining optical path lengths
JP2008233028A (ja) 波長多重掃引レーザ装置および光断層画像化装置
JP2013025252A (ja) 光源装置及びこれを用いた撮像装置
JP4804977B2 (ja) 波長可変レーザ装置および光断層画像化装置
JP2020024222A (ja) 光コヒーレンストモグラフィ装置用の光干渉ユニット
RU2184347C2 (ru) Способ получения изображений внутренней структуры объектов
JP6723835B2 (ja) 光干渉断層撮像装置
CN115698626A (zh) 用于测量物体的表面形貌的方法和系统
JP2024535040A (ja) 光学的厚さ測定装置
CN112424561A (zh) Oct系统与oct方法
JP2008047730A (ja) 波長可変光源および光断層画像化装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601