JP2008232602A - Operating method of automatic ice-making machine - Google Patents

Operating method of automatic ice-making machine Download PDF

Info

Publication number
JP2008232602A
JP2008232602A JP2007077422A JP2007077422A JP2008232602A JP 2008232602 A JP2008232602 A JP 2008232602A JP 2007077422 A JP2007077422 A JP 2007077422A JP 2007077422 A JP2007077422 A JP 2007077422A JP 2008232602 A JP2008232602 A JP 2008232602A
Authority
JP
Japan
Prior art keywords
ice
ice making
water
making water
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077422A
Other languages
Japanese (ja)
Other versions
JP5052173B2 (en
Inventor
Tomoyuki Ishida
朋之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2007077422A priority Critical patent/JP5052173B2/en
Publication of JP2008232602A publication Critical patent/JP2008232602A/en
Application granted granted Critical
Publication of JP5052173B2 publication Critical patent/JP5052173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent formed ice blocks from getting cloudy by additionally supplying ice-making water at a suitable time after the formation of ice blocks is started in ice-making operation. <P>SOLUTION: The additional supply of ice making water is started by carrying out opening control of a water supply valve 52 of a water supply part 50 at a suitable time after the formation of ice cubes R is started in an ice-making chamber 31. Before the ice-making water overflows from an ice-making water tank 34, closing control of the water supply valve 52 is carried out to stop the additional supply of the ice-making water. The additional supply timing of the ice-making water is a point of time when the ice cubes R are formed to a certain degree in the ice-making chamber 31 and the temperature of the ice-making chamber 31 reaches a first set temperature. The additional supply of the ice-making water is performed until a water level detecting means 62 disposed at the ice-making water tank 34 detects the water level of the ice-making water stored in the ice-making water tank 34. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動製氷機の運転方法に関し、更に詳細には、給水部から製氷水タンクに供給した所定量の製氷水を、製氷部に供給して氷塊を生成する自動製氷機の運転方法に関するものである。   The present invention relates to an operation method of an automatic ice maker, and more particularly, to an operation method of an automatic ice maker that generates ice blocks by supplying a predetermined amount of ice making water supplied from a water supply unit to an ice making water tank to the ice making unit. Is.

製氷部に下向きに開口するよう設けた多数の製氷小室に製氷水を下方から噴射供給して、ブロック状の角氷(氷塊)を連続的に製造する噴射式の自動製氷機が広く実施に供されている。このタイプの自動製氷機10は、例えば図7に示すように、略箱形をなす筐体11の内部を上下に区画して、上方が貯氷室12、下方が機械室13として構成されている。貯氷室12には、内部上方に製氷機構30が配設され、該製氷機構30の製氷室(製氷部)31で生成された角氷Rは、落下して貯氷室12内に貯留されるようになっている。また機械室13には、冷凍機構20を構成する圧縮機21、凝縮器22、冷却ファンモータ23および膨張手段(図示せず)等の部品が配設され、該冷凍機構20を構成する蒸発管25が前記製氷室31の上面に配設されている。   A spray-type automatic ice making machine that continuously manufactures block-shaped ice cubes (ice blocks) by supplying ice-making water from below to a large number of ice-making chambers that open downward in the ice-making unit is widely implemented. Has been. For example, as shown in FIG. 7, this type of automatic ice making machine 10 is configured such that the interior of a substantially box-shaped housing 11 is vertically divided into an ice storage chamber 12 on the upper side and a machine chamber 13 on the lower side. . The ice storage chamber 12 is provided with an ice making mechanism 30 above the inside, and the ice cube R generated in the ice making chamber (ice making section) 31 of the ice making mechanism 30 falls and is stored in the ice storage chamber 12. It has become. In the machine room 13, components such as a compressor 21, a condenser 22, a cooling fan motor 23, and expansion means (not shown) constituting the refrigeration mechanism 20 are disposed, and an evaporation pipe constituting the refrigeration mechanism 20. 25 is arranged on the upper surface of the ice making chamber 31.

前記製氷機構30は、図8に示すように、下向きに開口した製氷小室32を多数形成した前記製氷室31と、水皿33と、水皿33の下部に配設された製氷水タンク34と、これら水皿33および製氷水タンク34を一体的に傾動させる水皿開閉機構35等から構成される。前記水皿33は、図8における左側端部に取付けた支持アーム36が、筐体11に架設した取付部材37のブラケット37Aに枢支軸38を介して枢支され、同図における右側端部近傍が、水皿開閉機構35を構成するカムアーム39にコイルスプリング40を介して接続されている。前記製氷水タンク34は、左側が深く形成されたバケット形状を呈し、給水部50から供給される所要量の製氷水を貯留し得るようになっている。また、製氷水タンク34の最深部分である左側前壁には、該製氷水タンク34内に貯留された製氷水を、前記水皿33に設けた噴射孔43を介して製氷室31の各製氷小室32へ噴射供給する送水ポンプ45が配設されている。   As shown in FIG. 8, the ice making mechanism 30 includes the ice making chamber 31 in which a large number of ice making chambers 32 opened downward, a water tray 33, and an ice making water tank 34 disposed below the water tray 33. The water tray 33 and the ice-making water tank 34 are configured by a water tray opening / closing mechanism 35 that tilts integrally. In the water tray 33, a support arm 36 attached to the left end in FIG. 8 is pivotally supported by a bracket 37A of an attachment member 37 installed on the housing 11 via a pivot shaft 38, and the right end in FIG. The vicinity is connected via a coil spring 40 to a cam arm 39 constituting the water tray opening / closing mechanism 35. The ice making water tank 34 has a bucket shape with a deep left side, and can store a required amount of ice making water supplied from the water supply unit 50. On the left front wall, which is the deepest part of the ice making water tank 34, ice making water stored in the ice making water tank 34 is supplied to each ice making chamber 31 through the injection holes 43 provided in the water tray 33. A water supply pump 45 that supplies the small chamber 32 is provided.

前記給水部50は、筐体11の左壁における前部上方に配設され、図示しない上水道等の給水源に接続された給水管51と、該給水管51の途中に配設された給水弁52とから構成され、該給水管51の出口部が前記水皿33(製氷水タンク34)の上方に臨んでいる。前記給水弁52は、図示しない制御手段により開閉制御され、該給水弁52を開放制御した際に、給水管51を介して所要量の製氷水が、水皿33を介して製氷水タンク34へ供給される。   The water supply section 50 is disposed above the front portion of the left wall of the housing 11, and is connected to a water supply source such as a water supply (not shown), and a water supply valve disposed in the middle of the water supply pipe 51. 52, and the outlet of the water supply pipe 51 faces above the water tray 33 (ice-making water tank 34). The water supply valve 52 is controlled to be opened and closed by a control means (not shown). When the water supply valve 52 is controlled to open, a required amount of ice making water is supplied to the ice making water tank 34 via the water tray 33. Supplied.

前記自動製氷機10では、次のような工程を経て角氷Rを生成する。すなわち、先ず給水部50の給水弁52を開放制御して、給水管51から所定量の製氷水を製氷水タンク34に供給する。また、冷凍機構20により、製氷室31の各製氷小室32を冷却する。そして、送水ポンプ45を作動させ、前記製氷水タンク34に貯留されている製氷水を、下向きに開口した製氷室31の各製氷小室32に噴射供給して、夫々の製氷小室32に角氷Rを生成していく。なお、前記製氷小室32で氷化しなかった製氷水は、水皿33に形成された戻り孔(図示せず)を介して前記製氷水タンク34へ回収され、再び送水ポンプ45により製氷室31の製氷小室32に噴射供給される。製氷室31の各製氷小室32に所定の角氷Rが生成されたら、冷凍機構20を製氷運転から除氷運転に切り替えると共に、水皿開閉機構35により水皿33を所要角度に傾動して製氷室31を開放させ、製氷室31に生成された各角氷Rを貯氷室12へ放出すると共に、製氷水タンク34内に残留した製氷水をドレンパン47へ放出する。   In the automatic ice making machine 10, the ice cube R is generated through the following steps. That is, first, the water supply valve 52 of the water supply unit 50 is controlled to be opened, and a predetermined amount of ice making water is supplied from the water supply pipe 51 to the ice making water tank 34. Further, the ice making chambers 32 of the ice making chamber 31 are cooled by the refrigeration mechanism 20. Then, the water pump 45 is operated, and the ice making water stored in the ice making water tank 34 is sprayed and supplied to each ice making chamber 32 of the ice making chamber 31 opened downward, and the ice ice R is supplied to each ice making chamber 32. Will be generated. It should be noted that the ice making water that has not been iced in the ice making chamber 32 is collected into the ice making water tank 34 through a return hole (not shown) formed in the water tray 33, and again in the ice making chamber 31 by the water pump 45. The ice is supplied to the ice making chamber 32. When a predetermined ice cube R is generated in each ice making chamber 32 of the ice making chamber 31, the refrigeration mechanism 20 is switched from the ice making operation to the deicing operation, and the water tray 33 is tilted to a required angle by the water tray opening / closing mechanism 35 to make ice. The chamber 31 is opened, and each ice cube R generated in the ice making chamber 31 is discharged to the ice storage chamber 12 and the ice making water remaining in the ice making water tank 34 is discharged to the drain pan 47.

角氷Rの放出が完了したら、水皿33を元の位置に復帰させ、給水部50から製氷水タンク34内へ再び所定量の製氷水を供給して、前述した一連の工程を繰り返して角氷Rを連続的に生成する。そして、前述した製氷工程を繰り返し、貯氷室12内に所定量の角氷Rが貯氷され、これを該貯氷室12内に配設した貯氷検知スイッチ(図示せず)が検出したら、製氷運転が停止されるようになる。このような自動製氷機の運転方法は、例えば特許文献1に開示されている。
特開昭64−23076号公報
When the discharge of the ice cube R is completed, the water tray 33 is returned to its original position, a predetermined amount of ice-making water is supplied again from the water supply unit 50 into the ice-making water tank 34, and the above-described series of steps is repeated. Ice R is produced continuously. Then, by repeating the ice making process described above, a predetermined amount of ice cube R is stored in the ice storage chamber 12, and when this is detected by an ice storage detection switch (not shown) disposed in the ice storage chamber 12, the ice making operation is performed. It will be stopped. Such an automatic ice making machine operating method is disclosed in, for example, Patent Document 1.
JP-A 64-23076

ところで、前記自動製氷機10による運転方法では、製氷水タンク34内に予め所定量の製氷水を供給しておき、この決められた量の製氷水を、製氷室31の各製氷小室32に向けて何度も噴射供給することで、該製氷小室32に角氷Rを生成するようになっている。すなわち、製氷運転に先立ち、製氷水タンク34に供給した所定量の製氷水から多数個の角氷Rを生成するため、角氷Rの生成が進行するに伴って製氷水の残量が徐々に減り、氷化されない当該製氷水の硬度が徐々に増加することになる。従って、製氷水タンク34に供給される製氷水の設定量が少ない自動製氷機10では、製氷工程が進行するに従って不純物が混入しかつ硬度が高くなった製氷水が各製氷小室32に供給されるようになり、生成された角氷Rが白濁化し易くなる問題を内在していた。特に、製氷水タンク34のサイズが小さい小型の自動製氷機10の場合は、製氷水タンク34の大型化を図り得ないため、白濁した角氷が生成され易い傾向にある。   By the way, in the operation method by the automatic ice making machine 10, a predetermined amount of ice making water is supplied into the ice making water tank 34 in advance, and this determined amount of ice making water is directed to each ice making chamber 32 of the ice making chamber 31. The ice cube R is produced in the ice making chamber 32 by spraying and supplying many times. That is, prior to the ice making operation, a large number of ice cubes R are generated from a predetermined amount of ice making water supplied to the ice making water tank 34. Therefore, as the ice cubes R are generated, the remaining amount of ice making water gradually increases. The hardness of the ice making water which is reduced and not icified gradually increases. Therefore, in the automatic ice making machine 10 with a small set amount of ice making water supplied to the ice making water tank 34, the ice making water mixed with impurities and having increased hardness is supplied to each ice making chamber 32 as the ice making process proceeds. As a result, there is a problem in that the produced ice cube R is likely to become cloudy. In particular, in the case of the small-sized automatic ice making machine 10 having a small size of the ice making water tank 34, the ice making water tank 34 cannot be increased in size, and thus cloudy ice cubes tend to be easily generated.

ここで、製氷水タンク内に貯留されている製氷水の製氷運転による温度低下に伴い、該製氷水タンク内に綿氷が生成されることがある。但し綿氷は、製氷室内に角氷が全く生成されていない状態でしか発生しない。そこで、特許文献1に開示の製氷機では、製氷運転の開始直後(角氷が生成される前)に、原水タンク(製氷水タンク)内に原水(製氷水)を追加供給するようになっている。しかし、角氷が生成される前の段階では、製氷水が殆ど減っていないため、原水タンク内に貯留されている原水の硬度も殆ど上昇しておらず、硬度低下を目的とした追加給水であるとしたら効果が殆どない。しかも、原水タンクからオーバーフローするように常温の原水を追加供給すると、製氷運転に伴って冷却された原水の水温が再び上昇するから、角氷の生成時間が遅延して製氷効率が大きく低下する問題が発生する。   Here, cotton ice may be generated in the ice making water tank as the temperature decreases due to the ice making operation of the ice making water stored in the ice making water tank. However, cotton ice only occurs when no ice cubes are produced in the ice making chamber. Therefore, in the ice making machine disclosed in Patent Document 1, raw water (ice making water) is additionally supplied into the raw water tank (ice making water tank) immediately after the start of ice making operation (before ice cubes are generated). Yes. However, since ice making water has hardly decreased at the stage before ice cubes are generated, the hardness of the raw water stored in the raw water tank has hardly increased. If there is, there is almost no effect. In addition, if additional raw water at room temperature is added to overflow from the raw water tank, the temperature of the raw water cooled during ice making operation will rise again. Occurs.

そこで本発明では、前述した従来の技術に内在している課題に鑑み、これを好適に解決するべく提案されたものであって、製氷運転において氷塊が生成され始めた後の適時に、製氷水タンクに製氷水を追加供給して、白濁化を防止するようにした自動製氷機の運転方法を提供することを目的とする。   Therefore, in the present invention, in view of the problems inherent in the above-described conventional technology, it has been proposed to suitably solve this problem, and the ice-making water is produced in a timely manner after ice blocks are generated in the ice-making operation. An object of the present invention is to provide an operation method of an automatic ice making machine in which additional ice making water is supplied to a tank to prevent clouding.

前記課題を解決し、所期の目的を達成するため、請求項1に記載の発明は、
給水弁を備えた給水部から製氷水タンクに供給した所定量の製氷水を、製氷部に供給して氷塊を生成するに際し、前記製氷部で氷化しなかった製氷水を、前記製氷水タンクへ回収して再び製氷部に供給するようにした自動製氷機の運転方法において、
前記氷塊が生成され始めた後の適時に、前記給水弁を開放制御して製氷水の追加供給を行なうことを要旨とする。
In order to solve the problem and achieve the intended purpose, the invention according to claim 1
A predetermined amount of ice making water supplied from a water supply unit equipped with a water supply valve to the ice making water tank is supplied to the ice making unit to generate ice blocks. In the operation method of an automatic ice maker that is recovered and supplied to the ice making unit again,
The gist is to perform additional supply of ice-making water by controlling the opening of the water supply valve at an appropriate time after the ice block has started to be generated.

従って、請求項1の発明によれば、氷塊が生成され始めたことで硬度が高くなりつつある製氷水に対して、新たに製氷水を給水部から追加供給するため、氷塊の生成に供される製氷水の硬度を再び低くすることができ、生成される氷塊が白濁化したり、該氷塊に不純物が混入することを防止し得る。   Therefore, according to the invention of claim 1, since ice making water is additionally supplied from the water supply unit to ice making water whose hardness is increasing due to the start of ice lump formation, it is used for ice lump generation. The hardness of the ice making water can be lowered again, and the generated ice block can be prevented from becoming clouded and impurities can be prevented from being mixed into the ice block.

請求項2に係る発明では、製氷水の追加供給により前記製氷水タンクから製氷水がオーバーフローする前に、前記給水弁を閉鎖制御して製氷水の追加供給を停止することを要旨とする。
従って、請求項2の発明によれば、常温の製氷水を追加供給しても、製氷水タンク内の冷却されている製氷水がオーバーフローしないので、追加供給後の製氷水の温度上昇が最小限に抑えられ、製氷効率の低下を抑えつつ氷塊の白濁化を防止することができる。
The gist of the invention according to claim 2 is that the additional supply of ice making water is stopped by closing the water supply valve before the ice making water overflows from the ice making water tank due to the additional supply of ice making water.
Therefore, according to the invention of claim 2, even if additional ice-making water at room temperature is additionally supplied, the ice-making water cooled in the ice-making water tank does not overflow, so that the temperature rise of the ice-making water after the additional supply is minimized. It is possible to prevent the ice lump from becoming clouded while suppressing a decrease in ice making efficiency.

請求項3に係る発明では、前記製氷部が所定の設定温度となった際に、前記給水弁を開放制御することを要旨とする。
従って、請求項3の発明によれば、製氷部に氷塊がある程度まで生成され、製氷水タンク内の製氷水の貯留量がある程度まで減少した段階において、給水部から製氷水を追加供給するようになるので、製氷水の追加供給量を多くすることができ、氷塊の生成に供される製氷水の硬度を好適に下げることができる。
The gist of the invention according to claim 3 is to control the opening of the water supply valve when the ice making unit reaches a predetermined set temperature.
Therefore, according to the third aspect of the present invention, the ice making water is additionally supplied from the water supply portion when the ice blocks are generated to some extent in the ice making portion and the storage amount of the ice making water in the ice making water tank is reduced to some extent. As a result, the additional supply amount of ice-making water can be increased, and the hardness of ice-making water used for generating ice blocks can be suitably reduced.

請求項4に係る発明では、前記製氷水タンクに配設した水位検知手段が所定水位を検知した時点で、前記給水弁の閉鎖制御を行なうことを要旨とする。
従って、請求項4の発明によれば、水位検知手段により製氷水タンク内の製氷水の水位を検知するため、製氷水を追加供給するに際して、該製氷水タンク内の冷却されていた製氷水がオーバーフローすることを防止し得る。
The gist of the invention according to claim 4 is that the water supply valve closing control is performed when the water level detecting means disposed in the ice making water tank detects a predetermined water level.
Therefore, according to the invention of claim 4, the ice making water in the ice making water tank is cooled when the ice making water is additionally supplied in order to detect the water level of the ice making water in the ice making water tank by the water level detecting means. It is possible to prevent overflow.

請求項5に係る発明では、前記給水弁の開放制御を行なうと同時にカウントを開始したタイマ手段がタイムアップした時点で、前記給水弁の閉鎖制御を行なうことを要旨とする。
従って、請求項5の発明によれば、タイマ手段により給水部における給水弁の開放時間を制御できるので、製氷水を追加供給するに際して、製氷水タンク内の冷却されていた製氷水がオーバーフローすることを防止し得る。
The gist of the invention according to claim 5 is to perform the closing control of the water supply valve when the timer means that has started counting at the same time as performing the opening control of the water supply valve has timed out.
Therefore, according to the invention of claim 5, since the opening time of the water supply valve in the water supply section can be controlled by the timer means, the ice making water cooled in the ice making water tank overflows when additional ice making water is supplied. Can prevent.

本発明に係る自動製氷機の運転方法によれば、製氷運転において氷塊が生成され始めた後の適時に、製氷水タンクに製氷水を追加供給するようにしたので、白濁化を防止することができる。   According to the operation method of the automatic ice maker according to the present invention, since the ice making water is additionally supplied to the ice making water tank at an appropriate time after the start of generation of ice blocks in the ice making operation, it is possible to prevent white turbidity. it can.

次に、本発明に係る自動製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。なお、実施例の自動製氷機10は、図7および図8に示した従来の自動製氷機10と基本的な構成は同一である。従って、説明の便宜上、図7および図8に示した自動製氷機10の構成要素と同一の要素については同一の符号を使用すると共に、詳細説明は省略する。   Next, the operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. The automatic ice making machine 10 of the embodiment has the same basic configuration as the conventional automatic ice making machine 10 shown in FIGS. Therefore, for convenience of explanation, the same reference numerals are used for the same elements as those of the automatic ice making machine 10 shown in FIGS. 7 and 8, and detailed description thereof is omitted.

図1は、実施例に係る自動製氷機10の概略構成図であって、角氷(氷塊)Rを生成する製氷機構30と、製氷機構30の製氷室(製氷部)31を冷却・加熱する冷凍機構20とを示している。実施例の自動製氷機10では、製氷運転時に、製氷室31の上面に蛇行配置されている蒸発管25に気化冷媒を循環させて製氷室31を冷却することで角氷Rの生成を可能とすると共に、除氷運転時は、蒸発管25にホットガスを供給して製氷室31を加熱することで角氷Rの離脱落下を促進するよう構成されている。   FIG. 1 is a schematic configuration diagram of an automatic ice making machine 10 according to the embodiment, in which an ice making mechanism 30 that generates ice cubes (ice blocks) R and an ice making chamber (ice making part) 31 of the ice making mechanism 30 are cooled and heated. The refrigeration mechanism 20 is shown. In the automatic ice making machine 10 of the embodiment, it is possible to generate ice cubes R by cooling the ice making chamber 31 by circulating the vaporized refrigerant through the evaporation pipe 25 meanderingly arranged on the upper surface of the ice making chamber 31 during the ice making operation. In addition, at the time of deicing operation, hot ice is supplied to the evaporation pipe 25 to heat the ice making chamber 31 so that the ice cube R is separated and dropped.

製氷室31の所要位置には、該製氷室31の温度を検知する温度測定手段60が配設されている。この温度測定手段60は、例えばサーミスタ、白金測温抵抗体、熱電対等、実用に供されている既存のものが好適に実施可能である。そして温度測定手段60は、第1設定温度(T1、−10℃)、第2設定温度(T2、−25℃)、第3設定温度(T3、3℃)を夫々検出した際に、各設定温度毎の検出信号を制御手段C(図2)へ出力するよう構成されている。   A temperature measuring means 60 that detects the temperature of the ice making chamber 31 is disposed at a required position of the ice making chamber 31. As this temperature measuring means 60, for example, an existing one that is provided for practical use, such as a thermistor, a platinum resistance thermometer, a thermocouple, etc., can be suitably implemented. The temperature measuring means 60 detects the first set temperature (T1, −10 ° C.), the second set temperature (T2, −25 ° C.), and the third set temperature (T3, 3 ° C.). A detection signal for each temperature is output to the control means C (FIG. 2).

前記水皿33は、水皿開閉機構35を構成するアクチュエータモータ41を作動させてカムアーム39を図1の反時計方向へ回動させると、右側へ30度程度に傾斜して製氷室31の各製氷小室32を開放した開放位置に姿勢変位する。また、開放位置に臨んでいる水皿33は、アクチュエータモータ41を作動させてカムアーム39を図1の時計方向へ回動させると、前記製氷室31の下側へ水平状態となって各製氷小室32を閉成した閉成位置に姿勢変位する。   When the water tray 33 is actuated by the actuator motor 41 constituting the water tray opening / closing mechanism 35 to rotate the cam arm 39 counterclockwise in FIG. The posture is displaced to the open position where the ice making chamber 32 is opened. When the water pan 33 facing the open position is actuated by operating the actuator motor 41 to rotate the cam arm 39 in the clockwise direction in FIG. The posture is displaced to the closed position where 32 is closed.

前記製氷水タンク34は、水皿33に対して適宜の固定部材で固定されており、該水皿33と一体的に傾動するよう構成されている。製氷水タンク34は、上方に開口したバケット形状の部材であって、水皿33が閉成位置にある場合には前部左側が最も深くなるように形成されている。そして傾斜底面34Aは、水皿33が閉成位置に臨んでいる場合には左下がり、該水皿33が開放位置に臨んだ場合には右下がりとなるように設定されている(図1参照)。従って製氷水タンク34は、水皿33が閉成位置に臨む場合は所定量の製氷水を貯留することができ、水皿33が開放位置に臨む場合は貯留されていた全ての製氷水をドレンパン47へ放出するよう構成されている。   The ice making water tank 34 is fixed to the water tray 33 by an appropriate fixing member, and is configured to tilt integrally with the water tray 33. The ice making water tank 34 is a bucket-shaped member that opens upward, and is formed so that the front left side is deepest when the water tray 33 is in the closed position. The inclined bottom surface 34A is set so as to be lowered to the left when the water pan 33 faces the closed position, and to the right when the water pan 33 faces the open position (see FIG. 1). ). Accordingly, the ice making water tank 34 can store a predetermined amount of ice making water when the water tray 33 faces the closed position, and drains all the ice making water stored when the water tray 33 faces the open position. 47 is configured to be discharged.

前記製氷水タンク34の下部左側には、ポンプモータ46により駆動される送水ポンプ45が配設されている。この送水ポンプ45の吸込み側は、製氷水タンク34の最深部に連結されており、該送水ポンプ45の吐出し側は、前記水皿33に配設された各噴射孔43に接続されている。従って、ポンプモータ46により送水ポンプ45を作動させることで、製氷水タンク34に貯留されている製氷水が、各噴射孔43から製氷室31の各製氷小室32へ強制的に噴射供給される。   A water pump 45 driven by a pump motor 46 is disposed on the lower left side of the ice making water tank 34. The suction side of the water pump 45 is connected to the deepest part of the ice making water tank 34, and the discharge side of the water pump 45 is connected to each injection hole 43 disposed in the water tray 33. . Therefore, by operating the water pump 45 by the pump motor 46, the ice making water stored in the ice making water tank 34 is forcibly supplied from each injection hole 43 to each ice making chamber 32 of the ice making chamber 31.

更に実施例では、製氷水タンク34の所要位置に、該製氷水タンク34に貯留された製氷水の水位を検知する水位検知手段62が配設されている。この水位検知手段62は、水皿33が閉成位置に臨んでいる状態において、オーバーフローしない範囲内で所定量の製氷水が貯留された時点で、該製氷水の水位を検知するように設定されている。この水位検知手段62としては、例えばフロート式、超音波式、静電容量式、圧力式等、実用に供されている既存のものが好適に実施可能であり、製氷水の水位を検知した際に、その検知信号を前記制御手段Cへ出力するよう構成されている。   Further, in the embodiment, a water level detecting means 62 for detecting the water level of the ice making water stored in the ice making water tank 34 is disposed at a required position of the ice making water tank 34. The water level detection means 62 is set so as to detect the water level of the ice making water when a predetermined amount of ice making water is stored within a range that does not overflow in a state where the water tray 33 faces the closed position. ing. As this water level detection means 62, for example, a float type, an ultrasonic type, a capacitance type, a pressure type, or the like that is already in practical use can be suitably implemented. In addition, the detection signal is output to the control means C.

前記給水部50は、外部の給水源に接続する給水管51の途中に配設された給水弁52を、前記制御手段Cにより開放制御することで、製氷水を製氷水タンク34へ供給し得るよう構成される。なお給水弁52は、電磁弁や電動弁等が好適に採用されるが、制御手段Cの制御によって給水管51を開閉し得るものであれば、これ以外のものであってもよい。   The water supply unit 50 can supply ice making water to the ice making water tank 34 by controlling the water supply valve 52 disposed in the middle of the water supply pipe 51 connected to an external water supply source by the control means C to be opened. It is configured as follows. The water supply valve 52 is preferably an electromagnetic valve, an electric valve, or the like, but may be other than that as long as the water supply pipe 51 can be opened and closed by the control of the control means C.

前記冷凍機構20は、図1に示すように、圧縮機21、凝縮器22、冷却ファンモータ23、膨張手段24および前記蒸発管25とから冷凍回路26が構成されている。冷凍回路26は、圧縮機21、凝縮器22、膨張手段24および蒸発管25を、冷媒配管27で順次連結して構成されている。すなわち、圧縮機21で圧縮された気化冷媒は、冷媒配管27を経て凝縮器22で凝縮液化された後、膨張手段24で減圧され、蒸発管25に流入してここで一気に膨張して蒸発し、製氷室31と熱交換を行なって該製氷室31を氷点以下に強制冷却させる。そして、蒸発管25で蒸発した(熱交換した)気化冷媒は、冷媒配管27を介して圧縮機21に帰還する。   As shown in FIG. 1, the refrigeration mechanism 20 includes a compressor 21, a condenser 22, a cooling fan motor 23, expansion means 24, and the evaporation pipe 25, and a refrigeration circuit 26 is configured. The refrigeration circuit 26 is configured by sequentially connecting a compressor 21, a condenser 22, an expansion means 24, and an evaporation pipe 25 with a refrigerant pipe 27. That is, the vaporized refrigerant compressed by the compressor 21 is condensed and liquefied by the condenser 22 through the refrigerant pipe 27, then depressurized by the expansion means 24, flows into the evaporation pipe 25, and expands at once and evaporates. The ice making chamber 31 is subjected to heat exchange to forcibly cool the ice making chamber 31 below the freezing point. The vaporized refrigerant evaporated (heat exchanged) in the evaporation pipe 25 returns to the compressor 21 through the refrigerant pipe 27.

また冷凍機構20は、前述した冷凍回路26に加えて、除氷運転時に蒸発管25へホットガスを供給するバイパス回路28を備えている。このバイパス回路28は、圧縮機21の吐出側と蒸発管25の吸込み側とを連結するバイパス管29と、該バイパス管29の途中に配設されたホットガス弁29Aとで構成されている。ホットガス弁29Aは、電磁弁や電動弁等が好適に採用されるが、前記制御手段Cの制御によってバイパス管29を開閉し得るものであれば、これ以外のものであってもよい。このようなバイパス回路28は、製氷運転時にはホットガス弁29Aが閉鎖制御されてバイパス管29の管路を閉成し、除氷運転時にはホットガス弁29Aが開放制御されてバイパス管29の管路が開放され、ホットガスの流通を許容するよう構成される。   The refrigeration mechanism 20 includes a bypass circuit 28 that supplies hot gas to the evaporation pipe 25 during the deicing operation in addition to the refrigeration circuit 26 described above. The bypass circuit 28 includes a bypass pipe 29 that connects the discharge side of the compressor 21 and the suction side of the evaporation pipe 25, and a hot gas valve 29 </ b> A disposed in the middle of the bypass pipe 29. As the hot gas valve 29A, an electromagnetic valve, an electric valve, or the like is preferably employed. However, the hot gas valve 29A may be other than the above as long as the bypass pipe 29 can be opened and closed by the control of the control means C. In such a bypass circuit 28, the hot gas valve 29A is controlled to be closed during ice making operation and the bypass pipe 29 is closed, and during the deicing operation, the hot gas valve 29A is controlled to open and the bypass pipe 29 is connected to the bypass circuit 29. Is open and configured to allow hot gas flow.

前記貯氷室12には、図1に示すように、貯氷検知スイッチ64が配設されている。この貯氷検知スイッチ64は、貯氷室12内に所定量の角氷Rが貯留された際に該角氷Rが接触することでON・OFF制御されるスイッチであり、機械式や電気式等、実用化されている既存のものが好適に実施可能である。そして、貯氷室12内に所定量の角氷Rが貯留され、前記貯氷検知スイッチ64がこれを検知した際には、その検知信号を制御手段Cへ出力するよう構成されている。   As shown in FIG. 1, an ice storage detection switch 64 is disposed in the ice storage chamber 12. The ice storage detection switch 64 is a switch that is ON / OFF controlled by contact of the ice cube R when a predetermined amount of ice cube R is stored in the ice storage chamber 12. An existing one that has been put into practical use can be suitably implemented. A predetermined amount of ice cube R is stored in the ice storage chamber 12, and when the ice storage detection switch 64 detects this, the detection signal is outputted to the control means C.

前記制御手段Cは、図2に示すように、前記製氷室31に配設された温度測定手段60、前記製氷水タンク34に配設された水位検知手段62、貯氷室12に配設された貯氷検知スイッチ64、その他当該自動製氷機10に装備された各種測定手段や検出手段等から所定の信号が入力される。そして制御手段Cは、各種測定手段や検出手段からの入力信号および図示しないコントロールパネルから入力された各種設定等に基づき、冷凍機構20における圧縮機21やホットガス弁29A等の各機器、製氷機構30における水皿開閉機構35やポンプモータ46等の各機器、給水部50における給水弁52等の各機器の動作を総合的に制御する。   As shown in FIG. 2, the control means C is provided in the temperature measuring means 60 provided in the ice making chamber 31, the water level detecting means 62 provided in the ice making water tank 34, and the ice storage chamber 12. Predetermined signals are input from the ice storage detection switch 64 and other various measuring means and detecting means equipped in the automatic ice making machine 10. Then, the control means C is based on input signals from various measurement means and detection means, various settings inputted from a control panel (not shown), etc., each device such as the compressor 21 and hot gas valve 29A in the refrigeration mechanism 20, and an ice making mechanism. The operation of each device such as the water tray opening / closing mechanism 35 and the pump motor 46 in 30 and the devices such as the water supply valve 52 in the water supply unit 50 are comprehensively controlled.

実施例の自動製氷機10では、製氷運転により製氷室31の各製氷小室32に角氷Rが生成され始めると、該製氷室31の温度は、該角氷Rの生成が進行すると共に徐々に低下する。そこで、実施例の自動製氷機10における運転方法では、製氷室31の温度を測定している前記温度測定手段60が前記第1設定温度T1を検知した際(製氷室31の温度が第1設定温度T1となった際)に、給水部50の給水弁52を開放制御するようになっている。更に実施例の運転方法では、製氷水タンク34に貯留されている製氷水の水位を検知している前記水位検知手段62が製氷水を検知した際(製氷水の貯留量が製氷運転開始時と同一となった際)に、前記給水部50の給水弁52を閉鎖制御するようになっている。すなわち、実施例の自動製氷機10では、製氷運転により製氷室31での角氷Rの生成が進行することに伴い、製氷水タンク34内に貯留されている製氷水の貯留量が減少するので、減少量に相当する量の製氷水を追加供給するよう構成されている。   In the automatic ice making machine 10 of the embodiment, when ice cubes R start to be generated in the ice making chambers 32 of the ice making chamber 31 by the ice making operation, the temperature of the ice making chamber 31 is gradually increased as the ice cubes R are generated. descend. Therefore, in the operation method in the automatic ice making machine 10 of the embodiment, when the temperature measuring means 60 measuring the temperature of the ice making chamber 31 detects the first set temperature T1 (the temperature of the ice making chamber 31 is the first setting). When the temperature reaches T1), the water supply valve 52 of the water supply unit 50 is controlled to be opened. Furthermore, in the operation method of the embodiment, when the water level detecting means 62 detecting the water level of the ice making water stored in the ice making water tank 34 detects the ice making water (the amount of ice making water stored is the same as that at the start of the ice making operation). When it is the same), the water supply valve 52 of the water supply unit 50 is controlled to be closed. That is, in the automatic ice making machine 10 of the embodiment, the amount of ice making water stored in the ice making water tank 34 decreases as the ice cube R is generated in the ice making chamber 31 by the ice making operation. The ice making water is supplied in an amount corresponding to the reduced amount.

また、実施例の自動製氷機10は、製氷運転が進行して各製氷小室32において角氷Rの生成が完了すると、製氷室31の温度が前記第2設定温度T2となる。従って、実施例の運転方法では、製氷室31の温度を測定している前記温度測定手段60が、前記第2設定温度T2を検知した際に、製氷運転から除氷運転へ移行する制御を行なうようになっている。更に、実施例の自動製氷機10は、除氷運転により製氷室31の各製氷小室32から角氷Rが脱落すると、該製氷室31の温度が前記第3設定温度T3まで上昇する。従って、実施例の運転方法では、製氷室31の温度を測定している前記温度測定手段60が、前記第3設定温度T3を検知した際に、除氷運転から製氷運転に移行する制御を行なうようになっている。   In the automatic ice making machine 10 of the embodiment, when the ice making operation proceeds and the generation of the ice cubes R is completed in each ice making chamber 32, the temperature of the ice making chamber 31 becomes the second set temperature T2. Therefore, in the operation method of the embodiment, when the temperature measuring means 60 measuring the temperature of the ice making chamber 31 detects the second set temperature T2, control is performed to shift from the ice making operation to the deicing operation. It is like that. Further, in the automatic ice making machine 10 of the embodiment, when the ice cube R falls off from each ice making chamber 32 of the ice making chamber 31 by the deicing operation, the temperature of the ice making chamber 31 rises to the third set temperature T3. Therefore, in the operation method of the embodiment, when the temperature measuring means 60 measuring the temperature of the ice making chamber 31 detects the third set temperature T3, control is performed to shift from the deicing operation to the ice making operation. It is like that.

更に、実施例の自動製氷機10は、貯氷室12に所定量の角氷Rが貯留されたことを貯氷検知スイッチ64が検知すると、当該自動製氷機10の運転を停止するよう構成されている。そして、実施例の運転方法では、貯氷検知スイッチ64の検知信号に基づいて自動製氷機10の運転が停止しても圧縮機21の運転は停止させず、所定時間に亘って遅延運転を行なうようになっている。具体的には、圧縮機21における低圧側の配管内圧力が所定の設定圧力(実施例では0.1MPa)になった時点で、該圧縮機21の運転を停止する制御を行なうようになっている。このような制御を行なう理由は、貯氷検知スイッチ64からの検知信号が制御手段Cに入力されるタイミングが、圧縮機21における低圧側の配管内圧力が高い状態となっている除氷運転中であり、低圧側の配管内圧力が高い状態で圧縮機21を停止すると停止時の振動量が大きくなり、該圧縮機21を支えているサスペンションスプリングや内部配管の疲労破壊が発生するおそれがあるからである。すなわち、実施例の自動製氷機10では、運転停止後に、圧縮機21における低圧側の配管内圧力が0.1MPaまで低下するまで該圧縮機21の遅延運転を行なうよう構成されている。なお、圧縮機21の遅延運転は、数十秒(20〜50秒)程度とされる。   Furthermore, the automatic ice maker 10 of the embodiment is configured to stop the operation of the automatic ice maker 10 when the ice storage detection switch 64 detects that a predetermined amount of ice cube R has been stored in the ice storage chamber 12. . In the operation method of the embodiment, even if the operation of the automatic ice making machine 10 is stopped based on the detection signal of the ice storage detection switch 64, the operation of the compressor 21 is not stopped and the operation is delayed for a predetermined time. It has become. Specifically, control is performed to stop the operation of the compressor 21 when the low-pressure side pipe internal pressure in the compressor 21 reaches a predetermined set pressure (0.1 MPa in the embodiment). Yes. The reason for performing such control is that the timing at which the detection signal from the ice storage detection switch 64 is input to the control means C is during the deicing operation in which the low-pressure side pipe pressure in the compressor 21 is high. Yes, if the compressor 21 is stopped in a state where the pressure in the pipe on the low pressure side is high, the amount of vibration at the time of stopping increases, and there is a possibility that the suspension spring supporting the compressor 21 and the internal pipe may be fatigued. It is. That is, the automatic ice making machine 10 according to the embodiment is configured to perform the delayed operation of the compressor 21 until the pressure in the low-pressure side pipe in the compressor 21 decreases to 0.1 MPa after the operation is stopped. The delayed operation of the compressor 21 is about several tens of seconds (20 to 50 seconds).

(実施例の作用)
次に、実施例に係る自動製氷機の運転方法の作用につき、図3のフローチャートおよび図4のタイミングチャートを参照して説明する。自動製氷機10は、電源を投入すると、図3に示すように、給水部50の給水弁52が開放制御され、給水管51を介して製氷水タンク34へ製氷水が供給される(ステップS1)。
(Operation of Example)
Next, the operation of the operation method of the automatic ice making machine according to the embodiment will be described with reference to the flowchart of FIG. 3 and the timing chart of FIG. When the automatic ice making machine 10 is turned on, as shown in FIG. 3, the water supply valve 52 of the water supply unit 50 is controlled to open, and ice making water is supplied to the ice making water tank 34 through the water supply pipe 51 (step S1). ).

製氷水タンク34に配設した水位検知手段62が製氷水を検知すると(ステップS2)、製氷運転が開始する(ステップS3)。製氷運転の開始に伴ってステップS4に移行して、給水部50の給水弁52が閉鎖制御されて製氷水の供給を停止すると共に、冷凍機構20では圧縮機21が作動すると共にホットガス弁29Aが閉鎖制御され、製氷室31の冷却が開始される。また製氷機構30では、ポンプモータ46が駆動して送水ポンプ45が作動し、製氷水タンク34に貯留されている製氷水が、水皿33の噴射孔43から各製氷小室32へ噴射供給される。   When the water level detection means 62 disposed in the ice making water tank 34 detects ice making water (step S2), the ice making operation is started (step S3). With the start of the ice making operation, the process proceeds to step S4, where the water supply valve 52 of the water supply unit 50 is controlled to be closed and the ice making water supply is stopped. Is closed and cooling of the ice making chamber 31 is started. In the ice making mechanism 30, the pump motor 46 is driven to operate the water feed pump 45, and the ice making water stored in the ice making water tank 34 is jetted and supplied from the spray holes 43 of the water tray 33 to each ice making chamber 32. .

なお、各製氷小室32に噴射されたものの氷化しなかった製氷水は、水皿33の上面に流下し、該水皿33の戻り孔を介して製氷水タンク34に回収される。そして、製氷水タンク34に回収された製氷水は、製氷水タンク34に貯留されている製氷水と共に再循環に供され、送水ポンプ45を介して水皿33の噴射孔43から各製氷小室32に噴射供給される。   The ice making water that has been sprayed into each ice making chamber 32 but has not been iced flows down to the upper surface of the water tray 33 and is collected in the ice making water tank 34 through the return hole of the water tray 33. Then, the ice making water collected in the ice making water tank 34 is recirculated together with the ice making water stored in the ice making water tank 34, and each ice making chamber 32 is supplied from the injection hole 43 of the water tray 33 via the water feed pump 45. Is supplied by injection.

製氷運転が進行して製氷室31の温度が徐々に低下することにより、該製氷室31の各製氷小室32に角氷Rが生成され始め、製氷運転が進行していくに従って角氷Rが成長していく。また、角氷Rの生成が進行するに従い、製氷水タンク34内の製氷水の貯留量が徐々に減少するため、該製氷水の硬度が徐々に高くなっていく。そして、製氷室31の各製氷小室32に角氷Rが生成され始めた後、該製氷室31の温度が前記第1設定温度T1(−10℃)となり、これを前記温度測定手段60が検知すると(ステップS5)、給水部50の給水弁52が開放制御され(ステップS6)、製氷水が減少した製氷水タンク34内へ給水管51から製氷水が追加供給される。   As ice making operation progresses and the temperature of the ice making chamber 31 gradually decreases, ice cubes R start to be generated in the ice making chambers 32 of the ice making chamber 31, and the ice cubes R grow as the ice making operation proceeds. I will do it. Further, as the ice cube R is generated, the amount of ice-making water stored in the ice-making water tank 34 gradually decreases, so that the hardness of the ice-making water gradually increases. Then, after the ice cube R starts to be generated in each ice making chamber 32 of the ice making chamber 31, the temperature of the ice making chamber 31 becomes the first set temperature T1 (−10 ° C.), which is detected by the temperature measuring means 60. Then (step S5), the water supply valve 52 of the water supply unit 50 is controlled to open (step S6), and ice making water is additionally supplied from the water supply pipe 51 into the ice making water tank 34 in which the ice making water has decreased.

所定時間経過後に、製氷水タンク34に配設された水位検知手段62が再び製氷水を検知すると、給水弁52が閉鎖制御されて製氷水の供給が停止される(ステップS8)。これにより製氷水タンク34内には、製氷前に供給されて硬度が高くなった製氷水と製氷途中に追加供給された硬度が低い製氷水とが混ざり合い、製氷運転開始時と同量の製氷水が貯留される。すなわち、追加供給後の製氷水タンク34内には、硬度が低下した製氷水が貯留されたことになる。なお、製氷水の追加供給が完了しても、製氷水タンク34から製氷水がオーバーフローしないので、例えば常温(20℃程度)程度の製氷水が追加供給されても、製氷水タンク34内に貯留されている製氷水の温度上昇は最小限に抑えられる。   When the water level detecting means 62 disposed in the ice making water tank 34 detects ice making water again after a predetermined time has elapsed, the water supply valve 52 is controlled to close and supply of ice making water is stopped (step S8). As a result, in the ice making water tank 34, the ice making water having a high hardness supplied before ice making and the ice making water having a low hardness additionally supplied in the middle of ice making are mixed, and the same amount of ice making water as at the start of ice making operation is mixed. Water is stored. That is, the ice making water having a reduced hardness is stored in the ice making water tank 34 after the additional supply. Even if the additional supply of ice-making water is completed, the ice-making water does not overflow from the ice-making water tank 34. For example, even if ice-making water of about room temperature (about 20 ° C.) is additionally supplied, it is stored in the ice-making water tank 34. The temperature rise of the ice-making water used is minimized.

製氷水の追加供給が行なわれている間も製氷運転が継続されているため、各製氷小室32において角氷Rの生成が進行しており、更に製氷室31の温度が低下していく。そして、製氷室31の温度が前記第2設定温度T2(−25℃)となり、これを前記温度測定手段60が検知すると(ステップS9)、製氷室31の各製氷小室32に角氷Rの生成が完了したので、製氷運転から除氷運転へ移行する(ステップS10)。除氷運転が開始されると、ステップS11において、ポンプモータ46が停止制御されて送水ポンプ45が送水を停止し、製氷水タンク34から製氷室31への製氷水の噴射供給が停止される。また製氷機構30では、水皿開閉機構35が作動して水皿33が開放位置に傾動し、これに伴って製氷水タンク34内に残留していた製氷水の全てがドレンパン47へ排出される。一方、冷凍機構20では、圧縮機21の運転が継続されると共に、ホットガス弁29Aが開放制御されるため、蒸発管25にホットガスが供給されて製氷室31の温度が上昇する。   Since ice making operation is continued while additional supply of ice making water is performed, generation of ice cubes R is progressing in each ice making small chamber 32, and the temperature of the ice making chamber 31 is further lowered. When the temperature of the ice making chamber 31 becomes the second set temperature T2 (−25 ° C.) and the temperature measuring means 60 detects this (step S9), the ice ice R is generated in each ice making chamber 32 of the ice making chamber 31. Is completed, the ice making operation is shifted to the deicing operation (step S10). When the deicing operation is started, the pump motor 46 is controlled to stop in step S11, the water pump 45 stops water supply, and the supply of ice making water from the ice making water tank 34 to the ice making chamber 31 is stopped. In the ice making mechanism 30, the water tray opening / closing mechanism 35 is actuated to tilt the water tray 33 to the open position, and accordingly, all the ice making water remaining in the ice making water tank 34 is discharged to the drain pan 47. . On the other hand, in the refrigeration mechanism 20, since the operation of the compressor 21 is continued and the hot gas valve 29A is controlled to be opened, hot gas is supplied to the evaporation pipe 25 and the temperature of the ice making chamber 31 rises.

除氷運転に伴って製氷室31が暖められると、各製氷小室32内に生成された角氷Rの外表面が適宜融解するので、各角氷Rは、製氷室31から水皿33上に脱落した後、貯氷室12の底部へ落下放出される。各角氷Rが製氷室31から脱落すると、該製氷室31の温度が一気に上昇する。そして、製氷室31の温度が前記第3設定温度T3(3℃)となり、これを前記温度測定手段60が検知すると(ステップS12)、角氷Rの放出が完了したと判断して、ホットガス弁29Aが閉鎖制御されて除氷運転を停止する(ステップS13)。更に、貯氷検知スイッチ64が作動したか否かを確認し(ステップS14)、該貯氷検知スイッチ64が作動していない場合は、貯氷室12に角氷Rが満杯となっていないからステップS15へ移行する。そして、ステップS15において、水皿33を上昇させた後に給水部50の給水弁52が開放制御され、給水管51を介して製氷水タンク34へ製氷水が供給され、製氷水タンク34内へ所定量の製氷水が供給されたら(ステップS2)、再び製氷運転が開始される(ステップS3)。以降、ステップS2〜ステップS15を繰り返すことにより角氷Rが順次生成され、貯氷室12内の角氷Rの貯留量が増加していく。   When the ice making chamber 31 is warmed in accordance with the deicing operation, the outer surface of the ice cube R generated in each ice making chamber 32 is appropriately melted, so that each ice cube R is transferred from the ice making chamber 31 onto the water dish 33. After falling off, it is dropped and released to the bottom of the ice storage chamber 12. When each ice cube R falls off from the ice making chamber 31, the temperature of the ice making chamber 31 rises at a stretch. When the temperature of the ice making chamber 31 becomes the third set temperature T3 (3 ° C.) and the temperature measuring means 60 detects this (step S12), it is determined that the discharge of the ice cube R is completed, and the hot gas The valve 29A is closed and the deicing operation is stopped (step S13). Further, it is confirmed whether or not the ice storage detection switch 64 has been operated (step S14). If the ice storage detection switch 64 has not been operated, the ice storage chamber 12 is not full of ice cubes R, and the process proceeds to step S15. Transition. Then, in step S15, after raising the water tray 33, the water supply valve 52 of the water supply unit 50 is controlled to be opened, and ice-making water is supplied to the ice-making water tank 34 through the water-supply pipe 51. When a certain amount of ice making water is supplied (step S2), the ice making operation is started again (step S3). Thereafter, the ice cubes R are sequentially generated by repeating steps S2 to S15, and the amount of ice cubes R stored in the ice storage chamber 12 increases.

ステップS2〜ステップS15を繰り返して実行し(製氷運転および除氷運転を繰り返し)、貯氷室12内に所定量の角氷Rが貯留されて前記貯氷検知スイッチ64が作動すると、ステップS14からステップS16へ移行する。ステップS16では、遅延運転モードに入った圧縮機21における低圧側の配管内圧力が0.1MPaに低下するまで、該圧縮機21の運転を継続させる。そして、圧縮機21における低圧側の配管内圧力が0.1MPaに低下したら、圧縮機21の運転を停止させる(ステップS17)。そしてステップS18において、貯氷検知スイッチ64の作動が解除(OFF)されるまで自動製氷機10の運転が停止保持され、該貯氷検知スイッチ64の作動が解除されると、貯氷室12における角氷Rの貯氷量が減ったことになるのでステップS15へ移行する。そしてステップS15では、前記と同様に、給水部50の給水弁52が開放制御され、給水管51を介して製氷水タンク34へ製氷水を供給し、製氷水タンク34内へ所定量の製氷水が供給されると(ステップS2)、製氷運転が開始される(ステップS3)。以降、ステップS2〜ステップS15を繰り返すことにより角氷Rが順次生成され、再び貯氷室12内の角氷Rの貯留量が増加していく。   Steps S2 to S15 are repeatedly executed (the ice making operation and the deicing operation are repeated). When a predetermined amount of ice cube R is stored in the ice storage chamber 12 and the ice storage detection switch 64 is activated, the steps S14 to S16 are performed. Migrate to In step S16, the operation of the compressor 21 is continued until the low-pressure-side pipe pressure in the compressor 21 that has entered the delay operation mode is reduced to 0.1 MPa. When the pressure in the low pressure side pipe in the compressor 21 is reduced to 0.1 MPa, the operation of the compressor 21 is stopped (step S17). In step S18, the operation of the automatic ice making machine 10 is stopped until the operation of the ice storage detection switch 64 is released (OFF). When the operation of the ice storage detection switch 64 is released, the ice cube R in the ice storage chamber 12 is stopped. Since the amount of stored ice has decreased, the process proceeds to step S15. In step S15, the water supply valve 52 of the water supply unit 50 is controlled to be opened, and ice making water is supplied to the ice making water tank 34 through the water supply pipe 51, and a predetermined amount of ice making water is supplied into the ice making water tank 34. Is supplied (step S2), the ice making operation is started (step S3). Thereafter, the ice cubes R are sequentially generated by repeating the steps S2 to S15, and the storage amount of the ice cubes R in the ice storage chamber 12 increases again.

実施例に係る自動製氷機の運転方法によれば、次のような作用効果を奏する。先ず、製氷運転において角氷Rの生成が進行し、製氷水タンク34内に貯留されている製氷水の貯留量が減少した適時に、減少量に相当する量の製氷水を追加供給するようにした。従って、角氷Rの生成が進行することで硬度が高くなりつつある製氷水に対して、新たに硬度が低い製氷水を給水部50から追加供給するため、角氷Rの生成に供される製氷水の硬度を再び低くすることができ、生成される角氷Rが白濁化したり、該角氷Rに不純物が混入することを防止し得る。また、製氷水の追加供給時には、角氷Rの生成に際して既に冷却されていた製氷水が該製氷水タンク34からオーバーフローすることがないように、該製氷水を追加供給するようにした。従って、図4に示したように、常温の製氷水を追加供給しても、製氷水タンク34内の製氷水の温度上昇が最小限(2〜3℃程度)に抑えられ、製氷効率の低下を抑えつつ角氷Rの白濁化を防止することができる。   According to the operation method of the automatic ice maker according to the embodiment, the following operational effects can be obtained. First, when the ice cube R is generated in the ice making operation and the amount of ice making water stored in the ice making water tank 34 is reduced, an amount of ice making water corresponding to the reduced amount is additionally supplied at appropriate times. did. Therefore, since ice water having a low hardness is additionally supplied from the water supply unit 50 to the ice making water whose hardness is increasing as the generation of the ice cubes R progresses, the ice cubes R are provided. The hardness of the ice making water can be lowered again, and the generated ice cube R can be prevented from becoming clouded or impurities being mixed into the ice cube R. In addition, when the ice making water is additionally supplied, the ice making water is additionally supplied so that the ice making water that has already been cooled when the ice cubes R are generated does not overflow from the ice making water tank 34. Therefore, as shown in FIG. 4, even if additional ice-making water at room temperature is additionally supplied, the temperature rise of the ice-making water in the ice-making water tank 34 is suppressed to a minimum (about 2 to 3 ° C.), and the ice making efficiency is lowered. It is possible to prevent the ice cube R from becoming clouded while suppressing the above.

また、製氷水の追加供給のタイミングは、製氷室31の温度が−10℃となった時点、すなわち各製氷小室32に角氷Rがある程度まで生成された時点としたので、製氷水タンク34の製氷水の貯留量がある程度まで減少した段階で、給水部50から製氷水が追加供給される。従って、製氷水の追加供給量を多くすることができ、角氷Rの生成に供される製氷水の硬度を好適に下げることができる。特に、角氷Rが生成されている製氷室31の温度を測るようにしたので、角氷Rの生成が進行していることを確認したもとで、適切なタイミングで製氷水の追加供給を行なうことができる。なお、水位検知手段62により製氷水タンク34内の製氷水の水位を直接的に検知するため、製氷水を追加供給するに際して、該製氷水タンク34内の冷却されていた製氷水がオーバーフローすることを防止し得る。   In addition, since the timing of the additional supply of ice-making water is the time when the temperature of the ice-making chamber 31 reaches −10 ° C., that is, when the ice cube R is generated to some extent in each ice-making chamber 32, the ice-making water tank 34 When the storage amount of the ice making water is reduced to some extent, the ice making water is additionally supplied from the water supply unit 50. Therefore, the additional supply amount of ice-making water can be increased, and the hardness of the ice-making water provided for the production of ice cubes R can be suitably reduced. In particular, since the temperature of the ice making chamber 31 where the ice cubes R are generated is measured, it is confirmed that the ice cubes R are being generated, and additional ice making water is supplied at an appropriate timing. Can be done. Since the water level detecting means 62 directly detects the water level of the ice making water in the ice making water tank 34, when the ice making water is additionally supplied, the cooled ice making water in the ice making water tank 34 overflows. Can prevent.

(変更例)
前述した実施例では、前記製氷水タンク34に配設した水位検知手段62が製氷水を検知した時点で、前記給水部50における給水弁52の閉鎖制御を行なうようにして、製氷水タンク34からオーバーフローしないように製氷水を追加供給する運転方法を例示したが、規定量の製氷水を追加供給する制御はこれ以外の方法であってもよい。例えば、図示しない給水源から安定的に製氷水が供給される場合には、図5に示すように、前記水位検知手段62に代えて、タイマ手段66を利用するようにしてもよい。このタイマ手段66を使用した運転方法は、給水弁52を開放制御すると同時にタイマ手段66がカウントを開始し、所定の設定時間経過後に該タイマ手段66がタイムアップした時点で給水弁52を閉鎖制御することで実現される。すなわち、給水部50の給水弁52を開放制御した際の単位時間当たりの供給量(流量)が一定である場合には、タイマ手段66のタイムアップ時間を適切に設定することにより、製氷水タンク34からオーバーフローするのを防止しながら規定量の製氷水を追加供給し得る。従って、タイマ手段66により給水部50における給水弁52の開放時間を制御できるので、製氷水を追加供給するに際して、製氷水タンク34の冷却されていた製氷水がオーバーフローすることを防止でき、前述した実施例と同等の作用効果が得られる。なお、ステップS2における最初の製氷水の給水では、水位検知手段の代わりにタイマ手段66を使用して、製氷水タンク34内に所定量の製氷水を供給するようにしてもよい。
(Example of change)
In the above-described embodiment, when the water level detecting means 62 disposed in the ice making water tank 34 detects ice making water, the water supply valve 52 in the water supply unit 50 is controlled to be closed so that the ice making water tank 34 Although the operation method of additionally supplying ice-making water so as not to overflow has been illustrated, the control for additionally supplying a specified amount of ice-making water may be other methods. For example, when ice making water is stably supplied from a water supply source (not shown), a timer means 66 may be used instead of the water level detecting means 62 as shown in FIG. In the operation method using the timer means 66, the water supply valve 52 is controlled to be opened at the same time, the timer means 66 starts counting, and the water supply valve 52 is controlled to be closed when the timer means 66 times out after a predetermined set time has elapsed. It is realized by doing. That is, when the supply amount (flow rate) per unit time when the water supply valve 52 of the water supply unit 50 is controlled to be open is constant, the time-up time of the timer means 66 is set appropriately, whereby the ice making water tank A prescribed amount of ice making water can be additionally supplied while preventing overflow from 34. Therefore, since the opening time of the water supply valve 52 in the water supply unit 50 can be controlled by the timer means 66, the ice making water that has been cooled in the ice making water tank 34 can be prevented from overflowing when additional ice making water is supplied. The same effect as the embodiment can be obtained. In the first ice making water supply in step S2, a predetermined amount of ice making water may be supplied into the ice making water tank 34 using the timer means 66 instead of the water level detecting means.

図6は、前記タイマ手段66を使用した運転方法を示したものである。このタイマ手段66を使用した変更例の運転方法は、水位検知手段62を使用した前記実施例の運転方法(図4)と比較すると、ステップS1〜ステップS6およびステップS8〜ステップS18は同じであり、実施例におけるステップS7を、ステップS7aおよびステップS7bに変更したものとなっている。すなわち、製氷運転が進行して製氷室31の温度が前記第1設定温度T1(−10℃)となり、これを前記温度測定手段60が検知すると(ステップS5)、給水部50の給水弁52が開放制御され(ステップS6)、製氷水タンク34内へ製氷水が追加供給される。また、給水弁52の開放制御と同時に、タイマ手段66がカウントを開始する(ステップS7a)。そして、カウントを開始したタイマ手段66が、予め設定されている設定時間を経過してタイムアップすると(ステップS7b)、給水弁52が閉鎖制御されて製氷水の供給が停止される(ステップS8)。従って、図6に示した変更例に係る自動製氷機の運転方法においても、前述した実施例の自動製氷機の運転方法と同等の作用効果を奏する。   FIG. 6 shows an operation method using the timer means 66. The operation method of the modified example using the timer means 66 is the same as the operation method (FIG. 4) of the embodiment using the water level detection means 62 in steps S1 to S6 and steps S8 to S18. In this embodiment, step S7 is changed to step S7a and step S7b. That is, as the ice making operation proceeds, the temperature of the ice making chamber 31 becomes the first set temperature T1 (−10 ° C.), and when this is detected by the temperature measuring means 60 (step S5), the water supply valve 52 of the water supply unit 50 is turned on. Open control is performed (step S6), and ice making water is additionally supplied into the ice making water tank. Simultaneously with the opening control of the water supply valve 52, the timer means 66 starts counting (step S7a). Then, when the timer means 66 that has started counting elapses after a preset set time has elapsed (step S7b), the water supply valve 52 is controlled to close and the supply of ice-making water is stopped (step S8). . Therefore, the operation method of the automatic ice maker according to the modified example shown in FIG. 6 also has the same effect as the operation method of the automatic ice maker of the above-described embodiment.

前述した実施例では、第1設定温度T1を−10℃としたが、第1設定温度T1は−10℃に限定されるものではない。すなわち、製氷室31の各製氷小室32において角氷Rが生成される温度は、0℃〜第2設定温度T2(−25℃)であるから、第1設定温度T1は、0〜−25℃の間で設定することができる。但し、第1設定温度T1を−10℃より高い温度に設定した場合には、角氷Rの生成が進行していないために製氷水の減少量が小さく、よって製氷水の追加供給量も少なくなるから、製氷水の硬度低下を目的とした場合には効果的ではない。一方、第1設定温度T1を−10℃より低い温度に設定した場合には、角氷Rの生成がかなり進行しているため製氷水の減少量が大きくなっており、場合によっては硬度が高くなった製氷水が氷化して、製氷水を追加供給する前に角氷Rが白濁化することもあり得る。従って、これらを勘案すると、第1設定温度T1は、−8℃〜−15℃程度に設定するのが望ましい。   In the above-described embodiment, the first set temperature T1 is set to −10 ° C., but the first set temperature T1 is not limited to −10 ° C. That is, the temperature at which the ice cube R is generated in each ice making chamber 32 of the ice making chamber 31 is 0 ° C. to the second set temperature T 2 (−25 ° C.), and therefore the first set temperature T 1 is 0 to −25 ° C. Can be set between. However, when the first preset temperature T1 is set to a temperature higher than −10 ° C., the ice ice R is not generated, so that the amount of ice making water decreases is small, and therefore the additional supply amount of ice making water is also small. Therefore, it is not effective for the purpose of reducing the hardness of ice making water. On the other hand, when the first set temperature T1 is set to a temperature lower than −10 ° C., the ice ice R is generated so much that the amount of ice-making water decreases, and in some cases the hardness is high. It is possible that the ice making water is turned into ice and the ice cube R becomes cloudy before the additional ice making water is supplied. Therefore, when these are taken into consideration, it is desirable to set the first set temperature T1 to about −8 ° C. to −15 ° C.

前述した実施例の運転方法では、製氷室31が第1設定温度T1となった際に製氷水の追加供給を行なうようにしたが、製氷水タンク34内に貯留されている製氷水が所定水位まで減少したことを水位検知手段が検知した際に製氷水の追加供給を行なうようにしてもよい。   In the operation method of the above-described embodiment, the ice making water is additionally supplied when the ice making chamber 31 reaches the first set temperature T1, but the ice making water stored in the ice making water tank 34 has a predetermined water level. When the water level detecting means detects that the amount of water has decreased, additional ice-making water may be supplied.

前述した実施例の運転方法では、製氷水の追加供給を1回で一気(連続的)に行なう場合を例示したが、製氷水の追加供給態様はこれに限定されるものではなく、例えば複数回に分けて断続的に行なうようにしてもよい。なお、複数回に分けて断続的に製氷水を追加供給するようにした場合は、追加供給される製氷水が常温程度であっても、製氷水タンク34内に貯留されている製氷水の温度上昇を少なく抑え得る効果が期待できる。   In the operation method of the above-described embodiment, the case where the additional supply of ice-making water is performed at once (continuously) is illustrated. However, the additional supply mode of ice-making water is not limited to this. You may make it carry out by dividing into. In addition, when the ice making water is additionally supplied intermittently in a plurality of times, the temperature of the ice making water stored in the ice making water tank 34 even if the additionally supplied ice making water is about room temperature. An effect that can suppress the increase is expected.

本願の自動製氷機の運転方法は、製氷水タンクに貯留した製氷水を製氷部に循環供給して氷塊を生成する構成の自動製氷機が対象とされる。従って、前述した実施例に例示した噴射式の自動製氷機だけでなく、例えば流下式の自動製氷機であってもよい。   The operation method of the automatic ice maker of the present application is directed to an automatic ice maker configured to generate ice blocks by circulatingly supplying ice making water stored in an ice making water tank to an ice making unit. Therefore, not only the jet-type automatic ice maker exemplified in the above-described embodiment, but also a flow-down type automatic ice maker may be used.

実施例の運転方法を実施する自動製氷機の概略構成図である。It is a schematic block diagram of the automatic ice making machine which enforces the operating method of an Example. 実施例の自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine of an Example. 実施例の自動製氷機の運転方法を示すフローチャート図である。It is a flowchart figure which shows the operating method of the automatic ice maker of an Example. 実施例の自動製氷機の運転方法を示すタイムチャート図である。It is a time chart which shows the operating method of the automatic ice maker of an Example. 別実施例の自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine of another Example. 別実施例の自動製氷機の運転方法を示すフローチャート図である。It is a flowchart figure which shows the operating method of the automatic ice maker of another Example. 噴射式の自動製氷機の概略構成を示す一部破断斜視図である。It is a partially broken perspective view which shows schematic structure of an injection type automatic ice making machine. 図7に示した自動製氷機の製氷機構の概略図である。It is the schematic of the ice making mechanism of the automatic ice making machine shown in FIG.

符号の説明Explanation of symbols

31 製氷部,34 製氷水タンク,52 給水弁,50 給水部,62 水位検知手段
66 タイマ手段,R 角氷(氷塊),T1 第1設定温度(設定温度)
31 ice making section, 34 ice making water tank, 52 water supply valve, 50 water supply section, 62 water level detection means 66 timer means, R ice cube (ice block), T1 first set temperature (set temperature)

Claims (5)

給水弁(52)を備えた給水部(50)から製氷水タンク(34)に供給した所定量の製氷水を、製氷部(31)に供給して氷塊(R)を生成するに際し、前記製氷部(31)で氷化しなかった製氷水を、前記製氷水タンク(34)へ回収して再び製氷部(31)に供給するようにした自動製氷機の運転方法において、
前記氷塊(R)が生成され始めた後の適時に、前記給水弁(52)を開放制御して製氷水の追加供給を行なう
ことを特徴とする自動製氷機の運転方法。
A predetermined amount of ice making water supplied from the water supply unit (50) provided with the water supply valve (52) to the ice making water tank (34) is supplied to the ice making unit (31) to generate ice blocks (R). In the operation method of the automatic ice maker, the ice making water that has not been icified in the part (31) is collected in the ice making water tank (34) and supplied again to the ice making part (31).
A method of operating an automatic ice maker, wherein the ice feed water (52) is controlled to be opened and additional ice making water is supplied at an appropriate time after the ice block (R) starts to be generated.
製氷水の追加供給により前記製氷水タンク(34)から製氷水がオーバーフローする前に、前記給水弁(52)を閉鎖制御して製氷水の追加供給を停止する請求項1記載の自動製氷機の運転方法。   The automatic ice maker according to claim 1, wherein before the ice making water overflows from the ice making water tank (34) due to the additional supply of ice making water, the supply valve (52) is closed to stop the additional supply of ice making water. how to drive. 前記製氷部(31)が所定の設定温度(T1)となった際に、前記給水弁(52)を開放制御する請求項1または2記載の自動製氷機の運転方法。   The method of operating an automatic ice maker according to claim 1 or 2, wherein when the ice making section (31) reaches a predetermined set temperature (T1), the water supply valve (52) is controlled to be opened. 前記製氷水タンク(34)に配設した水位検知手段(62)が所定水位を検知した時点で、前記給水弁(52)の閉鎖制御を行なう請求項1〜3の何れか一項に記載の自動製氷機の運転方法。   4. The closing control of the water supply valve (52) is performed when the water level detection means (62) disposed in the ice making water tank (34) detects a predetermined water level. 5. How to operate an automatic ice machine. 前記給水弁(52)の開放制御を行なうと同時にカウントを開始したタイマ手段(66)がタイムアップした時点で、前記給水弁(52)の閉鎖制御を行なう請求項1〜3の何れか一項に記載の自動製氷機の運転方法。   The closing control of the water supply valve (52) is performed when the timer means (66) that started counting at the same time as performing the opening control of the water supply valve (52) is timed up. The operation method of the automatic ice maker described in 1.
JP2007077422A 2007-03-23 2007-03-23 How to operate an automatic ice machine Active JP5052173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077422A JP5052173B2 (en) 2007-03-23 2007-03-23 How to operate an automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077422A JP5052173B2 (en) 2007-03-23 2007-03-23 How to operate an automatic ice machine

Publications (2)

Publication Number Publication Date
JP2008232602A true JP2008232602A (en) 2008-10-02
JP5052173B2 JP5052173B2 (en) 2012-10-17

Family

ID=39905603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077422A Active JP5052173B2 (en) 2007-03-23 2007-03-23 How to operate an automatic ice machine

Country Status (1)

Country Link
JP (1) JP5052173B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109724A1 (en) * 2009-03-25 2010-09-30 ホシザキ電機株式会社 Automatic ice maker
CN102345953A (en) * 2010-08-03 2012-02-08 曼尼托沃食品服务有限公司 Method and system for producing clear ice
JP2012063069A (en) * 2010-09-16 2012-03-29 Hoshizaki Electric Co Ltd Automatic ice-making machine
JP2013029253A (en) * 2011-07-28 2013-02-07 Hoshizaki Electric Co Ltd Ice-making machine
JP2021110485A (en) * 2020-01-08 2021-08-02 ホシザキ株式会社 Ice making machine
CN115451617A (en) * 2021-06-08 2022-12-09 青岛海尔电冰箱有限公司 Ice making control method and ice making device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109724A1 (en) * 2009-03-25 2010-09-30 ホシザキ電機株式会社 Automatic ice maker
JP2010230177A (en) * 2009-03-25 2010-10-14 Hoshizaki Electric Co Ltd Automatic ice-making machine
US9146049B2 (en) 2009-03-25 2015-09-29 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine
JP2013535652A (en) * 2010-08-03 2013-09-12 マニトワック・フードサービス・カンパニーズ・エルエルシー Transparent ice manufacturing method and system
US20120031114A1 (en) * 2010-08-03 2012-02-09 Manitowoc Foodservice Companies, Llc Method and system for producing clear ice
CN102345953B (en) * 2010-08-03 2014-04-23 曼尼托沃食品服务有限公司 Method and system for producing clear ice
CN102345953A (en) * 2010-08-03 2012-02-08 曼尼托沃食品服务有限公司 Method and system for producing clear ice
JP2012063069A (en) * 2010-09-16 2012-03-29 Hoshizaki Electric Co Ltd Automatic ice-making machine
JP2013029253A (en) * 2011-07-28 2013-02-07 Hoshizaki Electric Co Ltd Ice-making machine
JP2021110485A (en) * 2020-01-08 2021-08-02 ホシザキ株式会社 Ice making machine
JP7341903B2 (en) 2020-01-08 2023-09-11 ホシザキ株式会社 ice machine
CN115451617A (en) * 2021-06-08 2022-12-09 青岛海尔电冰箱有限公司 Ice making control method and ice making device
CN115451617B (en) * 2021-06-08 2023-08-15 青岛海尔电冰箱有限公司 Ice making control method and ice making device

Also Published As

Publication number Publication date
JP5052173B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5008675B2 (en) Automatic ice maker and its operating method
JP5052173B2 (en) How to operate an automatic ice machine
KR100814613B1 (en) Ice purifier capable of manufacturing cool water using ice
JP2017141985A (en) Ice maker
JP4994087B2 (en) How to operate an automatic ice machine
JP2003279210A (en) Ice making apparatus and refrigerator having the same
JP2018105522A (en) Automatic ice maker
JP2009121768A (en) Automatic ice making machine and control method for it
JP2008064322A (en) Automatic ice making machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
KR101507037B1 (en) Ice dispenser Housing for use of ice maker
JP2009024897A (en) Operation method of ice making machine
JP5795930B2 (en) How to operate an automatic ice machine
JP4705790B2 (en) Control method of automatic ice machine
JP2009180475A (en) Operating method of injection type ice-making machine
KR100766692B1 (en) Methods for manufacturing ice using ice-manufacturing unit of immersion type
WO2011004702A1 (en) Ice making machine
JP6043497B2 (en) How to operate an automatic ice machine
JP4749886B2 (en) Ice machine
JP6575910B2 (en) Ice machine
KR101672054B1 (en) Ice maker control method for refrigerator
KR101500732B1 (en) Method for estimating completion of ice-making for an ice making assembly of refrigerator
JP4846547B2 (en) How to operate an automatic ice machine
JP2009216326A (en) Icemaker
JP2009216255A (en) Inverted-cell type ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350