JP2008232593A - Mixed gas supply device and its composition variation adjusting method - Google Patents

Mixed gas supply device and its composition variation adjusting method Download PDF

Info

Publication number
JP2008232593A
JP2008232593A JP2007076603A JP2007076603A JP2008232593A JP 2008232593 A JP2008232593 A JP 2008232593A JP 2007076603 A JP2007076603 A JP 2007076603A JP 2007076603 A JP2007076603 A JP 2007076603A JP 2008232593 A JP2008232593 A JP 2008232593A
Authority
JP
Japan
Prior art keywords
temperature
mixed gas
packed tower
gas supply
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007076603A
Other languages
Japanese (ja)
Other versions
JP4859724B2 (en
Inventor
Susumu Nishio
晋 西尾
Yasuhiko Urabe
安彦 浦邊
Takefumi Ishikura
威文 石倉
Tomonori Nagasawa
知紀 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007076603A priority Critical patent/JP4859724B2/en
Publication of JP2008232593A publication Critical patent/JP2008232593A/en
Application granted granted Critical
Publication of JP4859724B2 publication Critical patent/JP4859724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixed gas supply device suitable for stabilizing the heating value of fuel gas such as city gas, and its composition variation adjusting method. <P>SOLUTION: With the start of control, the operation start temperature T1 of a cooling device is determined first based on a variation width determination table. During operation, a filling tower internal temperature Ts is always measured by a temperature sensor S1. In the case of Ts≥T1, whether the cooling device 6 is already in operation is determined. In the stop state of operation, cooling operation is started. During cooling operation, whether the measured value Ts of the temperature sensor S1 has reached a lower limit temperature T0 or lower is determined. In the case of Ts≤T0, there is a possibility of component gas being liquefied. The operation of the cooling device 6 is thereby stopped (S107). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、混合ガス供給装置及びその組成変動調整方法等に係り、特に、都市ガス等、燃料ガスの発熱量変動抑制に好適な混合ガス供給装置及びその組成変動調整方法等に関する。 The present invention relates to a mixed gas supply apparatus and a composition variation adjustment method thereof, and more particularly to a mixed gas supply apparatus suitable for suppressing a heat generation amount variation of a fuel gas such as city gas and a composition variation adjustment method thereof.

近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。   In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with LNG storage tanks and vaporizers. After transporting LNG from the coastal LNG receiving terminal by lorry and storing it in the LNG storage tank, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.

このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの発熱量変動が起こる場合があり、このため供給ガスの発熱量安定化のための種々の技術が開示されている。気化器自体の改良としては、LNG気化器の停止時にパージラインからLPGをパージする技術が提案されている(例えば特許文献1)。
また、吸着材を用いた混合ガス供給装置として、気化器下流側に活性炭を充填した吸着材充填塔を設けて、発熱量を平準化する技術が提案されている(例えば特許文献2)。
In such an LNG satellite supply system, there is a case where the calorific value fluctuation of the supply gas accompanying the start of operation of the carburetor, load fluctuation, temperature change or the like occurs. Technology is disclosed. As an improvement of the vaporizer itself, a technique for purging LPG from a purge line when the LNG vaporizer is stopped has been proposed (for example, Patent Document 1).
In addition, as a mixed gas supply device using an adsorbent, a technique has been proposed in which an adsorbent packed tower filled with activated carbon is provided on the downstream side of the vaporizer to level the calorific value (for example, Patent Document 2).

図10は、このような吸着材充填塔を用いた従来の混合ガス供給装置100を示す。従来の混合ガス供給装置100は、LNG貯槽101、外気を加熱源とする気化器102、吸着材充填塔103を主要構成とする。吸着材充填塔103内には細孔直径2.0〜3.0nmの活性炭が充填されている。このような構成により、タンクローリ105、ライン106を介して供給されるLNGをLNG貯槽101に一旦貯蔵し、気化器102で気化して天然ガスとし、さらに吸着材充填塔103を通過させる。これにより、気化器出側において高沸点(重質炭化水素)成分の組成比が高くガス発熱量が高いときには、高沸点成分を吸着材で吸着し、また低沸点成分であるメタンの組成比が高くガス発熱量が低いときには、吸着した高沸点成分を脱着させて発熱量を平準化するものである。   FIG. 10 shows a conventional mixed gas supply apparatus 100 using such an adsorbent packed tower. A conventional mixed gas supply apparatus 100 mainly includes an LNG storage tank 101, a vaporizer 102 using outside air as a heating source, and an adsorbent packed tower 103. The adsorbent packed tower 103 is filled with activated carbon having a pore diameter of 2.0 to 3.0 nm. With such a configuration, the LNG supplied via the tank lorry 105 and the line 106 is temporarily stored in the LNG storage tank 101, vaporized by the vaporizer 102 to become natural gas, and further passed through the adsorbent packed tower 103. Thus, when the composition ratio of the high boiling point (heavy hydrocarbon) component is high and the gas calorific value is high on the outlet side of the vaporizer, the high boiling point component is adsorbed by the adsorbent, and the composition ratio of methane which is the low boiling point component is When the calorific value is high and the calorific value is low, the adsorbed high boiling point component is desorbed to equalize the calorific value.

特開平7−109476号公報JP-A-7-109476 特開2005-273753号公報JP 2005-273753 A

一般に、吸着材の吸着量は高温下で低下し、低温下で増加することが知られている。しかしながら、吸着材を用いた発熱量調整方法に関しては、冬期に充填塔内を設定温度(35℃)に加熱して安定的に天然ガスを供給する技術の開示(特許文献2)があるものの、実用上想定される環境温度範囲に亘る発熱量調整方法の開示はない。組成変動抑制技術についても同様である。   In general, it is known that the amount of adsorbent adsorbed decreases at a high temperature and increases at a low temperature. However, regarding the calorific value adjustment method using an adsorbent, although there is a disclosure (Patent Document 2) of a technique for stably supplying natural gas by heating the packed tower to a set temperature (35 ° C.) in winter, There is no disclosure of a calorific value adjustment method over the environmental temperature range assumed in practice. The same applies to the composition fluctuation suppression technology.

発明者らは鋭意研究の結果、実用上想定される広い温度範囲で高い組成変動抑制効果を奏する混合ガス供給装置を完成した。本発明は、以下の内容を要旨とする。すなわち、
請求項1の発明は、成分組成が経時的に変化する混合ガスを供給する供給ラインと、供給ライン中に介在し、温度上昇に伴って組成変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、充填塔内温度が第一の閾値温度以上のときは、充填塔内を冷却する手段と、を備えて成ることを特徴とする混合ガス供給装置である。
As a result of intensive studies, the inventors have completed a mixed gas supply device that exhibits a high composition fluctuation suppressing effect in a wide temperature range that is assumed in practice. The gist of the present invention is as follows. That is,
The invention of claim 1 is filled with a supply line that supplies a mixed gas whose composition changes over time, and an adsorbent that is interposed in the supply line and has a characteristic that the composition fluctuation suppressing performance decreases with increasing temperature. And a means for cooling the inside of the packed tower when the temperature inside the packed tower is equal to or higher than a first threshold temperature.

以下、本発明の作用について説明する。上述のように吸着材の吸着量は高温下で低下し、低温下で増加するが、その吸着特性は吸着材ごとに大きく異なる。従って、適切な吸着材を選択して充填塔内温度を制御することにより、充填塔下流側における組成変動を所望の範囲内に収めることが可能となる。図9は、各種吸着材の組成変動抑制性能の温度依存性を概念的に示す図である。ここに「組成変動抑制性能」とは、組成変動する混合ガスの充填塔入口と出口における変動幅の比を示す指数であり、この値が小さいほど抑制性能が高いことになる。同図より、吸着材Aは、通常環境温度範囲では吸着材Cと比較して高い組成変動抑制性能を有している。しかし、高温になるに従い変動抑制性能が低下し、ある温度以上ではCより劣ってしまう。また、吸着材Bと比較すると、通常環境温度範囲内でも温度T1以上ではBより劣ってしまう。この場合、充填塔内温度がT1以上に至ったときに充填塔を冷却することにより、環境温度に拘らず高い組成変動抑制性能を維持できることになる。   The operation of the present invention will be described below. As described above, the adsorption amount of the adsorbent decreases at a high temperature and increases at a low temperature, but the adsorption characteristics vary greatly depending on the adsorbent. Therefore, by selecting an appropriate adsorbent and controlling the temperature in the packed tower, it is possible to keep the composition variation on the downstream side of the packed tower within a desired range. FIG. 9 is a diagram conceptually showing the temperature dependence of the composition fluctuation suppressing performance of various adsorbents. Here, the “composition variation suppression performance” is an index indicating the ratio of the fluctuation range of the mixed gas having a composition variation at the inlet and the outlet of the packed tower, and the smaller the value, the higher the suppression performance. From the figure, the adsorbent A has a higher composition fluctuation suppressing performance than the adsorbent C in the normal environmental temperature range. However, the fluctuation suppressing performance decreases as the temperature increases, and is inferior to C at a certain temperature or higher. Further, compared with the adsorbent B, it is inferior to B at a temperature T1 or higher even in the normal environmental temperature range. In this case, by cooling the packed tower when the temperature in the packed tower reaches T1 or higher, high composition fluctuation suppressing performance can be maintained regardless of the environmental temperature.

なお、本発明において「混合ガス」とは、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等を含む概念である。
上記発明において、第一の閾値温度を所望する充填塔下流側における組成変動幅に応じて可変とする手段を、さらに備えたものとすることができる(請求項2)。
上記発明において、さらに充填塔内温度が第二の閾値温度以下のときは冷却を停止する手段を備えたものとすることができる(請求項3)。
第二の閾値温度として、混合ガス成分のうち、最も液化温度が高い成分ガスの供給圧における液化温度以上の温度を選択することができる(請求項4)。
ある成分が液化温度以下になると充填塔内に液が滞留する等の悪影響をもたらすため、本発明により下限温度を設けることが有効となる。
In the present invention, the “mixed gas” is a concept including a raw material gas, a by-product gas, an exhaust gas, a generated gas by biomass, and the like in the chemical industry.
The said invention WHEREIN: The means which makes variable according to the composition fluctuation | variation width | variety in the downstream of the packed tower in which the 1st threshold temperature is desired can be further provided (Claim 2).
In the above invention, it is possible to further comprise means for stopping the cooling when the temperature in the packed tower is equal to or lower than the second threshold temperature (invention 3).
As the second threshold temperature, a temperature equal to or higher than the liquefaction temperature at the supply pressure of the component gas having the highest liquefaction temperature among the mixed gas components can be selected.
When a certain component falls below the liquefaction temperature, it causes an adverse effect such as stagnation of the liquid in the packed tower. Therefore, it is effective to provide a lower limit temperature according to the present invention.

本発明に用いる吸着材として、石炭原料活性炭を選択することができる(請求項5)。後述のように、石炭原料活性炭は常温以下で高い吸着性能を有するが、40℃以上では吸着性能が低下する特性を有する。本発明によれば吸着性能低下を防止することができ、吸着材として好適に用いることができる。   As the adsorbent used in the present invention, activated carbon activated carbon can be selected (claim 5). As will be described later, the activated carbon activated carbon has a high adsorption performance at room temperature or lower, but has a characteristic that the adsorption performance decreases at 40 ° C. or higher. According to the present invention, it is possible to prevent a decrease in adsorption performance, and it can be suitably used as an adsorbent.

上記発明において、「混合ガス」として、燃料ガスを用いることができ(請求項6)、また、メタンを主成分とする都市ガスとすることができる(請求項7)。
現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて14種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、CH4を主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにウオッベ指数(WI)は、ガスの発熱量H(MJ/m3)をガスの空気に対する比重sの平方根で割った数値、
WI=H/√s
で表され、ガス機器の完全燃焼性の指標となるものである。
また、燃焼速度指数(MCP)は、次式で表される。
In the above invention, fuel gas can be used as the “mixed gas” (Claim 6), and city gas mainly composed of methane can be used (Claim 7).
Currently, city gas nationwide is classified into 14 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, for 13A city gas mainly composed of CH4, it is determined that 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, the Wobbbe index (WI) is a numerical value obtained by dividing the calorific value H (MJ / m3) of the gas by the square root of the specific gravity s of the gas with respect to air.
WI = H / √s
This is an index of complete combustibility of gas equipment.
The combustion rate index (MCP) is expressed by the following equation.

Figure 2008232593
上式において、Si、fiはそれぞれ都市ガス中の各可燃性ガスの燃焼速度及び係数、Aiは都市ガス中の各可燃性ガスの含有率(体積百分率)、Kは減衰係数である。各係数の具体的数値についてはガス事業法に示されているため、ここでは省略する。
従って、本発明による吸着材充填塔通過後の混合ガスのWI及びMCPを、上記13A都市ガスの範囲に制御することにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。
Figure 2008232593
In the above equation, Si and fi are the burning rate and coefficient of each combustible gas in the city gas, Ai is the content (volume percentage) of each combustible gas in the city gas, and K is the attenuation coefficient. Specific numerical values for each coefficient are shown in the Gas Business Law, and are therefore omitted here.
Therefore, by controlling the WI and MCP of the mixed gas after passing through the adsorbent packed tower according to the present invention within the range of the 13A city gas, the city gas 13A equipment can be burned well in the supply area.

請求項9の発明は、成分組成が経時的に変化する混合ガスを供給する供給ラインと、供給ライン中に介在し、温度上昇に伴って組成変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、を備えた混合ガス供給装置において、混合ガス温度が第一の閾値温度を超えたときは充填塔内を冷却し、かつ、第二の閾値温度以下となったときは冷却を停止することを特徴とする組成変動調整方法である。   The invention according to claim 9 is filled with a supply line for supplying a mixed gas whose composition changes over time, and an adsorbent that is interposed in the supply line and has a characteristic that the composition fluctuation suppressing performance decreases with increasing temperature. In the mixed gas supply device equipped with the packed tower, the inside of the packed tower is cooled when the mixed gas temperature exceeds the first threshold temperature, and is cooled when the mixed gas temperature falls below the second threshold temperature. The composition variation adjusting method is characterized by stopping.

請求項10の発明は、発熱量が経時的に変化する燃料ガスを供給する供給ラインと、供給ライン中に介在し、温度上昇に伴って発熱量変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、を備えた燃料ガスの発熱量調整装置において、充填塔内温度が、第一の閾値温度以上となったときは充填塔内を冷却し、第二の閾値温度以下となったときは冷却を停止する、ことを特徴とする発熱量調整方法である。   A tenth aspect of the present invention provides a supply line that supplies fuel gas whose calorific value changes with time, and an adsorbent that is interposed in the supply line and has a characteristic that the performance of suppressing the calorific value variation decreases as the temperature rises. In a fuel gas calorific value adjusting device equipped with a packed tower, the packed tower is cooled when the temperature inside the packed tower becomes equal to or higher than the first threshold temperature, and becomes equal to or lower than the second threshold temperature. In this case, the heat generation amount adjustment method is characterized in that the cooling is stopped when the heat is discharged.

本発明により、環境温度の影響を受けることなく、組成変動を一定範囲に抑えてガス供給を可能とする混合ガス供給装置が可能となる。
また、混合ガスとして燃料ガス又は都市ガスを用いる発明にあっては、供給源から発熱量変動を伴うガスが供給される場合であっても、実用上想定される広い環境温度範囲で発熱量変動を一定範囲内に抑えて需要家に供給することが可能となる。
According to the present invention, it is possible to provide a mixed gas supply apparatus that enables gas supply while suppressing composition fluctuations within a certain range without being affected by environmental temperature.
Further, in the invention using fuel gas or city gas as a mixed gas, even if gas with a calorific value fluctuation is supplied from a supply source, the calorific value fluctuations over a wide range of practically assumed environmental temperatures. It is possible to supply the product to the customer while keeping the value within a certain range.

以下、本発明の実施形態について、図1乃至8を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
本実施形態は、「混合ガス」としてLNGを原料とする燃料ガスを用いて発熱量調整を行う形態に係る。LNGは軽質炭化水素であるメタン(CH4)を主成分とし、プロパン(C2H6)、その他重質炭化水素(CmHn)を含む。なお、以下の実施形態において、「発熱量」とは総発熱量を意味する。
Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
The present embodiment relates to a form in which the calorific value is adjusted using a fuel gas made from LNG as a “mixed gas”. LNG is mainly composed of methane (CH4), which is a light hydrocarbon, and includes propane (C2H6) and other heavy hydrocarbons (CmHn). In the following embodiments, “heat generation amount” means the total heat generation amount.

図1は、本実施形態に係る燃料ガス供給装置1の全体構成を示す図である。燃料ガス供給装置1は、LNG貯槽4と、気化器3と、吸着材充填塔2と、充填塔内の吸着材冷却のための冷却装置6と、を主要構成として備えている。これら装置間は、供給ラインL1乃至L3により接続されている。供給ラインL3の末端側には負荷装置(例えばガスエンジン)5が設置されている。LNG貯槽4には、タンクローリ等により搬送されたLNGが貯蔵されている。吸着材充填塔2内には、石炭原料活性炭の吸着材2aが充填されている。
冷却装置6は、気化器3に付設され、LNG冷熱を受熱する熱交換器6aと、充填塔2内に吸着材冷却用熱交換コイル6bと、循環ポンプ6cと、これら装置間を接続する冷媒配管6eと、を備えている。冷媒配管6e内部には不凍液が充填されており、不凍液が装置間を循環するように構成されている。冷媒配管6e経路中には流量調節弁6dが配設されている。充填塔2内には吸着材温度計測のための温度センサS1が配設されている。
冷却装置6はさらに制御部7を備えている。制御部7内には、表1に示す変動幅判定テーブル、及び蒸気表に基づき作成された重質炭化水素(CmHn)の液化温度判定テーブル(図示せず)が格納されている。これらテーブルに基づいて、後述するように冷却装置6の運転発停を判定するように構成されている。なお、この変動幅判定テーブルは、後述する石炭原料活性炭における2℃〜80℃の条件下での変動幅の測定結果(図6)から決定している。
なお、表1において発熱量変動幅ΔHは、ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2で示される指数である。
FIG. 1 is a diagram illustrating an overall configuration of a fuel gas supply apparatus 1 according to the present embodiment. The fuel gas supply device 1 includes, as main components, an LNG storage tank 4, a vaporizer 3, an adsorbent packed tower 2, and a cooling device 6 for cooling the adsorbent in the packed tower. These devices are connected by supply lines L1 to L3. A load device (for example, a gas engine) 5 is installed on the end side of the supply line L3. The LNG storage tank 4 stores LNG conveyed by a tank truck or the like. The adsorbent packed tower 2 is filled with an adsorbent 2a made of activated carbon coal.
The cooling device 6 is attached to the vaporizer 3 and receives a heat exchanger 6a that receives LNG cold heat, an adsorbent cooling heat exchange coil 6b in the packed tower 2, a circulation pump 6c, and a refrigerant that connects these devices. And a pipe 6e. The refrigerant pipe 6e is filled with antifreeze and is configured so that the antifreeze circulates between the devices. A flow rate adjusting valve 6d is disposed in the refrigerant pipe 6e. A temperature sensor S <b> 1 for measuring the adsorbent temperature is disposed in the packed tower 2.
The cooling device 6 further includes a control unit 7. In the control unit 7, a fluctuation range determination table shown in Table 1 and a heavy hydrocarbon (CmHn) liquefaction temperature determination table (not shown) created based on the steam table are stored. Based on these tables, the operation start / stop of the cooling device 6 is determined as described later. In addition, this fluctuation range determination table is determined from the measurement result (FIG. 6) of the fluctuation range under the condition of 2 ° C. to 80 ° C. in the coal raw material activated carbon described later.
In Table 1, the calorific value fluctuation range ΔH is an index indicated by ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the calorific value maximum value Hmax and the minimum value Hmin.

Figure 2008232593
Figure 2008232593

以上の構成により、燃料ガス供給装置1はLNG貯槽4内のLNGを気化器3で気化して天然ガスとし、充填塔2を通過させて発熱量変動を調整した後に、供給ラインL3を介して負荷装置5に供給する。制御部7は、供給中は常時、温度センサS1の計測値を監視しており、計測値に基づいて循環ポンプ6cの発停及び流量調節弁6dの開閉制御を行い、充填塔内温度を任意の設定温度に制御することにより、充填塔2出口における天然ガスの発熱量変動を所定の範囲内に調整する。   With the above configuration, the fuel gas supply device 1 vaporizes the LNG in the LNG storage tank 4 with the vaporizer 3 into natural gas, passes the packed tower 2 to adjust the calorific value fluctuation, and then passes through the supply line L3. Supply to the load device 5. The control unit 7 constantly monitors the measured value of the temperature sensor S1 during supply, performs start / stop of the circulation pump 6c and the opening / closing control of the flow rate control valve 6d based on the measured value, and arbitrarily sets the temperature in the packed tower. By controlling to the set temperature, the calorific value fluctuation of the natural gas at the outlet of the packed tower 2 is adjusted within a predetermined range.

次に図2を参照して、燃料ガス供給装置1における発熱量制御フローについて説明する。制御開始に伴い、まず変動幅判定テーブルに基づいて冷却装置の運転開始温度T1が決定される(S101)。ここでは変動幅を0.9(MJ/m3)以下に収めるため。T1として40℃に設定されるものとする。運転中は、常に温度センサS1により充填塔内温度Tsが計測され(S102)、所定のインターバルでTsが閾値温度T1以上か否かを判定する(S103)。Ts<T1のときは、後述のステップS106にスキップする。Ts≧T1であるときは、次に冷却装置6が既に運転中か否かを判定する(S104)。運転停止状態のときは、冷却運転を開始する(S105)。冷却装置6が既に稼働中のときは、ステップS106にスキップする。   Next, a heat generation amount control flow in the fuel gas supply apparatus 1 will be described with reference to FIG. With the start of control, the operation start temperature T1 of the cooling device is first determined based on the fluctuation range determination table (S101). In order to keep the fluctuation range below 0.9 (MJ / m3). It is assumed that T1 is set to 40 ° C. During operation, the packed column temperature Ts is always measured by the temperature sensor S1 (S102), and it is determined whether Ts is equal to or higher than the threshold temperature T1 at a predetermined interval (S103). When Ts <T1, the process skips to step S106 described later. When Ts ≧ T1, it is next determined whether or not the cooling device 6 is already in operation (S104). When the operation is stopped, the cooling operation is started (S105). When the cooling device 6 is already in operation, the process skips to step S106.

冷却運転中は、温度センサS1の計測値Tsが下限温度T0以下に至ったか否かを判定する(S106)。なお、下限温度T0として燃料ガス成分のうち最も高温で液化する、n−ブタンの常圧液化温度−0.5℃に設定している。Ts≦T0のときは成分ガスが液化する可能性があるため冷却装置の運転を停止し(S107)、S102に戻って上記フローを繰り返す。   During the cooling operation, it is determined whether or not the measured value Ts of the temperature sensor S1 has reached the lower limit temperature T0 or less (S106). The lower limit temperature T0 is set to the normal pressure liquefaction temperature of n-butane, which is liquefied at the highest temperature among the fuel gas components, -0.5 ° C. When Ts ≦ T0, the component gas may be liquefied, so the operation of the cooling device is stopped (S107), the process returns to S102 and the above flow is repeated.

なお、本実施形態では冷却運転下限温度として、n−ブタンの常圧液化温度を用いる形態を示したが、より高温に設定することもできる。これにより冷却運転時間を短縮することができ、冷却に要する消費エネルギーを低減することができる。
また、本実施形態では冷却用冷媒として不凍液を用いる形態を示したが、他の冷媒、例えばフロン、1価アルコール、グリコール、LNG、LPG、CO2、アンモニア等を用いる形態とすることもできる。T0が0℃を超える場合は水を使用することもできる。
また、本実施形態では気化器の冷熱を利用する形態としたが、冷熱源として他の冷熱源を用いることもできる。
In addition, although the form which uses the normal pressure liquefaction temperature of n-butane was shown as cooling operation minimum temperature in this embodiment, it can also set to higher temperature. Thereby, the cooling operation time can be shortened, and the energy consumption required for cooling can be reduced.
In the present embodiment, an antifreeze liquid is used as the cooling refrigerant. However, other refrigerants such as chlorofluorocarbon, monohydric alcohol, glycol, LNG, LPG, CO2, ammonia, and the like may be used. Water can also be used when T0 exceeds 0 ° C.
In the present embodiment, the cold energy of the vaporizer is used. However, other cold heat sources can be used as the cold heat source.

本発明による効果を確認するため、本発明に係る吸着材充填容器を種々の温度に設定し、発熱量が周期的に変動するガスを容器に流入させて、発熱量変動の温度依存性を測定した。以下、その内容について説明する
(供試吸着材)
供試吸着材として石炭原料活性炭を用いた。また、比較のためヤシガラ原料活性炭を用いた試験も行った。以下、簡単のため石炭原料活性炭を活性炭A、ヤシガラ原料活性炭を活性炭Bと略称することがある。試験に用いた石炭原料活性炭,ヤシガラ原料活性炭の特性を表2に、細孔径分布(窒素吸着DFT法による)を図3に示す。また、図4に両活性炭のメタン、プロパンに対する圧力−吸脱着量特性を示す。同図は、真空状態(0KPa)から圧力を上げていく過程における活性炭に吸着されるガス量、及び、所定の圧力に達した後、圧力を下げていく過程で活性炭からガスが脱着していくが、その状態における吸着ガス量を示している。
In order to confirm the effect of the present invention, the adsorbent-filled container according to the present invention is set to various temperatures, a gas whose calorific value fluctuates periodically is flowed into the container, and the temperature dependence of the calorific value fluctuation is measured. did. The contents are described below (test adsorbent)
Coal raw material activated carbon was used as a test adsorbent. For comparison, a test using coconut shell raw material activated carbon was also conducted. Hereinafter, for the sake of simplicity, activated carbon A may be abbreviated as activated carbon A, and activated carbon B may be abbreviated as activated carbon B. The characteristics of the coal raw material activated carbon and coconut shell raw material activated carbon used in the test are shown in Table 2, and the pore size distribution (by nitrogen adsorption DFT method) is shown in FIG. FIG. 4 shows the pressure-adsorption / desorption characteristics of both activated carbons to methane and propane. The figure shows the amount of gas adsorbed on the activated carbon in the process of increasing the pressure from the vacuum state (0 KPa), and the gas is desorbed from the activated carbon in the process of decreasing the pressure after reaching the predetermined pressure. Shows the amount of adsorbed gas in this state.

Figure 2008232593
Figure 2008232593

(試験ガス)
2分間、LNG気化ガス(組成:CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%)を流し、その後1分間、このガスに添加用ガス(プロパン100%)を添加するサイクルを繰り返すことにより、周期的に組成(発熱量)が変動するガスを調製した。試験ガスの発熱量変動は、最小44.8MJ/m3、最大50.5MJ/m3であり、発熱量変動幅ΔH=2.85MJ/m3であった。
ここにΔHは、ΔH=(Hmax−Hmin)/2、すなわち発熱量最大値Hmaxと最小値Hminの差の1/2で示される指数である。
(Test gas)
Flow LNG vapor (composition: CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, n-C4H10: 0.6%) for 2 minutes, then add to this gas for 1 minute By repeating the cycle of adding gas (propane 100%), a gas whose composition (calorific value) fluctuates periodically was prepared. The test gas had a calorific value variation of a minimum of 44.8 MJ / m3 and a maximum of 50.5 MJ / m3, and a calorific value variation range ΔH = 2.85 MJ / m3.
Here, ΔH is an index indicated by ΔH = (Hmax−Hmin) / 2, that is, 1/2 of the difference between the maximum calorific value Hmax and the minimum value Hmin.

(試験装置)
充填容器(内容積30cc)に吸着材を充填し、環境温度を2℃、25℃、40℃、60℃、80℃の各条件に保持した状態で、上記組成の供試ガスを空塔速度2000h-1にて充填容器に流入させ、容器から流出するガスの発熱量を熱量計(Advantica社製、製品名:GasPT)で測定した。
(Test equipment)
Filling container (30 cc internal capacity) with adsorbent and maintaining the ambient temperature at 2 ° C, 25 ° C, 40 ° C, 60 ° C and 80 ° C, the test gas with the above composition is superficial The calorific value of the gas flowing out from the container at 2000 h −1 and flowing out of the container was measured with a calorimeter (Advantica, product name: GasPT).

(測定結果)
図5に、各温度における石炭原料活性炭の発熱量変動測定結果を示す。同図には、参考のため充填容器を通さない条件の測定結果も併せて示してある。図6は、発熱量変動幅ΔHの温度依存性を示す図である。同図より、石炭原料活性炭については、温度上昇に伴いΔHの値が上昇していくことが分かる。
(Measurement result)
In FIG. 5, the calorific value fluctuation | variation measurement result of the coal raw material activated carbon in each temperature is shown. In the same figure, the measurement results under conditions where the filled container is not passed are also shown for reference. FIG. 6 is a diagram showing the temperature dependence of the heat generation amount fluctuation range ΔH. From the figure, it can be seen that the value of ΔH increases as the temperature of the coal activated carbon increases.

(比較例)
図7、8は、それぞれ比較例であるヤシガラ原料活性炭の発熱量変動の時間的推移、及びΔHの温度依存性を示す図である。図6と図8の比較から明らかなように、室温以下の条件では石炭原料活性炭の方が発熱量抑制効果が高い。但し、40℃以上の高温条件になると逆転している。このことから、石炭原料活性炭を用いて環境温度が40℃以上にならないように充填容器を冷却することにより、ヤシガラ原料活性炭を用いた場合と比較して、常に発熱量抑制効果を高く維持できることになる。
(Comparative example)
FIGS. 7 and 8 are graphs showing temporal changes in calorific value fluctuations of coconut shell raw material activated carbon, which is a comparative example, and temperature dependence of ΔH, respectively. As is clear from the comparison between FIG. 6 and FIG. 8, the coal raw material activated carbon has a higher calorific value suppression effect under conditions of room temperature or lower. However, it is reversed when the temperature is higher than 40 ° C. From this, by cooling the filling container so that the environmental temperature does not become 40 ° C. or higher using the coal raw material activated carbon, it is possible to always maintain a high calorific value suppression effect as compared with the case using the coconut shell raw material activated carbon. Become.

本発明は、燃料ガスの発熱量変動抑制に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、組成変動する複数のガス成分からなる混合ガスの組成変動を抑制する用途に広く利用可能である。   The present invention is not limited to suppressing fluctuations in the calorific value of the fuel gas, but also suppresses fluctuations in the composition of a mixed gas composed of a plurality of gas components that vary in composition, such as raw material gas, by-product gas, exhaust gas, and produced gas from biomass. It can be widely used for applications.

本発明の一実施形態に係る燃料ガス供給装置1の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 1 which concerns on one Embodiment of this invention. 燃料ガス供給装置1の発熱量変動抑制制御フローを示す図である。It is a figure which shows the calorific value fluctuation | variation suppression control flow of the fuel gas supply apparatus. 供試吸着材である石炭原料活性炭、及び比較用吸着材であるヤシガラ原料活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the coal raw material activated carbon which is a test adsorption material, and the coconut husk raw material activated carbon which is a comparative adsorption material. 石炭原料活性炭及びヤシガラ原料活性炭のメタン、プロパンに対する吸着特性を示す図である。It is a figure which shows the adsorption | suction characteristic with respect to methane and propane of coal raw material activated carbon and coconut husk raw material activated carbon. 石炭原料活性炭の発熱量変動の時間的経緯を示す図である。It is a figure which shows the time course of the calorific value fluctuation | variation of coal raw material activated carbon. 石炭原料活性炭の発熱量変動の温度依存性を示す図である。It is a figure which shows the temperature dependence of the emitted-heat amount fluctuation | variation of coal raw material activated carbon. ヤシガラ原料活性炭の発熱量変動の時間的経緯を示す図である。It is a figure which shows the time course of the calorific value fluctuation | variation of the coconut shell raw material activated carbon. ヤシガラ原料活性炭の発熱量変動の温度依存性を示す図である。It is a figure which shows the temperature dependence of the emitted-heat amount fluctuation | variation of coconut shell raw material activated carbon. 本発明の作用を概念的に説明する図である。It is a figure which illustrates notionally the operation of the present invention. 従来の燃料ガス供給装置100の構成を示す図である。It is a figure which shows the structure of the conventional fuel gas supply apparatus.

符号の説明Explanation of symbols

1・・・・燃料ガス供給装置
2・・・・吸着材充填塔
2a・・・吸着材
3・・・・気化器
4・・・・LNG貯槽
5・・・・負荷装置
6・・・・冷却装置
7・・・・制御部
L1〜L3・・・・供給ライン
S1・・・温度センサ
DESCRIPTION OF SYMBOLS 1 ... Fuel gas supply device 2 ... Adsorbent packed tower 2a ... Adsorbent 3 ... Vaporizer 4 ... LNG storage tank 5 ... Load device 6 ... Cooling device 7... Controllers L1 to L3... Supply line S1.

Claims (10)

成分組成が経時的に変化する混合ガスを供給する供給ラインと、
供給ライン中に介在し、温度上昇に伴って組成変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、
充填塔内温度が第一の閾値温度以上のときは、充填塔内を冷却する手段と、
を備えて成ることを特徴とする混合ガス供給装置。
A supply line for supplying a mixed gas whose composition changes over time;
A packed tower filled with an adsorbent having a property of intervening in the supply line and decreasing in composition fluctuation suppression performance as the temperature rises;
When the packed tower temperature is equal to or higher than the first threshold temperature, means for cooling the packed tower,
A mixed gas supply apparatus comprising:
前記第一の閾値温度を、所望する充填塔下流側における組成変動幅に応じて可変とする手段を、さらに備えて成ることを特徴とする請求項1に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1, further comprising means for varying the first threshold temperature in accordance with a desired composition fluctuation range on the downstream side of the packed tower. 充填塔内温度が第二の閾値温度以下のときは、冷却を停止する手段を、さらに備えて成ることを特徴とする請求項1又は2に記載の混合ガス供給装置。 The mixed gas supply apparatus according to claim 1 or 2, further comprising means for stopping cooling when the temperature in the packed tower is equal to or lower than the second threshold temperature. 前記第二の閾値温度が、混合ガス成分のうち、最も液化温度が高い成分ガスの供給圧における液化温度以上であることを特徴とする請求項3に記載の燃料ガス供給装置。 The fuel gas supply apparatus according to claim 3, wherein the second threshold temperature is equal to or higher than a liquefaction temperature at a supply pressure of a component gas having the highest liquefaction temperature among the mixed gas components. 前記吸着材が、石炭原料活性炭であることを特徴とする請求項1乃至4に記載の混合ガス供給装置。 The mixed gas supply device according to claim 1, wherein the adsorbent is activated carbon activated carbon. 前記混合ガスが、燃料ガスであることを特徴とする請求項1乃至5に記載の混合ガス供給装置。 6. The mixed gas supply apparatus according to claim 1, wherein the mixed gas is a fuel gas. 前記燃料ガスが、メタンを主成分とする都市ガスであることを特徴とする請求項6に記載の混合ガス供給装置。 The mixed gas supply device according to claim 6, wherein the fuel gas is a city gas containing methane as a main component. 請求項6又は7に記載の混合ガス供給装置を用いて、
燃料ガスの発熱量変動調整を行うように構成したことを特徴とする燃料ガスの発熱量調整装置。
Using the mixed gas supply device according to claim 6 or 7,
A fuel gas heat generation amount adjustment device configured to adjust a fuel gas heat generation amount fluctuation adjustment.
成分組成が経時的に変化する混合ガスを供給する供給ラインと、
供給ライン中に介在し、温度上昇に伴って組成変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、を備えた混合ガス供給装置において、
充填塔内温度が、第一の閾値温度以上となったときは充填塔内を冷却し、第二の閾値温度以下となったときは冷却を停止する、
ことを特徴とする組成変動調整方法。
A supply line for supplying a mixed gas whose composition changes over time;
In a mixed gas supply apparatus comprising: a packed tower that is interposed in a supply line and packed with an adsorbent having a characteristic that the composition fluctuation suppression performance decreases as the temperature rises.
When the packed tower temperature is equal to or higher than the first threshold temperature, the packed tower is cooled, and when the temperature is equal to or lower than the second threshold temperature, the cooling is stopped.
A method for adjusting composition fluctuations.
発熱量が経時的に変化する燃料ガスを供給する供給ラインと、
供給ライン中に介在し、温度上昇に伴って発熱量変動抑制性能が低下する特性を有する吸着材を充填した充填塔と、を備えた発熱量調整装置において、
充填塔内温度が、第一の閾値温度以上となったときは充填塔内を冷却し、第二の閾値温度以下となったときは冷却を停止する、
ことを特徴とする発熱量調整方法。
A supply line for supplying fuel gas whose calorific value changes over time;
In a calorific value adjustment device comprising: a packed tower filled with an adsorbent that intervenes in the supply line and has a characteristic that the calorific value fluctuation suppression performance decreases as the temperature rises.
When the packed tower temperature is equal to or higher than the first threshold temperature, the packed tower is cooled, and when the temperature is equal to or lower than the second threshold temperature, the cooling is stopped.
The calorific value adjustment method characterized by this.
JP2007076603A 2007-03-23 2007-03-23 Mixed gas supply device and method for adjusting composition variation thereof Active JP4859724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076603A JP4859724B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device and method for adjusting composition variation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076603A JP4859724B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device and method for adjusting composition variation thereof

Publications (2)

Publication Number Publication Date
JP2008232593A true JP2008232593A (en) 2008-10-02
JP4859724B2 JP4859724B2 (en) 2012-01-25

Family

ID=39905594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076603A Active JP4859724B2 (en) 2007-03-23 2007-03-23 Mixed gas supply device and method for adjusting composition variation thereof

Country Status (1)

Country Link
JP (1) JP4859724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229230A (en) * 2009-03-26 2010-10-14 Tokyo Gas Co Ltd Mixed gas feeder and composition fluctuation-regulating method in mixed gas feeder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238160A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Gas adsorption method
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238160A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Gas adsorption method
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229230A (en) * 2009-03-26 2010-10-14 Tokyo Gas Co Ltd Mixed gas feeder and composition fluctuation-regulating method in mixed gas feeder

Also Published As

Publication number Publication date
JP4859724B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
JP5959778B2 (en) Facility for receiving liquefied natural gas
CN101970082B (en) Gaseous hydrocarbon treating/recovering apparatus and method
US11684888B2 (en) Integrated heat management systems and processes for adsorbed natural gas storage facilities
SG186255A1 (en) Method and system for storing natural gas
JP5959782B2 (en) Facility for receiving liquefied natural gas
JP4407913B2 (en) Liquefied natural gas vapor supply system
KR102299354B1 (en) Gas treatment system and ship having the same
JP4859724B2 (en) Mixed gas supply device and method for adjusting composition variation thereof
KR101910530B1 (en) Liquid natural gas vaporization
JP5001031B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP2011026144A (en) Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation
JP4931781B2 (en) Mixed gas supply device and method for suppressing composition variation
JP5686989B2 (en) Production of liquefied natural gas for automobiles
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
KR102243802B1 (en) Gas treatment system and ship having the same
JP4907845B2 (en) Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor
KR102200359B1 (en) treatment system of boil-off gas and ship having the same
JP5001041B2 (en) Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof
JP5207522B2 (en) Mixing gas composition fluctuation suppression device
JP5313737B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4823861B2 (en) Gas storage and delivery method and apparatus
CN208058420U (en) It is a kind of using CNG and LNG as the Gas Pressure Regulating Equipment of air source
KR20170048773A (en) A ReGasification System Of Liquefied Gas
Jokar et al. Compressed, liquefied, and adsorbed natural gas processes simulation and modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250